The design of efficient storage hierarchies generally involves the
repeated running of ‘“‘typical” program address traces through a
simulated storage system while various hierarchy design parameters
are adjusted.

This paper describes a new and efficient method of determining, in
one pass of an address trace, performance measures for a large class
of demand-paged, multilevel storage systems utilizing a variety of
mapping schemes and replacement algorithms.

The technique depends on an algorithm classification, called “stack
algorithms,” examples of which are “‘least frequently used,”’ “least
recently used,” “‘optimal,” and ‘‘random replacement” algorithms.
The techniques yield the exact access frequency to each storage
device, which can be used to estimate the overall performance of
actual storage hierarchies.

Evaluation techniques for storage hierarchies
J. Gecsei, D. R. Slutz, and I. L. Traiger

Increasing speed and size demands on computer systems have
resulted in corresponding demands on storage systems. Since it
has been generally recognized that the speed and capacity require-
ments of storage systems cannot be fulfilled at an acceptable cost-
performance level within any single technology, storage hierarchies
that use a variety of technologies have been investigated.

Several previous papers describe the general concepts of hierarchy
design'™® and evaluation,’”® whereas others deal with specific
hierarchy systems, such as the core-drum combination on the
ICT Atlas computer’ ® and the cache-core combination on the
IBM System /360, Model 85."%"

This paper introduces an efficient technique called “stack processing”
that can be used in the cost-performance evaluation of a large
class of storage hierarchies. The technique depends on a classifica-
tion of page replacement algorithms as ‘“‘stack algorithms™ for
which various properties are derived. These properties may be of
use in the general areas of program modeling and system analysis,
as well as in the evaluation of storage hierarchies. For a better
understanding of storage hierarchies, we briefly review some basic
concepts of their design.

MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J

The purpose of a storage system is to hold information and to
associate the information with a logical address space known to
the remainder of the computer system. For example, the Central
Processing Unit (CPU) may present a logical address to the storage
system with instructions to either retrieve or modify the informa-
tion associated with that address. If the storage system consists of
a single device, then the logical address space corresponds directly
to the physical address space of the device. Alternatively, a storage
system with the same address space can be realized by a hierarchy
of storage devices ranging from fast but expensive to slower but
relatively inexpensive devices. In such storage hierarchies, the
logical address space is often partitioned into equal-size pages
(or unequal-size segments) that represent the blocks of information
being moved between devices in the hierarchy.

A hierarchy management facility is included to control the move-
ment of pages and to effect the (generally dynamic) association
between the logical address space and the physical address space
of the hierarchy. When the CPU references a logical address, the
hierarchy management facility first determines the physical loca-
tion of the corresponding logical page and may then move the
page to a fast storage device where the reference is effected. Since
these actions are “‘transparent” to the remainder of the computer
system (except for timing), the logical operation of the hierarchy
is indistinguishable from that of a single-device system.

The goal of the hierarchy management facility is to maximize the
number of times logical information is in the faster devices when
being referenced. As this goal is approached, most references are
directed to the fast, small stores whereas most of the logical address

space is distributed over the slower, large stores. The storage
system then acquires the approximate speed of the fast stores
while maintaining the approximate cost-per-bit of the slower and
less expensive stores. This increase in cost-performance is the
primary justification for storage hierarchies.

Clearly, many factors can affect the cost-performance of a storage
hierarchy. On the performance side, one must consider the capacity
and characteristics of each storage device, the physical structure
of the hierarchy, the way in which information is moved by the
hierarchy management facility, and the expected pattern of storage
references. On the cost side, the hardware and/or software required
to find and move logical information must be considered, as well
as the cost-per-bit and capacity of each device. Because of these
factors, it is quite difficult to design an “optimal’ hierarchy.

The typical approach to hierarchy evaluation employed by computer
designers has been to simulate as many hierarchy systems as possible,
at various levels of detail.’”"* During the first stages of design, a
large number of relatively simple simulations may be run with

NO.2 - 1970 STORAGE HIERARCHY EVALUATION

hierarchy
concepts

Figure 1 Linear storage

hierarchy

< GENERATOR)]

h

BUFFER STORE
Ml

BACKING STORE

4MH

objectives

of the
paper

basic
model
concepts

fixed, standard address traces. These traces are assumed to be
“typical” sequences of storage references obtained from existing
computer systems, and they are used to approximate the reference
behavior of future systems. The purpose of these simulations is to
measure such statistics as data flow and frequency of access to
each device in order to estimate the overall performance of an
actual system. The resulting performance estimates can then be
used to narrow the field of possible designs, which then receive
more detailed examination.

Alternatively, one may try to develop analytical techniques that
avoid point-by-point simulation but still yield accurate statistics
for data flow and access frequencies. Several papers deal with such
techniques for hierarchy evaluation.*”® In general, the approach
here is to run a relatively small number of simulations and ex-
trapolate the measured statistics to a larger class of hierarchies.
The difficulty with this approach is the need for various assumptions
about the statistical properties of address traces and data flows
required to formulate the analytical equations. Moreover, it is
difficult to include a quantitative dependence on such factors as
data path structure, page replacement algorithm,”® and address
mapping scheme,’ so that many simulations may still be necessary.

This paper presents a technique that can be used to circumvent
much of the simulation effort required in hierarchy evaluation.
Specifically, we present an efficient procedure that determines, for
a given address trace, the exact frequency of access to each level
of a hierarchy as a function of page size, replacement algorithm,
number of levels, and capacity at each level. In the following, we
consider a class of multilevel, demand-paging hierarchies' with

the same replacement algorithm at every level. The procedures
developed here are applicable to a large class of well-known re-
placement algorithms having certain inclusion properties defined
later. These algorithms—which we call stack algorithms—include
“least frequently used,” “least recently used,” “optimal,” and a
“random” replacement algorithm.

The system model

An H-level paged storage hierarchy consists ot a collection of
storage devices M,, M,, --- , My, a network of data paths con-
necting the devices, and a hierarchy management facility. Each
device is partitioned into physical blocks called page frames. For
convenience, the highest-level store M, is called the local store
and the lowest-level store My is the backing store as shown in
Figure 1. The hierarchy management facility controls page move-
ment between the devices and associates each logical page with
a physical page frame. Special storage and processing hardware
may be required, but they are not included in our model.

MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J

References to the storage hierarchy are presented by a single device
called the generator, and they are sequentially serviced in the order
in which they are presented. References from the generator may
may represent the requests of several devices, such as the CPU and
the channel, in an actual system. The time sequence of logical-
address references X = x,, X,, - - , X, is called an address trace,
where each address consists of n bits as shown in Figure 2. The
set of 2" possible addresses is partitioned into 2° pages of 2 °*
logical addresses each. The high-order k bits of each address rep-
resent the number of the page containing the address, and the
low-order n — k bits represent the location or displacement of
the address within the page. Since information movement on the
hierarchy is accomplished by transferring pages between levels,
we can analyze space allocation and data movement for a trace X
by considering a corresponding page trace X* = x%, xi, .-, xf—
where each x* is the number of the page containing address x,.
When we consider a given fixed page size, we omit the superscript &,
and denote pages by x,.

A reference from the generator can be serviced only from the
local store M,. Thus if the desired page resides in a lower level
device M, i.e. where i > 1, the hierarchy management facility
must bring that page up to M, for servicing. The hierarchy provides
a path for bringing pages up to M ,, which may or may not require
staging through intermediate levels. Any temporary storage required
for bringing a page up to M, is included in the hierarchy manage-
ment hardware, and is therefore not represented in our model.
In this paper we restrict our attention to linear storage hierarchies
in which the only paths for moving pages down the hierarchy are
direct ones from each level M, to level M. ,, where i = 1,2, --- ,
H — 1. The reasons for this restriction are discussed later in this
paper. Note that the four-level hierarchy in Figure 1 is a linear
hierarchy.

The capacity of the backing store is assumed to be at least 2" page
frames, and all logical pages initially reside in the backing store.
At any time, each logical page resides in exactly one page frame
of the hierarchy. A mapping function is associated with each hi-
erarchical level, and specifies for each logical page the page frames
it may occupy in that level. The mapping function is further defined
as:

Unconstrained if any page can occupy any page frame of the
storage device.
Fully constrained if each page can occupy only a single page
frame.

& Partially constrained in all other cases.

In a later section, we define a technique called *‘congruence mapping”
that generates a whole spectrum of mapping functions.

NO.2 - 1970 STORAGE HIERARCHY EVALUATION

Figure 2 logical address

k BITS

n-k BITS——)‘

PAGE PREFIX

DISPLACEMENT

Figure 3 Two-level hierarchy

GENERATOR

BUFFER STORE
Ml

BACKING STORE
2

For simplicity in developing techniques for analyzing storage hi-
erarchies, we first consider a two-level, demand-paged hierarchy
with unconstrained mapping. Later, our results are extended to
certain classes of multilevel linear hierarchies employing the three
types of mapping functions. The local store or buffer has a capacity
of C pages, and is directly connected to the backing store as shown
in Figure 3. At time ¢, the generator presents a request for page
x, to the hierarchy. Under demand paging, if x, is in the buffer,
the reference proceeds and no page movement occurs. Otherwise,
x, is brought to the buffer from the backing store. If the buffer
is already full, x, replaces some page y, in the buffer. The selection
of the particular page y, is performed by the buffer replacement
algorithm. This operation is a key element of storage management.

In the two-level hierarchy shown in Figure 3, a reference to a page
residing either at level M, or at M, is called an access to that level.

For a given hierarchy and page trace, we define the access frequencies
F, and F, where F, is the relative number of accesses to level M,
during the processing of the trace. Thus, if N, accesses are made
to level M, and N, = L — N, accesses are made to level M,, we
obtain F;, = N,/L and F, = N,/L.

Some important measures of storage hierarchy performance can
be obtained from these access frequencies. For example, one can
combine access frequencies with a set of effective access times
{T;} to obtain an effective (or average) hierarchy access time

T: ET1 +F2T2

In general, access times depend on the access paths, device access
times, and characteristics of the hierarchy management facility.
The access frequencies depend only on the page trace, capacity
of the buffer, and replacement algorithm.

