


input  distributions  and general service times in computing systems. 
The server in a  computing system can  be any of a  number of devices 
such as a  channel, CPU, or  communication  line, that  can process a 
calZ (an item from the server’s queue).  Table 1 gives a  number of 
servers and  the  corresponding types of calls or callers that  are typical 
of computing systems. 

The first section of this paper  lays  a  groundwork of basic definitions 
and  basic  queuing  models. It is then possible to discuss imbedded 
Markov  chain modeling, which has proved useful in  studying many 
types of computing sy~tems. ’~”~ Priority  queuing  models that use 
imbedded  Markov  chaining  are described and  illustrated by numerical 
examples. 

Queuing problems occur from  time to time when  there is sufficient 
caller or server irregularity in a system. For example, let us assume 
that a system contains  a single server (Le., only one caller can be 
served at a time). Also assume that either  the callers arrive irregularly 
or randomly,  or  that there is appreciable  variation in the  time 
required to serve a caller (i.e., the seruice time), or  both  the caller- 
arrival  and  the service-time irregularity  assumptions may simultan- 
eously be  true. If more  than  one caller is present  in  the system at the 
same  time, all but  one must  queue  up awaiting their turn  for service. 
The  rate of arrival of callers (sometimes called “traffic density” or 
“input  rate”) may be so high that large  queues develop, resulting in 
a  long waiting time  per  caller. On  the  other  hand,  the  rate of arrival 
may be sufficiently low that  the service facilities are  not used for  a 
proportion of time, called “idle time”.  Whether busy or idle-time 
conditions exist, a  change in  the system may be desirable  and 
economically advantageous.  Under  certain of these conditions, we 
can apply  queuing  theory to predict what  might  happen  under 
various  alternatives. Such predictions are helpful to management  in 
making  corrective decisions. 

Thus,  queuing  theory  makes possible the  computation of such 
quantities  as average waiting time, average queue  length,  idle time, 
and service time, as previously mentioned. Collectively, these are 
some of the  factors in performance  evaluation.  Frequently however, 
the  queuing  situations  are of such complexity that mathematical 
models cannot be adequately descriptive. In these cases, it may be 
possible to obtain  the desired estimates by simulating  the system 
under  a wide variety of data processing loads.  The practice of 
simulation is a discipline in  its own  right  and is not considered  in 
this  paper. 

Basic concepts 

Some of the following frequently used measures of congestion in a 
system have  already been used in  context.  Definitions of these 
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quantities are now given as they apply to computing systems and  as 
they are used throughout  this  paper. 

Queue length is specified  by the  number of callers in  the system 

Waiting time is the time  interval between the  arrival of a  particular 

Queuing time is the  sum of the waiting time  and  the service time 

Occupation  time is the  time  required to complete the service of 
all the callers that were in  the  queue  at  time t .  
Idle  period is  the  duration of time that a  particular server is not 
processing calls. During  this  period,  the server is said to  be in 
the “idle  state.” 
Busy  period is the time  during which a server is processing calls 

waiting  and being served at time t .  

caller and  the  instant  the caller’s service begins. 

of a  caller. 

without  entering  the idle state. 

Queuing theory is used to estimate the values of these quantities  and 
their associated probability  distributions.  Under specified conditions, 
their  means (averages) and variances may be used as  measures of 
system performance. 

When  the  probability  distributions of these quantities are being 
studied,  two  kinds of solutions  are of interest. The first is  a time- 
dependent solution, and  the second is  the stationary ~ o l u t i o n . ’ ~ ~ ~ ~  In 
the  time-dependent  case,  the  probability  distribution  depends on 
the  particular time t ,  and  in  general  it  also  depends on  the initial 
probability  distribution (i.e., at t = 0). In  our analysis, let [( t )  be 
the  queue  length of a system at time t. The probability  distribution 
of [ ( t )  similarly depends  on  time t as well as on  the initial  probability 
distribution of E(0). This is so because a  queuing process is 
basically a stochastic one  in which the  state of the system (e.g., the 
number of callers present in  the  queue  at time t )  changes  with  a 
particular parameter-usually with time-in a  probabilistic  manner. 

Since the  time-dependent  solution of a  queuing process is often 
rather  complicated,  fruitful  applications of queuing  theory to 
computer  problems usually rely on  methods  for finding stationary 
solutions. A probability  distribution is stationary if it does not 
depend on time t .  The  stationary  solution is important because most 
queuing processes have  the ergodic property.  That is, the process 
tends  towards  statistical  equilibrium regardless of its  initial  state. 
Many  queuing processes studied in  computing systems have been 
observed to rapidly  approach  statistical  equilibrium.  Thus,  one  can 
usually apply  the  stationary  approximation.’6 

In  order  to predict averages of one  or  more of the quantities-queue 
length, waiting time, queuing time, occupation  time,  idle  period, 
busy period-we must specify a system with a sufficiently large 
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industrial processing application,  the  computing system may control 
an environment. In a time-sharing system, many  terminal  operators 
may simultaneously use the  computer, which responds as  though 
each user were the only one being served. This service can  be achieved 
only through  fast  computer  response  and  complete  computer 
control over the  various  tasks (calls) to be  performed.  Consequently, 
the delays that occur due  to congestion in such computer systems 
are of great  concern to system designers and  analysts. 

The  most  important problem  for  queuing  theory  is  the  interaction 
of the elements of time  and system capacity.  When  applied to  the 
study of these elements,  queuing  theory can provide  information 
such as  the following: response time (the interval between the  arrival 
of a  call  and  the departure of results, including all waiting and service 
times), throughput potential (the  maximum rate  at which calls can be 
processed without  the  degradation of a processing facility), queue 
length (which determines  the  queue  storage  requirements),  and  other 
information  that assists both in  computer design and  in  program 
analysis. The following are  some  authors who  have  contributed  to 
the analysis of queues  in time-shared computer  systems: E. G. 
Coffman,20 L. Kleinrock,2'322 B. Krishnamoorthi  and R. C. 
N. R. Pate1,24 L. E. S~hrage, '~  and A. L. Scherr." 

Although  many existing queuing  models may be useful in analyzing 
modern  computer systems, the systems analyst  may  often have to 
develop new models or modifications of existing models to reflect 
more closely the physical behavior of specific systems. In many 
cases, new models are needed to describe queuing  problems that  are 
growing in complexity. 

The service discipline must  be specified  by which a caller is selected 
for service out of all  those  awaiting service. The simplest discipline 
is that of first-come first-served, which consists of serving callers in 
order of arrival.  There  are  other possibilities, such as  a  random 
service wherein the next caller to be served is randomly selected 
from  the  queue regardless of when that caller arrived.  Another  case 
is the priority-service discipline in which the  next caller is selected 
from  a  queue  on  the  basis of an assigned priority. We shall discuss 
priority disciplines in  greater  detail  later in this  paper,  but  a brief 
summary of concepts of priority  queues is given here. 

