Computer transcription of Stenotype code offers the possibility of
producing English text from speech via the Stenotype keyboard in
real time. Reported are experiments directed toward designing a
time-shared Stenotype transcription system that wmakes use of
earlier work in Stenotype dictionaries and language processing.

A content-addressing algorithm for direct-access storage, requiring
a single access per retrieval, is presented. An existing experimental
Stenotype dictionary program is used to implement on System/360
this algorithm and a dictionary-compaction technique. Transcription
analysis indicates that the experimental design can reduce the average
transcription error rate to Six percent.
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The Stenotype technique is the only presently known method for
recording spoken language in hard copy at conversational speeds.
This suggests the possibility of machine transcription of Stenotype
code into English clear text at conversational speeds. Machine

transcription could thus increase the productivity of typists, and
thereby, provide a man-machine interface that is competitive with
other forms of keyboard input.

In the late 1950’s and early 1960’s, work began in the automating
of Stenotype transcription concurrently with research in automating
language translation. In 1959, G. Salton' described his work at
Harvard University that led to the first Stenotype transcription
program. In the same year, E. Galli® began developing a Stenotype-
to-English transcription program and dictionary for a special-
purpose language processing computer.’ By 1960 Galli had developed
a workable system, and by 1964, he had extended the Stenotype
rules, abbreviations, and practices to eliminate most of the am-
biguities that existed in the language. The Stenotype dictionary-
transcription program evolved to a point that table lookup translation
principles could be applied. (Because the dictionary and transcription
program being discussed in this paper form a single logical unit, it
should be thought of as a dictionary program. We refer to it as a
“dictionary” when emphasizing that attribute, and “dictionary pro-
gram” when its dual nature seems appropriate.)
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In 1965, a more comprehensive Stenotype transcription dictionary
program that had several notable features was developed for a new
language-processing computer® for further research in machine
language translation. Fewer restrictions were placed on the input
subject matter. Error rates were between two and ten percent of the
words transcribed. Computer throughput was 60 words per second,
theoretically sufficient to transcribe the output of 30 Stenotype
reporters. This dictionary program, designed for a specialized
computing system, was used successfully by a government agency®
for one year, after which it was converted to operate with System /360
in a batch-processing mode.

The objective of the work discussed in this paper is to extend
the file-addressing concepts of the language processor to a
System/360 configuration using direct-access storage. The ex-
perimental work makes possible the production of English text
from speech via the Stenotype keyboard in real time. The text
can be produced as hard copy or possibly on an interactive display
console for immediate on-line editing. Basic Stenotype concepts
and machine processing of Stenotype code form the background
for discussing a new System/360 file organization and retrieval
procedure for the dictionary program. The new organization
permits the content addressing of files of variable-length textual
data and minimizes file accesses, processing time, and required
storage. The new file organization was programmed and storage
requirements are given. Results of experimental transcription of
typical Stenotype notes are presented.

Basic concepts

The Stenotype machine is a touch-driven printer about half the
size of a typewriter on which any combination of its twenty-two
keys can be struck simultaneously. Each key controls printing
in a specific column of a paper tape. The Stenotype keyboard
layout is shown in Figure 1 and a sample of the printing is shown
in Figure 2. There is no horizontal movement of the platen or
type. Vertical motion, however, is provided by a line feed that
advances the paper when the struck keys are released. Each line
of printing is called a stroke. Depressing the numeral bar, shown
in Figure 1, causes the keys to shift so that numbers are substituted
for letters on some keys.

The Stenotype language is phonetic, and each stroke represents
a syllable. Many stroke patterns and some individual keys, however,
are used to abbreviate common words, phrases, and affixes. A
meaningful collection of strokes (representing a word, for example)
is called a form. In Stenotype practice, there are many forms with
several possible English translations, and there are no word bound-
aries.

STENOTYPE TRANSCRIPTION

Figure 1 Layout of the Steno-

type keyboard
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system

Figure 2 Sample of Stenotype
printing
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Consonants are represented by unique combinations of keys actuated
on both sides of the keyboard by the fingers. The thumbs operate
the centrally positioned vowel keys. Thus, syllables, which most
commonly occur as consonant-vowel-consonant combinations, can
be printed by a single stroke of the hands.

Galli’s original Stenotype dictionary program forms the basis for
our research. This 80,000-entry, 3.4-million-byte dictionary requires
at least one retrieval for every word translated. Each dictionary
entry consists of two parts: an argument, which is the Stenotype
input, and a function, which is its English equivalent. Arguments are
variable in length and are ordered from low to high, i.e., A to Z,
and from short to long word length, as are words in an ordinary
dictionary.

The System /360 retrieval algorithm will be discussed in detail later
in this paper, but first we introduce Galli’s use of the language
processor for Stenotype transcription. Although the language-
processor algorithm is a multi-step, optimized procedure, it is
equivalent to a serial comparison between the input and each
successive argument beginning at the end (Z) of the dictionary and
continuing until a match is made. Since the Stenotype input has no
word boundaries, it must be treated as a string of symbols of un-
determined length. By serially comparing this string with the
dictionary entries in high-to-low order, the longest form that equals
a dictionary argument is matched first. This is the longest-match
principle. At least one match always exists, since an entry with a
single-letter argument, called a breakpoint, is included in the dic-
tionary for every possible input character.

A major problem for our System/360 dictionary-program imple-
mentation was the indeterminate number of entries that must be
compared by the language processor in achieving a match. There was
no known means for segmenting the dictionary program into fixed-
length records and for providing indexing so that, for each input,
only one record needed to be retrieved to assure a match.

