
The design of efJicient storage hierorchies generally involves the
repeated running of “typical” program address traces through a
simulated storage system while various hierarchy design parameters
are d jus t ed .

This paper describes a new and eficient method of determining, in
one pass of an address trace, performance measures fo r a large class
of demand-paged, multilevel storage systems utilizing a variety of
mapping schemes and replacement algorithms.

The technique depends on an algorithm classification, called “stack
algorithms,” examples of which are “least frequently used,” “least
recently used,” “optimal,” and “random replacement” algorithms.
The techniques yield the exact access frequent-v to each storage
device, which can be used to estimate the overall performance of
actual storage hierarchies.

Evaluation techniques for storage hierarchies
J. Gecsei, D. R. Slutz, and 1. L. Traiger

Increasing speed and size demands on computer systems have
resulted in corresponding demands on storage systems. Since it
has been generally recognized that the speed and capacity require-
ments of storage systems cannot be fulfilled at an acceptable cost-
performance level within any single technology, storage hierarchies
that use a variety of technologies have been investigated.

Several previous papers describe the general concepts of hierarchy
d e ~ i g n ” ~ and e v a l ~ a t i o n , ~ - ~ whereas others deal with specific
hierarchy systems, such as the core-drum combination on the
ICT Atlas c o m p ~ t e r ” ~ and the cache-core combination on the
IBM System/360, Model 85.’0’11

This paper introduces an efficient technique called “stack processing”
that can be used in the cost-performance evaluation of a large
class of storage hierarchies. The technique depends on a classifica-
tion of page replacement algorithms as “stack algorithms” for
which various properties are derived. These properties may be of
use in the general areas of program modeling and system analysis,
as well as in the evaluation of storage hierarchies. For a better
understanding of storage hierarchies, we briefly review some basic
concepts of their design.

78 MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J

The purpose of a storage system is to hold information and to
associate the information with a logical address space known to
the remainder of the computer system. For example, the Central
Processing Unit (CPU) may present a logical address to the storage
system with instructions to either retrieve or modify the informa-
tion associated with that address. If the storage system consists of
a single device, then the logical address space corresponds directly
to the physical address space of the device. Alternatively, a storage
system with the same address space can be realized by a hierarchy
of storage devices ranging from fast but expensive to slower but
relatively inexpensive devices. In such storage hierarchies, the
logical address space is often partitioned into equal-size pages
(or unequal-size segments) that represent the blocks of information
being moved between devices in the hierarchy.

A hierarchy management facility is included to control the move-
ment of pages and to effect the (generally dynamic) association
between the logical address space and the physical address space
of the hierarchy. When the CPU references a logical address, the
hierarchy management facility first determines the physical loca-
tion of the corresponding logical page and may then move the
page to a fast storage device where the reference is effected. Since
these actions are “transparent” to the remainder of the computer
system (except for timing), the logical operation of the hierarchy
is indistinguishable from that of a single-device system.

The goal of the hierarchy management facility is to maximize the
number of times logical information is in the faster devices when
being referenced. As this goal is approached, most references are
directed to the fast, small stores whereas most of the logical address
space is distributed over the slower, large stores. The storage
system then acquires the approximate speed of the fast stores
while maintaining the approximate cost-per-bit of the slower and
less expensive stores. This increase in cost-performance is the
primary justification for storage hierarchies.

Clearly, many factors can affect the cost-performance of a storage
hierarchy. On the performance side, one must consider the capacity
and characteristics of each storage device, the physical structure
of the hierarchy, the way in which information is moved by the
hierarchy management facility, and the expected pattern of storage
references. On the cost side, the hardware and/or software required
to find and move logical information must be considered, as well
as the cost-per-bit and capacity of each device. Because of these
factors, it is quite difficult to design an “optimal” hierarchy.

The typical approach to hierarchy evaluation employed by computer
designers has been to simulate as many hierarchy systems as possible,
at various levels of During the first stages of design, a
large number of relatively simple simulations may be run with

NO. 2 . 1970 STORAGE HIERARCHY EVALUATION

Figure 1 linear storage

hierorchy

0 GENERATOR

objectives
of the

paper

basic
model

concepts

80

fixed, standard address traces. These traces are assumed to be
“typical” sequences of storage references obtained from existing
computer systems, and they are used to approximate the reference
behavior of future systems. The purpose of these simulations is to
measure such statistics as data flow and frequency of access to
each device in order to estimate the overall performance of an
actual system. The resulting performance estimates can then be
used to narrow the field of possible designs, which then receive
more detailed examination.

Alternatively, one may try to develop analytical techniques that
avoid point-by-point simulation but still yield accurate statistics
for data flow and access frequencies. Several papers deal with such
techniques for hierarchy e~a lua t ion .~ -~ In general, the approach
here is to run a relatively small number of simulations and ex-
trapolate the measured statistics to a larger class of hierarchies.
The difficulty with this approach is the need for various assumptions
about the statistical properties of address traces and data flows
required to formulate the analytical equations. Moreover, it is
difficult to include a quantitative dependence on such factors as
data path structure, page replacement alg~rithrn,’~ and address
mapping ~cheme ,~ so that many simulations may still be necessary.

This paper presents a technique that can be used to circumvent
much of the simulation effort required in hierarchy evaluation.
Specifically, we present an efficient procedure that determines, for
a given address trace, the exact frequency of access to each level
of a hierarchy as a function of page size, replacement algorithm,
number of levels, and capacity at each level. In the following, we
consider a class of multilevel, demand-paging hierarchies14 with
the same replacement algorithm at every level. The procedures
developed here are applicable to a large class of well-known re-
placement algorithms having certain inclusion properties defined
later. These algorithms-which we call stack algorithms-include
“least frequently used,” “least recently used,” “optimal,” and a
“random” replacement algorithm.

The system model

An H-level paged storage hierarchy consists of a collection of
storage devices MI, M 2 , . . . , MH, a network of data paths con-
necting the devices, and a hierarchy management facility. Each
device is partitioned into physical blocks called page frames. For
convenience, the highest-level store M , is called the local store
and the lowest-level store MH is the backing store as shown in
Figure 1. The hierarchy management facility controls page move-
ment between the devices and associates each logical page with
a physical page frame. Special storage and processing hardware
may be required, but they are not included in our model.

MATTSON, GECSEI, SLUTZ, AND TRAlGER IBM SYST J

References to the storage hierarchy are presented by a single device
called the generator, and they are sequentially serviced in the order
in which they are presented. References from the generator may
may represent the requests of several devices, such as the CPU and
the channel, in an actual system. The time sequence of logical-
address references X = x,, xz, . . . , xL is called an address trace,
where each address consists of n bits as shown in Figure 2. The
set of 2” possible addresses is partitioned into 2k pages of 2n-k
logical addresses each. The high-order k bits of each address rep-
resent the number of the page containing the address, and the
low-order n - k bits represent the location or displacement of
the address within the page. Since information movement on the
hierarchy is accomplished by transferring pages between levels,
we can analyze space allocation and data movement for a trace X
by considering a corresponding page trace X k = x:, xi, . . . , x,“-
where each x: is the number of the page containing address x t .
When we consider a given fixed page size, we omit the superscript k ,
and denote pages by x i .

A reference from the generator can be serviced only from the
local store M, . Thus if the desired page resides in a lower level
device Mi, i.e. where i > 1, the hierarchy management facility
must bring that page up to M , for servicing. The hierarchy provides
a path for bringing pages up to M , , which may or may not require
staging through intermediate levels. Any temporary storage required
for bringing a page up to M , is included in the hierarchy manage-
ment hardware, and is therefore not represented in our model.
In this paper we restrict our attention to linear storage hierarchies
in which the only paths for moving pages down the hierarchy are
direct ones from each level M i to level Mi+ ,, where i = 1, 2, . . . ,
H - 1. The reasons for this restriction are discussed later in this
paper. Note that the four-level hierarchy in Figure 1 is a linear
hierarchy.

The capacity of the backing store is assumed to be at least 2k page
frames, and all logical pages initially reside in the backing store.
At any time, each logical page resides in exactly one page frame
of the hierarchy. A mapping function is associated with each hi-
erarchical level, and specifies for each logical page the page frames
it may occupy in that level. The mapping function is further defined
as :

Unconstruined if any page can occupy any page frame of the

Fully constrained if each page can occupy only a single page

Partially constrained in all other cases.

In a later section, we define a technique called “congruence mapping”
that generates a whole spectrum of mapping functions.

storage device.

frame.

NO. 2 . 1970 STORAGE HIERARCHY EVALUATION

Figure 3 Two-level hierarchy

GENERATOR

G BUFFER STORE

1 BACKING STORE

82

For simplicity in developing techniques for analyz,ing storage hi-
erarchies, we first consider a two-level, demand-paged hierarchy
with unconstrained mapping. Later, our results are extended to
certain classes of multilevel linear hierarchies employing the three
types of mapping functions. The local store or buffer has a capacity
of C pages, and is directly connected to the backing store as shown
in Figure 3. At time t , the generator presents a request for page
x, to the hierarchy. Under demand paging, if x, is in the buffer,
the reference proceeds and no page movement occurs. Otherwise,
x, is brought to the buffer from the backing store. If the buffer
is already full, x, replaces some page y , in the buffer. The selection
of the particular page y , is performed by the buffer replacement
algorithm. This operation is a key element of storage management.

In the two-level hierarchy shown in Figure 3, a reference to a page
residing either at level M , or at M , is called an access to that level.

For a given hierarchy and page trace, we define the access frequencies
F, and F, where F, is the relative number of accesses to level M,
during the processing of the trace. Thus, if N , accesses are made
to level MI, and N2 = L - Nl accesses are made to level M2, we
obtain F, = N , / L and F, = NJL.