When calls to be processed by a  computer  are classified according to 
the  importance of their undelayed passage through  the system, they 
are said to be assigned a  priority. For example, in  a  real-time system, 
when the  computer  must  be  programmed so that  during  its  normal 
processing of a  program  it  can always be  interrupted by communica- 
tions calls, such calls have the highest priority. A computer  super- 
vises and  controls  a  communication system and  must  act sufficiently 
fast when a message (or a message segment) is received from  the 
multiplexor to prevent  a  loss of data  or overflow of main  storage. 
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This  problem can be formulated  as  a  priority  queuing  model, which 
may  be  outlined  as follows. A single server (Le., the  computer) 
processes two types of calls:  communications calls, which are  put 
in  a high priority  queue,  and the  normal processing calls, which are 
processed on an as-available basis.  Priority  queuing analysis in 
computer systems is also used in  computer  channel  analysis13  and 
in multiprogramming system analysis.2732x  The theory of priority 
queues  is  treated  in  a  number of sources, such as  in References 
29, 30, and 31. 

A normal  formulation of priority  queues, based on Takacs'  dis- 
c u s ~ i o n , ~ ~  is as follows. Calls of different priorities  arrive at a 
facility for service. Let there be N classes of priorities, 1, 2, . . . , N .  
It is convenient to assume that  an arriving  call  with  a smaller 
priority  number  (i.e., higher priority)  has preference over a call with 
a  greater  priority  number. The calls  are served by a single server in 
order of priority  (and  in  order of arrival  within each priority class). 
It is also  often assumed that  the  input is a Poisson process with 
parameter X, for type-k priority  calls,  where  k = 1, 2, . . . 9 N .  
Service times for k-type calls are assumed to be  mutually  independent, 
positive, random  variables with a  distribution  function H,(x) .  Two 
types of service disciplines are of general interest. 

Two types of priority service disciplines are of general  interest. 
One is the preemptiue-resume  discipline, wherein a server interrupts 
the processing of its  current call and immediately beings processing 
a  higher-priority  call.  When  a  lower-priority call-the one  that was 
preempted-returns to service, processing continues  from  the  point 
of interruption.  In  the nonpreemptiue  discipline, the server does  not 
interrupt  the  current processing. A higher-priority  call  waits  and 
obtains service immediately after  the processing of the  current 
lower-priority call. 

For these types of priority  queuing systems, Cobham32,33 obtained 
the first moment of the waiting time distribution.  Miller34  charac- 
terized the limited distributions of the  queue sizes and  waiting 
times. Gaver,"" Welch"5 and J a i ~ w a 1 ~ ~  studied  the  transient  solutions 
of this  priority system. Tdkacs" generalized the  stationary  solutions 
of priority  queues. The present author37 generalized the  stationary 
solutions of preemptive  priority  queues including other service 
disciplines. 

Other service disciplines of interest  are preemptive-repeat-identicul 
and preemptiue-repeat-diflerent.30 In the  case  of  the  preemptive- 
repeat-identical discipline, when a  lower-priority caller whose place 
has been preempted  returns to processing, a service period  of  the 
same  duration  as  the  one  interrupted is commenced again at the 
beginning. In  the case of the preemptive-repeat-different discipline, 
when  the  interruption  is  cleared, service of the lower-priority caller 
begins again  from the beginning but with a new independent service 
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period. In both cases, the service time previously allocated  for  the 
lower-priority caller before the  interruption is wasted and  makes 
no contribution to  the subsequent processing time. 

Imbedded Markov chains 

Since queuing  is generally a  stochastic process that is a  function 
of the  time  parameter t ,  a class of stochastic processes useful for 
systems analysis is the Markovprocess. A  queue is said to exemplify a 
Markov process if the  present  state of the system, including the 
queue,  is sufficient to predict  a  future  state  (e.g.,  queue  length) 
without knowledge of the past history of the  system. By definition, 
Markov processes are  continuous in time.  When  the system is studied 
at discrete time points,  the collection of state  probabilities  constitutes 
a Markov chain. Here we are considering only qualitative  properties 
of Markov chains. A mathematical definition of the  Markov  chain 
is given in  Appendix A. 

D. G .  Kendall  introduced  the  concept of an imbedded Markov chain 
because in  practical cases queuing processes are  not always Mar- 
kovian nature. Kendall' suggests that a  non-Markovian process can 
be  studied by extracting  a set of  points-alled regeneration points- 
at which the  Markov property exists. He  formally defines a  regen- 
eration  point as an epoch at which a knowledge of the  state of the 
process has  the  characteristic  Markovian  consequence that a  state- 
ment of the  past  history of the process loses its predictive value.  A 
probabilistic  definition of a  regeneration point"8 is as  follows: an 
epoch is a  regeneration  point  for  the  stochastic process ( [ ( t ) )  if and 
only if, for all t > t , ,  P(,$(t) 1 ,$(to)) = P( ( ( t )  1 ( ( 7 ) )  for all T 5 t,,. 
A group of epochs, t ,  (for i = 0,  1, 2, . . .), are regeneration  points 
if and only if, for  all t ,  < t < t ,  + 1 ,  P ( t ( t )  1 ,$(t,)} = P( t ( t )  I E(.)) for 
all t,-l < T 5 t,. 

As an example, consider  a  queuing process having Poisson input (M) 
general service time (G),  and  a single server ( I ) .  (This  is termed an 
M/G/1 queuing process by Kendall's queue-classification pro- 
cedure.)  It is Markovian if the  present  state of the process is described 
by the pair of random variables ,$ and x, where ,$ is the  instantaneous 
queue size, and x is the expended service time of the customer  who 
is currently being served. In general, however, the  queue ceases to  be 
Markovian if the  state of the process is measured by the  queue size 
alone. An exception  occurs  when  the service time  is exponentially 
distributed ; a  characteristic  property of the  exponential  distribution 
ensures that a knowledge of the expended service time x has no 
predictive value. 

Illustrative of a set of regeneration  points are  the times at which 
callers depart  from  the system in  the M/G/l  queueing process. Hence, 
the  queue  lengths  at these departure times constitute  a  Markov 
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chain with an enumerable infinity of states that can  be studied 
through  the  theory of Markov  This technique, which is 
useful in many queuing systems including priority queues, is called 
the imbedded Markov  chain technique because it involves the 
extracting of a discrete-time Markov  chain imbedded in the  con- 
tinuous-time process. 

Another  important  contribution of Kendall is a  formal  proof of the 
existence of a  stationary  solution for the M/C/ l  queuing process if 
the trufJic intensity (or system utilization) is less than  unity.  The 
traffic intensity p is defined as the  product of the  input  rate h and  the 
mean service time a. Intuitively, when the traffic intensity is  less 
than  unity,  the system should possess the  characteristic  “ergodic” 
property3@ of settling down into  an equilibrium  mode of behavior 
independent of its initial state  after  the elapse of a sufficiently long 
period of time. When p > 1 no such behavior is to  be expected. 
Kendall’s proof uses Feller’s general theory of recurrent events. 
The  stationary  solutions of priority queues29~34*37 are  obtained by 
using the  method of the imbedded Markov  chain. They are basically 
extended solutions of Kendall’s M/G/l queuing process. In order 
to present some basic results, we  use the  mathematical  notations 
given in the analysis of M/G/I queues in Appendix B. 

stationary We now review the technique for analyzing imbedded Markov 
distributions chains, which will be useful for  the  later analysis of priority  queues. 