For a two-level hierarchy, accesses to the buffer are called successes;
the relative frequency of successes as a function of capacity is
given by the success function F(C). For a given capacity C, page
trace X = x,, Xy, :-- x,, replacement algorithm, and arbitrary
time ¢ (where 1 < ¢ < L), the set of pages in the buffer just after
the completed reference to x, is denoted by B,(C). The initial buffer
contents is represented by B,(C). By convention

B(I(C) =¢
for all C where ¢ is the empty set. The set of distinct pages referenced

in X, X, - - , X, is denoted by T,, and the number of pages in T,
is denoted by

Y =]FlI

MATTSON, GECSEIL, SLUTZ, AND TRAIGER IBM SYST J

Demand paging in the two-level hierarchy is formally defined by
the following requirements, wherein the operator “+” denotes the
union of dizioint sets:

I.Ifx, € B(C) then B(C)= B,_(C)

2. If x, & B,.,(O) and IB,_,(O)] < C then
B(C) = B..(C) + ix}

3. 1If x, € B, (O and |B,_(O)| = C then
B(C) = B..(C) — {y} + {x|

where y, € B,_,(C) is determined by the replacement algorithm.
Under demand paging, a buffer of capacity C simply fills as required
by 1 and 2, while the first C distinct pages are referenced. Sub-
sequently, referenced pages are swapped in, as required by | and 3.

Least recently used replacement

We now consider a particular replacement algorithm called “least
recently used” (LRU), and show that the entire success function
can be obtained by stack processing in a single pass of the address
trace. Briefly, the single-pass technique requires the maintaining
of a list of pages, called an LRU stack, and measuring a distance
on this stack for every page reference. Frequencies of these stack
distances are used to calculate the success function. The existence
of the LRU stack follows from an inclusion property satisfied by
LRU replacement, whereas the use of distance frequencies hinges
on the related concept of critical capacity.

Under LRU, the page selected for replacement is the one that has
not been referenced for the longest time (i.e., the least recently
used page). One way to obtain the success function for a given
trace is to simulate the two-level hierarchy system for each buffer
capacity. Such a simulation determines the buffer contents at every
time 7, and counts the number of times the current reference x,
is found in the buffer. In Figure 4, we show an example of this
simulation procedure for a given page trace and buffer capacities
C =1, 2, 3, 4. Pages are denoted by lower-case letters, and page
successes are marked by asterisks.

A greatly simplified method for obtaining the success function
under LRU replacement can be derived from certain properties
of that replacement algorithm. For any page trace and buffer
capacity C, the buffer is initially empty, and in say r time units,
it fills up with the first C distinct pages referenced by the trace.
At time r, the buffer contains the C pages most recently referenced
through time r. When a new page is referenced at a later time
(1 > 1), this page replaces the least recently used page in the buffer.

No.2 - 1970 STORAGE HIERARCHY EVALUATION

success
function

Figure 4 Determining success function by buffer simulation

TIME

PAGE TRACE

SIMULATIONS

c=1
F(1)=0.20

Cc=2

F(2)=0.30

C=3

F(3)=0.50

C=4 a
F(4)=0.60 b

Thus at time 7, the buffer still contains the C most recently referenced

pages. It is easy to see that under LRU the buffer contains the C
most recently referenced pages for all subsequent times, and that
this property holds for all page traces and buffer capacities. One
can generate the buffer contents B,(C) for any time ¢ on a trace
and any capacity by scanning backward from point ¢ and collecting
the first C distinct pages encountered.

Since the set of C most recently referenced pages is always contained
in the set of C + 1 most recently referenced pages, the buffer
contents B,(C) at any time must be a subset of B,(C + 1). In fact,
B,(C) is a proper subset of B(C —+ 1) if at least C + 1 distinct
pages have been referenced through time ¢. More formally, under
LRU replacement, the buffer contents for any page trace X =
X, Xz, -+, x, and any time ¢ (where 1 < ¢ < L) satisfy the fol-
lowing inclusion property:

Bt(l) C Bt(z) C - C Bt(7t) = By + 1) = e (1)
where

B(C)) = C forl < C<w,

MATTSON, GECSEIL, SLUTZ, AND TRAIGER IBM SYST J

and

lBt(C)| = Y for C > v,

The inclusion property can be observed in Figure 4 where at time
t = 5, for example

B(1) = {b}

B.(2) = {c, b}

B(3) = {a, b, c}

and

B.(4) = {a, b, ¢}

Because of the inclusion property, the buffer contents at any time
and for all capacities can be represented in the following compact
and useful way. We order the set of pages TI', into a list S, = s5,(1),
S,(2), to st(’Yt)s where

sy = B(@) — B(i— 1) fori=1,2,---,v)

Hence
{St(l), 52y, 1, st(c)} for C < v,
{s.(1), 8,2), <+ L 8.0y} for C > v,

(3)

The list S, is referred to as the LRU stack, with s,(1) as the top
entry and s5,(y,) as the bottom entry. As an example, the LRU stack
for ¢ = 5 in Figure 4 is

’SS = [b9 C’ a]

The stack S, at time ¢ = 0 has no entries and is therefore called a
null stack, that is, one with no entries. The entire sequence of
LRU stacks corresponding to Figure 4 is inctuded in Figure 5.

Besides representing the buffer contents for all capacities, the LRU
stack can be used to efficiently determine the success function
F(C). Let us suppose that at time ¢, page x, has been previously
referenced and thus is a member of at least one set B,_,(C), where
] < C < %, Let C, denote the least buffer capacity such that

x € B_(0O)

We call C, the critical capacity since, from the inclusion property
given in Equation 1, x, € B,_,(C) if and only if C > C,. If x, has
not been previously referenced, we set C, = « because x, is not
contained in a buffer of any finite capacity.

From the definition of LRU stacks in Equation 2, it may be seen
that C, is simply the position of page x, in the stack S,_,, so that

No.2 - 1970 STORAGE HIERARCHY EVALUATION

Figure 5 Sequence of LRU stacks

TIME

PAGE TRACE

LRU STACK

STACK
DISTANCE

DISTANCE
COUNTERS n(A)

1

2

3

Figure 6 Obtaining success x = 5.(C)
function from
distance frequencies We call this page position the stack distance A,, since A, is essentially

DISTANGE FREQUENGY the “distance” from the top of the stack to

6 X, = 5,.(4A)

4

(Note that here A, = C,. When constrained mapping functions are
considered, the stack distance may not always equal the critical
capacity.) If x, has not been previously referenced, then A, is set
to infinity. The sequence of stack distances for our example is
included in Figure 5.

T
-0

mr-o

W =0
al—0
- -

o
—

SUCCESS FUNCTION

0.80 The significance of stack distances is that they lead directly to the
success function. To see this, let n(A) be the number of times the
stack distance A is observed in processing a trace. Since the stack
distance equals the critical capacity, the number of times that the
referenced page is found in the buffer is

4

N(C) = 2 n(a) @

A=1

0.60

and the success function is given by the expression

F(C) = N(C)/L ()
In practice, the set {n(A)} can be determined from a set of distance
counters, as shown in Figure 5. All counters are set initially to

zero, and the counter for each distance A is incremented whenever

MATTSON, GECSEl, SLUTZ, AND TRAIGER IBM SYST J

that distance occurs. For k-bit page numbers, we need at most
2 4+ 1 counters, corresponding to 1 < A < 2" and A = «. At
the conclusion of a page trace, the final values of the distance
counters are the values {n(A)}, and F(C) is obtained from Equations
4 and 5.

We now calculate the value of the success function in a numerical numerical
example. For A’s of 1, 2, 3, 4, and «, the ccrresponding final example
counter values in Figure 5 are 2, 1, 2, 1, and 4. This distribution

is shown in Figure 6A. Dividing by L equals 10 in Figure 5, and

summing cumulatively, we obtain the success function shown in

Figure 6B. One can verify that the F(C) values for the curve in

Figure 6B agree with those obtained in the simulations of Figure 4.

To find the access frequencies F, and F,, for a given buffer capacity
C, we take F;, = F(C)) and F, = 1 — F,. As an example, for C = 3
pages, F; = F(3) = 0.50 as indicated in Figure 6B, F;, = 1 — 0.50 =
0.50, and the average access time T of the hierarchy is 0.507, +

0.507>. ;
Figure 7 Constructing LRU

. . . stacks
Note that F(C) is always a monotonic, non-decreasing function

of C for LRU replacement, since F(C) is obtained by cumulative

summation as shown in Equation 4. Also, F(C) never exceeds S-1
(L — ~.)/L for any capacity, because all pages initially reside S ®
in the backing store. @

A PAGEX INS,_,

To avoid constructing each LRU stack separately, we now give
an iterative construction of S, from S,_, and x,. Observe that at sy (A1) (-1
every time ¢, the stack S, is simply the list of pages in T',, according]
to their most recent reference. The most recently referenced page
is 5,(1) since 5,(1) = x,. The second most recently referenced page
is 5,(2), and s,(v,) is the least recently referenced page in T,.

5@ s

s, (A+D) st(A+1)

Let us suppose that page x, has been previously referenced and
appears at position A on stack S, ;. For time ¢, we know that x,
must be the top entry in S,, because it is the most recently referenced
page. Consider now a page b at some position j on S, ; where
1 < j < A. Attime ¢t — 1, page b is the jth most recently referenced
page, and the intervening pages do not include x,. At time 7, page x,
is added to this set so that page b must now be at position j + 1 1@
on stack S,. If j is greater than A, page b must remain at position
j at time ¢, since the set of more recently referenced pages is un-
changed from time ¢ — 1.

B PAGE X NOT IN Sy

St~1

Sy (D

The net effect of this page motion is shown in Figure 7A. Page x,
is moved to the top of the stack, pages previously above x, are
down-shifted one position, and all other pages retain the same
position. If x, were not previously referenced, x, would be placed
on the top and all other pages would be down-shifted one position as
shown in Figure 7B.

LT

g

No.2 - 1970 STORAGE HIERARCHY EVALUATION

stack
generation

This iterative procedure can be used to generate the sequence of
stacks in Figure 5. In an actual evaluation, it is not necessary to
store the entire sequence of stacks. Rather, only the current stack
must be maintained as the trace is scanned. When a page reference
occurs, that page is put on the top of the stack, and entries in the
stack are down-shifted one-by-one starting from the top. If page
x, is encountered, its distance A, is recorded, and x, is erased because
it has already been placed on top. The position vacated by x, is
filled by the page downshifted from position A, — 1. If x, is not
encountered, then the downshifting proceeds to the bottom of the
stack, and distance A, = « is recorded.

Stack algorithms

We now examine the general class of replacement algorithms that
satisfy the inclusion property. Such algorithms are called *‘stack
algorithms.” 1t is shown that stacks can be iteratively maintained
for any stack algorithm, and that stack distance frequencies for a
given trace can be used to obtain the corresponding success function.
The main problems considered are (1) to efficiently generate stacks
{S,} for an arbitrary stack algorithm, and (2) to identify those
algorithms that are stack algorithms. Several examples of stack
algorithms are described, along with one replacement algorithm
that is not a stack algorithm.

