Reviewed are applications of queuing models that may be economically
useful in computing system analysis.

With emphasis on terminal-oriented systems with priorities, methods
are given for estimating such average quantities as service time, waiting
time, and response time.

Examples illustrate these methods and their ranges of efficiency,
beyond which simulation techniques may be preferable.

Single-server queuing processes in computing systems
by W. Chang

Queues (waiting lines) were first studied systematically by A. K.
Erlang' in connection with his investigations of telephone call delays
at Danish telephone exchanges. Following this pioneering beginning
in the early Twentieth Century, others who have made key contri-
butions to a mathematical theory of queues are Pollaczeck,”"?
Kolomogorov,® Khintchine,® Kendall,"”” Lindley,® and Takacs.’™™
Queuing theory, which looks to probability theory for much of its
structure, has proved useful in developing descriptive and predictive
mathematical models that often lead to improvements in the services
studied. As a result of this work, the theory of queues has been used
in studying and improving such services as communication networks
of all kinds, computing systems, production lines, transportation
(harbors, tunnels, bus stations, airports, etc.) and in everyday life
(e.g., banks, elevators, and supermarket checkouts).’

The intention of this review is to provide a practical guide for using
queuing models in computing system design. The analytical methods
discussed form an economical substitute for the more costly simu-
lation techniques. Limitations of analysis are indicated—points
where simulation is required for greater accuracy. System configura-
tions involving priorities are illustrated.

Examined are mathematical models that have been found most
useful for studying single-server queuing processes with Poisson
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input distributions and general service times in computing systems.
The server in a computing system can be any of a number of devices
such as a channel, CPU, or communication line, that can process a
call (an item from the server’s queue). Table 1 gives a number of
servers and the corresponding types of calls or callers that are typical
of computing systems.

The first section of this paper lays a groundwork of basic definitions
and basic queuing models. It is then possible to discuss imbedded
Markov chain modeling, which has proved useful in studying many
types of computing systems.”™'* Priority queuing models that use
imbedded Markov chaining are described and illustrated by numerical
examples.

Queuing problems occur from time to time when there is sufficient
caller or server irregularity in a system. For example, let us assume
that a system contains a single server (i.e., only one caller can be
served at a time). Also assume that either the callers arrive irregularly
or randomly, or that there is appreciable variation in the time
required to serve a caller (i.e., the service time), or both the caller-
arrival and the service-time irregularity assumptions may simultan-
eously be true. If more than one caller is present in the system at the
same time, all but one must queue up awaiting their turn for service.
The rate of arrival of callers (sometimes called *‘traffic density” or
“input rate’”) may be so high that large queues develop, resulting in
a long waiting time per caller. On the other hand, the rate of arrival
may be sufficiently low that the service facilities are not used for a
proportion of time, called “idle time”. Whether busy or idle-time
conditions exist, a change in the system may be desirable and
economically advantageous. Under certain of these conditions, we
can apply queuing theory to predict what might happen under
various alternatives. Such predictions are helpful to management in
making corrective decisions.

Thus, queuing theory makes possible the computation of such
quantities as average waiting time, average queue length, idle time,
and service time, as previously mentioned. Collectively, these are
some of the factors in performance evaluation. Frequently however,
the queuing situations are of such complexity that mathematical
models cannot be adequately descriptive. In these cases, it may be
possible to obtain the desired estimates by simulating the system
under a wide variety of data processing loads. The practice of
simulation is a discipline in its own right and is not considered in
this paper.

Basic concepts

Some of the following frequently used measures of congestion in a
system have already been used in context. Definitions of these

No. 1 - 1970 SINGLE-SERVER QUEUING

definitions




Table 1

Typical queuing points in computer subsystems

Caller

Caller sources

Number of

Server servers

Type of analysis

Type of queue

Storage references
Storage references

System tasks

Messages; data;
programs

Channel requests
Bytes; data
records

1/0 requests

Terminals;
programs; tasks

1/0 requests;
paging requests;
tasks

Storage references;
data records

Input message

Output message

Input plus output
messages

Agent’s terminal

CPU ; channels;
storage

CPU; channels;
storage

1/0 devices; CPU;
channels; storage;
programs
Channels; CPU;
communication
lines

Channels; CPU

1/0 devices; CPU;
communication
lines

CPU;; disks; main
storage

Terminals; 1/0
devices; CPU; main
storage

1/0 devices

CPU; main storage;
data records;
programs

Terminals

CPU

CPU plus terminals

Population

Bus control
unit (BCU)
Storage
modules (M)
CPU

M for constant
block length;
variable number
for variable
block length

CPU 1

Buffers

Channel

Disks and
channel

CPU

CPU plus I[/0

Main storage
modules (M)
plus auxiliary
storage units
(N); high speed
storage (M)
plus cache (N)
Communication
line

Communication
line

Communication
line

Agent’s
terminal

BCU
Main storage

Multi-
programming

Buffering

CPU; channel
interference

Channel

Disk and channel

Time-sharing
computer

Time-sharing;
paging

Storage hierarchy

Full duplex com-
munication input
line

Full duplex com-
munication out-
put line

Half-duplex line

Priority;
bulk service!
Multi-server

Priority

Multiserver

Priority

Contention ;2
priority; first-
come first-
served
Queues in
series3
Priority with
feedback

Queues in
series with
feedback*
Queues in
series with
feedback

Multiple
queues®

First-come first-
served; priority
queues (polling
messages have
higher priority)
Priority queues
(output mes-
sages have a
higher priority)

Industry operation Multiple-server

(air line, bank,
department store,
etc.)

Bulk service:
Contention :
cific order.

During a service period, more than one caller can be simultaneously served by the BCU.
All callers can request service, and the server either randomly serves callers or serves them in a spe-

The output of one queuing system is the input to the next queuing system (cascaded queues).

Queues in series:
Queues with feedback: A caller that has been served returns to the queue for additional service. This may occur
in a priority queuing system or in a cascaded queuing system (queues in series).

Multiple queues: Callers arriving at different queuing stations are to be served by the same system.
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quantities are now given as they apply to computing systems and as
they are used throughout this paper.

Queue length is specified by the number of callers in the system
waiting and being served at time ¢.

Waiting time is the time interval between the arrival of a particular
caller and the instant the caller’s service begins.

Queuing time is the sum of the waiting time and the service time
of a caller.

Occupation time is the time required to complete the service of
all the callers that were in the queue at time z.

Idle period is the duration of time that a particular server is not
processing calls. During this period, the server is said to be in
the “idle state.”

Busy period is the time during which a server is processing calls
without entering the idle state.

Queuing theory is used to estimate the values of these quantities and
their associated probability distributions. Under specified conditions,
their means (averages) and variances may be used as measures of
system performance.

When the probability distributions of these quantities are being
studied, two kinds of solutions are of interest. The first is a time-
dependent solution, and the second is the stationary solution.*™° In

the time-dependent case, the probability distribution depends on
the particular time ¢, and in general it also depends on the initial
probability distribution (i.e., at + = 0). In our analysis, let &(7) be
the queue length of a system at time 7. The probability distribution

of &(¢) similarly depends on time 7 as well as on the initial probability
distribution of &0). This is so because a queuing process is
basically a stochastic one in which the state of the system (e.g., the
number of callers present in the queue at time f) changes with a
particular parameter—usually with time—in a probabilistic manner.