Let  the  input to a single-server queuing system be  a Poisson process 
of parameter X. The service-time distribution is H(x),  and  the  mean 
service time is a. All the  mathematical  notations  are given in Appen- 
dix B, except that  the subscript k is dropped since no priorities  are 
involved here. The callers are served in order of arrival. The  station- 
ary  distributions of queue  length, waiting time, and busy period  are 
to be found. 

Queue length 

Let 7, and 7; (n = 1, 2, . . .) be representively the  arrival time and 
the  departure  time of the  nth  customer.  Referring to  the basic con- 
cepts, we define En to be the  queue  length immediately after  the nth 
customer’s departure. If [( t )  is the  queue  length at time t, then by 
definition En = E(7,). As previously mentioned,  Kendall recognized 
that  the queue  length E(t )  is not  in general a  Markov process, but 
that regeneration  points E,+1 and &, form  a  Markov  chain.  Therefore, 
consider  a sequence of such points &, E2, . . . , E n  . . . where En = j ,  
(i.e., the  nth  departing  customer leaves j customers  in  the system). 
The next regeneration  point, is uniquely determined  from En, 
and  it is independent of (n-l, . . . . The  purpose of the analysis 
is to determine  the  stationary  probabilities of the  queue  length 

P { t n  = j )  = Pi 
where j = 0, 1, 2,  . . . . To determine Pi, we use the technique given 
in Appendix C, according to which 
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being served at  the time or arrival). Thus, waiting time is related 
directly to queue size. 

The waiting time distribution  can  be determined from  its Laplace 
transform, which  is derived explicitly from the generating function of 
queue size in Appendix D with the following result: 

where Q(s) is the Laplace transform of the waiting time distribution. 
Assuming the special case of exponentially distributed service time, 
we obtain Q(s) by substituting Equation 3 into  Equation D4. which A 
is developed in Appendix D 

Inverting Equation  4 we obtain  the result4’ I 

w(x) = 1 - X a e ‘ A - l ’ e ’ z  i 
Busy period I 
If a server  is free at time zero, and if a caller is  served from  that 
instant until time b (when the caller departs  and  the  queue is empty), 
the time interval (0, b) is a busy period. These periods typically 
alternate with idle periods. Thus if the next caller arrives at time c, 
the time interval (b ,  c) is an idle period. In a Poisson-input case, 
the idle period can  be shown to follow a negative exponential distri- 
bution  that was  previously  discussed in connection with the  arrival 
patterns. 

Kendal17 suggests that the busy period be  found  as follows. Let 
the caller whose arrival initiates a busy period be called the 
“ancestor,” which constitutes the zero-order “generation.” During 
the ancestor’s service time, let n, more callers arrive; these callers 
constitute  the first-order generation.  During  the first-generation 
service time, let n, more callers arrive, forming the second-order 
generation, and so on.  The busy period terminates when the “family” 
becomes extinct, i.e., when an idle period intervenes between two 
such busy periods. Kandall was able to determine the busy-period 
using this familiar analogy. We shall, however, use the simpler 
method of Takac~ ,~ ’  who obtains equivalent results. The busy 
period distribution is treated mathematically in Appendix E; here 
we merely state Takacs’ results. 

The busy period distribution is again given as a Laplace transform 
from a  functional  equation as follows: 

Y(S) = # { s  + 111 - r(s>lI 
where y(s) is the Laplace transform of the busy-period distribution. 
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and 
m 

i -0 

The average queue  length L,  and  the second moment Li can  be 
obtained  from  Equations 6 and 7 as follows: 

m 

i =o 

More importantly, in terms of statistical analysis, the  variance of 
the  queue  length uL, is  given as 

2(1 - Xa) 

illustrative We now use some of the  concepts previously given for  performing 
computations illustrative numerical computations.  First we define a useful class 

of the service time distributions,  the Erlang-m distributions, which 
are  known to statisticians as a special class of “gamma  functions.” 
When the  parameter  m is an integer, the following type of gamma 
distribution is designated “Erlang” in honor of that pioneer’s contri- 
butions to queuing theory.  Here H(x)  is a  function that represents 
service-time distributions 

Figure 1 Probabilitydensityfunc- In Equation 10, CY is the  mean service time. The parameter  m  deter- 
tion of the Er1ang-m mines the  shape of the  Erlang  distribution as illustrated  in  Figure I .  
distribution In  the Erlang-1 case, m = 1, and H(x) is an exponential service- 

time distribution 

H ( X )  = 1 - 

Given the  Erlang- 00 case, m is infinite, and H(x)  is a  constant service- 
time distribution 

1 
c - rn=m 

Intermediate Erlang-m values yield a family of service-time distri- 
bution curves. If the  type of distribution is known, service times , 
can  be  computed by means of Equation 10. I 

The probability density function h(x), which is defined as  the first 
derivative of H(x) 
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is plotted in Figure 1 for  three values of the  parameter m. Higher 
moments of the Erlang-m  distribution  is  obtained  as  follows: 

a ( r )  = (r + m - l)! 
( m  - l)! (ff/nl)r 

where  is  the  average service time,  and a( ' )  is the  moment. 

The server utilzation p ,  or traffic intensity is given as 

p = Xa (1 1 )  

With  these  concepts  and refering to  Equations 8 and 9 in the pre- 
vious discussion of mean values and  moments, we can  plot  the 
following server utilization  distributions:  average  queue  length 
(Figure 2), standard  deviation of queue  length  (Figure 3), waiting 
time  (Figure 4), and  the  standard deviation of the normalized  mean 
waiting time  (Figure 5). (The  standard deviation  is defined as  the 
positive square  root of the  variance.) 

