
The  design  of efJicient storage  hierorchies  generally  involves  the 
repeated running of  “typical”  program  address  traces  through  a 
simulated  storage  system while  various hierarchy  design  parameters 
are d jus t ed .  

This  paper  describes  a  new  and  eficient  method  of  determining,  in 
one  pass  of an address  trace,  performance  measures fo r  a  large  class 
of  demand-paged,  multilevel  storage  systems  utilizing  a  variety of 
mapping  schemes and replacement  algorithms. 

The  technique  depends on an  algorithm  classification,  called  “stack 
algorithms,” examples of which are  “least  frequently used,” “least 
recently used,” “optimal,” and “random replacement” algorithms. 
The  techniques  yield  the  exact  access frequent-v to each  storage 
device, which can  be  used  to  estimate  the  overall  performance  of 
actual  storage  hierarchies. 

Evaluation techniques  for storage hierarchies 
J. Gecsei, D. R. Slutz, and 1. L. Traiger 

Increasing speed and size demands  on computer systems have 
resulted in corresponding  demands on storage systems. Since it 
has been generally recognized that  the speed and capacity require- 
ments of storage systems cannot be fulfilled at  an acceptable  cost- 
performance level within any single technology, storage hierarchies 
that use a variety of technologies have been investigated. 

Several previous papers  describe  the general concepts of hierarchy 
d e ~ i g n ” ~  and e v a l ~ a t i o n , ~ - ~  whereas others  deal with specific 
hierarchy systems, such as the  core-drum  combination  on  the 
ICT Atlas c o m p ~ t e r ” ~  and  the cache-core combination  on  the 
IBM System/360, Model 85.’0’11 

This  paper  introduces an efficient technique called “stack processing” 
that  can  be used in the  cost-performance  evaluation of a large 
class of storage hierarchies. The technique depends  on  a classifica- 
tion of page replacement algorithms as “stack algorithms” for 
which various  properties  are derived. These properties  may be of 
use in the general areas of program modeling and system analysis, 
as well as in the  evaluation of storage hierarchies. For a  better 
understanding of storage hierarchies, we briefly  review some basic 
concepts of their design. 

78 MATTSON, GECSEI,  SLUTZ, AND TRAIGER IBM SYST J 



The  purpose of a  storage system is to hold  information  and to 
associate the  information with a logical address space known to 
the  remainder of the  computer system. For example, the  Central 
Processing Unit (CPU) may present a logical address to the  storage 
system with instructions to either retrieve or modify the  informa- 
tion associated with that address. If the  storage system consists of 
a single device, then  the logical address space corresponds directly 
to the physical address  space of the device. Alternatively, a  storage 
system with the  same  address space can be realized by a hierarchy 
of storage devices ranging from  fast but expensive to slower but 
relatively inexpensive devices. In such storage hierarchies, the 
logical address space is often partitioned into equal-size pages 
(or unequal-size segments) that represent the  blocks of information 
being moved between devices in the hierarchy. 

A hierarchy  management facility is included to control  the move- 
ment of pages and to effect the (generally dynamic) association 
between the logical address  space  and  the physical address space 
of  the hierarchy. When the CPU references a logical address,  the 
hierarchy management facility first determines  the physical loca- 
tion of the  corresponding logical page and may then move the 
page to a  fast  storage device where the reference is effected. Since 
these actions  are  “transparent”  to  the  remainder of the  computer 
system (except for timing), the logical operation of the hierarchy 
is indistinguishable from  that of a single-device system. 

The  goal of the  hierarchy  management facility is to maximize the 
number of times logical information is in the faster devices when 
being referenced. As this  goal is approached,  most references are 
directed to the  fast, small stores whereas most of the logical address 
space is distributed over the slower, large  stores. The storage 
system then  acquires  the  approximate speed of the fast stores 
while maintaining  the  approximate  cost-per-bit of the slower and 
less expensive stores.  This increase in cost-performance is the 
primary justification for  storage hierarchies. 

Clearly, many factors  can affect the  cost-performance of a  storage 
hierarchy. On the  performance side, one  must  consider  the  capacity 
and  characteristics of each storage device, the physical structure 
of the hierarchy, the way in which information is moved by the 
hierarchy management facility, and  the expected pattern of storage 
references. On the  cost side, the  hardware and/or software  required 
to find and move logical information  must  be considered, as well 
as  the cost-per-bit  and capacity of each device. Because of these 
factors,  it is quite difficult to design an “optimal”  hierarchy. 

The typical approach  to hierarchy evaluation employed by computer 
designers has been to simulate  as many hierarchy systems as possible, 
at various levels  of During  the first stages of design, a 
large  number of relatively simple simulations may be run with 
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fixed, standard  address traces. These traces are assumed to be 
“typical” sequences of storage references obtained  from existing 
computer systems, and they are used to  approximate the reference 
behavior of future systems. The  purpose of these simulations is to 
measure such statistics as  data flow and frequency of  access to 
each device in  order to estimate the overall performance of an 
actual system. The resulting performance estimates can then be 
used to  narrow  the field  of possible designs, which then receive 
more detailed examination. 

Alternatively, one may try to develop analytical techniques that 
avoid point-by-point simulation but still yield accurate statistics 
for data flow and access frequencies. Several papers  deal with such 
techniques for hierarchy e~a lua t ion .~ -~   In  general, the  approach 
here is to run a relatively small number of simulations and ex- 
trapolate  the measured statistics to a larger class of hierarchies. 
The difficulty with this approach is the need for  various assumptions 
about  the statistical properties of address traces and  data flows 
required to  formulate  the analytical equations. Moreover, it is 
difficult to include a  quantitative dependence on such factors  as 
data  path structure, page replacement alg~rithrn,’~ and  address 
mapping ~cheme ,~  so that many simulations may still be necessary. 

This  paper presents a technique that  can  be used to circumvent 
much of the simulation effort required in hierarchy evaluation. 
Specifically, we present an efficient procedure that determines, for 
a given address  trace,  the exact frequency of access to each level 
of a hierarchy as  a function of page size, replacement algorithm, 
number of levels, and capacity at each level. In  the following, we 
consider a class of multilevel, demand-paging hierarchies14 with 
the same replacement algorithm at every  level. The procedures 
developed here are applicable to a large class of well-known re- 
placement algorithms having certain inclusion properties defined 
later. These algorithms-which we call stack algorithms-include 
“least frequently used,” “least recently used,” “optimal,”  and  a 
“random” replacement algorithm. 

The system model 

An H-level paged storage hierarchy consists of a collection of 
storage devices MI, M 2 ,  . . . , MH,  a network of data paths  con- 
necting the devices, and  a hierarchy management facility. Each 
device  is partitioned  into physical blocks called page  frames. For 
convenience, the highest-level store M ,  is called the local store 
and  the lowest-level store MH is the backing store as shown in 
Figure 1. The hierarchy management facility controls page move- 
ment between the devices and associates each logical page with 
a physical page frame. Special storage  and processing hardware 
may be  required,  but they are  not included in  our model. 
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References to the  storage  hierarchy  are  presented by a single device 
called the generator, and they are sequentially serviced in  the  order 
in which they are presented. References from  the  generator  may 
may  represent  the  requests of several devices, such as  the CPU and 
the  channel,  in an actual system. The time sequence of logical- 
address references X = x,,  xz, . . . , xL is called an address trace, 
where each  address consists of n bits as shown  in  Figure 2. The 
set of 2” possible addresses is partitioned into 2k pages of 2n-k 
logical addresses  each. The high-order k bits of each  address  rep- 
resent the number of the page  containing  the  address, and  the 
low-order n - k bits  represent the  location  or displacement of 
the  address within the page. Since information  movement on the 
hierarchy  is accomplished by transferring pages between levels, 
we can analyze space  allocation  and data movement  for  a  trace X 
by considering  a  corresponding page trace X k  = x:, xi, . . . , x,“- 
where each x: is the number of the page  containing  address x t .  
When we consider  a given fixed page size, we omit  the  superscript k ,  
and  denote pages by x i .  

A reference from  the  generator  can be serviced only from  the 
local  store M, .  Thus if the desired page resides in  a lower level 
device Mi, i.e. where i > 1, the hierarchy  management facility 
must  bring  that  page  up to M ,  for servicing. The hierarchy  provides 
a path for bringing pages  up to M , ,  which may  or  may  not  require 
staging through  intermediate levels. Any  temporary  storage  required 
for  bringing  a  page up  to M ,  is included in  the  hierarchy  manage- 
ment  hardware,  and is therefore not represented in our model. 
In this  paper we restrict our  attention  to linear storage  hierarchies 
in which the only paths  for moving pages down  the  hierarchy are 
direct  ones  from  each level M i  to level Mi+ ,, where i = 1, 2, . . . , 
H - 1. The reasons  for  this  restriction are discussed later  in  this 
paper.  Note  that  the four-level hierarchy  in  Figure 1 is  a  linear 
hierarchy. 

The capacity of the backing  store  is assumed to be at least 2k page 
frames,  and all logical pages initially reside  in  the backing store. 
At  any time, each logical page resides in exactly one  page  frame 
of the  hierarchy. A mapping  function is associated with each hi- 
erarchical level, and specifies for each logical page the  page  frames 
it  may occupy in that level. The mapping  function is further defined 
as : 

Unconstruined if any page can occupy any page frame of the 

Fully  constrained if each page can occupy only a single page 

Partially constrained in all other cases. 