A replacement algorithm is called a stack algorithm if the buffer
contents in a demand-paged, two-level hierarchy satisfy the in-
clusion property given in Equation 1, for every page trace and every
point in time. As shown for LRU replacement, a stack can be defined

according to Equation 2 in such a way that the buffer contents for
all capacities are given by Equation 3. Furthermore, since the stack
distance A, is a critical capacity, the success function for any page
trace can be obtained by summing the stack distance frequencies
{n(A)} according to Equation 4. This summation implies that the
success function is a monotonic and nondecreasing function of
the capacity C for every stack algorithm.

Let us now consider a replacement algorithm R as a collection of
mappings

R, : B,_(C)— y(O) where y,(C) < B, ,(C)

is the page replaced by x, in a buffer of capacity C. From the con-
straints of demand paging, we know that R is applied only when the
following conditions are true: x, € B,_,(C) and |B,_(C)| = C. If the
inclusion property is satisfied up to and including time ¢ — 1, then
R must satisfy certain restrictions at time ¢ to maintain the inclusion
property. Specifically, if a replacement is required for some capacity
C + 1 (and therefore for C), then y,(C 4+ 1) must be either y.(C)
or 5,_(C 4 1). To prove this, let us assume the following:

MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J

B, (C)C B..(C+ 1)
[B.-(C)] = C

B (C+ 1D =C+1
and

x & B (C+1

Note that from Equation 2, page s,.,(C + 1) is contained in
B,_.(C + 1) but not in B, (C). If page y(C + 1) is neither
5,.1(C + 1) nor y,(C), then y(C + 1) is some other page z € B,_,(C).
However, page z is included in B,(C), but not in B,(C + 1), which
would violate the inclusion property.

We have given a necessary condition for stack algorithms. The
same condition is also sufficient, because if y(C + 1) is either
y{(C)ors,_(C+ 1), then B,(C)is a subset of B,(C + 1). Therefore,
we conclude that a replacement algorithm is a stack algorithm if
and only if for every time ¢

y(CH+D=s5,(C+1) o y(C+1)=y(C) (6)
for

1 < C <y gy and C+ 1 <A

Important replacement algorithms that satisfy Equation 6 are those
that induce a total ordering on all previously referenced pages and
use this ordering to make replacement decisions. The ordering can
be represented in the form of a priority list

Pt = pr(l)’ Pt(z), T, Pr(’Y:-])

where p,(i) has a higher priority than p,(f + 1) for | < i <~,_,. The
algorithm then selects for replacement the page in B, ,(C) that has
the lowest priority.

A convenient notation for working with priorities is min(A4), where
A is an arbitrary set of pages in T',_,, and min(4) is the unique page
in A having lowest priority on the list P,. If B,_,(C) C B,_,(C + 1)
and x, € B,_,(C + 1), we can express the replaced pages y,(C) and
».(C + 1) as follow:

y(C) = min [B,,(C)])
and

y(C+ 1) = min [B_,(C + 1] ®)

= min [B,_,(C), 5,..(C + 1] ®

= min{min [B,_(C)], 5:-..(C + D} (10)

min [y,(C), 5:.(C + D] QY

NO. 2 - STORAGE HIERARCHY EVALUATION

stack
algorithm
identification

89

stack
updating

Equations 7-9 are based on the definition of the replacement
algorithm, whereas Equation 10 is based on the properties of
minimization.

We conclude from Equation 11 that any replacement algorithm
that induces a priority list P, for every time ¢ satisfies Equation 6
and is therefore a stack algorithm. For example, the priority list
for LRU is just the ordering of pages in I',_, by most recent reference.
The priority list for “least frequently used” (LFU) replacement is the
ordering of referenced pages by most frequent reference together
with a scheme to break fties.

Before describing other examples of stack algorithms, let us develop
a stack updating procedure for algorithms inducing a priority list.
For any page trace X = Xx,, X;, --- , x,, and any time 7, where
1 <t < L, suppose that stack S,_, is available. Also, for any two
pages a, b & T, let max (a, b) denote the page having higher
priority. If x, has been previously referenced and appears at position
A, on stack S,_,, the stack at time ¢ is given by

s(1) = x, (12)
s(i) = max (i — 1), s.()] for2 <i< A, (13)
s(A) = y(a, — 1) (14)
s) = s() forA, < i<y, (15)

Equations 12, 14, and 15 are based on the constraints of demand
paging, whereas Equation 13 is derived from Equation 11.

If x, has not been previously referenced, the defining equations for
stack S, are the following:

s(1) = x, (16)
5,()) = max [y,(i — 1), 5,.,(})] for2 <i<w,., {an
s5(v) = ylv.) (18)

In this case, Equations 16 and 17 express the fact that replacements
are required for all buffer capacities in the range 1 < C < v,.;.
Equation 18 corresponds to the new page x, being added to the
stack, with the result that a buffer of capacity

Y = Y + 1

is now full.

Figure 8 illustrates the stack updating procedure as given in Equa-
tions 12-18. The top entry s.(1) is always x,, and the first page
replaced is

yt(l) = szAl(l) for A, > 1

MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J

Figure 8 Stack updating

A PAGE x, IN STACK St-l PAGE X NOT IN STACK St—l

%

p—

| st(At—l)

5 (L\t)

5 (A+D) s (A +1)

Each subsequent entry s,(i) is then determined iteratively from
5,-1(i) and y,(i — 1) according to Equation 13 or 17. If x, is found
on stack S,, as shown in Figure 8A, we use Equation 14 to
determine s,(A,). All lower entries are unchanged from time ¢ — 1.
If x, is not found on stack S,_;, as shown in Figure 8B, then A, = «,
and we use Equation 18. In either case, the replacement algorithm
does not have to be applied to all the pages for stack updating.
Only a sequence of pairwise decisions between pages s,_,(i) and
y.(i — 1) is required.

Comparing our stack updating procedure with the one for LRU
shown in Figure 7, we see that page y,(C) under LRU is always
5,.(C). In fact, the priority list P, is exactly equal to stack S,_;,
since both lists give the order of pages in T,_; by most recent
reference. Thus

»(C) = 5,.(0)
and Equations 13 and 17 then reduce to
s(i) = max[s,_,(i — 1), s, ,(})]
=g, —1)
For an arbitrary stack algorithm, the stack updating is more complex

than for LRU, and the order of stack elements at time ¢ — 1 may be
very different from that at time 1.

Let us now examine several examples of stack algorithms. In general
any replacement algorithm that bases its decisions on some page
usage quantity, whether measured or predicted, naturally induces a
priority list and is, therefore, a stack algorithm. One example, of

No.2 - 1970 STORAGE HIERARCHY EVALUATION

examples
of stack
algorithms

course, is LRU, and another example previously mentioned is
least frequently used (LFU) replacement.

Under LFU, the page replaced from a buffer at time ¢ is that page
that has been referenced the fewest number of times over the interval
1 < 7 < t, or perhaps over some “‘backward window” interval
t —h <7< t,where 0 < h < 1. If two or more pages are tied for
least frequency of use, then some arbitrary rule is used to break
the tie. As long as the rule is consistent for all pages and all
capacities (e.g., if the tied pages are numerically ordered) a priority
list P, is induced, and LFU is a stack algorithm.

Other examples of stack algorithms may arise in analytical studies
of program behavior. If an address trace is generated from some
random process, it may be desirable to study the behavior of
replacement algorithms that base their decisions on the param-
eters of the random process. One such process is a time-invari-
ant, first-order Markov chain,">"" where any page ¢ is referenced
immediately after page b with a fixed transition probability ..
The process is completely described by the matrix I = {=,.},
(where b and ¢ range over all referenced pages) and by the page
referenced at time t = 1.

One possible replacement algorithm is to remove the page least
likely to be referenced next. We call this strategy “least transition
probability” (LTP) since, for page x, equal to page b, the page ¢
chosen for removal is the one that minimizes =,, over those pages
in the buffer. Supplying an appropriate rule for breaking ties, we
see that LTP induces a priority list and is a stack algorithm.

Another replacement algorithm is to remove the page with the
largest expected time until next reference. We call this strategy
LNR for “longest next reference.” The expected times until next
reference can be obtained from the II-matrix by standard tech-
niques.'” As with LTP, LNR induces a priority list if we supply an
appropriate tie-breaking rule.

To analyze an actual program trace under LTP or LNR (perhaps for
testing a Markov model of the program), page reference statistics
may be used to estimate the matrix II. For example, the observed
transition frequencies over some interval + — / to ¢ can be used to
generate a time-varying estimator matrix II,. A priority list P, can
then be constructed for each time ¢, according to the probabilities
in 11, with the result that the overall strategy for replacement
remains a stack algorithm.

Other stack algorithms may base their decisions on information
from the programmer or compiler, or on properties of the computer
system. For example, the programmer or compiler may supply to
the system'* special “program directives” that indicate which pages

MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J

should be given high priorities in the immediate future. Another
case is where the operating system assigns priorities to program
pages in a multiprogrammed system, based perhaps on the position
of the program in a task queue. If all the pages in the address space
can be ordered in a priority list P, for each time ¢, the resulting
replacement algorithm is a stack algorithm.

In the examples given, we see that priority lists can arise in a
variety of ways. We now consider a replacement algorithm called
“first-in/first-out” (FIFO) that is not a stack algorithm. Under
FIFO, the page that has remained in the buffer for the longest
(continuous) time up to time ¢ is removed.

A peculiarity of FIFO is illustrated by the following page trace
X=abcdabeabcde

As shown in Reference 18, the success function for this trace is not
monotonic, and takes the form shown in Figure 9. Since stack
algorithms have monotonic success functions, we conclude that FIFO
is not a stack algorithm and does not induce a priority list P, at
every time ¢. In amplifying this conclusion, we note that the relative
priorities between pages in I',_; may depend on the buffer capacity
C. Thus in the example, one can verify that page ¢ has lowest
priority of all pages in By(3) in the sense that ¢ has been in the buffer
longest. However, page d has highest priority in B,(4), since it was
.brought into the buffer latest.

Whenever the priorities among pages depend on the capacity of
the buffer, we cannot define a single priority list that applies to
every capacity. One instance of this is when priorities depend on

the frequency of reference to pages after their entering the buffer.
Another case is when priorities depend on total time spent in the
buffer.

As long as priorities are independent of capacity, and as long
as one can order the referenced pages to reflect these priorities,
then stack-processing techniques can be used to find the success
function.