Since the time-dependent solution of a queuing process is often
rather complicated, fruitful applications of queuing theory to
computer problems usually rely on methods for finding stationary
solutions. A probability distribution is stationary if it does not
depend on time z. The stationary solution is important because most
queuing processes have the ergodic property. That is, the process
tends towards statistical equilibrium regardless of its initial state.
Many queuing processes studied in computing systems have been
observed to rapidly approach statistical equilibrium. Thus, one can
usually apply the stationary approximation.'®

In order to predict averages of one or more of the quantities—queue
length, waiting time, queuing time, occupation time, idle period,

busy period—we must specify a system with a sufficiently large
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arrival
pattern

service
pattern

computer
queuing

number of callers or a sufficiently long time period. We must also
know the following:

e Arrival pattern
e Service pattern
e Service discipline

Thus, the average caller arrival rate and the statistical pattern of
arrivals must be known.

Suppose that callers arrive at a service facility at times 7, 7, -+,
1., - - , and the times are arranged in increasing order, i.e., 7, > 7,_;.
The random variables (7, — 7._,), where n > 1, are the interarrival
times, and they form a sequence of independent and identically
distributed random variables with a distribution

Plr, — 70y S x} = AWX)

If the interarrival times A(x) have a negative exponential distribution,
the arrival pattern constitutes a Poisson input to the system.’® In
this case

Ax) =1 —¢™™ 6}

where 1/ is the mean interarrival time. Cox and Smith™ show that
if the arrival time is exponential, the number of arrivals of customers
during time ¢ follows a Poisson distribution of parameter \ as given
by Equation 1 and by Equation C2 in Appendix C.

Another type of arrival pattern that is of interest is the regular
arrival, or constant input. In this case, the interarrival time is a
constant. An example of constant interarrival time is that of periodi-
cally updating a record of computation with the instant Greenwich
mean time (GMT).

In our discussion, we assume that when a server is available, the
service time is specified by a statistical distribution. We shall also
assume that the system has a single server (i.e., only one caller can be
served at a time). The service time x, of caller n, wheren = 1,2, - - -,
is assumed to be a sequence of independent indentically distributed
random variables with a general distribution of H(x). That is

P{x, £ x} = H(x)

With the increasing use of time-shared and real-time systems,
quewing conditions and their analyses are increasing in importance.
Recalling that queuing and congestion problems frequently exist in
computer systems where caller or service irregularities occur,
queuing often occurs where computing facilities are shared.

Under conditions of real-time data processing—including time-
sharing, guidance, and control-—computer response must be fast

enough to dynamically handle the processing demands. In a real-time
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industrial processing application, the computing system may control
an environment. In a time-sharing system, many terminal operators
may simultaneously use the computer, which responds as though
each user were the only one being served. This service can be achieved
only through fast computer response and complete computer
control over the various tasks (calls) to be performed. Consequently,
the delays that occur due to congestion in such computer systems
are of great concern to system designers and analysts.

The most important problem for queuing theory is the interaction
of the elements of time and system capacity. When applied to the
study of these elements, queuing theory can provide information
such as the following: response time (the interval between the arrival
of a call and the departure of results, including all waiting and service
times), throughput potential (the maximum rate at which calls can be
processed without the degradation of a processing facility), queue
length (which determines the queue storage requirements), and other
information that assists both in computer design and in program
analysis. The following are some authors who have contributed to
the analysis of queues in time-shared computer systems: E. G.
Coffman,*® L. Kleinrock,” '* B. Krishnamoorthi and R. C. Wood,*
N. R. Patel,** L. E. Schrage,”* and A. L. Scherr.”®

Although many existing queuing models may be useful in analyzing
modern computer systems, the systems analyst may often have to
develop new models or modifications of existing models to reflect
more closely the physical behavior of specific systems. In many
cases, new models are needed to describe queuing problems that are
growing in complexity.

The service discipline must be specified by which a caller is selected
for service out of all those awaiting service. The simplest discipline
is that of first-come first-served, which consists of serving callers in
order of arrival. There are other possibilities, such as a random
service wherein the next caller to be served is randomly selected
from the queue regardless of when that caller arrived. Another case
is the priority-service discipline in which the next caller is selected
from a queue on the basis of an assigned priority. We shall discuss
priority disciplines in greater detail later in this paper, but a brief
summary of concepts of priority queues is given here.

When calls to be processed by a computer are classified according to
the importance of their undelayed passage through the system, they
are said to be assigned a priority. For example, in a real-time system,
when the computer must be programmed so that during its normal
processing of a program it can always be interrupted by communica-
tions calls, such calls have the highest priority. A computer super-
vises and controls a communication system and must act sufficiently
fast when a message (or a message segment) is received from the
multiplexor to prevent a loss of data or overflow of main storage.
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This problem can be formulated as a priority queuing model, which
may be outlined as follows. A single server (i.e., the computer)
processes two types of calls: communications calls, which are put
in a high priority queue, and the normal processing calls, which are
processed on an as-available basis. Priority queuing analysis in
computer systems is also used in computer channel analysis'® and
in multiprogramming system analysis.””** The theory of priority
queues is treated in a number of sources, such as in References
29, 30, and 31.

A normal formulation of priority queues, based on Takacs’ dis-
cussion,” is as follows. Calls of different priorities arrive at a
facility for service. Let there be N classes of priorities, 1, 2, --- , N.
It is convenient to assume that an arriving call with a smaller
priority number (i.e., higher priority) has preference over a call with
a greater priority number. The calls are served by a single server in
order of priority (and in order of arrival within each priority class).
It is also often assumed that the input is a Poisson process with
parameter A\, for type-k priority calls, where k = 1, 2, --- , N.
Service times for k-type calls are assumed to be mutually independent,
positive, random variables with a distribution function H,(x). Two
types of service disciplines are of general interest.

Two types of priority service disciplines are of general interest.
One is the preemptive-resume discipline, wherein a server interrupts
the processing of its current call and immediately beings processing
a higher-priority call. When a lower-priority call—the one that was
preempted—returns to service, processing continues from the point
of interruption. In the nonpreemptive discipline, the server does not
interrupt the current processing. A higher-priority call waits and
obtains service immediately after the processing of the current
lower-priority call.

For these types of priority queuing systems, Cobham®*'** obtained
the first moment of the waiting time distribution. Miller** charac-
terized the limited distributions of the queue sizes and waiting
times. Gaver,*® Welch®® and Jaiswal®® studied the transient solutions
of this priority system. Takacs™ generalized the stationary solutions
of priority queues. The present author®” generalized the stationary
solutions of preemptive priority queues including other service
disciplines.

Other service disciplines of interest are preemptive-repeat-identical
and preemptive-repeat-different.”® In the case of the preemptive-
repeat-identical discipline, when a lower-priority caller whose place
has been preempted returns to processing, a service period of the
same duration as the one interrupted is commenced again at the
beginning. In the case of the preemptive-repeat-different discipline,
when the interruption is cleared, service of the lower-priority caller
begins again from the beginning but with a new independent service
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period. In both cases, the service time previously allocated for the
lower-priority caller before the interruption is wasted and makes
no contribution to the subsequent processing time.

Imbedded Markov chains

Since queuing is generally a stochastic process that is a function
of the time parameter ¢, a class of stochastic processes useful for
systems analysis is the Markouv process. A queue is said to exemplify a
Markov process if the present state of the system, including the
queue, is sufficient to predict a future state (e.g., queue length)
without knowledge of the past history of the system. By definition,
Markov processes are continuous in time. When the system is studied
at discrete time points, the collection of state probabilities constitutes
a Markov chain. Here we are considering only qualitative properties
of Markov chains. A mathematical definition of the Markov chain
is given in Appendix A.