In a  later section, we define a  technique called “congruence  mapping” 
that generates  a whole spectrum of mapping  functions. 

storage device. 

frame. 
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Figure 3 Two-level  hierarchy 
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For simplicity in developing techniques for analyz,ing storage  hi- 
erarchies, we first consider a two-level, demand-paged  hierarchy 
with unconstrained  mapping.  Later,  our  results  are  extended to 
certain classes of multilevel linear  hierarchies  employing  the  three 
types of mapping  functions. The local  store  or buffer has  a  capacity 
of C pages, and is directly connected to  the backing  store as shown 
in  Figure 3. At  time t ,  the  generator  presents  a  request  for  page 
x, to  the hierarchy.  Under demand  paging, if x, is in  the buffer, 
the reference proceeds  and no page movement occurs. Otherwise, 
x, is brought to  the buffer from  the  backing  store. If the buffer 
is already full, x, replaces some page y ,  in the buffer. The selection 
of the particular  page y ,  is performed by the buffer replacement 
algorithm. This  operation is a key element of storage  management. 

In  the two-level hierarchy shown in Figure 3, a reference to a  page 
residing either at level M ,  or at M ,  is called an access to  that level. 

For a given hierarchy  and page trace, we define the access  frequencies 
F, and F, where F, is the  relative  number of accesses to level M, 
during  the processing of the trace. Thus, if N ,  accesses are  made 
to level MI, and N2 = L - Nl accesses are  made  to level M2, we 
obtain F, = N , / L  and F, = NJL.  

Some important measures of storage  hierarchy  performance can 
be obtained  from  these access frequencies. For example,  one can 
combine access frequencies with a set of  effective access times 
{ T<] to obtain an effective (or average) hierarchy access time 

T = F,T, + EAT2 

In general, access times  depend on  the access paths, device access 
times, and  characteristics of the  hierarchy  management facility. 
The access frequencies depend only on  the page trace,  capacity 
of the  buffer,  and  replacement  algorithm. 

For a two-level hierarchy, accesses to  the buffer are called successes; 
the relative frequency of successes as  a  function of capacity  is 
given by the success  function F(C). For a given capacity C, page 
trace X = xl, x,, . . . x,,, replacement  algorithm,  and  arbitrary 
time t (where 1 5 t 5 L), the set of pages in  the buffer just after 
the completed reference to x, is  denoted by B,(C). The initial buffer 
contents  is  represented by B,(C). By convention 

BdC) = 4 

for all C where 4 is the empty  set. The set of distinct  pages referenced 
in xl, x2, . . . , x, is  denoted by r t ,  and  the number of pages in rt 
is  denoted by 

Y1 = I r t l  
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I Figure 4 Determining success function by  buffer simulation 
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Thus  at time t ,  the buffer still contains  the C most recently referenced 
pages. It is easy to see that under LRU the buffer contains  the C 
most recently referenced pages  for all subsequent times, and  that 
this  property holds for all page  traces  and buffer capacities.  One 
can  generate the buffer contents B,(C) for  any  time t on a trace 
and  any  capacity by scanning  backward  from  point t and collecting 
the first C distinct  pages  encountered. 

Since the set of C most recently referenced pages is always contained 
in  the set of C + 1 most recently referenced pages, the buffer 
contents B,(C) at any  time  must be a  subset of B,(C + 1). In fact, 
B,(C) is a  proper  subset of B,(C + 1) if at least C + 1 distinct 
pages have been referenced through  time t .  More formally,  under 
LRU replacement,  the buffer contents  for  any page trace X = 

x,, xz ,  . . . , x,, and  any time t (where 1 5 t 5 L)  satisfy the fol- 
lowing inclusion property: 

where 
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and 

I&(C)( = Yl for c L Yl 

The inclusion property  can  be observed in  Figure 4 where at time 
t = 5, for  example 

&(I) = ( b l  

Bd2) = {c, b J  

&(3) = (a ,  b, c l  

and 

B44) = ( a ,  b, c i  

Because of the  inclusion  property, the buffer contents at any  time 
and  for all capacities can be  represented in the following compact 
and useful way. We  order  the set of pages rt  into a list S,  = s t ( l ) ,  
s,(2), . . . s k ~ , ) ,  where 

s,(i) = B,(i) - B,(i - 1) for i = 1, 2, . . . , y t  ( 2 )  

Hence 

Bt(C) = 
I s t U ) ,  s,(2), . . . , &(C>l for c I Ya 

( s t ( l> .  s , ( 2 ) ,  . . . , St(Y,)J for c 2 Y f  
(3) 

The list St is  referred to as  the LRU stack, with s,(l) as  the  top 
entry  and st(?,) as  the  bottom  entry. As an example,  the LRU stack 
for t = 5 in Figure 4 is 

$5 = [b, c, a1 

The stack S,,  at time t = 0 has no entries  and is therefore called a 
null stack,  that is, one with no entries. The  entire sequence of 
LRU stacks  corresponding to Figure 4 is included  in  Figure 5. 

Besides representing  the buffer contents  for all capacities, the LRU 
stack can be used to efficiently determine the success function 
F(C). Let  us  suppose that  at time t ,  page x ,  has been previously 
referenced and thus is a  member of at least  one  set B,-,(C), where 
1 5 C _< Let C, denote  the least buffer capacity  such that 

x1 E Bl-dC) 

We call C, the critical capacity since, from  the  inclusion  property 
given in  Equation 1, xI E B,-,(C) if and only if C 2 C,. If x, has 
not been previously referenced, we set C, = because xt is not 

I contained  in  a buffer of any finite capacity. ' From the definition of LRU stacks in Equation 2, it may be seen 
that C, is simply the  position of page x, in  the stack St-, ,  so that 
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I Figure 5 Sequence of LRU stacks 
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x1 = St-,(C,) 

We call this page position  the stack distance Ai,  since A, is essentially 
the  “distance”  from the  top of the stack to 

X, = s/-I(At) 

(Note  that here A ,  = C,. When constrained  mapping  functions  are 
considered,  the  stack  distance  may not always equal the critical 
capacity.) I f  x, has  not been previously referenced, then A ,  is set 
to infinity. The sequence of stack  distances  for  our example is 
included in Figure 5.  

The significance of stack  distances is that they lead directly to the 
success function. To see this,  let n(A) be the  number of times  the 
stack  distance A is observed in processing a  trace. Since the  stack 
distance  equals  the critical capacity,  the  number of times that  the 
referenced page is found in the buffer is 

C- and  the success function is given by the expression 

F(C) = N(C)/L  ( 5 )  

In practice,  the set (n(A)] can be determined  from  a set of distance 
counters, as shown i n  Figure 5 .  All counters  are set initially to 
zero,  and the  counter for each distance A is incremented whenever 
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that  distance occurs. For k-bit page numbers, we need at  most 
2k + 1 counters,  corresponding to 1 5 A 5 2k and A = m .  At 
the conclusion of a page  trace, the final values of the distance 
counters  are  the values { n(A)) , and F(C) is obtained  from  Equations 
4 and 5. 

We now calculate  the value of the success function  in  a numerical 
example. For A's of 1, 2, 3, 4, and a, the cL#rresponding final 
counter values in  Figure 5 are 2, 1, 2, I ,  and 4. This  distribution 
is shown  in  Figure 6A. Dividing by L equals 10 in  Figure 5 ,  and 
summing  cumulatively, we obtain  the success function  shown  in 
Figure 6B. One can verify that  the F(C) values for the curve  in 
Figure 6B agree with those  obtained  in  the  simulations of Figure 4. 

To find the access frequencies F, and E2, for  a given buffer capacity 
C, we take F, = F(C,) and E2 = 1 - F,. As an example, for C = 3 
pages, F, = F(3) = 0.50 as indicated in Figure 6B, F2 = 1 - 0.50 = 
0.50, and  the  average access time T of the  hierarchy is 0.50T, + 
OSOT,. 

Note  that F(C) is always a  monotonic, non-decreasing function 
of C for LRU replacement, since F(C)  is obtained by cumulative 
summation  as  shown  in  Equation 4. Also, F(C) never exceeds 
(L  - y l , ) /L  for any capacity, because all pages initially reside 
in the backing  store. 

To avoid constructing  each LRU stack  separately, we now give 
an iterative  construction of St from S,-, and x,. Observe that  at 
every time t ,  the  stack S, is simply the list of pages in rL, according 
to their  most  recent reference. The most recently referenced page 
is st(l) since s,( 1) = x t .  The second most recently referenced page 
is st(2), and s,(y,) is the least recently referenced page in I',. 

Let us suppose that page xL has been previously referenced and 
appears at position A on stack St-l. For  time t ,  we know that x, 
must  be  the top entry in  St, because it is the  most recently referenced 
page.  Consider now a page b at some  position j on St-,  where 
1 5 j < A. At  time t - I ,  page b is the  jth most recently referenced 
page, and the intervening pages do  not include x,. At time t ,  page xt 
is added to this  set so that page b must now be  at position j + 1 
on stack St.  If j is greater  than A, page b must  remain at position 
j at time t ,  since the set of more recently referenced pages is un- 
changed  from time t - 1 .  