Some important measures of storage hierarchy performance can
be obtained from these access frequencies. For example, one can
combine access frequencies with a set of effective access times
{ T<] to obtain an effective (or average) hierarchy access time

T = F,T, + EAT2

In general, access times depend on the access paths, device access
times, and characteristics of the hierarchy management facility.
The access frequencies depend only on the page trace, capacity
of the buffer, and replacement algorithm.

For a two-level hierarchy, accesses to the buffer are called successes;
the relative frequency of successes as a function of capacity is
given by the success function F(C). For a given capacity C, page
trace X = xl, x,, . . . x,,, replacement algorithm, and arbitrary
time t (where 1 5 t 5 L), the set of pages in the buffer just after
the completed reference to x, is denoted by B,(C). The initial buffer
contents is represented by B,(C). By convention

BdC) = 4

for all C where 4 is the empty set. The set of distinct pages referenced
in xl, x2, . . . , x, is denoted by r t , and the number of pages in rt
is denoted by

Y1 = I r t l

MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J

I Figure 4 Determining success function by buffer simulation

I

I PAGE TRACE I
SIMULATIONS

F(2) = 0 30 c = 2 I

:(3)=050 1

1 2 3 4 5 6 7 8 9 10

a b b b a d c a a

1

I

-
a

b

c

d -

Thus at time t , the buffer still contains the C most recently referenced
pages. It is easy to see that under LRU the buffer contains the C
most recently referenced pages for all subsequent times, and that
this property holds for all page traces and buffer capacities. One
can generate the buffer contents B,(C) for any time t on a trace
and any capacity by scanning backward from point t and collecting
the first C distinct pages encountered.

Since the set of C most recently referenced pages is always contained
in the set of C + 1 most recently referenced pages, the buffer
contents B,(C) at any time must be a subset of B,(C + 1). In fact,
B,(C) is a proper subset of B,(C + 1) if at least C + 1 distinct
pages have been referenced through time t . More formally, under
LRU replacement, the buffer contents for any page trace X =

x,, xz , . . . , x,, and any time t (where 1 5 t 5 L) satisfy the fol-
lowing inclusion property:

where

84 MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J

and

I&(C)(= Yl for c L Yl

The inclusion property can be observed in Figure 4 where at time
t = 5, for example

&(I) = (b l

Bd2) = {c, b J

&(3) = (a , b, c l

and

B44) = (a , b, c i

Because of the inclusion property, the buffer contents at any time
and for all capacities can be represented in the following compact
and useful way. We order the set of pages rt into a list S, = s t (l) ,
s,(2), . . . s k ~ ,) , where

s,(i) = B,(i) - B,(i - 1) for i = 1, 2, . . . , y t (2)

Hence

Bt(C) =
I s t U) , s,(2), . . . , &(C>l for c I Ya

(s t (l> . s , (2) , . . . , St(Y,)J for c 2 Y f
(3)

The list St is referred to as the LRU stack, with s,(l) as the top
entry and st(?,) as the bottom entry. As an example, the LRU stack
for t = 5 in Figure 4 is

$5 = [b, c, a1

The stack S,, at time t = 0 has no entries and is therefore called a
null stack, that is, one with no entries. The entire sequence of
LRU stacks corresponding to Figure 4 is included in Figure 5.

Besides representing the buffer contents for all capacities, the LRU
stack can be used to efficiently determine the success function
F(C). Let us suppose that at time t , page x , has been previously
referenced and thus is a member of at least one set B,-,(C), where
1 5 C _< Let C, denote the least buffer capacity such that

x1 E Bl-dC)

We call C, the critical capacity since, from the inclusion property
given in Equation 1, xI E B,-,(C) if and only if C 2 C,. If x, has
not been previously referenced, we set C, = because xt is not

I contained in a buffer of any finite capacity. ' From the definition of LRU stacks in Equation 2, it may be seen
that C, is simply the position of page x, in the stack St-, , so that

NO. 2 . 1970 STORAGE HIERARCHY EVALUATION 85

I Figure 5 Sequence of LRU stacks

TIME 2 3 4 5 6 7 8 9 1 0

PAGE TRACE ; : h h c b a d c a

Figure 6 Obtaining success
function from

distance frequencies

A DISTANCE FREQUENCY

B SUCCESS FUNCTION 1:::m 0 40

0 20 I F, = F(3) = 0.50

0
0 2 4 6 8 1 0

STACK
DISTANCE m m l m z 3 m 4 3 1

DISTANCE
COUNTERS n(,\)

1 0 0 1 1 1 1 1 1

2 0 0 0 0 1 1 1 1

3 0 0 0 0 0 1 1 1

4 0 0 0 0 0 0 0 1

1 2 2 3 3 3 4 4

1 0

10

2 0

1 0
m

x1 = St-,(C,)

We call this page position the stack distance Ai, since A, is essentially
the “distance” from the top of the stack to

X, = s/-I(At)

(Note that here A , = C,. When constrained mapping functions are
considered, the stack distance may not always equal the critical
capacity.) I f x, has not been previously referenced, then A , is set
to infinity. The sequence of stack distances for our example is
included in Figure 5.

The significance of stack distances is that they lead directly to the
success function. To see this, let n(A) be the number of times the
stack distance A is observed in processing a trace. Since the stack
distance equals the critical capacity, the number of times that the
referenced page is found in the buffer is

C- and the success function is given by the expression

F(C) = N(C)/L (5)

In practice, the set (n(A)] can be determined from a set of distance
counters, as shown i n Figure 5 . All counters are set initially to
zero, and the counter for each distance A is incremented whenever

86 MATTSON, GECSEI, SLUTZ, AND TKAIGER IBM SYST J

that distance occurs. For k-bit page numbers, we need at most
2k + 1 counters, corresponding to 1 5 A 5 2k and A = m . At
the conclusion of a page trace, the final values of the distance
counters are the values { n(A)) , and F(C) is obtained from Equations
4 and 5.

We now calculate the value of the success function in a numerical
example. For A's of 1, 2, 3, 4, and a, the cL#rresponding final
counter values in Figure 5 are 2, 1, 2, I , and 4. This distribution
is shown in Figure 6A. Dividing by L equals 10 in Figure 5 , and
summing cumulatively, we obtain the success function shown in
Figure 6B. One can verify that the F(C) values for the curve in
Figure 6B agree with those obtained in the simulations of Figure 4.

To find the access frequencies F, and E2, for a given buffer capacity
C, we take F, = F(C,) and E2 = 1 - F,. As an example, for C = 3
pages, F, = F(3) = 0.50 as indicated in Figure 6B, F2 = 1 - 0.50 =
0.50, and the average access time T of the hierarchy is 0.50T, +
OSOT,.

Note that F(C) is always a monotonic, non-decreasing function
of C for LRU replacement, since F(C) is obtained by cumulative
summation as shown in Equation 4. Also, F(C) never exceeds
(L - y l ,) /L for any capacity, because all pages initially reside
in the backing store.

To avoid constructing each LRU stack separately, we now give
an iterative construction of St from S,-, and x,. Observe that at
every time t , the stack S, is simply the list of pages in rL, according
to their most recent reference. The most recently referenced page
is st(l) since s,(1) = x t . The second most recently referenced page
is st(2), and s,(y,) is the least recently referenced page in I',.

Let us suppose that page xL has been previously referenced and
appears at position A on stack St-l. For time t , we know that x,
must be the top entry in St, because it is the most recently referenced
page. Consider now a page b at some position j on St-, where
1 5 j < A. At time t - I , page b is the jth most recently referenced
page, and the intervening pages do not include x,. At time t , page xt
is added to this set so that page b must now be at position j + 1
on stack St. If j is greater than A, page b must remain at position
j at time t , since the set of more recently referenced pages is un-
changed from time t - 1 .

The net effect of this page motion is shown in Figure 7A. Page x,
is moved to the top of the stack, pages previously above xt are
down-shifted one position, and all other pages retain the same
position. If xt were not previously referenced, x, would be placed
on the top and all other pages would be down-shifted one position as
shown in Figure 7B.

NO. 2 . 1970 STORAGE HIkRARCHY EVALUATION

B,-l(C) c B,-,(C + 1)

lB,-I(C)l = c
JB,-,(C + 111 = c + 1

and

x, CE Bt-dC + 1)

Note that from Equation 2, page s,-,(C + 1) is contained in
B,-,(C + I) but not in B,-,(C). If page y,(C + 1) is neither
st -,(C + I) nor y t (C), then y,(C + 1) is some other page z E B, - ,(C).
However, page z is included in B,(C), but not in B,(C + I), which
would violate the inclusion property.

We have given a necessary condition for stack algorithms. The
same condition is also sufficient, because if y,(C + 1) is either
y,(C) or s,-,(C + I), then B,(C) is a subset of B,(C + 1). Therefore,
we conclude that a replacement algorithm is a stack algorithm if
and only if for every time 2

yt(C + 1) = sr-l(C + 1) or y,(C + 1) = yt(C) (6)

for

15 C < y,-] and C + I < A ,

Important replacement algorithms that satisfy Equation 6 are those stack
that induce a total ordering on all previously referenced pages and algorithm
use this ordering to make replacement decisions. The ordering can identification
be represented in the form of a priority list

Pi = Pr(1)j pt(2), * . 9 Pt(Tt-1)

wherep,(i) has a higher priority thanp,(i + I) for 1 _< i < The
algorithm then selects for replacement the page in B,-,(C) that has
the lowest priority.