As a  numerical  example,  consider  interference  in  a  channel  in which 
the  computer is operating  in  the  multiplex  mode. Assume an average 
time of 0.4 milliseconds for  storing  the  status of general-purpose 
registers, transferring  a single byte of data,  and restoring  the  general- 
purpose registers to their  previous  states. The  channel serves a 
number of communications facilities, thereby  having  a total  input 
rate of 0.5 kilobytes  per  second. The problem is to calculate  the 
average queue  length in bytes and  the  length of time  each  byte 
waits. Thus 

CY = 0.4 milliseconds2 and 

X = 500 bytes  per second 

The second  moment of the service time  is used in  determining  the 
average waiting time  and  queue  length,  as  illustrated by Equation 8. 
We must  know the service time  distribution  in  order to find service 
time  moments. In our  example, however, the service time  distribu- 
tion  is  not of major  concern because referring to  Equation 11 

p = Xa = 0.0004 X 500 = 0.2 

From Figures 2 and 4, it is apparent  that  the  variation of service 
time  should  not significantly affect the  result. (In the case of high 
utilization,  the service time  distribution is important in  the  analysis.) 
If we assume that  the service time is a  constant,  that is 

m = m then 

01 = a2 = 0.16 milliseconds2 

The average  queue  length is 

L,  = + Xa = 0.225 bytes 

( 2 )  

x 2  ( 2 )  

2(1 - Xa) 
a 
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Figure 2 Average  queue  length 
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and  the average waiting time is 

Priority queues 

We now use the techniques of imbedded Markov  chains to analyze 
several classes of priority  queues for the following stationary  distri- 
butions:  queue  length, waiting time, queuing time, and busy period. 
These priority  queues were previously defined and discussed within 
the  context of service discipline. In order to specify these service 
disciplines, consider  the previously discussed formulation of priority 
queues.  There  are N priority classes, each with independent Poisson 
processes of parameter X k ,  where k = 1, 2,  . . . N .  These processes 
constitute  inputs to a single-server system. Let  the lower priority 
number  indicate  the higher priority,  and  let H,(x)  be  the service- 
time distribution for priority class k.  i 

The modeling of a  priority queueing system is a two-step procedure. 
We first treat  the system as  though  no priorities  are involved. Every 
caller is served on a first-come first-served basis. A queue-length 
generating function for an imbedded Markov chain previously 
discussed, is derived as  shown  in  Appendix C for a  queuing  model 
having no priorities. We  then  take into consideration  the effect 
of the priorities by modifying the results obtained in the first step 
to reflect the influence of caller priorities on  the waiting-time distri- 
bution. 

Preparatory  to discussing the  priority  queuing systems, some  addi- 
tional  concepts  must be defined. Let the  sum of the Poisson-process 
parameters be expressed as follows: 

Each  input is a Poisson process of parameter X k ,  therefore  the  sum 
hk is also  a Poisson process.34 Also, let the Laplace-Stieltjes transforms 
of the weighted service-time distributions  be 

Let uk be defined as the first moment of the weighted service time,  i.e. I 
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In a  priority  queuing system, two priority-service disciplines are 
of  interest-the preemptive-resume and  the  non-preemptive disci- 
plines. Their  stationary  solutions  are now presented. 

In a preemptive-resume priority  system,  the presence of callers of 
priority  numbers  greater than k does  not influence the  stochastic 
law of the waiting time of callers with priority  numbers less than 
or  equal  to k.) Thus, callers with priority  numbers  greater than k 
are  considered as  not present  in  the system when  studying  the  waiting 
time of callers with priorities less than  or  equal  to k .  To determine 
the  stationary  distribution of the waiting time  for priority-class k,  
we first consider a modified queuing process with the following 
characteristics:  a Poisson input of Ah,  a service time distribution 
that is weighted by the  input rates  and  characterized by as 
defined in  Equation 12, and  a single server. The generating function 
can  be obtained by using the  technique of the  imbedded  Markov 
chain previously discussed. The Laplace-Stieltjes transform of the 
waiting time in this modified queuing process can be obtained  from 
Equation D4 of Appendix D 

If Akuk is less than  one, a stationary  solution exists. If Akak is greater 
than  or  equal  to one,  there is no  stationary for priority 
classes less than  or  equal  to k .  

The waiting-time distribution W,(x) for  the  priority-k caller is 
obtained  from  Equation 13 in  the following way. During the waiting 
time of the modified queuing process, assume that there are j ( j  = 
0, 1, . . .) arrivals of priority  number less than k.  The  additional 
delay experienced by the caller with priority  number k is then  identi- 
cal to  the  total of j independent busy periods in a single-server 
queuing process with Poisson input  and a service time  distri- 
bution  characterized by \ k k - l ( ~ ) .  Let D k - , ( x )  be  the  distribution 
function of the  length of a busy period in this process, and yk- , ( s )  
be  the Laplace-Stieltjes transform of D,-,(x).  From  Equation E2 
we can complete  the  formulation of the  transform  as  follows: 

YL--~(s) * ~ - I { s  + h - - 1 [ 1  - Y L - ~ ( s ) I I  (1 4) 

Using similar reasoning to  that given for  Equation El ,  we obtain  from 
Equation 13 the following Laplace-Stieltjes transform of the wait- 
ing-time distribution  for  priority class k :  

Q ~ ( s )  Q~*,{ ( s  + &-,[I  - Y ~ - ~ ( s ) I I  
Using the same  line of thought,  the Laplace-Stieltjes transform 
&(s) of the queuing-time  distribution is found to be 

ek(s) = WS)+JS + A,-J - Y~-~(s)II 
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This  equation shows that during  the service of priority k callers 
under  the preemptive-resume service discipline, other callers with 
priority  numbers less than k may arrive  and  preempt  the service. 

nonpreemptive In the previously defined nonpreemptive service discipline, service 
service time of a caller of any  priority class is not interruptable. Conse- 

quently  the presence of a  low-priority call can affect the waiting time 
of a high-priority call. For example, if a  low-priority call is being 
served when a call of a  high-priority class arrives, the high-priority 
call must wait for completion of the  lower-priority service before 
service begins. Calls of low priority receive immediate service when 
no calls of higher priority  are waiting. 

To find the waiting-time stationary  distribution for priority class k ,  
we use an  approach similar to  the  one presented in  the preemptive- 
resume priority  queues. The generating function for this case, 
however, is slightly more complicated than  the  one for preemptive 
resume service. Consider a  queuing process in which callers are 
classified into  two  queues.  Let t,t(k) be  the  queue length of calls 
having priority classes less than  or  equal  to k,  and  let f!(k) be  the 
queue  length of priority classes greater than k at the  nth  departure. 
The nth caller can  be of any priority class. We now formulate  the 
qenerating  function  for En(k). 

For a  stationary process, tn+, (k)  and &(k) have the same probability 
distribution,  and  are related by 

if E,@) = 0 and g ( k )  = 0 
(i.e., both queues are  empty, 
and  the next call is  of prior- 
ity class less than or equal 
to k )  (15) 

if [,(k) = 0 and [;(k) > 0 
(or  the next call is  of priority 
class greater than k if [,(IC) = 
0 and t:(k) = 0) 

Here, v,+~ is the  number of  new calls of priority classes less than  or 
equal to k ,  if the n + 1st service is of priority class less than or  equal 
to k .  The  parameter v ! + ~  is the  number of  new calls of priority 
classes less than  or  equal to k if the  n + 1st service is of priority 
class greater  than k .  