D. G. Kendall introduced the concept of an imbedded Markov chain
because in practical cases queuing processes are not always Mar-
kovian nature. Kendall” suggests that a non-Markovian process can
be studied by extracting a set of points—called regeneration points—
at which the Markov property exists. He formally defines a regen-
eration point as an epoch at which a knowledge of the state of the
process has the characteristic Markovian consequence that a state-
ment of the past history of the process loses its predictive value. A
probabilistic definition of a regeneration point*® is as follows: an
epoch is a regeneration point for the stochastic process {&(¢)} if and
only if, for all t > 1, P{1&(D) | &(t0)} = PlE() | &(r)} for all + < ¢,
A group of epochs, ¢, (for i = 0, 1, 2, - - ), are regeneration points
if and only if, for all 1, < t < t,,,, P{E(D) | &)} = P{E() | &(x)} for
all 1,_, < 7 < 1.

As an example, consider a queuing process having Poisson input (M)
general service time (G), and a single server (1). (This is termed an
M/G/1 queuing process by Kendall’s queue-classification pro-
cedure.) It is Markovian if the present state of the process is described
by the pair of random variables £ and x, where ¢ is the instantaneous
queue size, and x is the expended service time of the customer who
is currently being served. In general, however, the queue ceases to be
Markovian if the state of the process is measured by the queue size
alone. An exception occurs when the service time is exponentially
distributed ; a characteristic property of the exponential distribution
ensures that a knowledge of the expended service time x has no
predictive value.

Hlustrative of a set of regeneration points are the times at which

callers depart from the system in the M/G/1 queueing process. Hence,
the queue lengths at these departure times constitute a Markov
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distributions

chain with an enumerable infinity of states that can be studied
through the theory of Markov chains.*® This technique, which is
useful in many queuing systems including priority queues, is called
the imbedded Markov chain technique because it involves the
extracting of a discrete-time Markov chain imbedded in the con-
tinuous-time process.

Another important contribution of Kendall is a formal proof of the
existence of a stationary solution for the M/G/1 queuing process if
the rraffic intensity (or system utilization) is less than unity. The
traffic intensity p is defined as the product of the input rate A and the
mean service time «. Intuitively, when the traffic intensity is less
than unity, the system should possess the characteristic “ergodic”
property®® of settling down into an equilibrium mode of behavior
independent of its initial state after the elapse of a sufficiently long
period of time. When p > 1 no such behavior is to be expected.
Kendall’s proof uses Feller’s general theory of recurrent events.
The stationary solutions of priority queues®**'*” are obtained by
using the method of the imbedded Markov chain. They are basically
extended solutions of Kendall’s M/G/1 queuing process. In order
to present some basic results, we use the mathematical notations
given in the analysis of M/G/1 queues in Appendix B.

We now review the technique for analyzing imbedded Markov
chains, which will be useful for the later analysis of priority queues.
Let the input to a single-server queuing system be a Poisson process
of parameter \. The service-time distribution is H(x), and the mean
service time is «. All the mathematical notations are given in Appen-
dix B, except that the subscript k is dropped since no priorities are
involved here. The callers are served in order of arrival. The station-

ary distributions of queue length, waiting time, and busy period are
to be found.

Queue length

Let r, and 7, (n = 1, 2, - - -) be representively the arrival time and
the departure time of the nth customer. Referring to the basic con-
cepts, we define £, to be the queue length immediately after the nth
customer’s departure. If £(?) is the queue length at time ¢, then by
definition ¢, = £(r,). As previously mentioned, Kendall recognized
that the queue length £(?) is not in general a Markov process, but
that regeneration points £,., and &, form a Markov chain. Therefore,
consider a sequence of such points &, &, -+ , £, -+ where £, = J,
(i.e., the nth departing customer leaves j customers in the system).
The next regeneration point, £,.,, is uniquely determined from £,,
and it is independent of £, , £, ., ---. The purpose of the analysis
is to determine the stationary probabilities of the queue length

P{En = ]} = Pi
where j = 0, 1,2, ---. To determine P;, we use the technique given
in Appendix C, according to which
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G(z) = Z_;) Pizj

From Equations C8 and C9 in Appendix C

(1 = Aa)yAd — 2)]

z — YNl — 2)]
Here \ is the Poisson process parameter, « is the average service
time, and ¢[M1 — 2z)] is given by the Laplace transform of the
service time distribution

Giz) =

Yis) = fm e " dH(x) and

©

YN — 2)] = f e MO IH(x)

Knowing G(z), P; can be determined by the following expression:

1 d
P=5w %), @
From Equation 2, specific probabilities have the following forms:
P, = G(0), P, = G'(0), P, = 1/2G"(0) - - -

To illustrate how the queue-size formulas can be used, consider the
following example. Let the service time be exponentially distributed:

Hx)=1—¢""
which yields

1
Vo = T ©)

The generating function G(z) is obtained from Equation C8:

=M= 1D 1=
0@ = 0 Fhall —2)] =1~ 1 = ez

Expanding Expanding G(z) in a geometric series,

Gz = (1 — \a) 2 (haz)
=0
the queue length probability P, is obtained as

P, = (I — M)

for j any integer greater than or equal to zero.

Waiting time

Another problem of single-server queuing theory is that of predict-
ing the waiting time of a caller that arrives and finds that there are j
callers in the system (i.e., the queue length is ;). In this case, if service
is in the order of arrival, the waiting time will be j — 1 service times
plus the time required to complete the current service (i.e., the call
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being served at the time or arrival). Thus, waiting time is related
directly to queue size.

The waiting time distribution can be determined from its Laplace
transform, which is derived explicitly from the generating function of
queue size in Appendix D with the following result:

1 — M\
) = TN = vos)

where Q(s) is the Laplace transform of the waiting time distribution.
Assuming the special case of exponentially distributed service time,
we obtain Q(s) by substituting Equation 3 into Equation D4, which
is developed in Appendix D

(1 — M) + as)
1 — A+ A

Q@) = 4

Inverting Equation 4 we obtain the result*’

W(x) = 1 — hae™ V"

Busy period

If a server is free at time zero, and if a caller is served from that
instant until time b (when the caller departs and the queue is empty),
the time interval (0, b) is a busy period. These periods typically
alternate with idle periods. Thus if the next caller arrives at time c,
the time interval (b, ¢) is an idle period. In a Poisson-input case,
the idle period can be shown to follow a negative exponential distri-
bution that was previously discussed in connection with the arrival
patterns.

Kendall” suggests that the busy period be found as follows. Let
the caller whose arrival initiates a busy period be called the
“ancestor,” which constitutes the zero-order “generation.” During
the ancestor’s service time, let n, more callers arrive; these callers
constitute the first-order generation. During the first-generation
service time, let n, more callers arrive, forming the second-order
generation, and so on. The busy period terminates when the “family”’
becomes extinct, i.e., when an idle period intervenes between two
such busy periods. Kandall was able to determine the busy-period
using this familiar analogy. We shall, however, use the simpler
method of Takacs,* who obtains equivalent results. The busy
period distribution is treated mathematically in Appendix E; here
we merely state Takacs’ results.

The busy period distribution is again given as a Laplace transform
from a functional equation as follows:

() = ¢i{s + A1l — v}

where y(s) is the Laplace transform of the busy-period distribution.
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This is a functional equation, first given by Kendall,” wherein v(s)
cannot be explicitly determined in general. In the case of exponential
service time, however, v(s) can be explicitly determined as

o+ s+ N—[(1/a + 5+ N — a\/a]”®
() = )

This may be inverted to give

e—(l/a+)\)111 [2x()\/a)1/2]
x()\a)l/z

where I,(x) is the Bessel function of the first kind.