An optimum replacement algorithm

We now discuss a replacement algorithm that yields the maximum
value for the success frequency over the space of all replacement
algorithms—for every page trace and every buffer capacity. Such
an algorithm is said to be an optimum replacement algorithm.
Belady'® describes an optimum replacement algorithm called
MIN, and shows how to evaluate the success frequency for a given
page trace and a given buffer capacity. In the following discussion,
we describe a stack algorithm called OPT and prove that it is also

No. 2 - 1970 STORAGE HIERARCHY EVALUATION

first-in/
first-out

Figure

9 Success function for
FIFO replacement

Figure 10 Example of OPT
replacement

TIME

PAGE TRACE

BUFFER
CONTENTS
FOR C=3

stack
processing
example

an optimum replacement algorithm. Using certain properties of LRU
and OPT, the entire success function for OPT can be determined in
two passes of a page trace.

The replacement algorithm OPT has the following characteristics.
Whenever a page must be pushed from the buffer, the chosen page
is the one whose next reference is farthest in the future. If a tie
results because two or more buffer pages are never referenced again,
the tie is broken by an arbitrary rule @ that pushes the page with
the latest alphabetical or numerical order. An example of OPT
replacement is shown in Figure 10, for the buffer capacity C = 3.
As an illustration, notice that at time t = 5 page ¢ is pushed from
the buffer, since the other buffer pages @ and b are referenced sooner.
At time 1 = 9, page b is pushed from the buffer, because page d is
referenced again (at time ¢ = 10), and page a has priority over
page b by our rule Q.

A formal proof that OPT is an optimal replacement algorithm is
given in the Appendix. We note here that OPT is not realizable in
an actual computer system because it requires knowledge of future
page references. However, OPT does serve as a useful benchmark
for any replacement algorithm, including stack-type algorithms.
To show that OPT is a stack algorithm, observe that a priority list
P, can be constructed for OPT at each time ¢. Specifically, P, is the
list of the pages referenced again, ordered by their time of next
reference, followed by the list of the pages not referenced again, as
ordered by the tie-breaking rule Q.

The stack processing technique for OPT is illustrated in Figure 11.
Priority lists are ordered as described above, and curly brackets
denote the pages ordered under the rule Q. For example, at time
t = 8 the priority list is Py = ¢, d, a, b, because c is the next page

Figure 11 Stack processing and success function for OPT replacement

TIME

PAGE TRACE

PRIORITY
LIST

OPT STACK

STACK
DISTANCE

MATTSON, GECSEIL, SLUTZ, AND TRAIGER IBM SYST J

referenced (at 1 = 9) and d is the second page referenced (at 1 = 10).
Pages a and b are not referenced again, and thus are ordered accord-
ing to rule €. The sequence of OPT stacks is constructed using the
priority lists, and the success function is obtained from the stack
distance frequencies. A major difficulty with the technique is the
amount of forward scanning required to construct the priority lists.

Fortunately, a more efficient procedure exists for obtaining the
priority lists. For a given page trace X, we define the forward distance
w,(a) to a page g at time 7 as the number of distinct pages referenced
inx,.., -+, x., (where x,. is the first reference to page a after time
0. If page a is not referenced again, the forward distance is defined
as infinity. Note that the priority list under OPT is a listing of the
pages in I',_, according to their increasing forward distances. An
illustrative example of forward distance determination is given in
Figure 12.

If the forward distances to all pages in I',_, are known at time t — 1,
the new forward distances at time ¢ can be determined iteratively
from the single forward distance w,(x,). Specifically, for page
a # x, and w, 4 w(x,), we have

wiei@) — 1 for w,_1(@) < w, and w,_,(a) ¥ «
wi(a) =

w,_i(a) for w,_(a¢) > w, or w,(a) = =

(19)
To determine the sequence of forward distances {w,} for a page
trace X, consider the reverse trace X* = xp, Xi_(, * | Xy X
Suppose that X" is analyzed according to LRU replacement and
that x; and x; denote two successive references to page a in the
reverse trace. Thus X* = x;, -+~ , xi = a, ~~+ , X, = a, *+- , X1.
At time j, the stack distance A; is the number of distinct pages
referenced in x., --- , x;,,. (Note that x;,, precedes x; in X*)
However, this number of distinct pages is precisely the forward
distance w; for page trace X. Thus the sequence of LRU stack
distances for trace X*, namely, A,, A,_,, --+ , A, A, is the reverse
of the sequence of forward distances w,, wy, <+ , w,_,, w, for
trace X.

These results form the basis of a two-pass stack processing technique
for determining the success function for OPT replacement. The
technique is illustrated by Figure 13. The first pass is a backward
scan of the page trace X using LRU replacement, denoted by the
left-pointing arrow. The LRU stack distances are stored, in reverse
order, on a “distance tape.” The second pass is a forward scan
using OPT replacement, as shown by the right-pointing arrow.
Forward distances read from the distance tape are used to maintain
the OPT priority lists according to Equation 19.

The LRU stack distances gathered from the reverse page trace yield
important information about the forward page trace. Specifically,

No.2 - 1970 STORAGE HIERARCHY EVALUATION

forward
distance

Figure 12 Determination of
forward distances at

time t — 4

w4(a):3 w4(b)=2

w4(c)=4

P,=b,ac

maximum
success
function

Figure 13 Two-pass technique for LRU and OPT replacement

A BACKWARD SCAN

PAGE x X
TRACE ! t

LRU
PROCESSOR

DISTANCE

BACKWARD I’
Wy
TAPE

B FORWARD SCAN

PAGE x
TRACE 1

FORWARD
DISTANCE
TAPE

Figure 14 Sequence of LRU distances for page a

A TRACE X

PAGE TRACE

B TRACE XR

c b w@\c/@ b d @ d @ c
PAGE TRACE A D AN AN
3 1 2

4 2 [

we claim that the success function for the reverse trace X* under
LRU replacement is equal to the success function for the forward
trace X under LRU replacement. Thus one can use the backward
scan of X, not only to generate the distance tape for OPT, but also
to generate the success function for LRU.

To prove this result, let F,,,,,(C, X) denote the LRU success function
for trace X, and consider the set of LRU stack distances measured
for a given page @ in X and X". As the example in Figure 14
illustrates, these sets are always identical. Since this holds for every

MATTSON, GECSEIL, SLUTZ, AND TRAIGER IBM SYST J

distinct page in the trace, the distance frequencies for X and X are
identical, so that the success functions F,o(C, X*) and F\ po(C, X)
are equal.

Another result, which is proved in the Appendix, is that Fop(C, X)
is equal to Fopr(C, X™), where Fopr(C, X) is the OPT success function
for trace X. Thus, our two-pass technique can be implemented with
forward-backward scans as well as with backward-forward scans.
During the first scan, the success function for LRU is obtained, and
the distance tape generated. During the second scan the success
function for OPT is obtained.

Random replacement

In the stack algorithms considered thus far, a unique success func-
tion is associated with each trace. We now extend stack-processing
techniques to cover a ‘“random replacement” algorithm (RAND)
that does not always yield a unique success function. With RAND,
if the buffer has a capacity of C, any given page is chosen for replace-
ment with a probability of 1/C. In analyzing RAND, one might
perform a Monte Carlo simulation for each buffer capacity to
obtain a RAND success function. Repeating these simulations would
yield a set of sample success functions to characterize RAND. The
sample success functions could then be used to estimate an “average”
success function.

A question that arises is whether stack processing can be used to
generate a sample success function for RAND or any other algorithm
that bases a replacement choice on the value of some random
variable. We observe that RAND is not a stack algorithm, because
there certainly exists a trace and a time ¢ for which the inclusion
property fails to hold with a nonzero probability.

Our approach is to define a replacement algorithm RR, which is a
stack algorithm having the same statistical properties as RAND for
each capacity C. The algorithm RR is defined as follows: at each
time 7, the priority list P, is obtained by randomly ordering the set
of pages in TI',_, (each of the v, ,! possible orderings is equally
likely to be chosen). Observe that RR is a stack algorithm, since it
induces a priority list.

To establish that RR is statistically equivalent to RAND, assume
that a replacement is necessary in a buffer of capacity C at time ¢.
Since y,(C) = min [B,_,(C)], and P, is randomly chosen, the proba-
bility that any given page is y,(C) is 1/C—the same as for RAND.

One difficulty in implementing RR is the generation of the random
priority list P,. Fortunately, it is possible to update the stack without

actually constructing the entire priority list. Assuming that A, > j,

No.2 - 1970 STORAGE HIERARCHY EVALUATION

let g;(f) denote the probability that page s,.,(j) has priority over
page y.(j — 1) at time ¢ If s5._,(j) does not have priority over
y.(j — 1), we know that s,_,(j) = min [B,_,(j)]. Since this occurs
with probability 1/, we obtain

1 —gqg@®=1/j
or

g = (G — D/j (20)

Using Equation 20, the stack can be updated at time r for RR
replacement by choosing page s.(j) = s,_.j) with probability
(Gj—1/j,for2 < j< A,and j < v,_,. As a check, let us compute
the probability Q that an arbitrary page b is pushed from a buffer
of capacity C at time 7. Assuming that page b occurs at some position
k on stack S,_; where | < k < C, then Q is given by the following
expression:

Q = P.{y/(C) = b}
P {s, k) = y.k — 1), 5,(k + 1) = 5,_,(k + 1),
s,k 4+ 2) = s,k + 2), -+ ,5(0) = 5,0} D

The events in the joint probability in Equation 21 are independent,
so that we obtain

0 = P,si(k) = yk — D} -P,{s,(k + 1) = s,:(k + 1)}
PAsik + 2) = sk + D)+ P {s,(0) = 5,1,(0)}

Wet)ls) - (59

Since Q@ = 1/C holds for any page b and capacity C, we have
verified that the stack updating for RR can be accomplished using
Equation 20, and that RR has the same statistical properties as
RAND for each buffer capacity. Note that although a particular
value of a point on the success function, for example F(4) = 0.3, is
equally likely to occur under both RAND and RR, the occurrence
of a particular success function is not equally likely.

As the example with RR illustrates, stack processing techniques
can be extended to cover probabilistic replacement algorithms. In
fact, a replacement algorithm can have a mixture of probabilistic
and nonprobabilistic aspects. For instance, the arbitrary rule used
to break ties in LFU and other algorithms may choose a page at
random. Another possibility is for a replacement algorithm to favor
some pages probabilistically in the construction of the priority list,
thereby realizing a so-called “biased replacement” algorithm.'” In
any case, the only requirement is that the priority list be constructed

MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J

to reflect the probabilistic properties of the desired replacement
algorithm for every capacity C.