The net effect  of this page motion is shown in Figure 7A. Page x, 
is moved to the  top of the  stack, pages previously above xt are 
down-shifted  one  position,  and all other pages retain  the  same 
position. If xt were not previously referenced, x, would be placed 
on the  top  and all other pages would be down-shifted  one  position as 
shown in  Figure 7B. 
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B,-l(C) c B,-,(C + 1) 

lB,-I(C)l = c 
JB,-,(C + 111 = c + 1 

and 

x, CE Bt-dC + 1 )  

Note  that  from  Equation 2, page s,-,(C + 1) is contained  in 
B,-,(C + I )  but  not  in B,-,(C). If page y,(C + 1) is neither 
st -,( C + I )  nor y t (  C), then y,( C + 1) is  some  other page z E B, - ,( C). 
However, page z is included in B,(C), but  not in B,(C + I), which 
would violate  the inclusion property. 

We have given a necessary condition for stack  algorithms. The 
same  condition is also sufficient, because if y,(C + 1) is either 
y,(C) or s,-,(C + I), then B,(C) is a subset of B,(C + 1). Therefore, 
we conclude  that a replacement  algorithm  is  a  stack  algorithm if 
and only if for every time 2 

yt(C + 1) = sr-l(C + 1) or y,(C + 1) = yt(C) (6) 

for 

15 C < y,-] and C +  I < A ,  

Important replacement  algorithms that satisfy Equation 6 are  those stack 
that induce a total  ordering on all previously referenced pages and algorithm 
use this  ordering to  make replacement decisions. The ordering can identification 
be  represented  in the  form of a priority list 

Pi = Pr(1)j pt(2), * . 9 Pt(Tt-1) 

wherep,(i)  has a higher priority thanp,(i + I )  for 1 _< i < The 
algorithm  then selects for  replacement  the page in B,-,(C) that  has 
the lowest priority. 

A convenient  notation  for  working with priorities is min(A), where 
A is an arbitrary set of pages in r,+,, and min(A) is the  unique  page 
in A having lowest priority on the list P , .  If B,-,(C) c B,-,(C + 1) 
and x, @ B,_,(C + I) ,  we can express the replaced pages JJ,(C) and 
y,(C + 1) as follow: 

yl(C) = min [B,-,(C)I (7) 

and 

y t (C  + 1) = min [B,-,(C + 1)1 (8) 

=- min [B,-,(C), s,-,(C + I)] (9) 

= min(min [B,-,(C)], s,-,(C + I ) }  (10) 

= min [Yl(C), S,-I(C + 1)1 (1 1) 
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Equations 7-9 are based on  the definition of the replacement 
algorithm, whereas Equation I O  is based on  the  properties of 
minimization. 

We conclude  from Equation I 1  that any replacement  algorithm 
that induces  a  priority list P, for every time t satisfies Equation 6 
and is therefore  a stack algorithm.  For example, the priority list 
for LRU is just  the  ordering of pages in  r f  by most  recent reference. 
The priority list for  “least  frequently used” (LFU) replacement is the 
ordering of referenced pages by most  frequent reference together 
with a scheme to break ties. 

stack Before describing other examples of stack  algorithms,  let us develop 
updating a stack updating  procedure  for  algorithms  inducing  a  priority  list. 

For any page trace X = xl, x2, . . . , x,, and  any  time t ,  where 
1 5 t 5 L ,  suppose  that stack Sf-, is  available. Also, for  any  two 
pages a, b E let  max (a, b) denote  the  page having higher 
priority. If x f  has been previously referenced and  appears  at position 
A, on stack St+ , ,  the  stack at time t is given by 

& ( I )  = x, (12) 

s,(i) = max [y,(i  - l), ~ , - ~ ( i ) ]  for  2 5 i < Af (13) 

.Y,(At) = y,(Af - I )  (14) 

s,(i) = s,-,(i) for A, < i 5 Y , - ~  (1 5 )  

Equations 12, 14, and 15 are based on the  constraints of demand 
paging, whereas Equation 13 is derived from  Equation 11. 

If x f  has  not been previously referenced, the defining equations  for 
stack St are  the following: 

&(l)  = x, (16) 

s,(i) = max [yt(i - I), ~ , + ~ ( i ) ]  for 2 5 i I Y f - l  (17) 

&(Y,> = Yt(Yt-1) (18) 

In this  case,  Equations 16 and 17 express the  fact that replacements 
are required  for all buffer capacities  in the  range 1 5 C 5 y,-,. 
Equation 18 corresponds to the new page x, being added to the 
stack,  with  the  result  that  a buffer of capacity 

Yt = 7 1 - 1  + 1 

is now full. 

Figure 8 illustrates the stack  updating  procedure  as given in  Equa- 
tions 12-18. The  top entry s,(l) is always x,, and  the first page 
replaced is 

y t ( l )  = ~ ( 1 )  for A, > 1 
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Figure 8 Stack updating 
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Each  subsequent  entry s,(i) is then  determined iteratively from 
~ ~ - ~ ( i )  and yi( i  - 1) according to Equation 13 or 17. I f  xi  is found 
on stack St+l as shown  in  Figure 8A, we use Equation 14 to 
determine st(&). All lower entries are unchanged  from  time t - 1 .  
If xi  is not found  on  stack St_, ,  as shown in Figure 8B, then A, = m ,  

and we use Equation 18. In either  case, the replacement  algorithm 
does not have to be  applied to all the pages for  stack  updating. 
Only a sequence of pairwise decisions between pages s,+,(i) and 
y,(i - 1) is required. 

Comparing  our  stack  updating  procedure  with  the  one  for LRU 
shown  in  Figure 7, we see that page y l (C)  under LRU is always 
S, -~(C) .  In  fact,  the  priority  list P, is exactly equal to stack S,-,, 
since both lists give the  order of pages in r,-, by most  recent 
reference. Thus 

y,(C> = .Ll(C> 

and  Equations 13 and 17 then  reduce to 

s, ( i )  = max[s,-,(i - I), st -l(i)] 

= s,+l(i - 1) 

For  an  arbitrary stack algorithm,  the stack updating is more  complex 
than for LRU, and  the  order of stack elements at time t - 1 may be 
very different from that  at time t .  

Let us now examine several examples of stack  algorithms. In general 
any replacement  algorithm that bases its decisions on  some page 
usage quantity,  whether  measured or predicted,  naturally  induces  a 
priority list and is, therefore,  a  stack  algorithm.  One example, of 
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course, is LRU, and  another  example previously mentioned is 
least  freauentlv used (LFU) replacement. 

that  has been referenced the fewest number of times over the  interval 
1 5 T 5 t ,  or  perhaps over some  “backward window” interval 
t - h 5 T 5 t ,  where 0 < h 5 t .  If two  or  more pages are tied for 
least frequency of use, then some  arbitrary  rule is used to break 
the  tie. As long  as  the rule is consistent  for all pages and all 
capacities  (e.g., if the tied pages are numerically ordered)  a  priority 
list P ,  is induced,  and LFU is a  stack  algorithm. 

Other examples of stack  algorithms may arise in  analytical  studies 
of program  behavior. I f  an  address  trace is generated from  some 
random process, it may be desirable to study the behavior of 
replacement  algorithms that base their decisions on the  param- 
eters of the  random process. One such process is a  time-invari- 
ant, first-order  Markov chain,’“16 where any page c is referenced 
immediatelv after Dage b with a fixed transition  probability T!,,.. 

(where b and c range over all referenced pages) and by the page 
referenced at time t = 1. 

probability” (LTP) since, 1 
chosen for removal is the  one  that minimizes T,,, over those pages 
in the bufl‘er. Supplying  an  appropriate  rule  for  breaking ties, we 
see that LTP induces a  priority list and is a  stack  algorithm. 

Another replacement algorithm is to remove the page with the 
largest expected time until next reference. We call this  strategy 
LNR for  “longest next reference.” The expected times  until next 
reference can  be  obtained  from the II-matrix by standard tech- 
n i q u e ~ . ~ ~  As with LTP, LNR induces  a  priority  list if we supply an 
appropriate  tie-breaking rule. 

testing a  Markov  model of the  program), page reference statistics 
may be used to estimate the matrix n. For example, the observed 
transition  freauencies over some  interval t - h to t can be used to 

then be constructed  for each time t ,  according to the  probabilities 

remains  a  stack  algorithm. 

Other  stack  algorithms may base their decisions on  information 
from  the programmer  or  compiler,  or on properties of the  computer 
system. For example,  the  programmer or compiler may  supply to 
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should be given high priorities in the  immediate  future.  Another 
case is where the operating system assigns priorities to  program 
pages in  a  .nultiprogrammed system, based perhaps  on  the position 
of the  program in a  task  queue. If all the pages in  the  address  space 
can  be  ordered  in  a  priority  list P, for  each  time t ,  the  resulting 
replacement  algorithm is a  stack  algorithm. 

In the examples given, we see that priority  lists  can  arise in a 
variety of ways. We now consider  a  replacement  algorithm called 
“first-in/first-out” (FIFO)  that is not a  stack  algorithm.  Under 
FIFO, the page that has remained in the buffer for the longest 
(continuous) time up to time t is removed. 

A  peculiarity of FIFO is illustrated by the following page trace 

X =  a b c d a b e a b c d e  

As shown  in Reference 18, the success function for this trace is not 
monotonic,  and  takes  the  form shown in  Figure 9. Since stack 
algorithms have monotonic success functions, we conclude that FIFO 
is not a  stack  algorithm  and  does not induce  a  priority list P, at 
every time t .  In amplifying this  conclusion, we note  that  the relative 
priorities between pages in  I’+, may  depend on the buffer capacity 
C. Thus in the  example,  one  can verify that page d has lowest 
priority of all pages in B,(3) in the sense that d has been in the buffer 
longest. However, page d has highest priority in  B,i(4), since it was 
brought  into  the buffer latest. 