D(x) =

In queuing theory, there are only a few special cases, such as the
exponential service time case, in which the waiting-time and the
queue-size distributions can be inverted directly from Q(s) and G(z).
In other cases, we obtain the moments of the respective random
variables from Q(s) and G(z) by differentiating these expressions
using the technique to be presented now. Such moments as mean
waiting time and the variance of the waiting time, are used as per-
formance measures of the system. On the other hand, inversion
techniques*® have been developed to approximate the waiting-time
distribution from its Laplace-Stieltjes transform. In either case,
we shall emphasize the derivation of generating functions and
Laplace-Stieltjes transforms in our analysis, since these consititute
standard techniques in queuing theory.'®''**** The inversion
techniques are of practical interest, but belong to another branch
of mathematics and should be studied separately from research
in queuing theory. Knowing the Laplace transforms, the moments
of a distribution can be easily obtained by differentiating the trans-
form. In general, the rth moment of the waiting-time distribution
can be deduced by using the following formula:
W = f x" dW(x) = (—1)’f <£;e_"> dW(x)
0 0 ds $=0
d s)
ds” |so
More specifically, the first and second moments of the waiting time
are expressed as follows:

= (1) ()

>\2(a(2))2 )\a(.’i)
2(1 — A’ + 3(1 — )

(2)
W —

The average queue length and its moments can be obtained from
the queue length generating function G(z) directly. Thus, from
Equation C6 we obtain the class of generating functions represented
by the following examples:

G'(z) = ;} Pjz ! (6)
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Figure 1

illustrative
computations

Probability density func-
tion of the Erlang-m
distribution

and

©

G = 2 jG — HPzZ® (7

i=0

The average queue length L, and the second moment L2 can be
obtained from Equations 6 and 7 as follows:

o 2 (2)
L= Y0P, = 6@ =G = 555+ ha ®

L= 2. /°P; = G"(1) + G’(1)

More importantly, in terms of statistical analysis, the variance of
the queue length ¢} is given as
o )\3(1(3) )\4(a(2))2
2 — 2 — 2 —
%t = Lo = L= 30 ey T AL — )

L NG = 2aee®
2(1 — )

We now use some of the concepts previously given for performing
illustrative numerical computations. First we define a useful class
of the service time distributions, the Erlang-m distributions, which
are known to statisticians as a special class of “gamma functions.”
When the parameter m is an integer, the following type of gamma
distribution is designated “Erlang” in honor of that pioneer’s contri-
butions to queuing theory. Here H(x) is a function that represents
service-time distributions

+ Al — Aa) )

m—1 k

He) = 1 — e mere S (X/a) (10)
k=0 k!

In Equation 10, « is the mean service time. The parameter m deter-

mines the shape of the Erlang distribution as illustrated in Figure 1.

In the Erlang-1 case, m = 1, and H(x) is an exponential service-

time distribution
Hx) =1 — e

Given the Erlang-« case, m is infinite, and H(x) is a constant service-
time distribution

i <
H(x)={0 if 0<x<a
1 if x2a«

Intermediate Erlang-m values yield a family of service-time distri-
bution curves. If the type of distribution is known, service times
can be computed by means of Equation 10.

The probability density function A(x), which is defined as the first
derivative of H(x)
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is plotted in Figure 1 for three values of the parameter m. Higher
moments of the Erlang-m distribution is obtained as follows:

. r+ m— 1) .
a'” =“—(m—_‘-1—)!—‘(a/m)

where « is the average service time, and o is the moment.

The server utilzation p, or traffic intensity is given as
p = A (11

With these concepts and refering to Equations 8 and 9 in the pre-
vious discussion of mean values and moments, we can plot the
following server utilization distributions: average queue length
(Figure 2), standard deviation of queue length (Figure 3), waiting
time (Figure 4), and the standard deviation of the normalized mean
waiting time (Figure 5). (The standard deviation is defined as the
positive square root of the variance.)

As a numerical example, consider interference in a channel in which
the computer is operating in the multiplex mode. Assume an average
time of 0.4 milliseconds for storing the status of general-purpose
registers, transferring a single byte of data, and restoring the general-
purpose registers to their previous states. The channel serves a
number of communications facilities, thereby having a total input
rate of 0.5 kilobytes per second. The problem is to calculate the
average queue length in bytes and the length of time each byte
waits. Thus

o = 0.4 milliseconds® and
A = 500 bytes per second

The second moment of the service time is used in determining the
average waiting time and queue length, as illustrated by Equation 8.
We must know the service time distribution in order to find service
time moments. In our example, however, the service time distribu-
tion is not of major concern because referring to Equation 11

p = Aa = 0.0004 X 500 = 0.2

From Figures 2 and 4, it is apparent that the variation of service
time should not significantly affect the result. (In the case of high
utilization, the service time distribution is important in the analysis.)
If we assume that the service time is a constant, that is

 then
= & = 0.16 milliseconds®
The average queue length is

2 (2
)\a()

= m + Aa = 0.225 bytes

L,
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Figure 2 Average queue length
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and the average waiting time is

2
xa( }

we = = 0.05 milliseconds

T 2(1 — )

Priority queues

We now use the techniques of imbedded Markov chains to analyze
several classes of priority queues for the following stationary distri-
butions: queue length, waiting time, queuing time, and busy period.
These priority queues were previously defined and discussed within
the context of service discipline. In order to specify these service
disciplines, consider the previously discussed formulation of priority
queues. There are N priority classes, each with independent Poisson
processes of parameter \,, where k = 1, 2, --- N. These processes
constitute inputs to a single-server system. Let the lower priority
number indicate the higher priority, and let H,(x) be the service-
time distribution for priority class k.

The modeling of a priority queueing system is a two-step procedure.
We first treat the system as though no priorities are involved. Every
caller is served on a first-come first-served basis. A queue-length
generating function for an imbedded Markov chain previously
discussed, is derived as shown in Appendix C for a queuing model
having no priorities. We then take into consideration the effect
of the priorities by modifying the results obtained in the first step
to reflect the influence of caller priorities on the waiting-time distri-
bution.

Preparatory to discussing the priority queuing systems, some addi-
tional concepts must be defined. Let the sum of the Poisson-process
parameters be expressed as follows:

k
Ak = Z )\i
=1

Each input is a Poisson process of parameter \,, therefore the sum
A, is also a Poisson process.” Also, let the Laplace-Stieltjes transforms
of the weighted service-time distributions be

k

) = 3 L V(o) (12)

t=0

Ai
T Yals)
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In a priority queuing system, two priority-service disciplines are
of interest—the preemptive-resume and the non-preemptive disci-
plines. Their stationary solutions are now presented.

In a preemptive-resume priority system, the presence of callers of
priority numbers greater than k does not influence the stochastic
law of the waiting time of callers with priority numbers less than
or equal to k.) Thus, callers with priority numbers greater than k
are considered as not present in the system when studying the waiting
time of callers with priorities less than or equal to k. To determine
the stationary distribution of the waiting time for priority-class k,
we first consider a modified queuing process with the following
characteristics: a Poisson input of A, a service time distribution
that is weighted by the input rates and characterized by y¢,(s) as
defined in Equation 12, and a single server. The generating function
can be obtained by using the technique of the imbedded Markov
chain previously discussed. The Laplace-Stieltjes transform of the
waiting time in this modified queuing process can be obtained from
Equation D4 of Appendix D

1 — Akak
AL — )]
N

(13)

Q@) =
1

If A,a, is less than one, a stationary solution exists. If A,a, is greater
than or equal to one, there is no stationary solution® for priority
classes less than or equal to k.