A convenient notation for working with priorities is min(A), where
A is an arbitrary set of pages in r,+,, and min(A) is the unique page
in A having lowest priority on the list P , . If B,-,(C) c B,-,(C + 1)
and x, @ B,_,(C + I) , we can express the replaced pages JJ,(C) and
y,(C + 1) as follow:

yl(C) = min [B,-,(C)I (7)

and

y t (C + 1) = min [B,-,(C + 1)1 (8)

=- min [B,-,(C), s,-,(C + I)] (9)

= min(min [B,-,(C)], s,-,(C + I) } (10)

= min [Yl(C), S,-I(C + 1)1 (1 1)

NO. 2 . 1970 STORAGE HIERARCHY EVALUATION 89

Equations 7-9 are based on the definition of the replacement
algorithm, whereas Equation I O is based on the properties of
minimization.

We conclude from Equation I 1 that any replacement algorithm
that induces a priority list P, for every time t satisfies Equation 6
and is therefore a stack algorithm. For example, the priority list
for LRU is just the ordering of pages in r f by most recent reference.
The priority list for “least frequently used” (LFU) replacement is the
ordering of referenced pages by most frequent reference together
with a scheme to break ties.

stack Before describing other examples of stack algorithms, let us develop
updating a stack updating procedure for algorithms inducing a priority list.

For any page trace X = xl, x2, . . . , x,, and any time t , where
1 5 t 5 L , suppose that stack Sf-, is available. Also, for any two
pages a, b E let max (a, b) denote the page having higher
priority. If x f has been previously referenced and appears at position
A, on stack St+ , , the stack at time t is given by

& (I) = x, (12)

s,(i) = max [y,(i - l), ~ , - ~ (i)] for 2 5 i < Af (13)

.Y,(At) = y,(Af - I) (14)

s,(i) = s,-,(i) for A, < i 5 Y , - ~ (1 5)

Equations 12, 14, and 15 are based on the constraints of demand
paging, whereas Equation 13 is derived from Equation 11.

If x f has not been previously referenced, the defining equations for
stack St are the following:

&(l) = x, (16)

s,(i) = max [yt(i - I), ~ , + ~ (i)] for 2 5 i I Y f - l (17)

&(Y,> = Yt(Yt-1) (18)

In this case, Equations 16 and 17 express the fact that replacements
are required for all buffer capacities in the range 1 5 C 5 y,-,.
Equation 18 corresponds to the new page x, being added to the
stack, with the result that a buffer of capacity

Yt = 7 1 - 1 + 1

is now full.

Figure 8 illustrates the stack updating procedure as given in Equa-
tions 12-18. The top entry s,(l) is always x,, and the first page
replaced is

y t (l) = ~ (1) for A, > 1

90 MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J

Figure 8 Stack updating

A PAGE xt IN STACK S t -]

St- 1

Each subsequent entry s,(i) is then determined iteratively from
~ ~ - ~ (i) and yi(i - 1) according to Equation 13 or 17. I f xi is found
on stack St+l as shown in Figure 8A, we use Equation 14 to
determine st(&). All lower entries are unchanged from time t - 1 .
If xi is not found on stack St_, , as shown in Figure 8B, then A, = m ,

and we use Equation 18. In either case, the replacement algorithm
does not have to be applied to all the pages for stack updating.
Only a sequence of pairwise decisions between pages s,+,(i) and
y,(i - 1) is required.

Comparing our stack updating procedure with the one for LRU
shown in Figure 7, we see that page y l (C) under LRU is always
S, -~(C) . In fact, the priority list P, is exactly equal to stack S,-,,
since both lists give the order of pages in r,-, by most recent
reference. Thus

y,(C> = .Ll(C>

and Equations 13 and 17 then reduce to

s, (i) = max[s,-,(i - I), st -l(i)]

= s,+l(i - 1)

For an arbitrary stack algorithm, the stack updating is more complex
than for LRU, and the order of stack elements at time t - 1 may be
very different from that at time t .

Let us now examine several examples of stack algorithms. In general
any replacement algorithm that bases its decisions on some page
usage quantity, whether measured or predicted, naturally induces a
priority list and is, therefore, a stack algorithm. One example, of

NO. 2 . 1910 STORAGE HIERARCHY EVALUATION

course, is LRU, and another example previously mentioned is
least freauentlv used (LFU) replacement.

that has been referenced the fewest number of times over the interval
1 5 T 5 t , or perhaps over some “backward window” interval
t - h 5 T 5 t , where 0 < h 5 t . If two or more pages are tied for
least frequency of use, then some arbitrary rule is used to break
the tie. As long as the rule is consistent for all pages and all
capacities (e.g., if the tied pages are numerically ordered) a priority
list P , is induced, and LFU is a stack algorithm.

Other examples of stack algorithms may arise in analytical studies
of program behavior. I f an address trace is generated from some
random process, it may be desirable to study the behavior of
replacement algorithms that base their decisions on the param-
eters of the random process. One such process is a time-invari-
ant, first-order Markov chain,’“16 where any page c is referenced
immediatelv after Dage b with a fixed transition probability T!,,..

(where b and c range over all referenced pages) and by the page
referenced at time t = 1.

probability” (LTP) since, 1
chosen for removal is the one that minimizes T,,, over those pages
in the bufl‘er. Supplying an appropriate rule for breaking ties, we
see that LTP induces a priority list and is a stack algorithm.

Another replacement algorithm is to remove the page with the
largest expected time until next reference. We call this strategy
LNR for “longest next reference.” The expected times until next
reference can be obtained from the II-matrix by standard tech-
n i q u e ~ . ~ ~ As with LTP, LNR induces a priority list if we supply an
appropriate tie-breaking rule.

testing a Markov model of the program), page reference statistics
may be used to estimate the matrix n. For example, the observed
transition freauencies over some interval t - h to t can be used to

then be constructed for each time t , according to the probabilities

remains a stack algorithm.

Other stack algorithms may base their decisions on information
from the programmer or compiler, or on properties of the computer
system. For example, the programmer or compiler may supply to

92 MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J

should be given high priorities in the immediate future. Another
case is where the operating system assigns priorities to program
pages in a .nultiprogrammed system, based perhaps on the position
of the program in a task queue. If all the pages in the address space
can be ordered in a priority list P, for each time t , the resulting
replacement algorithm is a stack algorithm.

In the examples given, we see that priority lists can arise in a
variety of ways. We now consider a replacement algorithm called
“first-in/first-out” (FIFO) that is not a stack algorithm. Under
FIFO, the page that has remained in the buffer for the longest
(continuous) time up to time t is removed.

A peculiarity of FIFO is illustrated by the following page trace

X = a b c d a b e a b c d e

As shown in Reference 18, the success function for this trace is not
monotonic, and takes the form shown in Figure 9. Since stack
algorithms have monotonic success functions, we conclude that FIFO
is not a stack algorithm and does not induce a priority list P, at
every time t . In amplifying this conclusion, we note that the relative
priorities between pages in I’+, may depend on the buffer capacity
C. Thus in the example, one can verify that page d has lowest
priority of all pages in B,(3) in the sense that d has been in the buffer
longest. However, page d has highest priority in B,i(4), since it was
brought into the buffer latest.

Whenever the priorities among pages depend on the capacity of
the buffer, we cannot define a single priority list that applies to
every capacity. One instance of this is when priorities depend on
the frequency of reference to pages after their entering the buffer.
Another case is when priorities depend on total time spent in the
buffer.

As long as priorities are independent of capacity, and as long
as one can order the referenced pages to reflect these priorities,
then stack-processing techniques can be used to find the success
function.

An optimum replacement algorithm

We now discuss a replacement algorithm that yields the maximum
value for the success frequency over the space of all replacement
algorithms-for every page trace and every buffer capacity. Such
an algorithm is said to be an optimum replacement algorithm.
Belady13 describes an optimum replacement algorithm called
MIN, and shows how to evaluate the success frequency for a given
page trace and a given buffer capacity. In the following discussion,
we describe a stack algorithm called OPT and prove that it is also

NO. 2 . 1970 STORAGE HIERARCHY EVALUATION

first-in/
first-out

Figure 9 Success function for

FIFO replacement

-
2

06C

0 4c

0 2c

C

93

) -

1 -

1 -

1 -

-
0

C”,

OPT

Figure 10 Example of OPT
replacement

TIME 1 1 2 3 4 5 6 7 8 9 1 0

PAGETRACE a b c a d b a d c d

BUFFER
CONTENTS

F O R C = 3 a a a a a a a a a a

b b b b b b b c c

c c d d d d d d

stack
processing

example

an optimum replacement algorithm. Using certain properties of LRU
and OPT. the entire success function for OPT can be determined in
two passes of a page trace.

The replacement algorithm OPT has the following characteristics.
Whenever a page must be pushed from the buffer, the chosen page
is the one whose next reference is farthest in the future. If a tie
results because two or more buffer pages are never referenced again,
the tie is broken by an arbitrary rule fl that pushes the page with
the latest alphabetical or numerical order. An example of OPT
replacement is shown in Figure 10, for the buffer capacity C = 3.
As an illustration, notice that at time t = 5 page c is pushed from
the buffer, since the other buffer pages a and b are referenced sooner.
At time t = 9, page b is pushed from the buffer, because page d is
referenced again (at time t = lo), and page a has priority over
page b by our rule R.

A formal proof that OPT is an optimal replacement algorithm is
given in the Appendix. We note here that OPT is not realizable in
an actual computer system because it requires knowledge of future
page references. However, OPT does serve as a useful benchmark
for any replacement algorithm, including stack-type algorithms.
To show that OPT is a stack algorithm, observe that a priority list
P, can be constructed for OPT at each time t . Specifically, P , is the
list of the pages referenced again, ordered by their time of next
reference, followed by the list of the pages not referenced again, as
ordered by the tie-breaking rule fl.