Whenever the  priorities  among pages depend on the  capacity of 
the buffer, we cannot define a single priority list that  applies to 
every capacity.  One  instance of this is when priorities  depend on 
the frequency of reference to pages after their entering  the buffer. 
Another case is when priorities depend on total  time  spent  in  the 
buffer. 

As long  as  priorities  are  independent of capacity, and as  long 
as  one  can  order  the referenced pages to reflect these priorities, 
then  stack-processing techniques can be  used to find the success 
function. 

An optimum replacement algorithm 

We now discuss a  replacement  algorithm that yields the  maximum 
value for the success frequency over the  space of all replacement 
algorithms-for every page trace  and every buffer capacity. Such 
an algorithm is said to be  an optimum  replacement  algorithm. 
Belady13 describes an  optimum replacement  algorithm called 
MIN, and shows how to evaluate  the success frequency for  a given 
page  trace  and  a given buffer capacity. In  the following discussion, 
we describe a  stack  algorithm called OPT and  prove  that  it is also 
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an optimum replacement algorithm. Using certain  properties of LRU 
and OPT. the  entire success function  for OPT can be determined in 
two passes of a page trace. 

The replacement  algorithm OPT has  the following characteristics. 
Whenever a page must be pushed from  the buffer, the chosen page 
is the  one whose next reference is farthest in  the  future. If a tie 
results because two or more buffer pages are never referenced again, 
the tie is broken by an  arbitrary rule fl that pushes the page with 
the  latest  alphabetical or numerical order.  An example of OPT 
replacement is shown in Figure 10, for  the buffer capacity C = 3. 
As an  illustration, notice that  at time t = 5 page c is pushed from 
the buffer, since the  other buffer pages a and b are referenced sooner. 
At time t = 9, page b is pushed from  the  buffer, because page d is 
referenced again (at time t = lo), and page a has  priority over 
page b by our  rule R. 

A  formal  proof that OPT is an  optimal  replacement  algorithm is 
given in  the Appendix. We note here that OPT is not realizable in 
an  actual  computer system because it  requires knowledge of future 
page references. However, OPT does serve as  a useful benchmark 
for  any  replacement  algorithm, including stack-type  algorithms. 
To show that OPT is a  stack  algorithm, observe that a  priority  list 
P, can be constructed for OPT at each time t .  Specifically, P ,  is the 
list of the pages referenced again,  ordered by their time of next 
reference, followed by the list of the pages not referenced again,  as 
ordered by the tie-breaking rule fl. 

The stack processing technique  for OPT is illustrated  in  Figure 11. 
Priority lists are  ordered  as described above,  and curly brackets 
denote  the pages ordered  under  the  rule fl. For example, at time 
t = 8 the  priority list is P ,  = c, d, a, b, because c is the next page 

Figure 11 Stack processing and success function for OPT replacement 
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referenced (at t = 9) and d is the second page referenced (at t = lo). 
Pages a and b are  not referenced again,  and  thus are ordered  accord- 
ing to  rule Q. The sequence of OPT stacks is constructed using the 
priority  lists,  and  the success function is obtained  from  the  stack 
distance frequencies. A  major difficulty with the  technique is the 
amount of forward scanning required to construct  the  priority lists. 

Fortunately,  a  more efficient procedure exists for  obtaining the 
priority lists. For a given page  trace X, we define the forward  distance 
w,(a) to a page a at time t as  the number of distinct pages referenced 
in x, - - , x f  ,, (where x f r  is the first reference to page a after  time 
t ) .  If page a is not referenced again,  the  forward  distance is defined 
as  infinity. Note  that  the priority list under OPT is a listing of the 
pages in r,-, according to their increasing forward  distances. An 
illustrative example of forward  distance  determination is given in 
Figure 12. 

If  the  forward  distances to all pages in I'-, are known at time t - 1 ,  
the new forward  distances at time t can be determined iteratively 
from  the single forward  distance w , ( x , ) .  Specifically, for page 
a # x L  and w ,  A wf(xf), we have 

w,(a) = 
w,-,(a) - 1 for w,-,(a) 5 w ,  and w,-,(a) # a 

w,-,(a) for w,-,(a) > w ,  or w,_,(a) = a 

( 1  9) 
To determine the sequence of forward  distances { w , }  for  a page 
trace X, consider the reverse  trace X" = xl , ,  xL-lr . . . 3 X 2 .  XI. 
Suppose that X" is analyzed according to L R U  replacement  and 
that x i  and x, denote  two successive references to page a in  the 
reverse trace. Thus X" = x L ,  . . . , x ,  = a,  . . .  , x, = a, . . .  , xl. 
At  time j ,  the stack distance A, is the  number of distinct pages 
referenced in x,, . . . , x,+,. (Note  that x,,, precedes x, in  X".) 
However,  this  number of distinct pages is precisely the forward 
distance w, for  page  trace X. Thus  the sequence of L R U  stack 
distances  for  trace X", namely, A,,, A,,= I ,  - - - , A2,  A,,  is the reverse 
of the sequence of forward distances w,, w,, , w,,= I, wd for 
trace X. 

These results form  the basis of a  two-pass stack processing technique 
for determining the success function  for OPT replacement. The 
technique is illustrated by Figure 13. The first pass is a  backward 
scan of the page trace X using LRU replacement,  denoted by the 
left-pointing  arrow. The LRU stack distances are  stored, in  reverse 
order, on a "distance tape." The second pass is a  forward scan 
using OPT replacement,  as shown by the  right-pointing  arrow. 
Forward  distances  read  from  the  distance tape  are used to maintain 
the OPT priority lists according to Equation 19. 

The L R U  stack distances gathered from  the reverse page trace yield 
important information about  the forward page trace. Specifically, 
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distinct page in the  trace,  the  distance frequencies for X and X“ are 
identical,  so that  the success functions FLIITT(C, X“) and F,,Itu(C, X )  
are  equal. 

Another  result, which is proved in  the  Appendix, is that FOPT(C, X )  
is equal to F,,,(C, X“), where F,,,(C, X )  is the OPT success function 
for  trace X. Thus,  our  two-pass  technique  can  be implemented with 
forward-backward scans as well as with backward-forward  scans. 
During  the first scan, the success function  for LRU is obtained,  and 
the  distance  tape  generated.  During  the  second scan the success 
function  for OPT is obtained. 

Random replacement 

In the  stack  algorithms  considered  thus  far,  a  unique success func- 
tion is associated with each trace. We now extend stack-processing 
techniques to cover a  “random  replacement”  algorithm (RAND) 
that does not always yield a  unique success function.  With RAND,  
if the buffer has  a  capacity  of C, any given page is chosen for  replace- 
ment  with  a  probability of 1/C. In analyzing RAND,  one  might 
perform  a Monte  Carlo simulation for each buffer capacity to 
obtain  a R A N D  success function.  Repeating these simulations would 
yield a set of sample success functions to characterize R A N D .  The 
sample success functions could then  be used to estimate an “average” 
success function. 

A question that arises is  whether  stack processing can  be used to 
generate  a  sample success function  for R A N D  or  any  other  algorithm 
that bases a replacement choice on the value of some  random 
variable. We observe that R A N D  is not a  stack  algorithm,  because 
there  certainly exists a  trace  and  a  time t for which the inclusion 
property fails to hold with a  nonzero  probability. 

Our  approach is to define a  replacement  algorithm RR, which is a 
stack  algorithm having the  same  statistical  properties  as RAND for 
each  capacity C. The algorithm RR is defined as follows: at each 
time 2, the  priority list P, is obtained by randomly  ordering the set 
of pages in r,-l (each of the Y,-~! possible orderings is equally 
likely to be chosen). Observe that RR is a  stack  algorithm, since it 
induces  a  priority  list. 

To establish that RR is statistically equivalent to RAND,  assume 
that a  replacement  is necessary in  a buffer of capacity C at time t .  
Since y,(C) = min [B,-,(C)], and P, is  randomly  chosen,  the proba- 
bility that  any given page is y,(C) is l/C-the same  as for R A N D .  

One difficulty in implementing RR is  the  generation of the  random 
priority list P,. Fortunately,  it is possible to update  the  stack  without 
actually constructing the entire  priority  list. Assuming that A, > j ,  
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let q,( t )  denote  the  probability that page s,-,(j) has priority over 
page y , ( j  - 1) at time t .  If s ,+ , ( j )  does not have priority over 
y , ( j  - l), we know that s,-,(j) = min [ l L I ( j ) ] .  Since this occurs 
with probability l/j, we obtain 

1 - d t )  = I / j  

or 

Using Equation 20, the  stack  can  be  updated at time t for RR 
replacement by choosing page s,( j)  = s,+,(j) with probability 
( j  - l)/j, for 2 5 j < A,  and j < Y,-,. As a check, let us compute 
the  probability Q that  an arbitrary page b is pushed from a buffer 
of capacity C at time t .  Assuming that page b occurs at some  position 
k on stack S t - ,  where I 5 k 5 C, then Q is  given  by the following 
expression: 

Q = P , ( Y ~ ( C )  = b }  

= P , { S , ( k )  = Y,(k - 11,  s , (k  + 1) = s,-,(k + 11, 

s , (k  + 2 )  = s,-1(k + 2 ) ,  . . , S,(C) = S,- , (C)}  (21) 

The events in  the joint probability  in  Equation 21 are  independent, 
so that we obtain 

Q = P , ( s , ( k )  = Y,(k - 1)) *P,{st(k + 1) = S,-l(k + 1)) 

.P,(s,(k + 2 )  = st-,@ + 2 ) ) .  * . .  .P,{S,(C) = S,-I(C)) 

= (!)(L)(*) k k + l  k + 2  . . . ( y )  

Since Q = 1/C holds for any page b and capacity C, we have 
verified that  the stack updating for RR can be accomplished using 
Equation 20, and  that RR has  the  same  statistical  properties as 
RAND for each buffer capacity. Note  that although a particular 
value of a point on the success function, for example F(4) = 0.3, is 
equally likely to occur under both RAND and RR, the occurrence 
of a  particular success function is not equally likely. 