Let U,(z) be  the generating function of [,(k) so that 

u,(z) = ~ { t , ( k )  = j Iz i  
m 



Thus  the probability that (,&(k) is zero is expressed as follows: 

P{E,(k) = 01 = UkW 

Notice  that  Equation 15 expresses the following three  mutually 
exclusive events: 

rn (,(k) > 0, and  the next arrival  is of priority class less than  or 
equal  to k. The first event, (,L(k) > 0, is represented by the  generat- 
ing function 

L 

(,(k) = 0 and (;(k) = 0, and  the next service is of priority class 
less than or equal to k.  This event occurs with probability 
(Ak/A,JPo,  where P,, is the  probability that  the system is empty. 

(,(k) = 0 and (;(k) 2 0, and the next service is of priority class 
greater  than k .  The third event occurs with a  probability of 
Uk(0) - (Ak/A,,)Pl,, where PI, is the  probability  that  the system 
is  empty,  and 

Po = 1 - X,a, 
I = 1  

Forming  the  generating  functions on both sides of Equation I5 and 
using the  technique of the  imbedded  Markov  chain  as given in the 
Appendices, we obtain  Takacs'  expressionzg  for  the  generating 
function of (,(k) 

Uk(z) [ Uk(z) - Uk(O)l*k[Ak(l - z)l + Po*k[&(l  - 211 
A 
A n  

Equation 17 generates the queue  lengths of priority classes less than 
or  equal to k at every departing  instant, including the  departure of 
those  callers of priority classes greater than k .  We now obtain  a 
relation similar to  the  one in Equation D3 in Appendix D, which 
allows us to  obtain  the Laplace-Stieltjes transform of the waiting- 
time distribution  from  the queue-size generating  function. We 
formulate  the queue-size generating  function observed by a  departing 
caller of priority class less than  or equal to k by Takacs'  method. 

In  Equation 17, the n + 1st customer is  of priority class less than 
or  equal to k ,  if the service-time distribution is of priority class less 
than  or equal to k .  Hence, the  partial  generating  function of the 
right-hand side of Equation 17 

represents  a  departing caller of priority class less than or equal to k. 
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Takacs called this  generating  function G*(z). (Note  that  Takacs 
actually uses Gk(z) in Reference 29; we add  the asterisk to denote  a 
modified queuing process.) The generating  function of the  queue 
size, Gk(z), observed by a  departure of priority class less than  or 
equal to k,  can be obtained  from G%(z) by the following normaliza- 
tion: 

The Laplace-Stieltjes transform of the waiting time  distribution of 
the modified queuing process is given by 

Ck(z) 1 fi2*,[&(1 - z)l*,[&(l - z)l 

If we replace A,c(l - z )  by s, we obtain 

Finally,  the Laplace-Stieltjes transform of the waiting time  distri- 
bution  for  customers of priority class k is obtained  in  a way similar 
to the  case of the preemptive-resume discipline as follows: 

Qds) = + Ak--l[l - YL-l(s)IJ I 
The Laplace-Stieltjes transform of the queuing  time  distribution is 
represented as 

e k w  = ~,(s)*,(s) I 
The  transform takes  this  form because the service time of priority k 
cannot be  interruptable  during  its service by any new arrivals of 
priority classes less than k .  

waitingtime When  a  stationary  solution exists (i.e.,  the  Laplace  transform of the 
moment waiting time exists), the  moments such as  the mean waiting time can 

calculations be  obtained by differentiating the  Laplace  transform  as given in 
Equation 5. Let a:.) be  the  rth  moment of the weighted service 
time distribution I 
where q k ( s )  is given in  Equation 12. 

To find the waiting-time moments,  the first step is to find the busy 
period  moments by differentiating Equation 14. For example, the 
first two  moments of the busv Deriod distribution  are  the  following: 
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The next  step is to find an expression for the  moment of the modified 
waiting time  distribution, W:(‘), by differentiating fi:(s) in  Equation 
18. Since we have  two expressions for Q:(s), preemptive  and  non- 
preemptive, we have the following two  cases: 

Case 1 Preemptive-resume discipline 

I Case 2 Nonpreemptive discipline 

Finally, we compute  the waiting-time moments  from fik(s) by dif- 
ferentiating as follows: 

Since both W:‘” and W:‘” apply to Case 1 as well as  Case 2 ,  the 
following numerical examples are similarly separated into two cases. 

Let  the  inputs to a priority  queuing system be 

X, = X, = X, = 0.3 calls/second 

The average times are all the  same 

a1 = aq = a3 = 1 second 

and identically distributed with the  same  exponential  distribution 

H l ( x )  = H 2 ( x )  = H 3 ( x )  = 1 - 

To calculate  the  mean waiting times for both types of priority 
disciplines, we first construct  the Laplace transforms of the service- 
time distributions 

numerical 
examples 
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The weighted service-time distributions have the following Laplace 
transforms 

The weighted service-time moments  (from  Equation 12) are  the 
following: 
& )  = uti' = $1 = 1 second 

= a;’’ = ui2I = 2 seconds’ 

Let  the busy periods for the  priority system be defined as follows: 

d:” is the busy period of the server for the first priority class. 
di1) is the busy period of the server for the first and second 

djl’ is the busy period of the server for all three classes. 
priorities. 

In this example, the mean busy periods for the  three  priority classes 
are  as follows: 

& I  = ___ - 1 
1 - 0.3 

- 1.429 seconds 

d:” = 1 
1 - 0 . 3  - 0.3 

= 2.5 seconds 

= 1 
1 - 0.3 - 0.3 - 0.3 

= 10 seconds 

The  mean waiting times for the  two cases can now be calculated. 

Case 1 Preemptive-resume discipline 

Mean waiting time for the first priority: 

WT(11 = ___ - 0’3 x - 0.855 seconds 
1 - 0.3 

W y )  = W1*“’ = 0.855 seconds 

Meaning waiting time for the second priority: 

w;“’ = ___“ - 0.6 X 2 
1 - 0.3  - 0.3 

- 3 seconds 

Wil) = W;‘”(1 + X,d:’’) = 3 x f .436 = 4.31 seconds 

Mean waiting time for the  third  priority: 



Figure 6 Real-time, terminal-oriented system 

TERMINALS 

LOW SPEED LINES . 
-L{ MULTIPLEX  CHANNEL I cpu I HIGH-SPEED LINES 

I 

Case 2 Nonpreemptive discipline 

Mean waiting time for  the first priority: 

Wf'" = ____ 0.9 X 2 
1 - 0.3 

= 2.51 seconds 

Wj1) = 2.51 seconds 

Mean waiting time for  the second priority: 

w2*(1) = " 0.9 X 2 
1 - 0.3 - 0.3 

= 4.5 seconds 

4.5 
1 - 0.3 

wi1) = ~ - - 6.4 seconds 

Mean waiting time for  the  third  priority: 

w,*(l' = 0.9 X 2 
1 - 0 .3  - 0.3 - 0.3 

= 18 seconds 

wp = 18 
" - 45 seconds 

1 - 0.3  - 0.3 

The  mean waiting times of the first and second priorities  in  Case 2 
are higher than  those for  Case 1 because the server in Case 2 com- 
pletes the execution of a  lower-priority call in service before  inter- 
rupted to serve a  higher-priority  call. 