The stack processing technique for OPT is illustrated in Figure 11.
Priority lists are ordered as described above, and curly brackets
denote the pages ordered under the rule fl. For example, at time
t = 8 the priority list is P , = c, d, a, b, because c is the next page

Figure 11 Stack processing and success function for OPT replacement

TIME

PAGE TRACE

PRIORITY
LIST

OPT STACK

STACK
DISTANCE

-I-
- 1 -

-i-

- I -

1 2 3 4 5 6 7 8 9 1 0

a b c a d b a d c d

a a a b b a d c

a b c a d b a d c d

a a c a a b a d c

b b b d d b a a

c c c c b b

m m m 2 m 3 2 3 4 2

C-

94 MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J

referenced (at t = 9) and d is the second page referenced (at t = lo).
Pages a and b are not referenced again, and thus are ordered accord-
ing to rule Q. The sequence of OPT stacks is constructed using the
priority lists, and the success function is obtained from the stack
distance frequencies. A major difficulty with the technique is the
amount of forward scanning required to construct the priority lists.

Fortunately, a more efficient procedure exists for obtaining the
priority lists. For a given page trace X, we define the forward distance
w,(a) to a page a at time t as the number of distinct pages referenced
in x, - - , x f ,, (where x f r is the first reference to page a after time
t) . If page a is not referenced again, the forward distance is defined
as infinity. Note that the priority list under OPT is a listing of the
pages in r,-, according to their increasing forward distances. An
illustrative example of forward distance determination is given in
Figure 12.

If the forward distances to all pages in I'-, are known at time t - 1 ,
the new forward distances at time t can be determined iteratively
from the single forward distance w , (x ,) . Specifically, for page
a # x L and w , A wf(xf), we have

w,(a) =
w,-,(a) - 1 for w,-,(a) 5 w , and w,-,(a) # a

w,-,(a) for w,-,(a) > w , or w,_,(a) = a

(1 9)
To determine the sequence of forward distances { w , } for a page
trace X, consider the reverse trace X" = xl , , xL-lr . . . 3 X 2 . XI.
Suppose that X" is analyzed according to L R U replacement and
that x i and x, denote two successive references to page a in the
reverse trace. Thus X" = x L , . . . , x , = a, . . . , x, = a, . . . , xl.
At time j , the stack distance A, is the number of distinct pages
referenced in x,, . . . , x,+,. (Note that x,,, precedes x, in X".)
However, this number of distinct pages is precisely the forward
distance w, for page trace X. Thus the sequence of L R U stack
distances for trace X", namely, A,,, A,,= I , - - - , A2, A,, is the reverse
of the sequence of forward distances w,, w,, , w,,= I, wd for
trace X.

These results form the basis of a two-pass stack processing technique
for determining the success function for OPT replacement. The
technique is illustrated by Figure 13. The first pass is a backward
scan of the page trace X using LRU replacement, denoted by the
left-pointing arrow. The LRU stack distances are stored, in reverse
order, on a "distance tape." The second pass is a forward scan
using OPT replacement, as shown by the right-pointing arrow.
Forward distances read from the distance tape are used to maintain
the OPT priority lists according to Equation 19.

The L R U stack distances gathered from the reverse page trace yield
important information about the forward page trace. Specifically,

NO. 2 . 1970 STORAGE HIERARCHY EVALUATION

distinct page in the trace, the distance frequencies for X and X“ are
identical, so that the success functions FLIITT(C, X“) and F,,Itu(C, X)
are equal.

Another result, which is proved in the Appendix, is that FOPT(C, X)
is equal to F,,,(C, X“), where F,,,(C, X) is the OPT success function
for trace X. Thus, our two-pass technique can be implemented with
forward-backward scans as well as with backward-forward scans.
During the first scan, the success function for LRU is obtained, and
the distance tape generated. During the second scan the success
function for OPT is obtained.

Random replacement

In the stack algorithms considered thus far, a unique success func-
tion is associated with each trace. We now extend stack-processing
techniques to cover a “random replacement” algorithm (RAND)
that does not always yield a unique success function. With RAND,
if the buffer has a capacity of C, any given page is chosen for replace-
ment with a probability of 1/C. In analyzing RAND, one might
perform a Monte Carlo simulation for each buffer capacity to
obtain a R A N D success function. Repeating these simulations would
yield a set of sample success functions to characterize R A N D . The
sample success functions could then be used to estimate an “average”
success function.

A question that arises is whether stack processing can be used to
generate a sample success function for R A N D or any other algorithm
that bases a replacement choice on the value of some random
variable. We observe that R A N D is not a stack algorithm, because
there certainly exists a trace and a time t for which the inclusion
property fails to hold with a nonzero probability.

Our approach is to define a replacement algorithm RR, which is a
stack algorithm having the same statistical properties as RAND for
each capacity C. The algorithm RR is defined as follows: at each
time 2, the priority list P, is obtained by randomly ordering the set
of pages in r,-l (each of the Y,-~! possible orderings is equally
likely to be chosen). Observe that RR is a stack algorithm, since it
induces a priority list.

To establish that RR is statistically equivalent to RAND, assume
that a replacement is necessary in a buffer of capacity C at time t .
Since y,(C) = min [B,-,(C)], and P, is randomly chosen, the proba-
bility that any given page is y,(C) is l/C-the same as for R A N D .

One difficulty in implementing RR is the generation of the random
priority list P,. Fortunately, it is possible to update the stack without
actually constructing the entire priority list. Assuming that A, > j ,

NO. 2 . 1970 STORAGE HIERARCHY EVALUATION

let q,(t) denote the probability that page s,-,(j) has priority over
page y , (j - 1) at time t . If s ,+ , (j) does not have priority over
y , (j - l), we know that s,-,(j) = min [l L I (j)] . Since this occurs
with probability l/j, we obtain

1 - d t) = I / j

or

Using Equation 20, the stack can be updated at time t for RR
replacement by choosing page s,(j) = s,+,(j) with probability
(j - l)/j, for 2 5 j < A, and j < Y,-,. As a check, let us compute
the probability Q that an arbitrary page b is pushed from a buffer
of capacity C at time t . Assuming that page b occurs at some position
k on stack S t - , where I 5 k 5 C, then Q is given by the following
expression:

Q = P , (Y ~ (C) = b }

= P , { S , (k) = Y,(k - 11, s , (k + 1) = s,-,(k + 11,

s , (k + 2) = s,-1(k + 2) , . . , S,(C) = S,- , (C)} (21)

The events in the joint probability in Equation 21 are independent,
so that we obtain

Q = P , (s , (k) = Y,(k - 1)) *P,{st(k + 1) = S,-l(k + 1))

.P,(s,(k + 2) = st-,@ + 2)) . * . . .P,{S,(C) = S,-I(C))

= (!)(L)(*) k k + l k + 2 . . . (y)

Since Q = 1/C holds for any page b and capacity C, we have
verified that the stack updating for RR can be accomplished using
Equation 20, and that RR has the same statistical properties as
RAND for each buffer capacity. Note that although a particular
value of a point on the success function, for example F(4) = 0.3, is
equally likely to occur under both RAND and RR, the occurrence
of a particular success function is not equally likely.

As the example with RR illustrates, stack processing techniques
can be extended to cover probabilistic replacement algorithms. In
fact, a replacement algorithm can have a mixture of probabilistic
and nonprobabilistic aspects. For instance, the arbitrary rule used
to break ties in LFU and other algorithms may choose a page at
random. Another possibility is for a replacement algorithm to favor
some pages probabilistically in the construction of the priority list,
thereby realizing a so-called “biased replacement” algorithm.’2 In
any case, the only requirement is that the priority list be constructed

98 MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J

to reflect the probabilistic properties of the desired replacement
algorithm for every capacity C.

Congruence mapping

up to now, we have restricted our attention to two-level storage
hierarchies with unconstrainted mapping at the first level. Under
this type of mapping, any page in the buffer may be replaced by the
referenced page. The advantages of unconstrained mapping are
that all available page frames in the buffer can be used, and also
that seldom used pages cannot become "locked" into the buffer by
mapping constraints. A disadvantage with unconstrained mapping
is that extensive associative searches may be necessary to locate
pages in the buffer. Moreover, the implementation overhead of the
replacement algorithm may be excessive, since relative priority
information must be maintained for all pages in the buffer. To
offset these disadvantages, a constrained mapping scheme can be
employed whereby each page is restricted to occupy a member of
only a subset of the buffer page frames.

One such mapping technique is called congruence mapping, by which
the 2k distinct pages in the address space are partitioned into 2"
disjoint congruence classes, where 0 5 a 5 k , and each class contains
2k-" pages. The classes are numbered consecutively from 0 to
2" - 1, and class membership is determined from the a low-order
bits of the page number. I n this case, the a low-order bits constitute
the class number [x] of a page, and the remaining k - a bits are
called the page prejx as shown in Figure 15. The quantity a is called
the class length. For a class length equal to zero, we set [x] = 0
for all pages.

In a two-level hierarchy with congruence mapping, every congruence
class is assigned an equal number of page frames in the buffer-to
be used exclusively by members of that class. This number is called
the class capacity and is denoted by D. (The total capacity of the
buffer in pages is thus C = 2 " . D.) When a page x is referenced, it
may appear in any of the D page frames reserved for class [x]. If the
reference page is not in the buffer, and if the D page frames are all
occupied by other members of class [x], a replacement algorithm
selects one of these pages for removal. We assume that the same
replacement algorithm is used separately for each of the classes.