The waiting-time distribution W,(x) for the priority-k caller is
obtained from Equation 13 in the following way. During the waiting
time of the modified queuing process, assume that there are j (j =
0, 1, --) arrivals of priority number less than k. The additional
delay experienced by the caller with priority number k is then identi-
cal to the total of j independent busy periods in a single-server
queuing process with Poisson input A, , and a service time distri-
bution characterized by ¥, ,(s). Let D, (x) be the distribution
function of the length of a busy period in this process, and «,_,(s)
be the Laplace-Stieltjes transform of D, (x). From Equation E2
we can complete the formulation of the transform as follows:

Yi-1(8) = \I’kq{S + A1 — 'Yk—l(s)]} (14)

Using similar reasoning to that given for Equation E1, we obtain from
Equation (3 the following Laplace-Stieltjes transform of the wait-
ing-time distribution for priority class k:

() = Q{6 + Al — v @1

Using the same line of thought, the Laplace-Stieltjes transform
6.(s) of the queuing-time distribution is found to be

0:(s) = Qk(s)!//k{s + Al — ’Yk~1(s)]}
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This equation shows that during the service of priority k callers
under the preemptive-resume service discipline, other callers with
priority numbers less than k may arrive and preempt the service.

In the previously defined nonpreemptive service discipline, service
time of a caller of any priority class is not interruptable. Conse-
quently the presence of a low-priority call can affect the waiting time
of a high-priority call. For example, if a low-priority call is being
served when a call of a high-priority class arrives, the high-priority
call must wait for completion of the lower-priority service before
service begins. Calls of low priority receive immediate service when
no calls of higher priority are waiting.

To find the waiting-time stationary distribution for priority class k,
we use an approach similar to the one presented in the preemptive-
resume priority queues. The generating function for this case,
however, is slightly more complicated than the one for preemptive
resume service. Consider a queuing process in which callers are
classified into two queues. Let £,(k) be the queue length of calls
having priority classes less than or equal to k, and let £/(k) be the
queue length of priority classes greater than k at the nth departure.
The nth caller can be of any priority class. We now formulate the
generating function for £,(k).

For a stationary process, §,.,(k) and £,(k) have the same probability
distribution, and are related by

Ek) — 1+, if E(KR)>0

if &(k) =0and &(k) =0
(i.e., both queues are empty,
and the next call is of prior-

_ ity class less than or equal
£n+1(k) =93 to k)

Vn+1

if £(k) = 0and £(k) > 0
(or the next call is of priority
class greater than k if £,(k) =
0 and £/(k) = 0)

Here, v,., is the number of new calls of priority classes less than or
equal to k, if the n + st service is of priority class less than or equal
to k. The parameter »,,, is the number of new calls of priority
classes less than or equal to k if the n 4+ st service is of priority
class greater than k.

Let U,(z2) be the generating function of £,(k) so that

Udz) = Z Pt (k) = j}z' (16)

CHANG IBM SYST J




Thus the probability that £(k) is zero is expressed as follows:
PlE (k) = 0} = U 0)

Notice that Equation 15 expresses the following three mutually
exclusive events:

o (k) > 0, and the next arrival is of priority class less than or
equal to k. The first event, £,(k) > 0, is represented by the generat-
ing function

Ui(z) ___Ulc(o)

V4
£.(k) = 0 and £(k) = 0, and the next service is of priority class
less than or equal to k. This event occurs with probability
(A,/A)P,, where P, is the probability that the system is empty.

£k) = 0 and &(k) > 0, and the next service is of priority class
greater than k. The third event occurs with a probability of
U0) — (A./A)P,, where P, is the probability that the system
is empty, and

Py,=1— :V_: )\,'Olqt
i=1

Forming the generating functions on both sides of Equation 15 and
using the technique of the imbedded Markov chain as given in the
Appendices, we obtain Takacs’ expression® for the generating
function of £,(k)

Ay
Ui@ = [Uz) — UONIA(L — 2)] + 7= Poli[Au(l — 2)]

+ [Uk(O) - Po]cbk[Ak(l ) an

Equation 17 generates the queue lengths of priority classes less than
or equal to k at every departing instant, including the departure of
those callers of priority classes greater than k. We now obtain a
relation similar to the one in Equation D3 in Appendix D, which
allows us to obtain the Laplace-Stieltjes transform of the waiting-
time distribution from the queue-size generating function. We
formulate the queue-size generating function observed by a departing
caller of priority class less than or equal to k by Takacs’ method.

In Equation 17, the n + Ist customer is of priority class less than
or equal to k, if the service-time distribution is of priority class less
than or equal to k. Hence, the partial generating function of the
right-hand side of Equation 17

[&—_z@ + (2)p, ot - o
z A"

represents a departing caller of priority class less than or equal to k.
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waiting-time
moment
calculations

Takacs called this generating function G*(z). (Note that Takacs
actually uses G(z) in Reference 29; we add the asterisk to denote a
modified queuing process.) The generating function of the queue
size, G(z), observed by a departure of priority class less than or
equal to k, can be obtained from G*%(z) by the following normaliza-
tion:

Gi@)
Gi(1)

The Laplace-Stieltjes transform of the waiting time distribution of
the modified queuing process is given by

Gi(z) =

Gi(z) = Qi[A(1 — D)I[A(L — 2)]
If we replace A, (1 — z) by s, we obtain

1 - _}_‘, Na; + (Ay — A)®(s)

Vi) = = Al — Wi(s))/s o

Finally, the Laplace-Stieltjes transform of the waiting time distri-
bution for customers of priority class k is obtained in a way similar
to the case of the preemptive-resume discipline as follows:

Qi(s) = Q’Z{S + Al — ')’k—l(s)]}

The Laplace-Stieltjes transform of the queuing time distribution is
represented as

0i(s) = Qu(s)¥i(s)

The transform takes this form because the service time of priority k&
cannot be interruptable during its service by any new arrivals of
priority classes less than k.

When a stationary solution exists (i.e., the Laplace transform of the
waiting time exists), the moments such as the mean waiting time can
be obtained by differentiating the Laplace transform as given in
Equation 5. Let a{” be the rth moment of the weighted service
time distribution

dr k A
o = (=1 F V)| = 2 e
] i=1 k

=0

where ¥ ,(s) is given in Equation 12.

To find the waiting-time moments, the first step is to find the busy
period moments by differentiating Equation 14. For example, the
first two moments of the busy period distribution are the following:

(1)
b = =
- (1)
1 — Apqaesy
(2)
4 Q-1
k-1 = (173

[1 — Apianl,
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The next step is to find an expression for the moment of the modified
waiting time distribution, W# ‘", by differentiating Q%(s) in Equation
18. Since we have two expressions for Q%(s), preemptive and non-
preemptive, we have the following two cases:

Case 1 Preemptive-resume discipline

(2)
Aka

% (1) — —
Wi = 3 — Al

A (3) A (2)
§x)) + k[ ]

% (2) —
Wi M — Aa”] 201 — Aatt]
Case 2 Nonpreemptive discipline

A;va(2)
T2 — Aalt]

R Aka(”]

(D
Wi =

30 - aa T

Finally, we compute the waiting-time moments from Q,(s) by dif-
ferentiating as follows:

w = WEDA A+ Mead) =

and
W = WEOI + Aadi BT+ WEY Ad?

*(2) W;T(I)A a(2>
k—1
- (1 2 + 1
[l—Akla) [1 — Ay, a1

Since both W and W™ apply to Case 1 as well as Case 2, the
following numerical examples are similarly separated into two cases.

Let the inputs to a priority queuing system be numerical
A= A, = Ay = 0.3 calls/second examples
The average times are all the same

= | second
and identically distributed with the same exponential distribution
H(x) = Hy(x) = Hs(x) =1 — ¢ "

To calculate the mean waiting times for both types of priority
disciplines, we first construct the Laplace transforms of the service-
time distributions

Yi(s) = ¥o(s) = Pa(s) =

1
s+ 1
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The weighted service-time distributions have the following Laplace
transforms

V6 = %) =

_ M) + Aaial(s) _ {
Vo) = A+ A Ts41

Vy(s) = M(s) + Aaibals) + Ass(s) _ 1
: A + A + )\3 s+ 1
The weighted service-time moments (from Equation 12) are the

following:

a’ = 1 second

(1) (1)
= a, = a;

(2) (2) (2)
a = = 3

= o = a¥ = 2 seconds’

Let the busy periods for the priority system be defined as follows:

diV is the busy period of the server for the first priority class.
d" is the busy period of the server for the first and second
priorities.

d;V is the busy period of the server for all three classes.