Example terminal-oriented system 

We now analyze a  hypothetical  real-time  airline  reservation system to 
illustrate  the use of the  queuing  models presented in this paper  for 
computing average system response  time. In the overall system, 
shown in  Figure 6, messages are sent and received between remote 
terminals  and  the data center  through high-speed and low-speed 
teletype lines. 
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high-speed 
line analysis 

Figure 7 Queuing model of a 

communication  line 

I 1 t- HIGH SPEED 

In the  hypothetical  network, several high-speed lines are  rated  at 
600 characters per second,  and low-speed lines are  rated  at 14 char- 
acters per second. Input messages have an average  length of 27 
characters with an assumed Erlang-2  distribution  as  shown  in 
Figure 1.  Output messages from  the  data center  have an average 
length of 90 characters with an assumed Erlang-3 distribution. 

Both high-speed and low-speed lines are half-duplex data links, 
wherein input  and  output messages are sent  through  the  same  line. 
We also  assume  a  one-to-one  ratio of input to  output messages, i.e., 
for every input message there is an output message. 

We begin by breaking  down  the system and analyzing its  parts, 
starting with an analysis of the high-speed lines.  During peak-traffic 
periods, high-speed lines are assumed to have an input traffic rate 
of 3 messages per second per line, which are acquired by the  computer 
through  the process of polling. Polling messages are 3  characters  in 
length. To further simplify the analysis, we assume that  an  input 
message has  an average  length of  30 characters  (i.e., 27 data  charac- 
ters  plus  3 polling characters). Output messages have a higher priority 
than  input messages. Referring to Figure 7, the high-speed communi- 
cations  problem can be  formulated  as  a  priority  queuing system as 
follows : 

X, = 3 messages/second 

X, = 3 messages/second 

Average service times for output messages (Erlang-3  case) are  the 
following: 

a;l) = ~ 

600 
= 0.15 seconds 

a ; 2 )  = -~ 
(3 + 2 - l)! @)* - (3 - l)! 2 x 1  9 

- 4 X 3 X 2 (0.15)' ." 

= 0.03 seconds' 

Average service times for  input messages (Erlang-2 case) are  the 
following: 

& )  = ~ 

30 
600 

= 0.05 seconds 

Using the nonpreemptive-priority-queuing  formula, we find the 
following average waiting times: 

Output message 

w;" = Xlaj" + X,a~'' - 3 X 0.03 + 3 X 0.00375 
2[1 - x,a:"] 

- 
2(1 - 3 X 0.15) 

= 0.092 seconds 
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Input message 

= 0.154 seconds 

Thus,  the average response  time  for  the  input message plus the output 
message in  a high-speed communication  line is as follows: 

T ,  = W:l) + a y  + w:” + ai1) 

= 0.092 + 0.15 + 0.154 + 0.05 = 0.446 seconds 

To analyze  the low-speed lines, we single out  the line with the highest 
peak traffic (worst-case line). Certain  facts  must be provided by the 
customer such as  the following. The average service time ,for an 
input message is 2  seconds,  and  the average service time for an  output 
message is 6 seconds. Thus, we can  compute  the delay (waiting time) 
and  response time for  the given line traffic using a  method similar to 
that of high-speed line analysis. 

We now discuss the effect  of the CPU. A  real-time teleprocessing 
system of the type  illustrated by Figure 6 is often organized as  a 
priority  queuing  system, wherein important  tasks  are processed by 
the  computer immediately upon  arrival. In the following analysis, 
the CPU has 4 processing queues  (or  queue lists) as  shown in 
Figure 8. Input messages arriving  from  the  communication  network 
and output messages ready  for  transmission are handled  in the 
communication  queue X, (highest  priority). 

Since the  data base (customer’s records,  etc.)  may  be too large  for 
main  storage,  it is often stored on disk files. Thus, an incoming 
message must be processed against  this data base,  requiring  a  number 
of 1/0 accesses to  the  data base. (For efficiency, the CPU is often 
programmed in a  multiprogramming  mode,  i.e.,  after an 1/0 access 
is made,  the  computer  may process other  tasks.) After the I/O data 
is  in  main  storage,  the  computer is called to process messages. The 
r/o-ready  records  are  the  “callers,”  and they may be placed in a 
second-priority  queue,  the T/O Ready List As. 

Message processing itself is  handled by the  third-priority  queue X3. 
Again,  background  programs  can  be  run on an as-available basis. 
These  have  the  fourth  priority  and  are stacked in the  fourth  queue Xq. 

We use a  preemptive  priority  queuing model to analyze this system. 
Let the  total  input plus output message rate of the first queue  during 
a peak-traffic period be the  following: 

XI = 10 input plus output messages/second 

Assuming an Erlang-2 service-time distribution with a  mean service 
time of 15 milliseconds, we have the  following: 

0;’) = 15 milliseconds = 0.015 seconds 

low-speed 
line analysis 

CPU 
analysis 

Figure 8 CPU queuing  model 

I 
I 
I 
I 
I 
I 

I 
I 

CPU 4 
I 
I 
I 
I 
I 
I 
I 
I 

COMMUNICATION h i  

110 READY LIST h p  

MESSAGE PROCESSING ,\3 

BACKGROUND i q  
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Assuming an average of 6 I/O accesses per message, then 

X1 = 60 accesses/second 

Also assuming that for  each access a  constant CPU processing time 
of 3 milliseconds is required,  then 

CY:') = 0.003 seconds 

CY:" = 0.000009 seconds2 

For the message processing queue, we assume that  the processing 
time (service time) has an Erlang-3  distribution with an average of 
30 milliseconds. Thus 

1 
- 1  

X, = X1 = 10 message/second 

a:') = 0.03 seconds 

The average waiting time  for  the  communication  queue X, is I 

W;')  = __- 10 X 0.00034 + 60 X ( 

2(1 - 10 X 0.015)(1 - 10 X 0.015 - 60 X 0.003) I 

The average waiting time in the message-processing queue X, is 

10 X 0.00034 + 60 X 0.000009 4- 10 X 0.0012 

- - U.UVJl4 
= 0.0071 seconds 

2 X 0.77 X 0.47 

Omitting  background  jobs, which would have been similarly com- 
puted,  the average response  time  for  a message in  our  hypothetical 
system is computed as follows: 

T, = Wjl) -j- a; ' )  + 6 [  Wb" + ai l ) ]  + Wi')  + ui') 

= 0.0917 seconds 

disk-file Assume an auxiliary storage of 8 disk files, which are connected to 
analysis 2 channels, i.e., 4 files to each channel.  In  addition  to disks, which 

are used for  real-time  applications, an unspecified number of tape 
drives are also attached  to  the channels. The configuration  for  one 
of the  two  channels is shown  in  Figure  9. Assume that  the  traffic 
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(I/O accesses) is evenly divided among  the  disks. Also, the time 
required  for  a  channel to serve a  desk  request is calculated as a  sum 
of rotational delay time plus data transfer  time, which is a  variable 
quantity  that depends on record  length.  Thus,  the  average  rotational 
delay equals 17 milliseconds, and the  data transfer time (variable) 
equals 10 milliseconds. 