Note that when the class length a is zero, all pages are in the same
class, and the mapping is unconstrained. When the buffer capacity
C is a power of 2, and when C = 2'", only one page is allocated to
each class, and the mapping function is fully constrained. Thus
for a fixed buffer capacity C = 2", where 0 5 h 5 k , we can vary
the mapping function from unconstrained to partially and fully
constrained simply by varying the value of a from 0 to h.

NO. 2 . 1970 STORAGE HIERARCHY EVALUATION

t t t * * t *

Zk-n PAGES

PER CLASS

Z E L CLASSES I

BACKING
STORE

Figure 16 Two-level hierarchy with congruence mapping

t t T t I t t
r

Since the congruence classes are disjoint, and since the same number
of buffer page frames are allocated to each class, it is possible to
treat a buffer as a collection of 2" distinct buffers-one for each
class [x]. If we also view the backing store as 2" individual backing
stores, as shown in Figure 16, the two-level hierarchy partitions
into a collection of 2" distinct subhierarchies, each with a buffer
capacity of D page frames. When the replacement algorithm is a
stack algorithm, these subhierarchies can be evaluated separately
using stack processing techniques. In practice, 2" stacks (one for
each subhierarchy) can be maintained as the trace is processed.
Each page reference x causes only the stack for class [x] to be
updated, and a stack distance A to be determined from that stack.

In congruence mapping, to calculate the success function for a
given trace and given class length (Y, the stack distances must be
carefully interpreted. Whenever a stack distance A is measured, the
corresponding critical capacity of the entire buffer is 2" . A , since
this is the minimum buffer capacity necessary to contain the refer-
enced page. Therefore, the success function F"(C) for the set of
capacities C = 2". D where D = 1, 2 , . ' ' , is given by

F"(C) = F"(2" . D) = __ n@)
A = 1 L

100 MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J

where n(A) is the total number of times the distance A occurs for
any of the stacks.

Generally, stack processing techniques must be used separately for
each value of the class length a. However, for LRU replacement,
only a single stack need be maintained in order to determine the
success functions for all values of a in the interval 0 5 01 5 k . Recall
that under LRU, the stack is the list of all the pages in rt+l
ordered according to most recent reference. To form the stack
Sf-l(i, a) corresponding to congruence class i and class length a,
one would list the pages in class i according to their most recent
reference. However, this ordering is preserved in the stack St+, for
any i and any 01. Therefore, S,-,(i, a) can be determined by listing
in order all the stack entries of St-] belonging to class i. In practice,
it is not necessary to actually construct each stack S,-,([x,], CY) in
order to find the distance A:. One can determine all the stack
distances (A:) in one scan of the LRU stack S, -,. To do this, we
first define the righf match function RM(X, y) for two page numbers
x and y as the number of consecutive low-order bits that match.
For example, ~ ~ (0 1 lOl,OOlOl) = 3 , and ~ ~ (0 0 0 0 , 0 0 0 1) = 0. Note
that the class numbers of two pages are equal ([x] = [y]) if and only
if the class length satisfies the inequality 01 5 RM(X, y). Now suppose
that the current reference is to page x. and consider the j th entry
on stack St+,, which is y = ~ ~ - ~ (j) . The occurrence of page y on the
stack will contribute to the distance A: if and only if RM(X, y) 2 01.

Therefore, A: can be determined by counting the number of stack
entries y above (and including) page x that satisfy RM(X, y) 2 a.

A simple procedure for determining A: for all a is to scan down the
stack, and maintain a set of right match frequency counters { p (r))
for 0 5 r 5 k. Counter p(r) is incremented whenever R M (~ , y) is
equal to r . If page x has been previously referenced, we eventually
find RM(X, y) = k (corresponding to x = y) , and each distance A:
is given by

A: = p (r) where 0 5 CY 5 k (23)

However, if page x has not been previously referenced, the bottom
of stack St+, is reached and A; is set equal to infinity for all class
lengths a. In either case, each distance A: is used to increment the
appropriate distance counter for class length a.

An example of this procedure is indicated in Figure 17. In Figure
17A, the right match functions are found by scanning down the
stack. In Figure 17B, the right match frequencies { p (r) } are plotted
in reverse order as a function of r . Cumulative summation, according
to Equation 23, then yields the desired LRU stack distances { A: } .
Note that the stack distance for class length zero is the same stack
distance A as obtained for LRU replacement with unconstrained
mapping.

6

7 = a

NO. 2 . 1970 STORAGE HIERARCHY EVALUATION

Figure 17 Right match function for LRU replacement

A DETERMINATION OF RIGHT MATCH FUNCTIONS B DETERMINATION OF STACK DISTANCES

PAGE x+

I I
I

RIGHT
MATCH

1""
I I I V/ /N / /A n

Multilevel hierarchies

In previous sections of this paper, stack processing techniques are
developed to obtain the success function for a two-level hierarchy.
For each buffer capacity, this success function represents the relative
number of accesses to the buffer for a given page trace.

We now show that the same success function can be used to find
the access frequencies for all levels of a multilevel, linear hierarchy
for any number of levels, and any capacity at each level. Recall that
in a linear hierarchy, the only downward data path from each level
M , is to the next level MZTlr for 1 5 i < H. Also a path or sequence
of paths is available from each level M i , for 1 < i 5 H, to the
local store. Furthermore, no replacement decisions are required
when a page moves upward through intermediate levels. We now
assume that the same replacement algorithm is used at all levels,
and that the mapping function is unconstrained at every level.
(Hierarchies with constrained mapping functions are considered
later in this paper.) At time 1 = 0, the backing store contains all
pages, and these pages are moved to the local store M , on demand.
When M I is full, pages replaced in M , are pushed down to the next
lower level in the hierarchy, M , . As each successively lower level
M , fills, the pages replaced in M , are pushed to the next level
M , +] . At level M , , the replacement algorithm is applied to the

102 MATTSON, GECSEI, SLUTZ, AND TRAlGER IBM SYST J

set of pages already present, thereby making room for the currently
referenced page x,. At the intermediate levels Mi, for 2 5 i < H,
the replacement algorithm is applied to the set of pages in M i and
to the page pushed from level A 4 - , .

When page xL is accessed from some level M ; (for 2 _< i _< H - I),
a page is replaced from each of the levels MI, M,, . . . , Mi-,. The
page replaced from level M,_, is guaranteed to find space at level M,,
since a page frame was vacated by x, . When page x, is accessed from
the backing store MI<, a page is displaced from each of the levels
MI, M,, . + . , until a vacant page frame is found. Note that positions
of pages in the hierarchy-and therefore the access frequencies-
do not depend on the structure of upward data paths to the local
store, but depend only on the replacement algorithm and the
capacity at each level.

We have shown that when a stack replacement algorithm is used
for a two-level hierarchy, the top C, pages of the stack are the
contents of a buffer of capacity C, as shown in Figure 18A. Let us
now assume that the replacement algorithm for a multilevel hier-
archy induces a priority list at every time and that this list determines
the replacement decisions at every level of the hierarchy. If this is
true, then for any number of levels and any set of capacities C,,
C,, . . . , CI,, the contents of each level at any time can be determined
from the stack for this replacement algorithm. More precisely,
let B;(C,) denote the contents of level M , at time t , and let U, denote
the sum C, + C, + . . . + C,. We then claim that

B1(Ci) = B,(O-*) - B, (cT-~) for i = 1, 2, . . . , H - 1 (24)

or equivalently that B:(C,) can be identified as the first C, entries of
stack S,, and B: can be identified as the next C, entries, etc. This
result is illustrated for a four-level hierarchy in Figure I8B.

The main elements of the proof of this result are as follows. Assume
that Equation 24 is satisfied at time t - 1, and that page x, =

s l - , (A L) is an element of B;-,(Cv) (i.e., level M , is accessed.) As
stack S,- , is updated to stack S , , page y,(C,) is removed from
the top C, elements of St-,, with the result that pages st(l) , . . . ,
s,(C,) represent B:(C,). Now observe that page yL(C, + C,) is
removed from the top C, + C, elements of I n terms of the
hierarchy, we know that y , (C ,) is pushed to the next lower level M,,
since the hierarchy is a linear one. The replacement algorithm then
selects a page from y,(C,) + B;-,(C,) for removal from M,. Since
page y,(C,) has lowest priority in B;-,(C,), the page selected for
removal has lowest priority in B;-,(C,) + BT_,(C,). But this page
is y,(C, + C,), so that .s,(l), . . . , s,(C, + C,) represent B:(C,) +
B;(C,), and thus s,(C1 + l) , . . . , s,(C, + C,) represent BT(C,).