As the example with RR illustrates,  stack processing techniques 
can be extended to cover probabilistic replacement algorithms. In 
fact,  a  replacement  algorithm can have a mixture of probabilistic 
and  nonprobabilistic aspects. For instance, the  arbitrary  rule used 
to break ties in LFU and  other  algorithms may choose  a  page at 
random.  Another possibility is for a replacement  algorithm to favor 
some pages probabilistically in  the  construction of the  priority list, 
thereby realizing a so-called “biased replacement”  algorithm.’2 In 
any case, the only requirement is that the  priority list be constructed 
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to reflect the  probabilistic  properties of the desired replacement 
algorithm  for every capacity C. 

Congruence  mapping 

up to now, we have restricted our  attention  to two-level storage 
hierarchies with unconstrainted  mapping at the first level. Under 
this type of mapping,  any page in the buffer may be replaced by the 
referenced page. The advantages of unconstrained  mapping are 
that all available page frames  in  the buffer can  be used, and also 
that seldom used pages cannot become "locked" into  the buffer by 
mapping  constraints. A disadvantage with unconstrained  mapping 
is that extensive associative searches may be necessary to locate 
pages in the buffer. Moreover,  the  implementation  overhead of the 
replacement  algorithm may be excessive, since relative priority 
information  must  be  maintained  for all pages in the buffer. To 
offset these  disadvantages,  a  constrained  mapping scheme can  be 
employed whereby each page is restricted to occupy a member of 
only a  subset of the buffer page frames. 

One such mapping  technique is called congruence mapping, by which 
the 2k distinct pages in  the address  space  are  partitioned  into 2" 
disjoint congruence classes, where 0 5 a 5 k ,  and  each class contains 
2k-" pages. The classes are numbered consecutively from 0 to 
2" - 1, and class membership is determined  from the a low-order 
bits of the page number. I n  this case, the a low-order  bits  constitute 
the class  number [x] of a page, and  the  remaining k - a bits are 
called the page  prejx  as shown in  Figure 15. The  quantity a is called 
the class  length. For a class length  equal to zero, we set [x] = 0 
for all pages. 

In a two-level hierarchy with congruence  mapping, every congruence 
class is assigned an equal  number of page frames  in  the buffer-to 
be used exclusively by members of that class. This  number is called 
the class  capacity and is denoted by D. (The  total  capacity of the 
buffer in pages is thus C = 2 " .  D.) When  a page x is referenced, it 
may appear  in any of the D page frames reserved for class [x]. If the 
reference page is not in  the buffer, and if the D page  frames are all 
occupied by other  members of class [x],  a  replacement  algorithm 
selects one of these pages for  removal. We assume that  the same 
replacement  algorithm is used separately for each of the classes. 

Note  that when the class length a is zero, all pages are in  the  same 
class, and  the mapping is unconstrained.  When  the buffer capacity 
C is a power of 2, and when C = 2'", only one  page is allocated to 
each class, and the  mapping function is fully constrained. Thus 
for  a fixed buffer capacity C = 2", where 0 5 h 5 k ,  we can vary 
the  mapping  function  from  unconstrained to partially  and fully 
constrained simply by varying the value of a from 0 to h. 
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Since the  congruence classes are disjoint,  and since the  same  number 
of buffer page frames are allocated to each class, it  is possible to 
treat  a buffer as a collection of 2" distinct buffers-one for  each 
class [x]. If we also view the  backing  store as 2" individual  backing 
stores, as shown in  Figure 16, the two-level hierarchy  partitions 
into a collection of 2" distinct  subhierarchies,  each  with a buffer 
capacity of D page  frames.  When  the  replacement  algorithm is a 
stack  algorithm,  these  subhierarchies  can  be  evaluated  separately 
using stack processing techniques. In practice, 2" stacks  (one  for 
each  subhierarchy)  can  be  maintained as the  trace is processed. 
Each  page reference x causes only the stack  for class [x] to be 
updated,  and  a  stack  distance A to  be  determined  from that  stack. 

In congruence  mapping, to calculate the success function  for  a 
given trace  and given class length (Y, the stack  distances  must be 
carefully interpreted. Whenever a stack  distance A is measured, the 
corresponding critical capacity of the  entire buffer is 2" . A ,  since 
this  is the minimum buffer capacity necessary to contain  the refer- 
enced page. Therefore,  the success function F"(C) for  the set of 
capacities C = 2". D where D = 1, 2 ,  . ' ' , is given by 

F"(C) = F"(2" .  D) = __ n@) 
A = 1  L 
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where n(A) is the  total number of times the  distance A occurs  for 
any of the  stacks. 

Generally,  stack processing techniques  must  be used separately  for 
each value of the class length a. However,  for LRU replacement, 
only a single stack need be  maintained in order to determine  the 
success functions  for all values of a in the interval 0 5 01 5 k .  Recall 
that  under LRU, the stack is the list of all  the pages in  rt+l 
ordered  according to  most recent reference. To form  the stack 
Sf-l(i, a)  corresponding to congruence class i and class length a,  
one  would list the pages in class i according to their  most  recent 
reference. However,  this  ordering is preserved in the stack St+, for 
any i and  any 01. Therefore, S,-,(i, a)  can  be  determined by listing 
in order all the  stack  entries of St-] belonging to class i. In  practice, 
it is not necessary to actually construct each stack S,-,([x,], CY) in 
order to find the  distance A:. One  can  determine all the  stack 
distances (A:) in  one scan of the LRU stack S, -,. To do this, we 
first define the righf match function RM(X, y )  for two page numbers 
x and y as  the  number of consecutive  low-order  bits that  match. 
For example, ~ ~ ( 0 1  lOl,OOlOl) = 3 ,  and ~ ~ ( 0 0 0 0 , 0 0 0 1 )  = 0. Note 
that  the class numbers of two pages are  equal ([x] = [y])  if and only 
if the class length satisfies the  inequality 01 5 RM(X, y). Now  suppose 
that  the  current reference is to page x. and consider the j th entry 
on stack St+,, which is y = ~ ~ - ~ ( j ) .  The occurrence of page y on  the 
stack will contribute  to  the distance A: if and only if RM(X, y )  2 01. 

Therefore, A: can  be  determined by counting  the  number of stack 
entries y above  (and  including)  page x that satisfy RM(X, y )  2 a. 

A simple procedure  for  determining A: for all a is to scan down  the 
stack,  and  maintain  a  set of right  match frequency counters { p ( r ) )  
for 0 5 r 5 k.  Counter p(r)  is incremented whenever R M ( ~ ,  y )  is 
equal to r .  If page x has been previously referenced, we eventually 
find RM(X, y )  = k (corresponding to x = y ) ,  and each distance A: 
is given by 

A: = p ( r )  where 0 5 CY 5 k (23) 

However, if page x has  not been previously referenced, the  bottom 
of stack St+, is reached and A; is set equal to infinity for all class 
lengths a. In either case, each distance A: is used to increment  the 
appropriate  distance  counter for class length a. 

An example of this procedure is indicated  in  Figure 17. In Figure 
17A, the  right  match  functions are found by scanning  down  the 
stack. In Figure 17B, the right  match frequencies { p ( r ) }  are plotted 
in reverse order  as  a  function of r .  Cumulative  summation,  according 
to  Equation 23, then yields the desired LRU stack  distances { A: } .  
Note  that  the stack  distance for class length zero is the  same  stack 
distance A as  obtained  for LRU replacement with unconstrained 
mapping. 

6 

7 = a  
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Figure 17 Right match function for LRU replacement 
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Multilevel hierarchies 

In previous sections of this paper,  stack processing techniques are 
developed to obtain  the success function  for  a two-level hierarchy. 
For each buffer capacity,  this success function  represents  the relative 
number of accesses to  the buffer for a given page  trace. 

We  now show that  the  same success function  can be  used to find 
the access frequencies for all levels of a multilevel, linear  hierarchy 
for any number of levels, and  any  capacity at each level. Recall that 
in a  linear  hierarchy,  the only downward data  path  from each level 
M ,  is to  the next level MZTlr for 1 5 i < H. Also a  path  or  sequence 
of paths  is  available  from  each level M i ,  for 1 < i 5 H,  to the 
local  store.  Furthermore, no replacement decisions are required 
when  a  page moves upward  through  intermediate levels. We now 
assume that  the  same replacement  algorithm  is used at all levels, 
and  that  the  mapping function is unconstrained at every level. 
(Hierarchies with constrained  mapping  functions are considered 
later in this  paper.)  At  time 1 = 0, the  backing  store  contains all 
pages, and these pages are moved to the  local  store M ,  on  demand. 
When M I  is full, pages replaced in M ,  are pushed  down to  the next 
lower level in  the  hierarchy, M , .  As each successively lower level 
M ,  fills, the pages replaced in M ,  are pushed to  the next level 
M ,  +] .  At level M , ,  the  replacement  algorithm is applied to  the 
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set of pages already  present,  thereby  making room for  the  currently 
referenced page x,. At  the intermediate levels Mi, for 2 5 i < H, 
the replacement  algorithm is applied to the  set of pages in M i  and 
to  the page pushed from level A 4 - , .  