Since the channel  may also serve other devices, the  average  channel 
service time  additionally  depends on service parameters of those 
devices. Assuming a  mean  channel service time of 30 milliseconds 
and  a  variance of 1000 milliseconds, we use a single-server queuing 
formula  to  compute  the channel waiting lime  and  its  variance. For 
example, assume that  for a  certain traffic rate  on  the channel, we 
obtain  the following data:  The average channel waiting time is 

W ,  = 10 milliseconds 

and  the variance is 

g: = 100 milliseconds2 

With  the disk system cascaded, we can modify the service time of 
a disk to include the service time  and  the  waiting  time of a  channel. 
Although  this  additive  model is an approximation, we know that 
the  channel time is small  compared to the service time (disk arm 
motion)  and, therefore, expect a  reasonably  accurate  result. Assume 
that  the  arm-motion time in  a disk file has  the following statistics: 

a:'' = 100 milliseconds average arm  motion time 

ai2' = 15000 millisecondsz second moment of the  arm  motion 

Service time  computations  for  the simplified disk-channel  model 
(shown in  Figure 10) are  obtained  as  follows: 

a - 100 + 30 + 10 = 140 milliseconds average service time 

The variance of the service time is 

gz = 15000 - 100' + 1000 + I00 = 6100 milliseconds' 

The second moment of the service time is 

a' = (140)2 + 6100 = 24700 millisecondsz 

(Note  that  the second moment is equal to  the  square of the  mean 
plus  the  variance.) The traffic rate is 

X = 60/2 = 30 accesses per second per channel (i.e. 30/4 accesses 
per second per disk) 

The  average waiting time on a disk 

(1' - 
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The average response  time  for  a disk is 

Td = 0.46 + 0.140 = 0.60 seconds 

total The  total average response  time can now be  calculated  for  a  terminal 

time 
'esponse attached to a high-speed line  as follows: 

T = T ,  + 6Td + T, = 0.446 + 6 X 0.60 + 0.0917 

= 4.138 seconds 

Thus, disk files form  a complex queuing system in which we re- 
peatedly apply  the single-server queuing analysis. First  the  channel 
is considered as a single-server queue,  and  its waiting time  and 
moments  are  computed.  The disk-file system is then considered,  and 
channel delays are added to disk service times. A single disk is 
treated  as  a single server with a traffic rate  equal  to  that of the  other 
disks. Effects of other  approximations  are discussed in Reference 19. 

Although  one  may  calculate second moments  in each model  and 
thereby  calculate  the  total  response-time  variance  as  a  sum of the 
individual variances, the  procedure may not yield sufficiently accurate 
results because the  variance is sensitive to the  assumptions made  in 
the simplified model. Such a  procedure  should only be used to give 
the  analyst an idea of the degree of variation of the  total  response 
time. For a  more detailed analysis,  simulation  techniques  should be 
used. 

Concluding remarks 

Queuing  theory  has proved useful for analyzing service and conges- 
tion  in  many  computer subsystems. Emphasis  here has been on the 
basic principles and logical steps  required to solve queuing  problems 
because many  variations of computer  congestion  problems do  not 
fit standard  models.  Thus single-server queuing processes with 
random  input, general service times, and  priorities are reviewed. 
Waiting-time, response-time, and  busy-period  distributions  are  found 
by using their Laplace transforms. Queue-size distribution is ob- 
tained  from  the queue-size generating  function. Methods of deter- 
mining the means  and second moments  are also given. To further 
aid the  analyst  in  creating his own model, the technique of imbedded 
Markov chains is presented. 

Several examples are presented to illustrate these various  techniques. 
Both  the utility and  limits of queuing analysis are illustrated by a 
detailed analysis of a  practical (but hypothetical) teleprocessing 
system and  communication  network.  This  example implies that  the 
present  state of the  art of queuing  theory  does not permit  the  detailed 
analysis of a  complete system, but it is useful for subsystem analysis. 
Advanced research in  computer  queuing analysis currently  includes 
the  study of time-sharing algorithmsZa'43f44 and multiserver systems. 
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Appendix A: Markov chain 

A sequence of random variables E o ,  E,, . . . En . . . , where each 
random variable  may assume any integer value or  zero,  forms  a 
Markov  chain if for all n (where n = 1, 2, 3 ,  . . .) and  for all possible 
values of the  random variables (,, 

p{En = j I Eo = in, (1 = i l ,  * * .  , L - 1  = in-1) 

= P ( S  j I En-1 L-1)  

If En = j ,  the system is in  state j at  the nth step.  The probability 
distribution of the  random variable to  
p{Eo = jl 
for j any integer value greater than or equal to  zero, is called the 
“initial  distribution.”  The  conditional  probabilities 

P{tn = j I = il 

are called the  “transition  probabilities”  and  are  often given in 
matrix  form. 

If we know  the  initial  probability  distribution 

P { E O  = jl 
where j  = 0, 1, 2, 

and  transition  probabilities  in  a  Markov  chain,  then we can uniquely 
determine  the  probability  distribution of each random variable 

E& = 1, 2 ,  . . .)  
by the following formula: 

m 

P I E %  = j )  = P { L  = j I = ~ I P { E ~ - ~  = i )  

where n = 1, 2, - - - 
A Markov chain is called “homogeneous” if the  transition  probabil- 
ities are independent of n. Let P;i be defined as 

P,, = P(& = j 1 = i )  

A probability  distribution is stationary if it is independent of n 

P { f n  = j )  = P, 

The  stationary probability  distribution of a  homogeneous Markov 
chain  can be  found by solving the following equation: 

= n  

i 

where j = 0,  I ,  - - 
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In  the case of a finite Markov  chain, i.e., the  number of states in  the 
system is N ,  the probability Pi (where j = 0, 1, - - ., N )  can  be found 
by solving the N + 1  linear  equations 

and 

When  there is an infinite number of states, Le., N = 00, Pi can  be 
determined by the generating  function  technique discussed in 4 
Appendix C. I 

Appendix 6: Notations in an M/G/l  queuing process 

Let the service times for  priority k customers be mutually  inde- 
pendent, positive random variables with a  distribution  function 
Hk(x) .  When  there is only one  kind of call  present in  the system 
(i.e., there are no priorities), the  subscript k is dropped. 