In this example, the mean busy periods for the three priority classes
are as follows:

4V = 1_*10_3. = 1.429 seconds

1

W= = 2 .5 seconds

& 1 —03—023 23
1

_ d
1 —03—03 <03 !0scconds

1)
di =

The mean waiting times for the two cases can now be calculated.

Case 1 Preemptive-resume discipline
Mean waiting time for the first priority:

0.3 X2
O = == = 0,855 seconds
! i—o03_ 08
wiV = w¥ = 0.855 seconds
Meaning waiting time for the second priority:

0.6 X 2
# ) S = d
W3 { 0.3 03 3 seconds

Wy = wEVU + MdiY) = 3 X 1.436 = 4.31 seconds

Mean waiting time for the third priority:

wr? = 09 X 2 = 18 seconds

1—03—03—103
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Figure 6 Real-time, terminal-oriented system

TERMINALS

e et

LOW-SPEED LINES - CHANNEL

]
MULTIPLEX
CHANNEL

HIGH-SPEED LINES CHANNEL

* (1)
) _wr _1% — 45 seconds

8 - 1_— )\101 —_ )\2a2 0.

Case 2 Nonpreemptive discipline
Mean waiting time for the first priority:

0.9 X 2

= 2.57 seconds
1—10.3 257

o
w¥ =

& = 2.57 seconds
Mean waiting time for the second priority:

Lo 09X2

e s 4.5 seconds

s = l_ﬂ:% = 6.4 seconds

Mean waiting time for the third priority:

= 18 seconds

w (D _ 0.9 X 2
8 1—-03—0.3—0.3

18

—_— = second
103 —o03 15 seconds

Wi’ =
The mean waiting times of the first and second priorities in Case 2
are higher than those for Case 1 because the server in Case 2 com-
pletes the execution of a lower-priority call in service before inter-
rupted to serve a higher-priority call.

Example terminal-oriented system

We now analyze a hypothetical real-time airline reservation system to
illustrate the use of the queuing models presented in this paper for
computing average system response time. In the overall system,
shown in Figure 6, messages are sent and received between remote
terminals and the data center through high-speed and low-speed
teletype lines.
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In the hypothetical network, several high-speed lines are rated at
600 characters per second, and low-speed lines are rated at 14 char-
acters per second. Input messages have an average length of 27
characters with an assumed Erlang-2 distribution as shown in
Figure 1. Output messages from the data center have an average
length of 90 characters with an assumed Erlang-3 distribution.

Both high-speed and low-speed lines are half-duplex data links,
wherein input and output messages are sent through the same line.
We also assume a one-to-one ratio of input to output messages, i.c.,
for every input message there is an output message.

high-speed  We begin by breaking down the system and analyzing its parts,

line analysis starting with an analysis of the high-speed lines. During peak-traffic

periods, high-speed lines are assumed to have an input traffic rate

of 3 messages per second per line, which are acquired by the computer

through the process of polling. Polling messages are 3 characters in

length. To further simplify the analysis, we assume that an input

Figure 7 Queuing model of a message has an average length of 30 characters (i.e., 27 data charac-

communication line ters plus 3 polling characters). Qutput messages have a higher priority

. than input messages. Referring to Figure 7, the high-speed communi-

| OUTPUT

|
|

QUEUE A, cations problem can be formulated as a priority queuing system as

T follows:
HIGH-SPEED
LINE

.
M = 3 messages/second

X\, = 3 messages/second

Average service times for output messages (Erlang-3 case) are the
following:

alV = % = 0.15 seconds

(2)
(o2} =

BG+2—1) <a_1>2 _ 4 X3X2(0.15°
T2 X

3 -1y 3 1 9

= 0.03 seconds’

Average service times for input messages (Erlang-2 case) are the
following:
[ 30

= —— = (.05 seconds
as 500 0.05

o 242 —=1) (0.05)2 2
= = 0. seconds
a 21y 5 0.00375

Using the nonpreemptive-priority-queuing formula, we find the
following average waiting times:

Output message

o = e + Aot 3 X 0.03 4 3 X 0.00375
! 2[1 — a1 2(1 — 3 X 0.15)

0.092 seconds
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Input message

_ Mei® 4 A
T 20— Al — M2 — AP

= (.154 seconds

(1)
W,

Thus, the average response time for the input message plus the output
message in a high-speed communication line is as follows:

ro= W el W 4 el
c 1
= 0.092 + 0.15 4 0.154 4 0.05 = 0.446 seconds

To analyze the low-speed lines, we single out the line with the highest
peak traffic (worst-case line). Certain facts must be provided by the
customer such as the following. The average service time for an
input message is 2 seconds, and the average service time for an output
message is 6 seconds. Thus, we can compute the delay (waiting time)
and response time for the given line traffic using a method similar to
that of high-speed line analysis.

We now discuss the effect of the CPU. A real-time teleprocessing
system of the type illustrated by Figure 6 is often organized as a
priority queuing system, wherein important tasks are processed by
the computer immediately upon arrival. In the following analysis,
the CPU has 4 processing queues (or queue lists) as shown in
Figure 8. Input messages arriving from the communication network
and output messages ready for transmission are handled in the
communication queue A, (highest priority).

Since the data base (customer’s records, etc.) may be too large for
main storage, it is often stored on disk files. Thus, an incoming
message must be processed against this data base, requiring a number
of 1/0 accesses to the data base. (For efficiency, the CPU is often
programmed in a multiprogramming mode, i.e., after an 1/0 access
is made, the computer may process other tasks.) After the 1/0 data
is in main storage, the computer is called to process messages. The
I/0-ready records are the “‘callers,” and they may be placed in a
second-priority queue, the I/0 Ready List \,.

Message processing itself is handled by the third-priority queue A;.
Again, background programs can be run on an as-available basis.
These have the fourth priority and are stacked in the fourth queue \,.

We use a preemptive priority queuing model to analyze this system.
Let the total input plus output message rate of the first queue during
a peak-traffic period be the following:

A = 10 input plus output messages,/second

Assuming an Erlang-2 service-time distribution with a mean service
time of 15 milliseconds, we have the following:

¥ = 15 milliseconds = 0.015 seconds
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2
@ = % (9%1_5> = 0.00034 seconds’

Assuming an average of 6 1/0 accesses per message, then
X = 60 accesses/second

Also assuming that for each access a constant CPU processing time
of 3 milliseconds is required, then

af? = 0.003 seconds

af? = 0.000009 seconds’

For the message processing queue, we assume that the processing
time (service time) has an Erlang-3 distribution with an average of
30 milliseconds. Thus

A; = A\, = 10 message/second

al” = 0.03 seconds

@ _ 4X3X 2003
BT T X 9

= 0.0012 seconds®

The average waiting time for the communication queue X, is

o _ 10X 000034

= = 0.002 seconds
2(1 — 10 X 0.015) 0.00
The average waiting time for the 1/0 ready list A, is

10 X 0.00034 + 60 X 0.000009
2(1 — 10 X 0.015)(1 — 10 X 0.015 — 60 X 0.003)

e
W, =

0.00394

= = (. d
2% 0.85 X 0.77 0.0031 seconds

The average waiting time in the message-processing queue Az is

10 X 0.00034 + 60 X 0.000009 + 10 X 0.0012

- 2(1 — 10 X 0.015 — 60 X 0.003)(1 — 10 X 0.015 — 60 X 0.003 — 10 X 0.003)