When page xL is accessed from  some level M ;  (for  2 _< i _< H - I), 
a  page  is replaced from each of the levels MI, M,, . . . , Mi-,. The 
page replaced from level M,_,  is  guaranteed to find space at level M,,  
since a  page  frame was vacated by x, . When  page x, is accessed from 
the  backing  store MI<, a page is displaced from  each of the levels 
MI, M,, . + . , until  a  vacant  page  frame is found.  Note  that positions 
of pages in  the hierarchy-and therefore  the access frequencies- 
do  not depend on the  structure of upward data  paths  to  the local 
store,  but depend only on the replacement  algorithm  and  the 
capacity at each level. 

We have  shown that when a  stack  replacement  algorithm  is used 
for  a two-level hierarchy,  the top C, pages of the stack are  the 
contents of a buffer of capacity C, as  shown in  Figure 18A. Let us 
now assume that  the replacement  algorithm  for  a multilevel hier- 
archy  induces  a  priority  list at every time  and that this  list  determines 
the  replacement decisions at every level of the hierarchy. If this is 
true,  then  for  any  number of levels and  any set of capacities C,, 
C,, . . . , CI,, the  contents of each level at any  time  can  be  determined 
from  the stack  for  this  replacement  algorithm. More precisely, 
let B;(C,) denote  the  contents of level M ,  at time t ,  and  let U, denote 
the  sum C, + C, + . . . + C,. We  then claim that 

B1(Ci) = B,(O-*) - B, (cT-~)  for i = 1, 2, . . . , H - 1 (24) 

or equivalently that B:(C,) can be identified as  the first C, entries of 
stack S,, and B: can  be identified as  the next C, entries,  etc.  This 
result is  illustrated  for  a four-level hierarchy  in  Figure  I8B. 

The main elements of the proof of this result are  as follows. Assume 
that  Equation 24 is satisfied at time t - 1, and  that page x, = 

s l - , ( A L )  is an element of B;-,(Cv) (i.e., level M ,  is accessed.) As 
stack S,- ,  is updated to stack S , ,  page y,(C,)  is removed from 
the  top C, elements of St-,,  with the result that pages st( l) ,  . . . , 
s,(C,) represent B:(C,). Now observe that page yL(C, + C,) is 
removed from  the  top C,  + C, elements of I n  terms of the 
hierarchy, we know that y , (C , )  is pushed to  the next lower level M,, 
since the  hierarchy is a  linear  one. The replacement  algorithm  then 
selects a  page  from y,(C,)  + B;-,(C,) for  removal  from M,. Since 
page y,(C,)  has lowest priority  in B;-,(C,), the page selected for 
removal  has lowest priority  in B;-,(C,) + BT_,(C,). But this page 
is y,(C,  + C,), so that .s,(l), . . . , s,(C, + C,) represent B:(C,) + 
B;(C,), and  thus s,(C1 + l ) ,  . . . , s,(C, + C,) represent BT(C,). 

A similar argument  applies  to  subsequent levels M ,  where 2 < i 5 
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g - 1. Page ,u,(ut-J is pushed from level Mz-l of the  hierarchy,  and 
competes with the pages in Bi-,(C,). The replacement  algorithm 
selects for replacement  the page 

min LV~(CT-~), Bf-l(CJ] = min [EL,(CT,)I = yl(ut) 

with the  result that 

B/((TJ = B:(C,) + B:(C,) + . . . + BZ(CJ 

and 

B;(Ci) = B/(U,) - & ( U T - , )  

At level M, ,  the page J I ~ ( U ~ , - ~ )  that  has been pushed  from M , - ,  finds 
a vacant  page  frame,  and all lower levels remain  unchanged.  Then 

BP(C,) = Bf-,(C,) + Y t ( U , - J  - x/ = &(u,) - B/(U,-I) 

and 

B:(C,) = Bi-l(Cl) = B t ( u i )  - B,(a,- ,)  for j > g 

Thus we have  shown that  Equation 24 is satisfied at time t .  

The significance of this  result is that a  stack  distance A, where 
C, + . . . + C,-l < A 5 C, + . . . + C,, corresponds to  an access 
to hieyarchy level M,,  and the relative  number of such A's is simply 
the access frequency F ,  to  that level. Thus 

F, = 5 fl = ~ ( u , )  - ~ ( u ~ - ~ )  for 1 5 g 5 H - 1 
A = < , - , + l  L 

(25 )  

As with two-level hierarchies,  all  other accesses are  directed to the 
backing  store so that 

H -  1 

F H =  1 - F ,  
1 = I  

The  determination of access frequencies is illustrated graphically 
in  Figure 19 for  a four-level hierarchy. Note  that  the technique 
illustrated in the figure cannot be used for an  arbitrary hierarchy 
or success function.  However,  the  technique  can  be used for  any 
linear  hierarchy  as  long  as the replacement  algorithm always induces 
a single priority list for all hierarchy levels. 

Our  treatment of multilevel linear  hierarchies can be extended to 
include  hierarchies with congruence  mapping  functions. We assume 
that  the same class length a is used for every level and  that D, 
page frames are allocated to each  congruence class at  level Mi. 
The  total capacity of level M ,  is then 

C ,  = 2" .D ,  where I i 5 H .  (26) 

Using the success function F"(C) and  Equations 25 and 26, we 
obtain  the access frequency F: for  each level as  follows: 
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dated,  but a  store  distance A' is recorded. The  distributions { n'(A')) 
and (n"(As ) )  can  then  be used to determine  the fetch and  store 
access frequencies to each level of the  hierarchy. It should  be clear 
that this  technique  also  works if congruence  mapping is included. 
We can also  consider  a modified fetch-store design where the page 
usage statistics are  updated  for a  store  operation even though no 
page  motion  occurs.  This  change  is  incorporated by updating  the 
priority list for both fetches and  stores.  Thus,  for modified fetch- 
stores, the net  change  in  our  model is that  the stack is not  updated 
for  store  operations. 

Besides distinguishing fetches from  stores,  a  computer system may 
also  distinguish  the  various  sources of store  requests. For example, 
a "call-back" feature  can be used by which a page in  the buffer 
is moved to  the backing  store if the  page  is  stored into by an I/O 
device. The motivation  here  is to free  the buffer of pages not needed 
by the CPU, and  to service all I/O stores  from  the  backing  store. 

For a  call-back  hierarchy,  the  generator  must specify at least  two 
kinds of  references-CPU references, and  stores  from  the I/o channel. 
Stack processing techniques can  then be modified as follows. When 
a CPU store  or fetch occurs, the  stack is updated  in  the  normal 
way (except for special entries to be described later),  and  a  distance 
counter n"'"(A) is incremented.  When an I/O store  occurs, say 
at time t ,  a  counter n''"(A) is incremented. If page x, does  not 
occur on stack  then S, is equal to If page xI does  occur 
on stack St_, ,  then S, = St-, except that xt is replaced by the special 
entry "# ." This  entry,  counted  for all stack  distance  measurements, 
represents  the  empty page frame caused by page xt returning to 
the backing  store. To ensure that empty page frames are filled as 
soon as possible, all #-entries  are assigned the lowest priority 
in  replacement decisions. 

The call-back  feature  can be  used in conjunction with the  fetch- 
store  or modified fetch-store schemes. In all cases, the  correctness 
of the modified stack processing techniques  can  be  established. 

Since stack processing allows a  large  sample of "typical" address 
tapes to  be analyzed, for many  hierarchy models, the efficiency 
gained at the early stages of hierarchy design may  be  great  enough 
to impact  the  whole design process. More of these traces  can be 
processed in  a given time, and  more hierarchy designs can be  evalu- 
ated  for  a given number of traces. The availability of this  data may 
help justify  the "typical"-trace approach to design, or  may  help in 
the development of other  models  for system requirements. As an 
example, program  models  can be more deeply investigated by 
evaluating both a  program  and  its  model  under  a very large  number 
of address traces. Improvement  in  program  modeling,  in turn, may 
enhance  the success of analytical disciplines that use these models, 
such as  storage  interference  studies  for  multiprogrammed systems. 
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paging) another  replacement  algorithm exists that uses demand 
paging and causes the same  or  a fewer total  number of pages to be 
loaded into  the buffer. This  result is used to show that OPT is an 
optimal  replacement  algorithm and, in fact, that OPT causes the 
minimum  total  number of pages to be loaded  into  the buffer. 
Finally,  it is shown that the success function  under OPT for  any 
trace is identical to  the success function  under OPT for  the reverse 
of the  trace. 

Definition 

IS1 denotes  the  number of elements in a  set S .  
la/, denotes  the  number of occurrences of a  symbol a in a 

A = { a, b, . . . } is a finite set of N page  addresses or pages. 
X = x), xl, . . . , xL is a finite sequence of L elements from A ,  

B,(C) C A denotes  the  contents of a buffer of capacity C at time 

sequence X. 

and is called a trace. 

t ,  and is called a state. 