Congruence mapping

Up to now, we have restricted our attention to two-level storage
hierarchies with unconstrainted mapping at the first level. Under
this type of mapping, any page in the buffer may be replaced by the
referenced page. The advantages of unconstrained mapping are
that all available page frames in the buffer can be used, and also
that seldom used pages cannot become “locked” into the buffer by
mapping constraints. A disadvantage with unconstrained mapping
is that extensive associative searches may be necessary to locate
pages in the buffer. Moreover, the implementation overhead of the
replacement algorithm may be excessive, since relative priority
information must be maintained for all pages in the buffer. To
offset these disadvantages, a constrained mapping scheme can be
employed whereby each page is restricted to occupy a member of
only a subset of the buffer page frames.

One such mapping technique is called congruence mapping, by which Figure 15 Page number

the 2* distinct pages in the address space are partitioned into 2° f o BITS wBITS >
disjoint congruence classes, where 0 < o < k, and each class contains F

2¥7* pages. The classes are numbered consecutively from O to
2% — 1, and class membership is determined from the « low-order
bits of the page number. In this case, the « low-order bits constitute
the class number [x] of a page, and the remaining k — « bits are
called the page prefix as shown in Figure 15. The quantity « is called
the class length. For a class length equal to zero, we set [x] = 0
for all pages.

PAGE PREFIX CLASS NUMBER

In a two-level hierarchy with congruence mapping, every congruence
class is assigned an equal number of page frames in the buffer—to
be used exclusively by members of that class. This number is called
the class capacity and is denoted by D. (The total capacity of the
buffer in pages is thus C = 2°-D.) When a page x is referenced, it
may appear in any of the D page frames reserved for class [x]. If the
reference page is not in the buffer, and if the D page frames are all
occupied by other members of class [x], a replacement algorithm
selects one of these pages for removal. We assume that the same
replacement algorithm is used separately for each of the classes.

Note that when the class length « is zero, all pages are in the same
class, and the mapping is unconstrained. When the buffer capacity
C is a power of 2, and when C = 2°, only one page is allocated to
each class, and the mapping function is fully constrained. Thus
for a fixed buffer capacity C = 2", where 0 < & < k, we can vary
the mapping function from unconstrained to partially and fully
constrained simply by varying the value of « from 0 to A.

No.2 - 1970 STORAGE HIERARCHY EVALUATION

Figure 16 Two-level hierarchy with congruence mapping

BUFFER

D PAGES
PER CLASS

BACKING
STORE

2k=" PAGES
PER CLASS

2% CLASSES

Since the congruence classes are disjoint, and since the same number
of buffer page frames are allocated to each class, it is possible to
treat a buffer as a collection of 2 distinct buffers—one for each
class [x]. If we also view the backing store as 2* individual backing
stores, as shown in Figure 16, the two-level hierarchy partitions
into a collection of 2* distinct subhierarchies, each with a buffer
capacity of D page frames. When the replacement algorithm is a
stack algorithm, these subhierarchies can be evaluated separately
using stack processing techniques. In practice, 2% stacks (one for
each subhierarchy) can be maintained as the trace is processed.
Each page reference x causes only the stack for class [x] to be
updated, and a stack distance A to be determined from that stack.

In congruence mapping, to calculate the success function for a
given trace and given class length «, the stack distances must be
carefully interpreted. Whenever a stack distance A is measured, the
corresponding critical capacity of the entire buffer is 2%-A, since
this is the minimum buffer capacity necessary to contain the refer-
enced page. Therefore, the success function F*(C) for the set of
capacities C = 2“-Dwhere D = 1,2, --- , is given by

D
F*(C) = F°Q“-D) = Y. ”(LA)
A=1

MATTSON, GECSEIL, SLUTZ, AND TRAIGER IBM SYST J

where n(A) is the total number of times the distance A occurs for
any of the stacks.

Generally, stack processing techniques must be used separately for
each value of the class length «. However, for LRU replacement,
only a single stack need be maintained in order to determine the
success functions for all values of « in the interval 0 < « < k. Recall
that under LRU, the stack S,_, is the list of all the pages in T,_,
ordered according to most recent reference. To form the stack
S,_.(i, a) corresponding to congruence class i and class length «,
one would list the pages in class i according to their most recent
reference. However, this ordering is preserved in the stack S,_, for
any i and any «. Therefore, S, (i, &) can be determined by listing
in order all the stack entries of S,_, belonging to class i. In practice,
it is not necessary to actually construct each stack S,_,([x,], @) in
order to find the distance A%. One can determine all the stack
distances {A%} in one scan of the LRU stack S, ;. To do this, we
first define the right match function RM(x, y) for two page numbers
x and y as the number of consecutive low-order bits that match.
For example, RM(01101,00101) = 3, and RM(0000,0001) = 0. Note
that the class numbers of two pages are equal ([x] = [y]) if and only
if the class length satisfies the inequality & < RM(x, y). Now suppose
that the current reference is to page x, and consider the jth entry
on stack S, ;, which is y = s,_,(j). The occurrence of page y on the
stack will contribute to the distance Ay if and only if RM(x, y) > «.
Therefore, A} can be determined by counting the number of stack
entries y above (and including) page x that satisfy RM(x, y) > «a.

A simple procedure for determining Ay for all « is to scan down the
stack, and maintain a set of right match frequency counters {u(r)}
for 0 < r < k. Counter u(r) is incremented whenever RM(x, y) is
equal to r. If page x has been previously referenced, we eventually
find RM(x, y) = k (corresponding to x = y), and each distance A}
is given by

k
A = D u(r) where 0 <o <k (23)
However, if page x has not been previously referenced, the bottom
of stack S,_, is reached and AY is set equal to infinity for all class
lengths «. In either case, each distance A} is used to increment the
appropriate distance counter for class length .

An example of this procedure is indicated in Figure 17. In Figure
17A, the right match functions are found by scanning down the
stack. In Figure 17B, the right match frequencies {u(r)} are plotted
in reverse order as a function of r. Cumulative summation, according
to Equation 23, then yields the desired LRU stack distances {A7}.
Note that the stack distance for class length zero is the same stack
distance A as obtained for LRU replacement with unconstrained

mapping.

No.2 - 1970 STORAGE HIERARCHY EVALUATION

Figure 17 Right match function for LRU replacement

A DETERMINATION OF RIGHT MATCH FUNCTIONS B DETERMINATION OF STACK DISTANCES

PAGE X,

0 1

1 1

1 1

LRU
STACK S, _,

Multilevel hierarchies

In previous sections of this paper, stack processing techniques are
developed to obtain the success function for a two-level hierarchy.
For each buffer capacity, this success function represents the relative
number of accesses to the buffer for a given page trace.

We now show that the same success function can be used to find
the access frequencies for all levels of a multilevel, linear hierarchy
for any number of levels, and any capacity at each level. Recall that
in a linear hierarchy, the only downward data path from each level
M is to the next level M, for | < i < H. Also a path or sequence
of paths is available from each level M, for 1 < i < H, to the
local store. Furthermore, no replacement decisions are required
when a page moves upward through intermediate levels. We now
assume that the same replacement algorithm is used at all levels,
and that the mapping function is unconstrained at every level.
(Hierarchies with constrained mapping functions are considered
later in this paper.) At time t = 0, the backing store contains all
pages, and these pages are moved to the local store M, on demand.
When M, is full, pages replaced in M, are pushed down to the next
lower level in the hierarchy, M,. As each successively lower level
M, fills, the pages replaced in M, are pushed to the next level
M, ... At level M,, the replacement algorithm is applied to the

MATTSON, GECSEI, SLUTZ, AND TRAIGER iBM SYST J

set of pages already present, thereby making room for the currently
referenced page x,. At the intermediate levels M, for 2 < i < H,
the replacement algorithm is applied to the set of pages in M, and
to the page pushed from level M, ,.

When page x, is accessed from some level M, (for2 < i< H — 1),
a page is replaced from each of the levels M,, M,, --- , M, ,. The
page replaced from level M,_, is guaranteed to find space at level M,
since a page frame was vacated by x,. When page x, is accessed from
the backing store My, a page is displaced from each of the levels
M,, M,, - - - ,until a vacant page frame is found. Note that positions
of pages in the hierarchy—and therefore the access frequencies—
do not depend on the structure of upward data paths to the local
store, but depend only on the replacement algorithm and the
capacity at each level.

We have shown that when a stack replacement algorithm is used
for a two-level hierarchy, the top C, pages of the stack are the
contents of a buffer of capacity C, as shown in Figure 18A. Let us
now assume that the replacement algorithm for a multilevel hier-
archy induces a priority list at every time and that this list determines
the replacement decisions at every level of the hierarchy. If this is
true, then for any number of levels and any set of capacities C,
C,, - -+, Cy, the contents of each level at any time can be determined
from the stack for this replacement algorithm. More precisely,
let Bi(C,) denote the contents of level M, at time ¢, and let ¢; denote
thesum C, + C, + --- + C.. We then claim that

Bi(C) = B(s) — Blor,) fori=12,+,H—1 (24)

or equivalently that Bi(C)) can be identified as the first C, entries of
stack S,, and B? can be identified as the next C, entries, etc. This
result is illustrated for a four-level hierarchy in Figure 18B.

The main elements of the proof of this result are as follows. Assume
that Equation 24 is satisfied at time 1 — 1, and that page x, =
s,_1(A,) is an element of BY_(C)) (i.e., level M, is accessed.) As
stack S,_, is updated to stack S,, page y,.(C,) is removed from
the top C, elements of S,_;, with the result that pages s,(1), --- ,
5,(Cy) represent B;i(C,). Now observe that page y(C, + C,) is
removed from the top C, + C, elements of S,_,. In terms of the
hierarchy, we know that y,(C,) is pushed to the next lower level M,,
since the hierarchy is a linear one. The replacement algorithm then
selects a page from y (C,) + B!_,(C.) for removal from M,. Since
page y.(C,) has lowest priority in B;_{C)), the page selected for
removal has lowest priority in B!_(C)) + Bi_,(C,). But this page
is y(C, + C,), so that s,(1), --- , s(C; + C,) represent B}(C,) +
BY(C,), and thus s,(C, + 1), - -, 5,(C, + C,) represent B}(C,).