A similar argument applies to subsequent levels M , where 2 < i 5

NO. 2 . 1970 STORAGE HlERARCHY EVALUATlON

Figure 18 Relationship between
stack and hierarchy

levels

A TWO-LEVEL HIERARCHY

8 MULTILEVEL HIERARCHY

103

Figure 19 Obtaining access

frequencies from

success function

I 1.00

r G

0 50

0

C-

104

~~~ 

g - 1. Page ,u,(ut-J is pushed from level Mz-l of the  hierarchy,  and 
competes with the pages in Bi-,(C,). The replacement  algorithm 
selects for replacement  the page 

min LV~(CT-~), Bf-l(CJ] = min [EL,(CT,)I = yl(ut) 

with the  result that 

B/((TJ = B:(C,) + B:(C,) + . . . + BZ(CJ 

and 

B;(Ci) = B/(U,) - & ( U T - , )  

At level M, ,  the page J I ~ ( U ~ , - ~ )  that  has been pushed  from M , - ,  finds 
a vacant  page  frame,  and all lower levels remain  unchanged.  Then 

BP(C,) = Bf-,(C,) + Y t ( U , - J  - x/ = &(u,) - B/(U,-I) 

and 

B:(C,) = Bi-l(Cl) = B t ( u i )  - B,(a,- ,)  for j > g 

Thus we have  shown that  Equation 24 is satisfied at time t .  

The significance of this  result is that a  stack  distance A, where 
C, + . . . + C,-l < A 5 C, + . . . + C,, corresponds to  an access 
to hieyarchy level M,,  and the relative  number of such A's is simply 
the access frequency F ,  to  that level. Thus 

F, = 5 fl = ~ ( u , )  - ~ ( u ~ - ~ )  for 1 5 g 5 H - 1 
A = < , - , + l  L 

(25 )  

As with two-level hierarchies,  all  other accesses are  directed to the 
backing  store so that 

H -  1 

F H =  1 - F ,  
1 = I  

The  determination of access frequencies is illustrated graphically 
in  Figure 19 for  a four-level hierarchy. Note  that  the technique 
illustrated in the figure cannot be used for an  arbitrary hierarchy 
or success function.  However,  the  technique  can  be used for  any 
linear  hierarchy  as  long  as the replacement  algorithm always induces 
a single priority list for all hierarchy levels. 

Our  treatment of multilevel linear  hierarchies can be extended to 
include  hierarchies with congruence  mapping  functions. We assume 
that  the same class length a is used for every level and  that D, 
page frames are allocated to each  congruence class at  level Mi. 
The  total capacity of level M ,  is then 

C ,  = 2" .D ,  where I i 5 H .  (26) 

Using the success function F"(C) and  Equations 25 and 26, we 
obtain  the access frequency F: for  each level as  follows: 

MATTSON,  GECSEI, SLUTZ, AND TRAIGER IBM SYST J 





dated,  but a  store  distance A' is recorded. The  distributions { n'(A')) 
and (n"(As ) )  can  then  be used to determine  the fetch and  store 
access frequencies to each level of the  hierarchy. It should  be clear 
that this  technique  also  works if congruence  mapping is included. 
We can also  consider  a modified fetch-store design where the page 
usage statistics are  updated  for a  store  operation even though no 
page  motion  occurs.  This  change  is  incorporated by updating  the 
priority list for both fetches and  stores.  Thus,  for modified fetch- 
stores, the net  change  in  our  model is that  the stack is not  updated 
for  store  operations. 

Besides distinguishing fetches from  stores,  a  computer system may 
also  distinguish  the  various  sources of store  requests. For example, 
a "call-back" feature  can be used by which a page in  the buffer 
is moved to  the backing  store if the  page  is  stored into by an I/O 
device. The motivation  here  is to free  the buffer of pages not needed 
by the CPU, and  to service all I/O stores  from  the  backing  store. 

For a  call-back  hierarchy,  the  generator  must specify at least  two 
kinds of  references-CPU references, and  stores  from  the I/o channel. 
Stack processing techniques can  then be modified as follows. When 
a CPU store  or fetch occurs, the  stack is updated  in  the  normal 
way (except for special entries to be described later),  and  a  distance 
counter n"'"(A) is incremented.  When an I/O store  occurs, say 
at time t ,  a  counter n''"(A) is incremented. If page x, does  not 
occur on stack  then S, is equal to If page xI does  occur 
on stack St_, ,  then S, = St-, except that xt is replaced by the special 
entry "# ." This  entry,  counted  for all stack  distance  measurements, 
represents  the  empty page frame caused by page xt returning to 
the backing  store. To ensure that empty page frames are filled as 
soon as possible, all #-entries  are assigned the lowest priority 
in  replacement decisions. 

The call-back  feature  can be  used in conjunction with the  fetch- 
store  or modified fetch-store schemes. In all cases, the  correctness 
of the modified stack processing techniques  can  be  established. 

Since stack processing allows a  large  sample of "typical" address 
tapes to  be analyzed, for many  hierarchy models, the efficiency 
gained at the early stages of hierarchy design may  be  great  enough 
to impact  the  whole design process. More of these traces  can be 
processed in  a given time, and  more hierarchy designs can be  evalu- 
ated  for  a given number of traces. The availability of this  data may 
help justify  the "typical"-trace approach to design, or  may  help in 
the development of other  models  for system requirements. As an 
example, program  models  can be more deeply investigated by 
evaluating both a  program  and  its  model  under  a very large  number 
of address traces. Improvement  in  program  modeling,  in turn, may 
enhance  the success of analytical disciplines that use these models, 
such as  storage  interference  studies  for  multiprogrammed systems. 

106 MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J 





paging) another  replacement  algorithm exists that uses demand 
paging and causes the same  or  a fewer total  number of pages to be 
loaded into  the buffer. This  result is used to show that OPT is an 
optimal  replacement  algorithm and, in fact, that OPT causes the 
minimum  total  number of pages to be loaded  into  the buffer. 
Finally,  it is shown that the success function  under OPT for  any 
trace is identical to  the success function  under OPT for  the reverse 
of the  trace. 

Definition 

IS1 denotes  the  number of elements in a  set S .  
la/, denotes  the  number of occurrences of a  symbol a in a 

A = { a, b, . . . } is a finite set of N page  addresses or pages. 
X = x), xl, . . . , xL is a finite sequence of L elements from A ,  

B,(C) C A denotes  the  contents of a buffer of capacity C at time 

sequence X. 

and is called a trace. 

t ,  and is called a state. 

Throughout this  appendix, we consider a two-level storage hierarchy 
with fixed buffer capacity C. Consequently, we use B, instead of 
B,(C). The term Br denotes  the  contents of the buffer immediately 
after reference x, is made; B,, is called the initial  buffer state; and 4, 
the  empty  set,  denotes an empty buffer state. 

Dejinition 

P = pl, p 2 ,  . . . , pr,  is a finite sequence of 1, sets. p ,  C A ,  called 

Q = ql,  q2,  . . . , qL is a finite sequence of L sets, q, A ,  called 
an 0-policy. 

an I - p o k y .  

A policy is a particular  realization of a  replacement  algorithm  for 
a given trace. For such a  trace  and  initial buffer state B,,, an I-policy 
and  an  0-policy  together  determine  the sequence of buffer states 
that will occur  during  the  trace. An I-policy gives the set of pages 
loaded  into  the bufTer, and an  0-policy gives the set removed. I f  
p ,  = 4, no page is removed, and if q, = 4, no page is loaded in. 
Note  that only certain  pairs of 0- and I-policies are meaningful. 
For example, a page cannot  be removed if it is not  in  the buffer. 
We consider only meaningful policies, where q,+l $ B, and P , + ~  G 
B, + q, - , ,  for 0 5 t 5 L - 1. In this case, B,,, is obtained  from 
B, by 

Bt+1 = [Bt + qt+J - Pr+l 

Dejinition 

Let X be a  trace  and Bo (where ~ B , ,  5 C) an initial  state. A 
sequence of states B = Bo, B,, . . . , B,, is a valid  sequence if x, E B, ,  

108 MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J 



for 1 5 1 5 L. A policy pair P and Q is a validpair for X and Bo if 
application of the  pair  results  in  a valid sequence. 

Note  that valid policy pairs  are  quite general in that any  number of 
pages may be moved into  or  out of the  buffer.  However,  most of 
our  attention is directed  toward demand paging where 

b t l  5 1 and lqtl I 1 

xt E Bt-1 * Pt = qt = 4 

Pt # 4 * qt  # 4 and lBt-ll = C 1 
for all t ,  1 5 t I L. 

Under  demand  paging, single pages are loaded when necessary until 
the  buffer  fills;  subsequently,  page  swaps occur only when necessary. 

One  measure of goodness  for  a policy pair P and Q is the  total 
number of pages loaded  into  the buffer e:=, lqt 1 under  the policy 
pair.  The following theorem  supports  the usefulness of demand 
paging. 