Throughout this  appendix, we consider a two-level storage hierarchy 
with fixed buffer capacity C. Consequently, we use B, instead of 
B,(C). The term Br denotes  the  contents of the buffer immediately 
after reference x, is made; B,, is called the initial  buffer state; and 4, 
the  empty  set,  denotes an empty buffer state. 

Dejinition 

P = pl, p 2 ,  . . . , pr,  is a finite sequence of 1, sets. p ,  C A ,  called 

Q = ql,  q2,  . . . , qL is a finite sequence of L sets, q, A ,  called 
an 0-policy. 

an I - p o k y .  

A policy is a particular  realization of a  replacement  algorithm  for 
a given trace. For such a  trace  and  initial buffer state B,,, an I-policy 
and  an  0-policy  together  determine  the sequence of buffer states 
that will occur  during  the  trace. An I-policy gives the set of pages 
loaded  into  the bufTer, and an  0-policy gives the set removed. I f  
p ,  = 4, no page is removed, and if q, = 4, no page is loaded in. 
Note  that only certain  pairs of 0- and I-policies are meaningful. 
For example, a page cannot  be removed if it is not  in  the buffer. 
We consider only meaningful policies, where q,+l $ B, and P , + ~  G 
B, + q, - , ,  for 0 5 t 5 L - 1. In this case, B,,, is obtained  from 
B, by 

Bt+1 = [Bt + qt+J - Pr+l 

Dejinition 

Let X be a  trace  and Bo (where ~ B , ,  5 C) an initial  state. A 
sequence of states B = Bo, B,, . . . , B,, is a valid  sequence if x, E B, ,  
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for 1 5 1 5 L. A policy pair P and Q is a validpair for X and Bo if 
application of the  pair  results  in  a valid sequence. 

Note  that valid policy pairs  are  quite general in that any  number of 
pages may be moved into  or  out of the  buffer.  However,  most of 
our  attention is directed  toward demand paging where 

b t l  5 1 and lqtl I 1 

xt E Bt-1 * Pt = qt = 4 

Pt # 4 * qt  # 4 and lBt-ll = C 1 
for all t ,  1 5 t I L. 

Under  demand  paging, single pages are loaded when necessary until 
the  buffer  fills;  subsequently,  page  swaps occur only when necessary. 

One  measure of goodness  for  a policy pair P and Q is the  total 
number of pages loaded  into  the buffer e:=, lqt 1 under  the policy 
pair.  The following theorem  supports  the usefulness of demand 
paging. 

Theorem 1 

Let P and Q be a valid policy pair  for X and Bo. There exists a 
valid demand policy pair P" and Q" for X and B,  such that 

Proof. P" and Q" will be  constructed by forming  a sequence of 
valid policy pairs (P", en), (P ' ,  Ql), (P', Q'), . . . , (P", QR),  where 
P" = P ,  Q" = Q ,  P" = P", Q" = Q", and 1421 5 cf=11q2-1/ 
for 1 5 j 5 K. Informally, P' and Q' are constructed  from Pi-' and 
Q'" by altering pi" and q1-l to satisfy the  demand paging con- 
straints where pi-' and/or qi-' are  the first occurrences of non- 
demand  paging  in Pi-l and Q'". This is done by  "sliding" offending 
elements ofpl"  and/or qi-' to a  later time in P' and Q'. If a E p i  
and a E q; ever occurs then we trivially remove page a from  both 
p i  and 42. Clearly, this  does  not  disturb  the validity of Pi and Q' 
and only decreases the  value of x:==, 1qi/.  

To construct Pi and Q' from Pi" and Q'", 1 I .j 5 K,  let t be the 
smallest time such that pi" and/or yi" do  not satisfy  Equation AI.  
Set pi = pi+' and Q' = Q'", except as noted below. Suppose that 
xt = a and  that qi", for t < L, does  not satisfy Equation A l .  If 
a @ qi-l, then set qi = 4 and q i + l  = q:;: + 4i-I. (Note  that "+" 
is defined  here since q2-l A pj" = 4). If a E qj-l ,  then set = a,  
and = 41;: + - a]. If  t = L,  then set qt  = 4 if a @ 
or 4; = a if a E q2-l. In all cases, note that Q' is valid, since 
qi @ Bj-, for 1 I t 5 L ,  and  that cf=l 141 1 5 cf=, /qi" 1 .  
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Now suppose that p i - ' ,  for t < L ,  does  not satisfy Equation A I .  
We observe first that 192 1 5 1 and qi = a. if a !$ B~I: .  If q; = + or 
1Bi:;l < C, then setpi = + and p;L1 = p i ; ;  + p:- ' .  If qi = a and 
IB;T:I = C,  set p i  = b for some b E pi" and pi ,]  = p i ; :  + 
[pi" - b]. (Note  that p;- '  # +, since IBi:; 1 = C and 4i-l # 4.) 
For t = L ,  setp; = b E p;,-' if 4: = a and iBtI: ~ = C, or p j  = + 
otherwise. In  all cases, we observe that Pi is valid, since p :  C Bi-l 
for 1 5 t 5 L .  Since Pi and Q' satisfy demand paging at least up 
through  time 1, the desired demand policies must eventually be 
obtained.  Thus  the theorem is proved. 

Before considering an optimum  replacement  algorithm we make 
two  observations.  First,  under  demand  paging,  a valid policy pair 
P and Q can be completely represented by specifying just  the 0- 
policy P. This follows from Equation AI because q, # + can only 
occur when x1 = a and a B, - ,  (in which case we know  that 
q, = a). Second,  for  demand policies P and Q ,  we can use l + i I ,  as 
an alternative  criterion of goodness. To see this  let u be  the smallest 
integer such that lBt 1 = C, t 2 u. Then l + l T ,  is given by the following 
expression: 

Since u in Equation A2 is not  a  function of the policies, x;=, /q,l is 
a constant  and 

optimum For a given trace X and  initial  state Bo let us define an  optimum 
replacement policy pair P and Q as a pair that is valid and minimizes /q,  1 

algorithm over the class of valid policies. From  Theorem 1 there always exists 
an  optimum policy pair which is also a  demand policy pair. Since 
(A3) holds  for all demand policies we can find an  optimum  demand 
policy pair if we can find a  demand policy P" such that I + /  , , I )  2 I+\,. 
where P is any  demand policy. 

Definition 

Let X be a  trace,  and let a E A be a page. The forward  distance 
d(a,  x,) to page a from page x, is the  number of distinct pages 
occurring in x,,,, . . . , x,, where e is the smallest integer satisfying 
e > t and x, = a. If no such e exists then d(a, x,) = m.  

Definition 

Let X be a  trace  and B,  an  initial  state. A valid demand policy Po,  
called an OPT policy, for X and B,, is defined as follows. For t = I ,  2 ,  
. . . , L,  whenever p ,  # + is required  then p 1  = a where 
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I which can also be written as follows: 

Note this is the same form as  Equation A4  with To replaced by 
[T,,  + ( a )  - { c ) ]  and a replaced by c. If d(c, x;, +,) < d(b, 
then we have a  situation identical to  that in the  statement of Lemma 
1 where Xnow is x ;, +1,  . . . , x&. Settingp: = pk for 1 < k 5 i, - 1 
and pi, = 4, we again consider Cases 1, 2, and 3. Since the “new” 
X is strictly shorter  than  the original X, this situation  can only occur 
a finite number of times. Note  that P’ is valid as far as  it is specified 
and that p:, ’ . . , p;. contains  one  more 4 than  pl, . . 2 Pa,. 

If d(c, > d(b, x , , + ~ ) ,  we set p: = pk  for 1 < k < i, - 1 
and p:, = 4, and consider two more cases. First, if pc = b,  where p ,  
is the first occurrence of b in X  and 8 < i,, we set p: = pk,  for 
i a + 1 < k < L , a n d k # 8 a n d p : = c . H e r e B : = B , f o r 8 < t < L ,  
and  as  in Case 1, we see that 14 1 p, 2 14 I still holds. Second, if pc  # 
b, for e < i h ,  we setp; = pk, i, + 1 < k < L,  and k # i, and p i ,  = c. 
Again we have B: = B, for i, < t 5 L,  but we note that pi, = 4, 
whereas pi, = c # 4. However, since p ia  # 4 and pi, = 4, the 
relation 141p, 2 l + l p  still holds. 

I 

I 

I 

Case 3B. p i ,  = 4. Since qi. = a we observe that lBia-l I < C. 
Let 8 be  the smallest integer such that pc # 4. If no such integer 
exists, then  let 8 = L + 1. We set p: = pk for 1 5 k < i, and  con- 
sider two cases. First, if i, < 8 then we set p: = pk  for i, + 1 < 
k < L. Note  that Q’ = Q except at times i, and i,. Since 1 B; 1 = I B, I 
for i, 5 t < L, we see that P’ is valid, and 141p, = 141pr since P’ = 
P .  Second, for the case i, > 8, note  that x, = c, where c # a and 
c # b. We setp: = pk for i, + 1 < k < L and k # 8, and p: = 4. 
I fp ,  = b, then lB:l = /B,I for8 < t < L,  and 141r, = + 1 2 
/ + I p .  I fp ,  = a, then  the buffer states  at times e - 1 and 8 are: 

B:-I = Tc-1 + { a }  B: = Tc-I + {a} + { c ]  

Bc-1 = Tc-1 + ( a ]  + ( b }  Bc = Tc-1 + ( b }  + { c )  

Rewriting the buffer states at time e as 

B: = [Tc-l + ( ~ 1 1  + (a1 

we arrive at a case similar to Case 3A. As in Case 3A, P‘ contains 
one  more 4 than P in the interval t = 1, . . . , e. Therefore, we treat 
this case in  the same way, with the result 141p, 2 l + l p .  Finally, if 
p, = d where d # a and d # b the buffer states at time can be 
written as 

B: = fTt-1 + { a )  + {c] - (dl1 + {dl 
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B4 = [T4-1 + { a }  + {c} - { d l ]  + {b l  

which again  can  be  treated  as in Case 3A. 