A similar argument applies to subsequent levels M, where 2 < i <

No. 2 - 1970 STORAGE HIERARCHY EVALUATION

Figure 18 Relationship between
stack and hierarchy
levels

A TWO-LEVEL HIERARCHY

el
1 B.(C)
k2

B MULTILEVEL HIERARCHY

3

&

i
i

L

Figure 19 Obtaining access
frequencies from

success function

g — 1. Page y.(v..,) is pushed from level M., of the hierarchy, and
competes with the pages in B{_,(C,). The replacement algorithm
selects for replacement the page

min {y (o), Bi_(CI] = min [B_(¢)] = pi(s)
with the result that

B(o) = Bi(C) + BYC:) + -+ + BY(C)

and

B(C) = B(o) — Bloi-)

At level M, the page y,(s,_,) that has been pushed from M, , finds
a vacant page frame, and all lower levels remain unchanged. Then

BUC,) = B!_(C)) + yo,1) — x, = B(a,) — Blo,_1)
and
B)(C)) = Bi—l(ci) = B(o;)) — Bo,_) for j > g

Thus we have shown that Equation 24 is satisfied at time ¢.

The significance of this result is that a stack distance A, where
G+ ---+C,, <AL C + -+ + C, corresponds to an access
to hierarchy level M, and the relative number of such A’s is simply
the access frequency F, to that level. Thus

=3 M:F(UD)—F((Y‘,_I) for 1<g<H-—-1

A=0gg—1+1 L
(25)

As with two-level hierarchies, all other accesses are directed to the
backing store so that

H-1
Fp=1~— D F,

=1

The determination of access frequencies is illustrated graphically
in Figure 19 for a four-level hierarchy. Note that the technique
illustrated in the figure cannot be used for an arbitrary hierarchy
or success function. However, the technique can be used for any
linear hierarchy as long as the replacement algorithm always induces
a single priority list for all hierarchy levels.

Our treatment of multilevel linear hierarchies can be extended to
include hierarchies with congruence mapping functions. We assume
that the same class length « is used for every level and that D,
page frames are allocated to each congruence class at level M.
The total capacity of level M, is then

C.=2°D, wherel <i< H. (26)

Using the success function F*(C) and Equations 25 and 26, we
obtain the access frequency £ for each level as follows:

MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J

Fu(cﬁ') - Fa(f’iﬂ)
F; H-1

1 — > Ff
=1

When using Equation 27 or the graphic technique shown in Figure
19, it is important to remember that the success function for multi-
level hierarchies with congruence mapping is defined only when
the storage capacity is a multiple of 2.

Possible extensions

It is possible to extend stack processing techniques to account for
various changes in the hierarchy model. For example, with ap-
propriate encoding of the n-bit address, systems with page sizes
that are not a power of two can be evaluated. Similarly, other
encodings of the n-bit address can be used to evaluate systems with
congruence mapping functions for any number of congruence
classes with equal or unequal class sizes. Indicative of other changes
of the hierarchy model that can be handled by stack processing
techniques are the following:

Pre-loading program pages into the buffer for starting execution
Loading a working set'” of pages into the buffer when resuming
program execution

Returning all pages to the backing store upon program interrup-
tion

Maintaining copies of pages in several levels of the storage
hierarchy

Bringing pages to the local store only for fetch operations
Returning pages to the backing store for references such as
stores from an I/0 channel

Moving unequal size pages or segments between levels

To illustrate how stack processing techniques can be adapted to
these variations in hierarchy design, we describe two extensions in
some detail. In our original model, the generator does not distinguish
fetch operations from store operations. In some computer systems,
however, pages are brought to the local store only for fetch opera-
tions, and usage statistics for page replacement algorithms refer
only to references for fetches. Stores to pages in lower levels of the
hierarchy are broadcast to these levels by the hierarchy management
facility, and no pages are moved. The justification for fetch-store
hierarchies is that fetches or additional stores usually do not im-
mediately follow stores to a page.

The evaluation of fetch-store hierarchies requires that the generator
tag each reference as either a fetch or a store. For fetches, the
priority list and the stack are updated, and a fetch distance A® is
recorded. For stores, neither the priority list nor the stack is up-

No.2 - 1970 STORAGE HIERARCHY EVALUATION

dated, but a store distance A" is recorded. The distributions {n'(A")}
and {n°(A®)} can then be used to determine the fetch and store
access frequencies to each level of the hierarchy. It should be clear
that this technique also works if congruence mapping is included.
We can also consider a modified fetch-store design where the page
usage statistics are updated for a store operation even though no
page motion occurs. This change is incorporated by updating the
priority list for both fetches and stores. Thus, for modified fetch-
stores, the net change in our model is that the stack is not updated
for store operations.

Besides distinguishing fetches from stores, a computer system may
also distinguish the various sources of store requests. For example,
a “call-back” feature can be used by which a page in the buffer
is moved to the backing store if the page is stored into by an 1/0
device. The motivation here is to free the buffer of pages not needed
by the CPU, and to service all 1/0 stores from the backing store.

For a call-back hierarchy, the generator must specify at least two
kinds of references—CPU references, and stores from the 1/0 channel.
Stack processing techniques can then be modified as follows. When
a CPU store or fetch occurs, the stack is updated in the normal
way (except for special entries to be described later), and a distance
counter n°*Y(A) is incremented. When an I/0 store occurs, say
at time ¢, a counter #n/°(A) is incremented. If page x, does not
occur on stack S, , then S, is equal to S, ;. If page x, does occur
on stack S,_,, then S, = §,_, except that x, is replaced by the special
entry ““#.” This entry, counted for all stack distance measurements,
represents the empty page frame caused by page x, returning to
the backing store. To ensure that empty page frames are filled as
soon as possible, all #-entries are assigned the lowest priority
in replacement decisions.

The call-back feature can be used in conjunction with the fetch-
store or modified fetch-store schemes. In all cases, the correctness
of the modified stack processing techniques can be established.

Since stack processing allows a large sample of “‘typical” address
tapes to be analyzed, for many hierarchy models, the efficiency
gained at the early stages of hierarchy design may be great enough
to impact the whole design process. More of these traces can be
processed in a given time, and more hierarchy designs can be evalu-
ated for a given number of traces. The availability of this data may
help justify the “typical”-trace approach to design, or may help in
the development of other models for system requirements. As an
example, program models can be more deeply investigated by
evaluating both a program and its model under a very large number
of address traces. Improvement in program modeling, in turn, may
enhance the success of analytical disciplines that use these models,
such as storage interference studies for multiprogrammed systems.

MATTSON, GECSEIL, SLUTZ, AND TRAIGER IBM SYST J

Concluding remarks

The concepts presented in this paper have been used to develop a
variety of stack processing techniques that are useful in the evalua-
tion of storage hierarchies. Using the inclusion property, we define
a class of page replacement algorithms, called stack algorithms, and
show that replacement algorithms that induce priority lists—such
as least recently used, least frequently used, and random replace-
ment—belong to this class.

For any stack algorithm, the frequency of stack distances can be
obtained from an address trace by stack processing and used to
calculate the success functions. The success function can then be
used to determine the relative frequency of access to all levels of a
multilevel, linear storage hierarchy, with any number of levels and
any capacity at each level.

For least recently used replacement (LRU), the access frequencies
of hierarchies with congruence mapping functions can be determined
in a single pass of the address trace—for any number of congruence
classes, any number of levels, and any capacity per class at each
level.

Some special results are presented concerning an optimal replace-
ment algorithm (OPT). It is shown that OPT is a stack algorithm
and that OPT minimizes the number of page swaps for any address
trace and buffer capacity. Also, both OPT and LRU can be evaluated
with a forward pass of the address trace followed by a backward
pass of the same address trace.

We conclude that stack processing techniques can eliminate much
of the simulation effort required in storage hierarchy evaluation.
Furthermore, we believe that the classification of stack algorithms
and the various extensions to stack processing techniques may
provide insight into the areas of program modeling, system analysis,
and computer design.

ACKNOWLEDGMENT

The authors wish to acknowledge J. H. Eaton for his helpful
comments and criticism, and T. W. MacDowell for his help in the
proof of Theorem 4.

Appendix
Two results mentioned in the paper concerning the OPT replacement
algorithm are proved here. To do this, it is first shown that given

any trace and replacement algorithm (not necessarily using demand

No.2 - 1970 STORAGE HIERARCHY EVALUATION

paging) another replacement algorithm exists that uses demand
paging and causes the same or a fewer total number of pages to be
loaded into the buffer. This result is used to show that OPT is an
optimal replacement algorithm and, in fact, that OPT causes the
minimum total number of pages to be loaded into the buffer.
Finally, it is shown that the success function under OPT for any
trace is identical to the success function under OPT for the reverse
of the trace.

Definition

o |S| denotes the number of elements in a set S.

e |aly denotes the number of occurrences of a symbol a in a
sequence X.
A = la, b, ---} is a finite set of N page addresses or pages.
X = x,, x5, -+, xz 18 a finite sequence of L elements from A,
and is called a trace.
B.(C) € A denotes the contents of a buffer of capacity C at time
t, and is called a state.

Throughout this appendix, we consider a two-level storage hierarchy
with fixed buffer capacity C. Consequently, we use B, instead of
B,(C). The term B, denotes the contents of the buffer immediately
after reference x, is made; B, is called the initial buffer state; and ¢,
the empty set, denotes an empty buffer state.

Definition

e P =p,p,---,p.isa finite sequence of L sets, p, C A4, called
an O-policy.

o O =gq,q - ,qisafinite sequence of L sets, g, C A, called
an I-policy.

A policy is a particular realization of a replacement algorithm for
a given trace. For such a trace and initial buffer state B,, an I-policy
and an O-policy together determine the sequence of buffer states
that will occur during the trace. An I-policy gives the set of pages
loaded into the buffer, and an O-policy gives the set removed. If
p. = ¢, no page is removed, and if g, = ¢, no page is loaded in.
Note that only certain pairs of O- and I-policies are meaningful.
For example, a page cannot be removed if it is not in the buffer.
We consider only meaningful policies, where ¢,., & B, and p,,, &
B, + g,.., for 0 < ¢ < L — 1. In this case, B,., is obtained from
B, by

B =[B + gl — pa

Definition

Let X be a trace and B, (where |B,] < C) an initial state. A
sequence of states B = B,, B,, - - - , B, is a valid sequence if x, € B,,

MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J

for 1 <t < L. A policy pair P and Q is a valid pair for X and B, if
application of the pair results in a valid sequence.

Note that valid policy pairs are quite general in that any number of
pages may be moved into or out of the buffer. However, most of
our attention is directed toward demand paging where

o [p| <1 and |gq.] £1

o X, EB,_,=p, =¢q, =¢

o pFEO=>q, F P and |B,_,| = C

forallt, 1 <t < L.

Under demand paging, single pages are loaded when necessary until

the buffer fills; subsequently, page swaps occur only when necessary.