1 

It is convenient to use the Laplace-Stieltjes transforms of the  distri- 
tions H,, W,, and Tk as used in Equations B1,  B3, and B5. 
Let 

~/,(s) = lm e - s z  d ~ , ( x )  (B1) 

and  the  rth moment is given as 

The first moment of Equation B2 I 

is the  mean service time for the  priority k caller.  Referring to  Equa- 
tion B4, where W,(x) is the  stationary  waiting-time  distribution  for 
callers of priority-class k,  we define the second Laplace-Stieltjes 
transform by 

where  the rth  moment is given by 

Further  in  Equation B6, where Tk(x) is the  stationary  response time 
distribution (Le., waiting time plus service time) for calls of priority 
class k ,  the  third  transform  is defined as  follows: 

J o  
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and  the rth  moment is given by 

TL‘) = x 7  dT,(x)  l 
Let Pi(k) be  the probability that  the  queue length is j for  priority 
classes less than  or  equal  to k ,  when the system is observed at  the 
end of service of a  priority class less than  or  equal  to k .  Define the 
generating  function 

Gk(z )  = Pi(k)zi 
i = O  

In a  priority  queuing system, busy period  for  priority class less than 
or  equal  to k is defined as beginning when a  call of priority class less 
than  or  equal  to k finds the server free of calls of priority classes less 
than  or  equal  to k and  continuing  until  the  instant at which the server 
is again free of calls of priority classes less than  or  equal  to k .  Let 
D,(x) be  the busy period  distribution  for  priority classes less than 
or  equal to k ,  and define the  Laplace  transform 

and  the moments of the busy-period distribution  as 

d Y  = l- xr d D , ( x )  

Appendix C: Queue length distribution 

Let V, be  the number of calls that arrive  during  the service of the nth 
caller,  where vn is a  conditional  random  variable  that  depends on the 
service time. The probability  distribution of V ,  can be determined  as 
follows. Let xn be the service time of the nth customer.  Then 

Using as  input a Poisson process of parameter X, we have  from 
Reference 16 

Substituting  Equation C2 into  Equation C1 yields the  probability 
distribution 

The  queue lengths (,+, and (, and  the  number of calls received during 
the service of the  nth caller are related by the following equation 

IV, + 1 if (, = 0 
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Equation C3 can be explained as follows. When > 0, the head of 
the  queue of 5% becomes the n + 1st caller,  entering the service 
at time t = T:, and leaving at time t = If v , + ~  = 0, the  queue size 
at t = in  the system is reduced by one because the n + 1st 
caller has  just  left  the system. Since, in  general, v,+] callers arrive 
during  the service time of the n + 1st caller, we have 

En+l = En - 1 + V,+1 

However, if &, = 0, the system is empty immediately after T:. In 
this  case,  the n + 1st caller arrives at T , , ~ ,  where T , + ~  > T:, and leaves 
at .A+,. Thus .A+ - T,+, is the service time of the n + 1st caller. 
If v , + ~  new callers arrive  during the service time of the n + 1st 
caller,  then when the n + 1st departs, v,+, callers are  present  in the 
system. Hence 

E n + l  = v n + 1  

If we introduce  a  notation 

then  the  queue  lengths  in  Equation C3 can  be written  as 

E,+l = ( L  - I )+  + Vni-1 (C4) I 
Assuming that  the  stationary  distribution of the  queue  length exists, 
then En+, and En must have the  same  marginal  distribution. (See 
Reference 7 for aid in  proving the existence of a  stationary  distribu- 
tion  under  the  condition x ~ r  < 1, where (Y is the  average service 
time.) For our  purpose  here, we shall  particularize the suggested 
proof by showing that if XCY < 1, a  stationary  distribution of &, 
exists. The callers  form an imbedded  Markov  chain, which we 
study by using the  generating  functions discussed in  Reference 39. 
The generating  function  for V, can be  written as 

Equation C5 implies that if we replace s in +(s) by  X(l - z),  we 
obtain  the  generating  function of v,~. 

Define the  probability that there  are , j  callers in  queue of length ln as 

P{En = j )  = Pi 

and define a new generating  function G(z) for Pi as 

If the  stationary  solution  in  queue  length exists, En+, and E n  must 
have  the  same  marginal  distribution.  Their  generating  functions 
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must  also be  the same. If  we let r ( z )  be  the generating  function of 
(& - l)+, then 

r(z) = E[~(~ . - ' )+]  = P, + p1 + P,Z + p 3 Z 2  + . . . 

From  Equation C4, tn+, is the  sum of two  random  variables, v , + ~  
and (tnn - 1):. Using  the  theorem that  the generating  function of 
the  sum of two independent variables is the  product of the  two 
generating functions,'" it follows that 

(C7) 

It  should  be  noted that in  a  stationary process tn+, and tn must  have 
the  same  generating  function  as given in Equation C5. Solving for 
G(z) in  Equation C7, we obtain 

where P, ,  remains to be  determined. From  Equation C8, since I 

then  from  Equation C6 

G ( l )  = 1 

By Equation C5 

Il.[X(l - 2)1Iz=1 = +(O) = 1 
and 

Using the L'Hospital's rule 

However 

+'(O) = - x d H ( x )  = "a 1,- 
the negative average service time. Thus 

Po = 1 - xa (C9) 

If h in  Equation C9 is greater  than 1, this  leads to a  contradiction 
of positive probabilities,  and  therefore  a  stationary  distribution of 
the  queue size cannot exist. If Xa < 1,  then 

P" = 1 - xa 

so that  the generating  function of the  queue size exists as given in 
Equation C7. Therefore,  the  stationary  solution of the system exists. 
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Appendix D: Waiting-time distribution 

The waiting-time distribution of the M/G/l queuing process is 
discussed here using concepts of the queue-size generating  function 
given in  Appendix C. 

Let vn be  the waiting time, X,, the service time, and f i n  the  queuing 
time of the nth caller.  Then 

Pn = Vn + X n  (Dl) 

Suppose that  the nth caller arrives at time T, and  departs at time TI. 
Then  the  total time  the nth caller spends in the system (i.e.,  queuing 
time) is 

p" = 7; - 7, 

If there  are  no new arrivals  during  the  time period on, the  queue 
length En must be zero  when the nth  customer leaves. However if 
there are five  new arrivals  during on_, the  queue  length En must  then 
be five. Thus,  in general, the number of new arrivals  during the 
queuing  time of the nth customer  must be  equal  to  the  queue length 
En at the nth departure. 

Since the  number of new arrivals  has  a  Poisson  distribution, we have 
the following queue-length  queuing-time  probability 

If we let T(x) be  the queuing-time  distribution, we obtain  the  queue- 
length  distribution by the following integration: 

Forming  the generating  function,  and recalling that 

P{En = j }  = P j  

from  Equation C6, we obtain 

where O(s) is the Laplace-Stieltjes transform of the  queuing-time 
distribution.  The queue-length generating  function (Equation D2) 
can  be obtained by replacing s by X( l  - z )  in O(s). However,  from 
Equation Dl,  we have from  the  convolution of the two  functions 

w = Q ( ~ ) w  

where n(s) is the Laplace-Stieltjes transform of the  waiting-time 
distribution.  Hence 
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