Note  that  the situation where ib  = 8 can  not arise in Case 3B, since 
b E B ( b - l .  We have  therefore successfully exhausted the possible 
cases, and Lemma 1 is proved. 

Theorem 2 

Let X be  a  trace, B,> an initial  state,  and P a valid demand policy 
for X and Bo. If Po is any valid Om policy for X and Bo, then 
I + l P O  2 l 4 lP .  

Proof. We recall first that every OPT policy for X and Bo has 
exactly the  same  number of 4's. To prove the  theorem, we  need 
only find any om policy Po such that l+lpv 2 /41p. To do this we 
will construct  a finite sequence of policies P', P2,  . ' . , Pi, where Pi 
is an OPT policy and l + l p  5 l + l p x  5 . . .  5 l + l p l .  

P' is constructed as follows. Let i be the smallest integer such that 
p i  # p:, where po is an element of an OPT policy. Suppose that 
p i  = a and po = b. (Neither p i  nor po can  be +, since both  are 
demand policies.) We observe that 

BY = Ti + ( u }  I 
where d(a, x i )  I d(b, x;). Since x i  # a  and x i  # b, it follows that 
d(a, x i + l )  5 d(b, xi+l).  Treating B i  as Bo, Bo as B& and x i + ' ,  . . . , xL 
as X, we can use Lemma 1 to find a policyp:.,, . . . , p t  that contains 
as least as many 4's as p <+,, . . . , pL. We then define P1 = pi, . . . , 

Ba = T' + ( b l  for a ,  b !$ Ti 

Pi as k, lsksi- 1 

ipl, i +  1 5  k l  L 

p i  b ,  k = i 

Note  that P' is valid and  that I + I p  5 l + l p . .  Furthermore, pk = p i ,  
1 5 k 5 ll for some 8, 2 i. 

Policy P 2  is constructed  from P' in a similar manner with the  results 
thatpi = p i ,  1 5 k 5 6 where% > 8, and l + l p .  ,I l + l P . .  Since Xi s  
finite, construction of P', P 2 ,  . . . must result in P', for finite j ,  where 
p i  = p i ,  1 5 k 5 L.  It follows from l + l p  5 l + l p l  5 . . . 5 I + J I . i  
that 1 + 1  5 I + l p i  where Pi is an om policy and  the  theorem is 
proved. 

Combining  the  relation in Equation A3 for demand paging with 
Theorems 1 and 2, we have the following theorem. 
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Theorem 3 

OPT Let X be  a  trace, Bo an initial  state,  and Po a valid OPT policy. 
minimizes (Also,  let Qo be  the  corresponding I-policy.) For any valid policy 

page pair P and Q, 
loading 

L L 

t = 1  t = 1  

Thus we see that  an OPT policy results in a  minimum  number of 
pages being loaded into  the buffer over the class of all valid policies. 
After giving preliminary  Lemmas 2 and 3, we present a final theorem 
concerning OPT policies. 

Lemma 2 

For a  trace X ,  let  the set Bc represent  the  first C distinct pages 
referenced in X .  For a buffer of capacity C, if P is a valid demand 
policy for X and some B; C Bc,  then P is a valid demand policy 
for X and  any BL C Bc. 

Proof. Let i be the smallest integer such that xl, . . . , x contains 
C distinct pages. If Bo C B,  then, for any valid demand policy P,  
wehave B ;  = Bc, sincep, = p2 = . . .  = p i  = 4. For B; C B, this 
also  holds, so P is a valid demand policy for X and B;. (Note  that 
for different initial  states, Bo 2 B,, the Q policies will not be the 
same.) 

Lemmu 3 

For a  trace X :  let the set Ec represent  the  last C distinct pages 
referenced in X .  For a buffer of capacity C, if P is a valid demand 
policy for X and Bo, there exists a valid demand policy P’ with a 
state sequence Bo, B:, B;, . . . , B,: such that B; = E, and ! + I p ,  2 
/+IP. 

Proof. Let i be the smallest integer such that x ,, . . . , x,* contains 
C distinct pages. Suppose,  under policy P, that B,-, contains n 
elements of Ec, i.e. 1 B ,-, n E ,  1 = n. It follows that  at least C - n 
pages will be  loaded  into  the buffer following time i - 1. Setting 
p: = p k  for 1 5 k 5 i - 1, we  will specify the remainder of P’ in 
such a way that exactly C - n pages are loaded into  the buffer 
following time t - 1, We observe that, since at most C distinct pages 
are referenced following time i - I ,  we never need remove  a  page b 
from  the buffer where b E E(, .  Thus, if a  page  must  be  removed at 
time 4 for i 5 e 5 L,  there always exists a  page c, where c Ec, in 
the buffer, and we set p: = c. If P’ is constructed  in  this  manner, 
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1 Theorem 4 

and  from  Equation A3 we have 141ps 2 l + l p .  Furthermore, since 
no  page in E,  is ever removed from the buffer following time t = i 
and lE, I = C, we see that B: = E,. 

Let X = xl, . . . , x], be a  trace  and ” X  = x,,, . . . , xI its reoerse. forward/ 
If Po is  an OPT policy for X and B, = 4, and ‘Po is an OPT policy backward 
for ‘ X  and ‘B,] = 4, then /I#l,.o = 14/r,.o. OPT 

Proof. Let us assume  that  the  theorem  does not  hold.  Thus, 
without loss of generality,  suppose that / I # 1 7 t , o  = lr#lpo + k where k 
is an integer and k > 0. If D distinct pages are referenced in X (and 
in ‘X) and if D 5 C, the buffer capacity, then we have an immediate 
contradiction, since 141po = I I # / ~ , , ~ ~  = L .  We therefore  assume 
D > C. 

Let us denote  the  state sequence under PO as B,,, B,, . . . , BL. From 
Lemma 2 we can set Bo = B,  without  disturbing  the validity of Po.  
From Lemma 3 we can  alter Po such that BL = E,. Note  that  the 
altered policy contains  the  same number of 4’s as Po,  since Po is an 
OPT policy. (We  subsequently refer to  the altered policy as Po.) 
Similarly, if ‘Bn7  ‘B17 . . . , ‘BL is the  state sequence under ‘Po  we can 
assume that  ‘B, = ‘B,.  and ‘BL = ‘Ecq. 

Consider now the  state sequence “BL,  ’BL, ‘BL-1, . . . , ‘B2,  ‘B,. Since 
xr, E ‘B1,  xL-l E ‘B2, . . . , x2 E ’BI,-I, x1 E ‘BL, we  see that this 
sequence is a valid (not necessarily demand) sequence for  the  trace X .  
Let us denote  the corresponding valid policy pair as P’ and Q’. We 
observe first that, since ‘Ec = Bc, we have ‘B,. = B,. = B,). Thus P‘ 
and Q’ (as well as Po)  are valid policies for X and B,. Next we 
observe that  ‘B, = ‘Bl,-l + { ‘q: } - lrp: ) can be written as 
‘B1,-, = ‘BL + (‘p:) - {‘q: ) .  But we also  have ‘BI,-l = ‘BL + 
{ q; 1 - ( p i } ,  which yields q; = ‘p: and p i  = ’q:, since ‘p: A ‘q: = 
4. Similarly, since ‘BL-,  = ‘BI,-Z + {rqE-l} - {‘p:-,], we have 
q; = ‘ p z - ,  and p i  = ‘qE-,. Continuing  in  this  manner we can 
show that 

4’ - 1 0 

P: = 74LO+z-t 

1 - P L + z - t  I for 2 5 t 5 L  

Now, since x L  E ‘B ,  (recall that ’B, )  = ’Bc),  it follows that 
‘p: = ‘4: = 4. Similarly, since x, E B, (recall that  B, = Bc),  it 
follows that p ;  = q{ = 4. We can  then trivially assume that p :  = 
‘q? and q: = ‘p:. The significance of this is that, using Equation A5, 
we have established a  one-to-one  correspondence between P‘ and 
‘eo, and between Q’ and ‘Po.  In particular, I I # l p ,  = / + J V Q o  and 

I I # l o ,  = I $ l r p o .  We now observe that I I # / ~ ~ ~  = / + I r p o ,  since i‘Bo/ = 
lrB,l = . . . = IrBL/ = C. In other  words, ‘pq = if and only if 
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Recall that P’ and Q’ are not necessarily demand policies. From 
Theorem 1 we can find a  demand policy pair P” and Q” such that 

I From  Equation A5 and  the discussion that follows, we know  that 

are  demand policies, and since lBol = I l l ; ’  1 = . . . = IB’; I = C, 
we have 
1p;’I = 1q:’I for 1 5 t 5 L. Combining  these  results yields 

But  then we have 1+1,,, 2 = I + / r p o  = I+lro + k .  Since Po 
was given as an OPT policy, we have  from  Theorem 2 a  contradiction 
with 1+1,,, > for the  demand policy P”. Thus  our original 
assumption is false, and  it  must  be  the case that I + l T r o  = I+lPo.  
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