One measure of goodness for a policy pair P and Q is the total
number of pages loaded into the buffer >_’_, |q.| under the policy
pair. The following theorem supports the usefulness of demand

paging.

Theorem 1

Let P and Q be a valid policy pair for X and B,. There exists a
valid demand policy pair P” and Q” for X and B, such that

Z @1 < 3 o

Proof. P” and Q" will be constructed by forming a sequence of
valid policy pairs (P°, Q°), (P', QY), (P*, @), - -+ , (P, Q), where
P0=P;QO=QsPKZPDaQK:QDsandZ [qtl<2t1qt
for 1 < j < K. Informally, P’ and Q' are constructed from P’ and
Q' by altering pi~' and ¢'' to satisfy the demand paging con-
straints where pi™* and/or ¢i~' are the first occurrences of non-
demand paging in P'"" and Q°~". This is done by “sliding” offending
elements of pi~' and/or ¢~ to a later time in P’ and Q'. If a & p!
and a € ¢} ever occurs then we trivially remove page a from both
pi and ¢!. Clearly, this does not disturb the validity of P’ and Q’
and only decreases the value of Y%, |qi].

To construct P* and Q7 from P/ and Q'", | < j < K, let ¢ be the
smallest time such that p7~! and /or ¢/~' do not satisfy Equation Al.
Set PP = P""'and Q' = Q'7', except as noted below. Suppose that
x, = a and that ¢/, for 1 < L, does not satisfy Equation Al. If
ad g7}, thensetq! = ¢pand g/, = ¢qi7) + ¢ '. (Note that “+”
is defined here since ¢ M pi™* = ¢). If a &€ ¢i7 ", then set ¢! = q,
andgi,, = ¢ 1+ [q " —allft= L, thenset g, = ¢ ifa & ¢i"
or gi = aif a © ¢7'. In all cases, note that Q' is valid since
g & Bi_ for1 <t < L,and that D %, |gi| < 2 F, g™

No.2 - 1970 STORAGE HIERARCHY EVALUATION

optimum
replacement
algorithm

Now suppose that pi~*, for + < L, does not satisfy Equation Al.
We observe first that |¢]| < land g/ = a.ifa & BI_}. If ¢/ = ¢ or
|BiZ)] < C,thensetp], = ¢ and p;., = pi71 + pi”". If ¢! = a and
IBiZi| = C,set p! = b for some b & pi' and pi,, = pii} +
[pi~' — b]. (Note that pi™" = ¢, since |Bi"}| = C and qi™' & ¢.)
Fort= L,setp. =b&pi'ifq] =aand [B]Z)| = C,orp} = ¢
otherwise. In all cases, we observe that P’ is valid, since p! € B/_,
for 1 <t < L. Since P’ and Q' satisfy demand paging at least up
through time 7, the desired demand policies must eventually be
obtained. Thus the theorem is proved.

Before considering an optimum replacement algorithm we make
two observations. First, under demand paging, a valid policy pair
P and Q can be completely represented by specifying just the O-
policy P. This follows from Equation Al because g, # ¢ can only
occur when x, = a and a ¢ B,_; (in which case we know that
g. = a). Second, for demand policies P and Q, we can use |¢|, as
an alternative criterion of goodness. To see this let u be the smallest
integer such that |B,| = C, 1 > u. Then |¢|, is given by the following
expression:

L

lplr = u+ (L —w)— 2 lal (A2)

t=u+1

Since u in Equation A2 is not a function of the policies, > “_, lg.| is
a constant and

[L 4
ol = (L > |qt|) — ¥ lal = constant = 2 lal (A

For a given trace X and initial state B, let us define an optimum
policy pair P and Q as a pair that is valid and minimizes D> 7, |q.]
over the class of valid policies. From Theorem 1 there always exists
an optimum policy pair which is also a demand policy pair. Since
(A3) holds for all demand policies we can find an optimum demand
policy pair if we can find a demand policy P” such that |¢|,» > [¢],
where P is any demand policy.

Definition

Let X be a trace, and let a & A be a page. The forward distance
d(a, x,) to page a from page x, is the number of distinct pages
occurring in x,,, - -+ , x,, where e is the smallest integer satisfying
e > tand x, = a. If no such e exists then d(a, x,) = .

Definition

Let X be a trace and B, an initial state. A valid demand policy P,

called an OPT policy, for X and B, is defined as follows. For t = 1, 2,
.-+, L, whenever p, % ¢ is required then p, = a where

MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J

(Y6 € B._.)(d(a, x) 2 d(b, x.))

The forward distance to a page is just the number of distinct pages
referenced before that page is referenced again. An OPT policy
requires that the page removed from the buffer be one with the
greatest forward distance. Note that an OPT policy is a particular
realization of the OPT replacement algorithm discussed in the paper.
We observe that, at time 7, all pages with finite forward distances
have distinct forward distances. However, more than one page may
have an infinite forward distance. This means that there may exist
more than one OPT policy for a given X and B,. It should be clear
that all such policies P° have the same value of |¢|po.

To show that any P° maximizes |¢|-0 over the class of demand
policies we use the following lemma.

Lemma 1

Let X be a trace and B, and Bj initial states where
By = T, + {a}
B() = To + {b}

and d(a, x,) < d(b, x,). For any demand policy P, corresponding to
X and B,, there exists a demand policy P’, corresponding to X and
Bj, such that

lole > lolp

} for T, C 4 and a,b& T, (A4)

Proof. Given P, we construct P’. Suppose page a first occurs in
X at x;, and b at x;,. Thus, i, < i, < L is assumed. If either b or a
does not occur in X, then set i, or i, equal to L 4+ 1. We consider
three cases.

Case 1. p; = b where p; is the first occurrence of b in P, and
1 <j<i,Herewesetp,=p, 1 <k< Landk # j, and p; =
Thisresultsin B, = T, + {bland B, =T, + {a},0< 1< j—1
and B, = B/, j < t < L. Since pages a and b are both not referenced
up to time j, it should be clear that P’ is a valid demand policy
(because P is) and that |¢|p = |¢|s.

Case 2. p., = b where p,, is the first occurrence of b in P. In this
case we set p, = p,, 1 < k < Land k # j, and p/, = ¢. As in
Case 1, P’ is a valid demand policy and |¢|, = [¢]s + 1 > |¢]p.

Case 3. p;, = b, 1 < j< i, Here we must consider two subcases.

Case 34. p., = c. Attime ¢ = i, the states of the buffer are given
by

B, =T + {a}

No.2 - 1970 STORAGE HIERARCHY EVALUATION

Bi,=T: + (b} + {a} — [c}forcE T,
which can also be written as follows:

B, =[T: + la} — {c}]+ {c}

B, =[T:, + la} — {c}1+ (b}

Note this is the same form as Equation A4 with T, replaced by
[T:, + {a} — {c}]and areplaced by c. If d(c, x:, +1) < d(b, x:,.1)
then we have a situation identical to that in the statement of Lemma
1 where Xnowis x., 41, - -+, Xz. Setting p, = p,for 1 <k <i, — 1
and p;, = ¢, we again consider Cases 1, 2, and 3. Since the “new”
X is strictly shorter than the original X, this situation can only occur
a finite number of times. Note that P’ is valid as far as it is specified
and that p{, --- , p!, contains one more ¢ than p;, --- , pi,.

If dic, x;,.1) > d(b, x;,..), weset p, = p,for 1 < k< i, — 1
and p!, = ¢, and consider two more cases. First, if p, = b, where p,
is the first occurrence of b in X and ¢ < i,, we set p, = p,, for
i.,+1<k<Landks#fandp), = c.Here Bl = B, for{ < t < L,
and as in Case 1, we see that ||, > [¢]» still bolds. Second, if p, =
b,fort < i,,wesetp, =pri.+1<k<Landk #£ i, and p!, =
Again we have B, = B, for i, < t < L, but we note that p,, = ¢,
whereas p/, = ¢ = ¢. However, since p:, # ¢ and p!, = ¢, the
relation ||, > |¢|» still holds.

Case 3B. p;, = ¢. Since q;, = a we observe that |B,,_,| < C.
Let ¢ be the smallest integer such that p, # ¢. If no such integer
exists, thenlet £ = L 4+ 1. We set p; = p, for 1 < k < i, and con-
sider two cases. First, if i, < ¢ then we set p; = p,for i, + 1 <
k < L.Note that Q' = Q except at times i, and i,. Since |{B}| = |B,|
for i, < t < L, we see that P’ is valid, and |p|, = |¢|p, since P’ =
P. Second, for the case i, > ¢, note that x, = ¢, where ¢ ¥ ¢ and
c#b Wesetp, =p.fori,+ 1< k< Landk # {, and p, = ¢.
If p, = b, then |B}| = |B,|for £ < ¢t < L,and |p|pr = |p]p + 1 >
|¢|p. If p, = a, then the buffer states at times { — 1 and ¢ are:

s = Teos + {a} B, = T + {a} + {c}
Biy = Tey + {a} + {6} Bo= Ty + {6} + {c}
Rewriting the buffer states at time £ as
B, = [T, 1 + {c}]]+ {a}

B, = [T,.. + {ci]+ {b}

we arrive at a case similar to Case 3A. As in Case 3A, P’ contains
one more ¢ than P in the interval t = 1, -- - , . Therefore, we treat
this case in the same way, with the result |¢|, > |¢|p. Finally, if
p. = d where d # a and d # b the buffer states at time £ can be
written as

B, = [T, + f{a} + {c} — {d}]] + {d]

MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J

B, = [T, + {a} + {c} — {d}]+ (b}

which again can be treated as in Case 3A.

Note that the situation where i, = £ can not arise in Case 3B, since
b € B,,,. We have therefore successfully exhausted the possible
cases, and Lemma 1 is proved.

Theorem 2

Let X be a trace, B, an initial state, and P a valid demand policy
for X and B,. If P° is any valid OPT policy for X and B,, then

[6lro > |¢]p.