T 2% 0.77 X 0.47

0.00514

= 0.0071 seconds

Omitting background jobs, which would have been similarly com-
puted, the average response time for a message in our hypothetical
system is computed as follows:

T, = Wi" + oV + 6[w;" + a1+ Wi + ag”
= 0.0917 seconds

disk-file Assume an auxiliary storage of 8 disk files, which are connected to
analysis 2 channels, i.e., 4 files to each channel. In addition to disks, which
are used for real-time applications, an unspecified number of tape
drives are also attached to the channels. The configuration for one
of the two channels is shown in Figure 9. Assume that the traffic
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(/O accesses) is evenly divided among the disks. Also, the time Figure 9 Model of a disk system
required for a channel to serve a desk request is calculated as a sum

of rotational delay time plus data transfer time, which is a variable

quantity that depends on record length. Thus, the average rotational

delay equals 17 milliseconds, and the data transfer time (variable) craeL
equals 10 milliseconds. ] CHANNEL

Since the channel may also serve other devices, the average channel

service time additionally depends on service parameters of those

devices. Assuming a mean channel service time of 30 milliseconds OTHER 10 DEVICES
and a variance of 1000 milliseconds, we use a single-server queuing

formula to compute the channel waiting time and its variance. For

example, assume that for a certain traffic rate on the channel, we

obtain the following data: The average channel waiting time is

W, = 10 milliseconds
and the variance is
o} = 100 milliseconds’

With the disk system cascaded, we can modify the service time of
a disk to include the service time and the waiting time of a channel.
Although this additive model is an approximation, we know that
the channel time is small compared to the service time (disk arm
motion) and, therefore, expect a reasonably accurate result. Assume
that the arm-motion time in a disk file has the following statistics:

al’ = 100 milliseconds average arm motion time
ot = 15000 milliseconds® second moment of the arm motion

Service time computations for the simplified disk-channel model Figure 10 Simplified model
(shown in Figure 10) are obtained as follows:

va—e ||| CHANNEL

a™ = 100 4 30 4 10 = 140 milliseconds average service time

The variance of the service time is

o’ = 15000 — 100° + 1000 + 100 = 6100 milliseconds’
The second moment of the service time is

o = (140)° + 6100 = 24700 milliseconds”

(Note that the second moment is equal to the square of the mean
plus the variance.) The traffic rate is

A = 60/2 = 30 accesses per second per channel (i.e. 30/4 accesses
per second per disk)

The average waiting time on a disk

- (30/4)(24700/10°%)

T 20 — (30/4)0.14)] 0.46 seconds
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The average response time for a disk is
T, = 0.46 4+ 0.140 = 0.60 seconds

The total average response time can now be calculated for a terminal
attached to a high-speed line as follows:

T=T,+ 6T, 4+ T, =0.446 + 6 X 0.60 4+ 0.0917
= 4,138 seconds

Thus, disk files form a complex queuing system in which we re-
peatedly apply the single-server quening analysis. First the channel
is considered as a single-server queue, and its waiting time and
moments are computed. The disk-file system is then considered, and
channel delays are added to disk service times. A single disk is
treated as a single server with a traffic rate equal to that of the other
disks. Effects of other approximations are discussed in Reference 19.

Although one may calculate second moments in each model and
thereby calculate the total response-time variance as a sum of the
individual variances, the procedure may not yield sufficiently accurate
results because the variance is sensitive to the assumptions made in
the simplified model. Such a procedure should only be used to give
the analyst an idea of the degree of variation of the total response
time. For a more detailed analysis, simulation techniques should be
used.

Concluding remarks

Queuing theory has proved useful for analyzing service and conges-
tion in many computer subsystems. Emphasis here has been on the
basic principles and logical steps required to solve queuing problems
because many variations of computer congestion problems do not
fit standard models. Thus single-server queuing processes with
random input, general service times, and priorities are reviewed.
Waiting-time, response-time, and busy-period distributions are found
by using their Laplace transforms. Queue-size distribution is ob-
tained from the queue-size generating function. Methods of deter-
mining the means and second moments are also given. To further
aid the analyst in creating his own model, the technique of imbedded
Markov chains is presented.

Several examples are presented to illustrate these various techniques.
Both the utility and limits of queuing analysis are illustrated by a
detailed analysis of a practical (but hypothetical) teleprocessing
system and communication network. This example implies that the
present state of the art of queuning theory does not permit the detailed
analysis of a complete system, but it is useful for subsystem analysis.
Advanced research in computer queuing analysis currently includes

22,43 ,44

the study of time-sharing algorithms and multiserver systems.
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Appendix A: Markov chain

A sequence of random variables £, &, --- £ --- , where each
random variable may assume any integer value or zero, forms a
Markov chain if for all n (where n = 1,2, 3, - - -) and for all possible
values of the random variables &,
P{Sn = jlgo = iOaE] = ila tte ’gn‘l = in—l}

= P{Sn =] I oy = in—l}

If £, = j, the system is in state j at the nth step. The probability
distribution of the random variable £,

for j any integer value greater than or equal to zero, is called the
“initial distribution.” The conditional probabilities

PlE, = j |ty = i}
are called the “transition probabilities” and are often given in

matrix form.

If we know the initial probability distribution
P {So = j}
where j = 0, 1,2, «--

and transition probabilities in a Markov chain, then we can uniquely
determine the probability distribution of each random variable

E"(n = 1, 2’ )
by the following formula:
Z—O P{gn = .] | ‘Efr—l = i}P{En—l = l}

wheren = 1,2, ++-

A Markov chain is called “homogeneous” if the transition probabil-
ities are independent of n. Let P;; be defined as

p,; = P{£n=j|£n—1 = i}
A probability distribution is stationary if it is independent of n
P{En = ]} = Pi

The stationary probability distribution of a homogeneous Markov
chain can be found by solving the following equation:

P, = Z PP,

where j = 0,1, «--
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In the case of a finite Markov chain, i.e., the number of states in the
system is N, the probability P; (where j = 0, 1, -+ -, N¥) can be found
by solving the N + 1 linear equations

N
P; = 3 PP
i=0

and

N
pr=1
i=0

When there is an infinite number of states, i.e., N = o, P; can be
determined by the generating function technique discussed in
Appendix C.

Appendix B: Notations in an M/G/1 queuing process

Let the service times for priority k customers be mutually inde-
pendent, positive random variables with a distribution function
H,(x). When there is only one kind of call present in the system
(i.e., there are no priorities), the subscript k is dropped.

It is convenient to use the Laplace-Stieltjes transforms of the distri-
tions H,, W,, and T, as used in Equations B1, B3, and BS.
Let

v = [ o ame
0
and the rth moment is given as
ay = f x" dH(x)
0

The first moment of Equation B2
o = Ol)(cl)

is the mean service time for the priority k caller. Referring to Equa-
tion B4, where W (x) is the stationary waiting-time distribution for
callers of priority-class k, we define the second Laplace-Stieltjes
transform by

Q.(s) = _/:o e T dW(x) (B3)
where the »th moment is given by

W = fo i x" dW(x) (B4)
Further in Equation B6, where T\(x) is the stationary response time

distribution (i.e., waiting time plus service time) for calls of priority
class k, the third transform is defined as follows:

0,(s) = /0“’ e 7 dT,(x) (BS)
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and the rth moment is given by

T = f x" dTu(x) (B6)
0

Let P;(k) be the probability that the queue length is j for priority
classes less than or equal to k, when the system is observed at the
end of service of a priority class less than or equal to k. Define the
generating function

Giz) = i Pi(k)zi

In a priority queuing system, busy period for priority class less than
or equal to k is defined as beginning when a call of priority class less
than or equal to k finds the server free of calls of priority classes less
than or equal to k and continuing until the instant at which the server
is again free of calls of priority classes less than or equal to k. Let
D (x) be the busy period distribution for priority classes less than
or equal to k, and define the Laplace transform

Yi(s) = fo e " dDi(x)

and the moments of the busy-period distribution as

4’ = f x" dDy(x)
4]

Appendix C: Queue length distribution

Let », be the number of calls that arrive during the service of the nth
caller, where v, is a conditional random variable that depends on the
service time. The probability distribution of », can be determined as
follows. Let x, be the service time of the nth customer. Then

i |x = x} dH(x) 1)

Using as input a Poisson process of parameter A\, we have from
Reference 16

_ ()\x)i€7XI

(C2)
i!