Theorem 1 

Let P and Q be a valid policy pair  for X and Bo. There exists a 
valid demand policy pair P" and Q" for X and B,  such that 

Proof. P" and Q" will be  constructed by forming  a sequence of 
valid policy pairs (P", en), (P ' ,  Ql), (P', Q'), . . . , (P", QR),  where 
P" = P ,  Q" = Q ,  P" = P", Q" = Q", and 1421 5 cf=11q2-1/ 
for 1 5 j 5 K. Informally, P' and Q' are constructed  from Pi-' and 
Q'" by altering pi" and q1-l to satisfy the  demand paging con- 
straints where pi-' and/or qi-' are  the first occurrences of non- 
demand  paging  in Pi-l and Q'". This is done by  "sliding" offending 
elements ofpl"  and/or qi-' to a  later time in P' and Q'. If a E p i  
and a E q; ever occurs then we trivially remove page a from  both 
p i  and 42. Clearly, this  does  not  disturb  the validity of Pi and Q' 
and only decreases the  value of x:==, 1qi/.  

To construct Pi and Q' from Pi" and Q'", 1 I .j 5 K,  let t be the 
smallest time such that pi" and/or yi" do  not satisfy  Equation AI.  
Set pi = pi+' and Q' = Q'", except as noted below. Suppose that 
xt = a and  that qi", for t < L, does  not satisfy Equation A l .  If 
a @ qi-l, then set qi = 4 and q i + l  = q:;: + 4i-I. (Note  that "+" 
is defined  here since q2-l A pj" = 4). If a E qj-l ,  then set = a,  
and = 41;: + - a]. If  t = L,  then set qt  = 4 if a @ 
or 4; = a if a E q2-l. In all cases, note that Q' is valid, since 
qi @ Bj-, for 1 I t 5 L ,  and  that cf=l 141 1 5 cf=, /qi" 1 .  

NO. 2 . 1970 STORAGE  HIERARCHY  EVALUATION 



Now suppose that p i - ' ,  for t < L ,  does  not satisfy Equation A I .  
We observe first that 192 1 5 1 and qi = a. if a !$ B~I: .  If q; = + or 
1Bi:;l < C, then setpi = + and p;L1 = p i ; ;  + p:- ' .  If qi = a and 
IB;T:I = C,  set p i  = b for some b E pi" and pi ,]  = p i ; :  + 
[pi" - b]. (Note  that p;- '  # +, since IBi:; 1 = C and 4i-l # 4.) 
For t = L ,  setp; = b E p;,-' if 4: = a and iBtI: ~ = C, or p j  = + 
otherwise. In  all cases, we observe that Pi is valid, since p :  C Bi-l 
for 1 5 t 5 L .  Since Pi and Q' satisfy demand paging at least up 
through  time 1, the desired demand policies must eventually be 
obtained.  Thus  the theorem is proved. 

Before considering an optimum  replacement  algorithm we make 
two  observations.  First,  under  demand  paging,  a valid policy pair 
P and Q can be completely represented by specifying just  the 0- 
policy P. This follows from Equation AI because q, # + can only 
occur when x1 = a and a B, - ,  (in which case we know  that 
q, = a). Second,  for  demand policies P and Q ,  we can use l + i I ,  as 
an alternative  criterion of goodness. To see this  let u be  the smallest 
integer such that lBt 1 = C, t 2 u. Then l + l T ,  is given by the following 
expression: 

Since u in Equation A2 is not  a  function of the policies, x;=, /q,l is 
a constant  and 

optimum For a given trace X and  initial  state Bo let us define an  optimum 
replacement policy pair P and Q as a pair that is valid and minimizes /q,  1 

algorithm over the class of valid policies. From  Theorem 1 there always exists 
an  optimum policy pair which is also a  demand policy pair. Since 
(A3) holds  for all demand policies we can find an  optimum  demand 
policy pair if we can find a  demand policy P" such that I + /  , , I )  2 I+\,. 
where P is any  demand policy. 

Definition 

Let X be a  trace,  and let a E A be a page. The forward  distance 
d(a,  x,) to page a from page x, is the  number of distinct pages 
occurring in x,,,, . . . , x,, where e is the smallest integer satisfying 
e > t and x, = a. If no such e exists then d(a, x,) = m.  

Definition 

Let X be a  trace  and B,  an  initial  state. A valid demand policy Po,  
called an OPT policy, for X and B,, is defined as follows. For t = I ,  2 ,  
. . . , L,  whenever p ,  # + is required  then p 1  = a where 

110 MATTSON,  GECSEI,  SLUTZ, AND TRAIGER IRM SYST J 



STORAGE  HIERARCHY  EVALUATION 11 1 



I which can also be written as follows: 

Note this is the same form as  Equation A4  with To replaced by 
[T,,  + ( a )  - { c ) ]  and a replaced by c. If d(c, x;, +,) < d(b, 
then we have a  situation identical to  that in the  statement of Lemma 
1 where Xnow is x ;, +1,  . . . , x&. Settingp: = pk for 1 < k 5 i, - 1 
and pi, = 4, we again consider Cases 1, 2, and 3. Since the “new” 
X is strictly shorter  than  the original X, this situation  can only occur 
a finite number of times. Note  that P’ is valid as far as  it is specified 
and that p:, ’ . . , p;. contains  one  more 4 than  pl, . . 2 Pa,. 

If d(c, > d(b, x , , + ~ ) ,  we set p: = pk  for 1 < k < i, - 1 
and p:, = 4, and consider two more cases. First, if pc = b,  where p ,  
is the first occurrence of b in X  and 8 < i,, we set p: = pk,  for 
i a + 1 < k < L , a n d k # 8 a n d p : = c . H e r e B : = B , f o r 8 < t < L ,  
and  as  in Case 1, we see that 14 1 p, 2 14 I still holds. Second, if pc  # 
b, for e < i h ,  we setp; = pk, i, + 1 < k < L,  and k # i, and p i ,  = c. 
Again we have B: = B, for i, < t 5 L,  but we note that pi, = 4, 
whereas pi, = c # 4. However, since p ia  # 4 and pi, = 4, the 
relation 141p, 2 l + l p  still holds. 

I 

I 

I 

Case 3B. p i ,  = 4. Since qi. = a we observe that lBia-l I < C. 
Let 8 be  the smallest integer such that pc # 4. If no such integer 
exists, then  let 8 = L + 1. We set p: = pk for 1 5 k < i, and  con- 
sider two cases. First, if i, < 8 then we set p: = pk  for i, + 1 < 
k < L. Note  that Q’ = Q except at times i, and i,. Since 1 B; 1 = I B, I 
for i, 5 t < L, we see that P’ is valid, and 141p, = 141pr since P’ = 
P .  Second, for the case i, > 8, note  that x, = c, where c # a and 
c # b. We setp: = pk for i, + 1 < k < L and k # 8, and p: = 4. 
I fp ,  = b, then lB:l = /B,I for8 < t < L,  and 141r, = + 1 2 
/ + I p .  I fp ,  = a, then  the buffer states  at times e - 1 and 8 are: 

B:-I = Tc-1 + { a }  B: = Tc-I + {a} + { c ]  

Bc-1 = Tc-1 + ( a ]  + ( b }  Bc = Tc-1 + ( b }  + { c )  

Rewriting the buffer states at time e as 

B: = [Tc-l + ( ~ 1 1  + (a1 

we arrive at a case similar to Case 3A. As in Case 3A, P‘ contains 
one  more 4 than P in the interval t = 1, . . . , e. Therefore, we treat 
this case in  the same way, with the result 141p, 2 l + l p .  Finally, if 
p, = d where d # a and d # b the buffer states at time can be 
written as 

B: = fTt-1 + { a )  + {c] - (dl1 + {dl 

112 MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J 



B4 = [T4-1 + { a }  + {c} - { d l ]  + {b l  

which again  can  be  treated  as in Case 3A. 

Note  that  the situation where ib  = 8 can  not arise in Case 3B, since 
b E B ( b - l .  We have  therefore successfully exhausted the possible 
cases, and Lemma 1 is proved. 

Theorem 2 

Let X be  a  trace, B,> an initial  state,  and P a valid demand policy 
for X and Bo. If Po is any valid Om policy for X and Bo, then 
I + l P O  2 l 4 lP .  

Proof. We recall first that every OPT policy for X and Bo has 
exactly the  same  number of 4's. To prove the  theorem, we  need 
only find any om policy Po such that l+lpv 2 /41p. To do this we 
will construct  a finite sequence of policies P', P2,  . ' . , Pi, where Pi 
is an OPT policy and l + l p  5 l + l p x  5 . . .  5 l + l p l .  

P' is constructed as follows. Let i be the smallest integer such that 
p i  # p:, where po is an element of an OPT policy. Suppose that 
p i  = a and po = b. (Neither p i  nor po can  be +, since both  are 
demand policies.) We observe that 

BY = Ti + ( u }  I 
where d(a, x i )  I d(b, x;). Since x i  # a  and x i  # b, it follows that 
d(a, x i + l )  5 d(b, xi+l).  Treating B i  as Bo, Bo as B& and x i + ' ,  . . . , xL 
as X, we can use Lemma 1 to find a policyp:.,, . . . , p t  that contains 
as least as many 4's as p <+,, . . . , pL. We then define P1 = pi, . . . , 

Ba = T' + ( b l  for a ,  b !$ Ti 

Pi as k, lsksi- 1 

ipl, i +  1 5  k l  L 

p i  b ,  k = i 

Note  that P' is valid and  that I + I p  5 l + l p . .  Furthermore, pk = p i ,  
1 5 k 5 ll for some 8, 2 i. 

Policy P 2  is constructed  from P' in a similar manner with the  results 
thatpi = p i ,  1 5 k 5 6 where% > 8, and l + l p .  ,I l + l P . .  Since Xi s  
finite, construction of P', P 2 ,  . . . must result in P', for finite j ,  where 
p i  = p i ,  1 5 k 5 L.  It follows from l + l p  5 l + l p l  5 . . . 5 I + J I . i  
that 1 + 1  5 I + l p i  where Pi is an om policy and  the  theorem is 
proved. 

Combining  the  relation in Equation A3 for demand paging with 
Theorems 1 and 2, we have the following theorem. 

NO. 2 . 1970 STORAGE  HIERARCHY  EVALUATION 



Theorem 3 

OPT Let X be  a  trace, Bo an initial  state,  and Po a valid OPT policy. 
minimizes (Also,  let Qo be  the  corresponding I-policy.) For any valid policy 

page pair P and Q, 
loading 

L L 

t = 1  t = 1  