Proof. We recall first that every OPT policy for X and B, has
exactly the same number of ¢’s. To prove the theorem, we need
only find any OPT policy P° such that |¢|r0 > |¢|r. To do this we
will construct a finite sequence of policies P', P*, --- , P, where P’
is an OPT policy and |¢|, < |p]p: < -+ < |@]pi-

P' is constructed as follows. Let i be the smallest integer such that
p: # p°, where p9 is an element of an OPT policy. Suppose that
p: = a and p% = b. (Neither p; nor p% can be ¢, since both are
demand policies.) We observe that

Bi= T+ {b}} for a, b & T,
T, + {a}

where d(a, x;) < d(b, x,). Since x; 7 a and x,; # b, it follows that

d(a, x:.1) < d(b, x..;). Treating B, as By, BS as B, and x ., - - - , X,

as X, we can use Lemma 1 to find a policy p/, ,, - - - , p/ that contains

as least as many ¢’s as p..;, - - - , p.. We then define P* = pt, --- ,

P as

ka, 1<k<i—1

b, k i
Lz’c, i+1<k<L

Note that P! is valid and that |¢|, < |¢|p.. Furthermore, p; = p9,
1 <k < ¢ forsomet, > i

Policy P? is constructed from P' in a similar manner with the results
that p; = p%, 1 < k < {, where £, > ¢, and |¢|p: < |¢|p-. Since X is
finite, construction of P', P*, - - - must result in P/, for finite j, where
pi=p% 1<k < L. 1t follows from |¢p|p < [¢]p: < -+ < |plps
that |¢|, < |¢|p; where P’ is an OPT policy and the theorem is
proved.

Combining the relation in Equation A3 for demand paging with
Theorems 1 and 2, we have the following theorem.

NOo.2 - 1970 STORAGE HIERARCHY EVALUATION

OPT is an
optimal
replacement
algorithm

OPT
minimizes
page
loading

Theorem 3

Let X be a trace, B, an initial state, and P° a valid OPT policy.
(Also, let Q¢ be the corresponding I-policy.) For any valid policy
pair P and Q,

L L
> lad = 20 149
t=1 t=1

Thus we see that an OPT policy results in a minimum number of
pages being loaded into the buffer over the class of all valid policies.
After giving preliminary Lemmas 2 and 3, we present a final theorem
concerning OPT policies.

Lemma 2

For a trace X, let the set B. represent the first C distinct pages
referenced in X. For a buffer of capacity C, if P is a valid demand
policy for X and some B, C B, then P is a valid demand policy
for X and any B} C B,.

Proof. Let i be the smallest integer such that x,, --- , x, contains
C distinct pages. If B, C B, then, for any valid demand policy P,
we have B; = B¢, sincep, = p, = --+ = p, = ¢. For B, C B, this
also holds, so P is a valid demand policy for X and B}. (Note that
for different initial states, B, C B, the Q policies will not be the
same.)

Lemma 3

For a trace X, let the set E. represent the last C distinct pages
referenced in X. For a buffer of capacity C, if P is a valid demand
policy for X and B,, there exists a valid demand policy P’ with a
state sequence B,, B!, B,, --- , Bf such that B = E; and |¢|p >
91>

Proof. Let i be the smallest integer such that x,, --- , x, contains
C distinct pages. Suppose, under policy P, that B, , contains n
elements of E., i.e. |B;., M E¢| = n. It follows that at least C — n
pages will be loaded into the buffer following time i — 1. Setting
pl = peforl < k <i— 1, we will specify the remainder of P’ in
such a way that exactly C — n pages are loaded into the buffer
following time r — 1. We observe that, since at most C distinct pages
are referenced following time i — 1, we never need remove a page b
from the buffer where b & E,. Thus, if a page must be removed at
time £ for § < ¢ < L, there always exists a page ¢, where ¢ & E, in
the buffer, and we set p}, = c¢. If P’ is constructed in this manner,

L L
2 gl £ X la.]

MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J

and from Equation A3 we have |¢|, > |¢|p. Furthermore, since
no page in E, is ever removed from the buffer following time ¢ = i/
and |E;| = C, we see that B/ = E..

Theorem 4

Let X = x,, ---, x, be atrace and "X = x,, - , x, Iis reverse.
If P? is an OPT policy for X and B, = ¢, and "P° is an OPT policy
for "X and "B, = ¢, then |¢|p.0 = |¢], 0.

Proof. Let us assume that the theorem does not hold. Thus,
without loss of generality, suppose that |¢|,,0 = |¢|p0 + k where k
is an integer and & > 0. If D distinct pages are referenced in X (and
in "X)and if D < C, the buffer capacity, then we have an immediate
contradiction, since |¢|p0 = |¢|.,0 = L. We therefore assume
D> C.

Let us denote the state sequence under P’ as B,, B,, --- , B,. From
Lemma 2 we can set B, = B, without disturbing the validity of P°.
From Lemma 3 we can alter P° such that B, = E.. Note that the
altered policy contains the same number of ¢’s as P°, since P? is an
OPT policy. (We subsequently refer to the altered policy as P°.)
Similarly, if "By, "By, - - - , "By is the state sequence under "P° we can
assume that "B, = "B. and "B, = "E,.

Consider now the state sequence "B, "B, "By, -, "BQ,. "B,. Since
X, € B, x,, € By, -+, x, € "B,_,, x, € "B, we see that this
sequence is a valid (not necessarily demand) sequence for the trace X.
Let us denote the corresponding valid policy pair as P’ and Q’. We
observe first that, since "E. = B, we have "B, = B, = B,. Thus P’
and Q' (as well as P°) are valid policies for X and B,. Next we
observe that "B, = "B,_, + {7¢%} — {pf} can be written as
"B, = "B, + {'p2} — {"¢%}. But we also have "B, , = "B, +
fgi} — {pi}, which yields ¢/ = "p7 and p; = "qZ, since 'p; M "¢, =
¢. Similarly, since "B;_, = "B;_, + {"¢%_,} — {’p?_,}, we have
g, = 'p?_, and p, = "q%_,. Continuing in this manner we can
show that

)y 7. 0O
4 = "L”"} for 2< <L (AS)

) _ r O
Dy = qrL+z-

Now, since x;, & "B, (recall that "B, = "B.), it follows that
p% = "¢q% = ¢. Similarly, since x, € B, (recall that B, = B.), it
follows that p/ = ¢, = ¢. We can then trivially assume that p] =
"q% and ¢! = "p9. The significance of this is that, using Equation A5,
we have established a one-to-one correspondence between P’ and
'Q°, and between Q' and "P°. In particular, |¢|p = |$|.0 and
[6le = |&|.r0- We now observe that |¢|,,0 = ||, 0, since |"By| =
"B, = -+ = |'B.] = C. In other words, p° = ¢ if and only if

No.2 - 1970 STORAGE HIERARCHY EVALUATION

forward/
backward
OPT

"q% = ¢, since the buffer is always full. We thus have shown that
¢l = ¢[00 = [®] 10

Recall that P’ and Q' are not necessarily demand policies. From
Theorem 1 we can find a demand policy pair P”” and Q" such that

L L

2 ') < 2 il

t=1 t=1
From Equation A5 and the discussion that follows, we know that
lpi| = lg)| for 1 < ¢t < L. Since P” and Q"
are demand policies, and since |B,| = |B’| = --- = |B{| = C,
we have

Ipi’| = |qi’| for 1 < t < L. Combining these results yields

L L
2101 < 2ol or ple 2 gl
t=1 t=1

But then we have |¢], > ¢,y = |¢].,0 = |¢|p0 + k. Since P°
was given as an OPT policy, we have from Theorem 2 a contradiction
with ||~ > |¢|eo for the demand policy P”. Thus our original
assumption is false, and it must be the case that |¢|.,., = |¢]so.

CITED REFERENCES

1. A. Opler, “Dynamic flow of programs and data through hierarchical
storage,” Information Processing 1965, Proceedings of IFIP Congress
1, 273-276 (1965).

. E. Morenoff and J. B. McLean; “Application of level changing to a
multilevel storage organization,” Communications of the Association
for Computing Machinery 10, 3, 149-154 (1967).

. C. J. Conti, “Concepts for buffer storage,” IEEE Computer Group
News 2, 8, 9-13 (1969).

. W. Anacker and C. P. Wang, “Performance evaluation of computing
systems with memory hierarchies,” IEEE Transactions on Electronic
Computers EC-16, 6, 764-773 (1967).

. R. L. Mattson and J.-P. Jacob, “Optimization studies for computer
systems with virtual memory,” Information Processing 1968, IFIP
Congress Booklet I, 47-54 (1968).

. J. E. Shemer and G. A. Shippey, “Statistical analysis of paged and
segmented computer systems,” IEEE Transactions on Electronic Com-
puters EC-15, 6, 855-863 (1966).

. J. Fotheringham, “Dynamic storage allocation in the ATLAS com-
puter, including an automatic use of a backing store,” Communications
of the Association for Computing Machinery 4, 10, 435-436 (1961).

. T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner,
“One-level storage system,” IEEE Transactions on Electronic Com-
puters EC-11, 2, 223235 (1962).

. M. H. J. Baylis, D. G. Fletcher, and D. J. Howarth, “Paging studies
made on the I.C.T. ATLAS computer,” Information Processing 1968,
IFIP Congress Booklet D, 113—-118 (1968).

. D. H. Gibson, “Considerations in block-oriented systems design,” AFIPS
Conference Proceedings, Spring Joint Computer Conference 30, Aca-
demic Press, New York, New York, 75-80 (1967).

. S. 1. Liptay, “Structural aspects of the System/360 Model 85: II The
cache,” IBM Systems Journal 7, 1, 15-21 (1968).

116 MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J

. R. W. O'Neill, “Experience using a time-sharing multiprogramming sys-
tem with dynamic address relocation hardware,” AFIPS Conference
Proceedings, Spring Joint Computer Conference 30, Academic Press,
New York, New York, 611-621 (1967).

. L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer, IBM Systems Journal 5, 2, 78-101 (1966).

. C. J. Kuehner and B. Randell, “Demand paging in perspective,” AFIPS
Conference Proceedings, Fall Joint Computer Conference 33, 1011-
1018 (1968).

. C. V. Ramamoorthy, “The analytic design of a dynamic look ahead
and program segmenting system for multiprogrammed computers,”
Proceedings of the 21st National Conference of the Association for
Computing Machinery, Thompson Book Company, Washington, D. C.,
229-239 (1966).

. J. Kral, “One way of estimating frequencies of jumps in a program,”
Communications of the Association for Computing Machinery 11,
7, 475-480 (1968).

. J. G. Kemeny and J. L. Snell, Finite Markov Chains, D. van Nostrand
Company, Inc., Princeton, New Jersey (1960).

. L. A. Belady, R. A. Nelson, and G. S. Shedler, “An anomaly in spare-
time characteristics of certain programs running in a paging machine,”
Communications of the Association for Computing Machinery 12,
6, 349-353 (1969).

. P. J. Denning, “The working set model for programming behavior,”
Communications of the Association for Computing Machinery 11,
5, 323-333 (1968).

NO. 2 - STORAGE BIERARCHY EVALUATION 117