P{VnziIXn:x}

Substituting Equation C2 into Equation C1 yields the probability
distribution

o i —Az
Py, = i} = fo Q‘~x3—!e— dH(x)

The queue lengths £,., and £, and the number of calls received during
the service of the nth caller are related by the following equation

fur = {5" Tl S >0 ©3)

Vr+1 if £ =
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Equation C3 can be explained as follows. When £, > 0, the head of
the queue of &, becomes the n - lIst caller, entering the service
at time ¢ = 7/ and leaving at time ¢ = 7/, ,. If »,,, = 0, the queue size
at t = /., in the system is reduced by one because the n - Ist
caller has just left the system. Since, in general, »,,, callers arrive
during the service time of the n 4 1st caller, we have

£n+1 = En -1 + Va+1

However, if £, = 0, the system is empty immediately after +/. In
this case, the n -+ 1st caller arrives at r,,,, where 7,., > 7/ and leaves
at 7/.,. Thus 7/,, — 7, is the service time of the n + Ist caller.
If v,,, new callers arrive during the service time of the n -+ Ist
caller, then when the n + 1st departs, »,,, callers are present in the
system. Hence

€n+1 = Vot

If we introduce a notation
+ {a if a>20
a =
0 if a<0
then the queue lengths in Equation C3 can be written as

En+1 = (Eu - 1)Jr + Vn+1 (C4)

Assuming that the stationary distribution of the queue length exists,
then ¢,., and £, must have the same marginal distribution. (See
Reference 7 for aid in proving the existence of a stationary distribu-
tion under the condition Ae < 1, where « is the average service
time.) For our purpose here, we shall particularize the suggested
proof by showing that if Ae < 1, a stationary distribution of &,
exists. The £, callers form an imbedded Markov chain, which we
study by using the generating functions discussed in Reference 39.
The generating function for », can be written as

Ply, = i}z’ = f Z —*O\i):) z'e ™ dH(x)
=0 0 .

=0

fw e GH(x) = YN — 2)] (C5)

Equation C5 implies that if we replace s in y(s) by M1 — z), we
obtain the generating function of »,.

Define the probability that there are j callers in queue of length £, as

P{£n=J}=P1

and define a new generating function G(z) for P, as
Giz) = Y Pz (C6)
iz

If the stationary solution in queue length exists, &,., and &, must
have the same marginal distribution. Their generating functions
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must also be the same. If we let T'(z) be the generating function of
(En - 1)+, then

@) = E "' = P, + P, + Pz + P> + -

Py + G(z) Z—— P,

From Equation C4, £, is the sum of two random variables, v,
and (£, — 1% Using the theorem that the generating function of
the sum of two independent variables is the product of the two
generating functions,” it follows that

6@ = [Po 4 G(Z)—Z_i] YN — 2)] C7)

It should be noted that in a stationary process £,., and &, must have
the same generating function as given in Equation C5. Solving for
G(z2) in Equation C7, we obtain

Poz — DYINI — 2)]
2 — ¢ — 2 €8

where P, remains to be determined. From Equation C8, since

dop =1

then from Equation C6

G(z) =

G(l) =1

By Equation C5

YN — D))o = W0) = 1
and

= DY — )],
L= Py lim =7 4 — 2)

Using the L’Hospital’s rule

1
=P wo
However

Y'(0) = —fmde(x) = —q

)

the negative average service time. Thus
Py =1 — Ae (C9)

If A in Equation C9 is greater than 1, this leads to a contradiction
of positive probabilities, and therefore a stationary distribution of
the queue size cannot exist. If A < 1, then

P,=1— A
so that the generating function of the queue size exists as given in

Equation C7. Therefore, the stationary solution of the system exists.
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Appendix D: Waiting-time distribution

The waiting-time distribution of the M/G/I queuing process is
discussed here using concepts of the queue-size generating function
given in Appendix C.

Let 5, be the waiting time, x, the service time, and 8, the queuing
time of the nth caller. Then

B = M+ xa (D1)

Suppose that the nth caller arrives at time r, and departs at time /.
Then the total time the nth caller spends in the system (i.e., queuing
time) is

Bp =T — T

If there are no new arrivals during the time period 8,, the queue
length £, must be zero when the nth customer leaves. However if
there are five new arrivals during 8,, the queue length &, must then
be five. Thus, in general, the number of new arrivals during the
queuing time of the nth customer must be equal to the queue length
£, at the nth departure.

Since the number of new arrivals has a Poisson distribution, we have
the following queue-length queuing-time probability
—Az 7
, A
Ples = i1 B, = x) = 0

If we let T(x) be the queuing-time distribution, we obtain the queue-
length distribution by the following integration:

© eAXz()\x)i

Pt =i = [ P are

Forming the generating function, and recalling that
Pit, = j} = P

from Equation C6, we obtain
© ® -z i
G@) = f > e—@‘—zl dT(x)
0 ;=0 J:

N1 — 2)] (D2)

where 6(s) is the Laplace-Stieltjes transform of the queuing-time
distribution. The queue-length generating function (Equation D2)
can be obtained by replacing s by A(1 — z) in 6(s). However, from
Equation D1, we have from the convolution of the two functions

0(s) = Qs)Y(s)
where Q(s) is the Laplace-Stieltjes transform of the waiting-time
distribution. Hence

Poz — DY — 2)]
z — Y1 — 2)]

Q1 = YA — 2)] = (D3)
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If we replace A\(1 — z) by s, then
1 — A
Q =
O = T30 — v/
This is the Laplace-Stieltjes transform of the waiting-time distribu-

tion for the M/G/1 queuing process as developed by Pollaczek and
Khintchine.**’

(D4)

Appendix E: Busy-period distribution
Let D(x) be the busy-period distribution. Then define
D'y = [ DOV — ) ab)

0

where n > 1

as the nth folded convolution of D(x) with itself. Also define
Dyx) = 1 and

Di(x) = D(x)

Suppose that n arrivals appear during the interval of the first service
time y in a busy period; the probability of this event is

e MO\y)/n!

If n = 0, the busy period consists of serving the first caller during
a service time y; if n = 1, then the busy period is the sum of y and
an additional busy period that is initiated by the new arrival. Since
the duration of the busy period is independent of the order of service,
for example when n = 3, it may be assumed that the busy period is the
sum of four random variables with distributions H(x), D(x), D(x),
and D(x), or simply assume two random variables with distribution
functions H(x) and D”(x).

Following this line of thought, one can obtain the busy-period
distribution by solving

r =My n
D(x) = f > O e — 5y aH) (E1)

n=">0

Designating v(s) as the Laplace-Stieltjes transform of D(x), then

[v()I" = fo e " dD"(x)

It follows from Equation El that

v(s) = ‘/(; e*(s+)\>y Z ()\y)rE’:/(Sl dH(»)

n=0

— fw C*[s+)\—>\7(a)]y dH(y)
Yis + Al — v} (E2)
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