Thus we see that  an OPT policy results in a  minimum  number of 
pages being loaded into  the buffer over the class of all valid policies. 
After giving preliminary  Lemmas 2 and 3, we present a final theorem 
concerning OPT policies. 

Lemma 2 

For a  trace X ,  let  the set Bc represent  the  first C distinct pages 
referenced in X .  For a buffer of capacity C, if P is a valid demand 
policy for X and some B; C Bc,  then P is a valid demand policy 
for X and  any BL C Bc. 

Proof. Let i be the smallest integer such that xl, . . . , x contains 
C distinct pages. If Bo C B,  then, for any valid demand policy P,  
wehave B ;  = Bc, sincep, = p2 = . . .  = p i  = 4. For B; C B, this 
also  holds, so P is a valid demand policy for X and B;. (Note  that 
for different initial  states, Bo 2 B,, the Q policies will not be the 
same.) 

Lemmu 3 

For a  trace X :  let the set Ec represent  the  last C distinct pages 
referenced in X .  For a buffer of capacity C, if P is a valid demand 
policy for X and Bo, there exists a valid demand policy P’ with a 
state sequence Bo, B:, B;, . . . , B,: such that B; = E, and ! + I p ,  2 
/+IP. 

Proof. Let i be the smallest integer such that x ,, . . . , x,* contains 
C distinct pages. Suppose,  under policy P, that B,-, contains n 
elements of Ec, i.e. 1 B ,-, n E ,  1 = n. It follows that  at least C - n 
pages will be  loaded  into  the buffer following time i - 1. Setting 
p: = p k  for 1 5 k 5 i - 1, we  will specify the remainder of P’ in 
such a way that exactly C - n pages are loaded into  the buffer 
following time t - 1, We observe that, since at most C distinct pages 
are referenced following time i - I ,  we never need remove  a  page b 
from  the buffer where b E E(, .  Thus, if a  page  must  be  removed at 
time 4 for i 5 e 5 L,  there always exists a  page c, where c Ec, in 
the buffer, and we set p: = c. If P’ is constructed  in  this  manner, 

I 114 MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J I 



1 Theorem 4 

and  from  Equation A3 we have 141ps 2 l + l p .  Furthermore, since 
no  page in E,  is ever removed from the buffer following time t = i 
and lE, I = C, we see that B: = E,. 

Let X = xl, . . . , x], be a  trace  and ” X  = x,,, . . . , xI its reoerse. forward/ 
If Po is  an OPT policy for X and B, = 4, and ‘Po is an OPT policy backward 
for ‘ X  and ‘B,] = 4, then /I#l,.o = 14/r,.o. OPT 

Proof. Let us assume  that  the  theorem  does not  hold.  Thus, 
without loss of generality,  suppose that / I # 1 7 t , o  = lr#lpo + k where k 
is an integer and k > 0. If D distinct pages are referenced in X (and 
in ‘X) and if D 5 C, the buffer capacity, then we have an immediate 
contradiction, since 141po = I I # / ~ , , ~ ~  = L .  We therefore  assume 
D > C. 

Let us denote  the  state sequence under PO as B,,, B,, . . . , BL. From 
Lemma 2 we can set Bo = B,  without  disturbing  the validity of Po.  
From Lemma 3 we can  alter Po such that BL = E,. Note  that  the 
altered policy contains  the  same number of 4’s as Po,  since Po is an 
OPT policy. (We  subsequently refer to  the altered policy as Po.) 
Similarly, if ‘Bn7  ‘B17 . . . , ‘BL is the  state sequence under ‘Po  we can 
assume that  ‘B, = ‘B,.  and ‘BL = ‘Ecq. 

Consider now the  state sequence “BL,  ’BL, ‘BL-1, . . . , ‘B2,  ‘B,. Since 
xr, E ‘B1,  xL-l E ‘B2, . . . , x2 E ’BI,-I, x1 E ‘BL, we  see that this 
sequence is a valid (not necessarily demand) sequence for  the  trace X .  
Let us denote  the corresponding valid policy pair as P’ and Q’. We 
observe first that, since ‘Ec = Bc, we have ‘B,. = B,. = B,). Thus P‘ 
and Q’ (as well as Po)  are valid policies for X and B,. Next we 
observe that  ‘B, = ‘Bl,-l + { ‘q: } - lrp: ) can be written as 
‘B1,-, = ‘BL + (‘p:) - {‘q: ) .  But we also  have ‘BI,-l = ‘BL + 
{ q; 1 - ( p i } ,  which yields q; = ‘p: and p i  = ’q:, since ‘p: A ‘q: = 
4. Similarly, since ‘BL-,  = ‘BI,-Z + {rqE-l} - {‘p:-,], we have 
q; = ‘ p z - ,  and p i  = ‘qE-,. Continuing  in  this  manner we can 
show that 

4’ - 1 0 

P: = 74LO+z-t 

1 - P L + z - t  I for 2 5 t 5 L  

Now, since x L  E ‘B ,  (recall that ’B, )  = ’Bc),  it follows that 
‘p: = ‘4: = 4. Similarly, since x, E B, (recall that  B, = Bc),  it 
follows that p ;  = q{ = 4. We can  then trivially assume that p :  = 
‘q? and q: = ‘p:. The significance of this is that, using Equation A5, 
we have established a  one-to-one  correspondence between P‘ and 
‘eo, and between Q’ and ‘Po.  In particular, I I # l p ,  = / + J V Q o  and 

I I # l o ,  = I $ l r p o .  We now observe that I I # / ~ ~ ~  = / + I r p o ,  since i‘Bo/ = 
lrB,l = . . . = IrBL/ = C. In other  words, ‘pq = if and only if 

NO. 2 . 1970 STORAGE HIERARCHY  EVALUATION 1 15 



Recall that P’ and Q’ are not necessarily demand policies. From 
Theorem 1 we can find a  demand policy pair P” and Q” such that 

I From  Equation A5 and  the discussion that follows, we know  that 

are  demand policies, and since lBol = I l l ; ’  1 = . . . = IB’; I = C, 
we have 
1p;’I = 1q:’I for 1 5 t 5 L. Combining  these  results yields 

But  then we have 1+1,,, 2 = I + / r p o  = I+lro + k .  Since Po 
was given as an OPT policy, we have  from  Theorem 2 a  contradiction 
with 1+1,,, > for the  demand policy P”. Thus  our original 
assumption is false, and  it  must  be  the case that I + l T r o  = I+lPo.  

CITED  REFERENCES 

1. A.  Opler,  “Dynamic flow of programs and  data through  hierarchical 
storage,” Information Processing 1965, Proceedings of IFIP Congress 

2. E. Morenoff and J. B. McLean; “Application of level changing to a 
multilevel storage  organization,” Communications of the  Association 
for  Computing Machinery 10,3,  149-154 (1967). 

3.  C. J. Conti, “Concepts for buffer storage,” IEEE Computer  Group 
News 2, 8, 9-13 (1969). 

4. W. Anacker and C. P. Wang, “Performance  evaluation of computing 
systems with memory hierarchies,” ZEEE Transactions on Electronic 
Computers EC-16, 6,764-773  (1967). 

5 .  R. L. Mattson  and J.-P. Jacob, “Optimization studies for computer 
systems with virtual  memory,” Information Processing 1968, IFIP 
Congress  Booklet I ,  47-54 (1968).  

6. J.  E. Shemer and G. A. Shippey, “Statistical analysis of paged and 
segmented computer systems,” IEEE  Transactions on Electronic Com- 
puters EC-15,  6, 855-863 (1966). 

7. J.  Fotheringham,  “Dynamic  storage  allocation in the  ATLAS com- 
puter, including an automatic use of a backing store,” Communications 
of the Association for  Computing Machinery 4, 10, 435-436  (1961). 

8. T. Kilburn, D. B. G. Edwards, M. J. Lanigan,  and F. H. Sumner, 
“One-level storage system,” IEEE  Transactions on Electronic Com- i 
puters EC-11,  2, 223-235 (1962). 

9. M. H. J. Baylis, D. G. Fletcher, and D. J. Howarth, “Paging studies 
made on the I.C.T. ATLAS computer,” Znformation Processing 1968, 
lFIP  Congress  Booklet D ,  113-118 (1968). 

10. D. H. Gibson,  “Considerations  in block-oriented systems design,” AFIPS 
Conference Proceedings, Spring Joint Computer Conference 30, Aca- 
demic Press, New  York, New York, 75-80 (1967). 

1 1 .  S. J. Liptay,  “Structural aspects of the SystemJ360 Model 85: I1 The 
cache,” IBM Systems Journal 7, 1, 15-21 (1968). 

1,273-276  (1965). 

1 16 MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J 



12. R. W. O’Neill, “Experience using a  time-sharing  multiprogramming sys- 
tem with dynamic  address  relocation  hardware,” AFIPS Conference 
Proceedings, Spring Joint Computer  Conference 30, Academic Press, 
New  York, New York, 611-621 (1967). 

13. L. A. Belady, “A study of replacement  algorithms for a  virtual-storage 
computer, ZBM Systems Journal 5 , 2 ,  78-101 (1966). 

14. C. J. Kuehner and B. Randell,  “Demand paging in perspective,” AFZPS 
Conference Proceedings, Fall Joint Computer  Conference 33, 1011- 
1018 (1968). 

15. C. V. Ramamoorthy,  “The  analytic design of a dynamic look ahead 
and program segmenting system for multiprogrammed  computers,” 
Proceedings of the 21st National Conference o f  the Association for 
Computing  Machinery, Thompson Book Company, Washington, D. C. ,  

16. J. Kral, “One  way of estimating frequencies of jumps in  a program,” 
Communications of the Association for Computing Machinery 11, 

17. J.  G. Kemeny and J. L. Snell, Finite  Markov  Chains, D. van Nostrand 
Company, Inc., Princeton, New Jersey (1960). 

18. L. A. Belady, R. A. Nelson, and G. S. Shedler, “An anomaly in spare- 
time  characteristics of certain programs running in a paging machine,” 
Communications o f  the Association for Computing Machinery 12, 

19. P. J. Denning, “The working set model for programming  behavior,” 
Communications o f  the Association for Computing Machinery 11, 

229-239 ( 1966). 

7,475-480  (1968). 

6, 349-353 (1969). 

5,323-333  (1968). 

NO. 2 . 1970 STORAGE HIERARCHY EVALUATION 117 