To illustrate this problem, consider the following example, which
contains an error and must match to a breakpoint entry:

TXATION WITHOUT REPRESENTATION

The procedure begins as one would search a conventional dic-
tionary from the back, starting at a word beginning TY ... . It
would involve unnecessary searching to begin at a higher level
than TY. Each subsequent argument is compared to TXATION
until the breakpoint argument, T, is reached. This implies scanning
almost every entry beginning with T. Thus, for a computing system
using direct-access storage, many file accesses may be required to
retrieve the record that contains the matching entry.
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Analogous to the fetch-execute cycle of data processing systems,
the language-processing computer, which executes the Stenotype
dictionary program, has a fetch-compare cycle that operates (on a
character-by-character basis) between the dictionary entry and the
input. This cycle is controlled and interrupted by instructions in
dictionary-program entries themselves.

One such instruction performs the operation of matching to whatever
character is opposite it in the input. (Called “gamma,” this instruc-
tion is denoted in the dictionary program by a comma.) We illustrate
the fetch-compare cycle first without and then ‘with the gamma
instruction.

First, consider an input BAABG and the following set of stenotype
dictionary entries:

Argument Function
BAABG BAKE
BAUBG BALK
BA=BG BACK

Comparisons start with the last argument (BA=BG) in which a
mismatch occurs on the third character. (Machine Stenotype
orthography is beyond the scope of this paper. However, argument-
function identities are given where necessary.) The comparison then
proceeds to the next lower argument (BAUBG) where a similar
mismatch occurs. The search proceeds in this way until a match
with the argument BAABG occurs. The associated function represents
the correct transcription of the input. Thus, BAKE, BALK, and BACK
are distinguished in the argument by the form of the A-vowel used.

Next, consider the work MAKE. Here, neither of the forms MAUK
nor MACK are words. Also, some Stenotype reporters do not
distinguish between long and short vowels when there is no ambi-
guity, and they write MAKE with a short A. This would be tran-
scribed as MACK if the previous procedure were followed. One
way to correctly transcribe MAKE is by storing a dictionary entry
for each form of the A-vowel as follows:

Argument Function
MAABG MAKE
MAUBG MAKE
MA =BG MAKE

Such repetition is obviously wasteful of storage.

By using the gamma instruction (,), the same result can be accom-
plished more compactly because only the following single entry is
required.

Argument Function
MA, BG MAKE
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the directory

Thus, regardless of the vowel forms used by the stenotypist to write
MAKE, it is transcribed correctly.

In our restructuring of the dictionary program for System/360 use,
we devised a new search algorithm that avoids serial file accessing.
Used with direct-access storage devices, the new dictionary organiza-
tion-and-search algorithm has the following characteristics: equiv-
alency with the longest-match algorithm, entry grouping by records
of arbitrary size, and a single file access for retrieving any entry.

We devised such an algorithm, which we discuss first for an un-
compacted dictionary in combination with an associated directory
or index. Then the compaction and search procedures are presented.
Results obtained when the compaction techniques are applied to the
Stenotype dictionary-program are shown.

System/360 dictionary and search algorithm

The overall logic of our dictionary file organization and search
algorithm involves a directory and dictionary records, as shown
in Figure 3. The directory consists of elements A, B, C, ... with
pointers 0, 1, 2, ... to System/360 records A, B, C, ... . Each
record contains many entries. Directory elements are based on
the argument of the first entry in each dictionary record. In retrieval
(dashed arrows), the directory is searched until a directory element
equal to or just greater than the input is found. Then the associated
dictionary record is retrieved, and each entry in that record is
compared with the input until a match is found. This operation is
effectively that of content addressing.

The directory elements are formed by taking as many bytes from
the argument of the initial entry in the record as are required to
distinguish it from the initial entries in adjacent records. Construction
of the dictionary (solid arrows) begins by specifying the maximum
allowable record length. Records are then filled with consecutive
dictionary entries except for approximately one-hundred bytes at the
end of each record that are reserved for duplicate entries that may
have to be added later.

To illustrate the construction of a directory element, shown in
Figure 3, consider the three successive dictionary records that have
as first entries the following:

Argument Function
FO,X/ FOX
FO,R/TE,L FORTEL
FO,R/KLO,S FORCLOSE

Four bytes are needed to distinguish FO,R/TE,L from FO,X/, and
six bytes to distinguish it from FO,R/KLO,S. Six bytes are chosen,
and thus FO,R/T becomes the directory element.
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Figure 3 Construction and retrieval from the System/360 dictionary program
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After the directory element has been determined, some entires may
have to be added to the System/360 dictionary records. These are
entries in subsequent dictionary records whose complete argument
is an initial substring of the directory element. By repeating entries
that are substrings, we assure that in retrieval any entry that matches
the input is included in the record retrieved. These entries are called
short matches, and characteristically there are one or two for each
record.

For the directory element FO,R/T the initial substrings are the
following:

FO,R/T
FO,R/
FO,R
FO

F

Of these, only FO,R/ (function FOR) and the breakpoint entry
F (function F), added to record B of Figure 3, are short matches
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that have to be added to the record. In anticipation of these short
matches, the extra bytes are allowed when the record is first con-
structed.

Consider the following hypothetical directory for a conventionally
alphabetized dictionary:

Directory element Record number
A
AB.CD
AB.CE
AB,E
AB,FGH
AB,FGJ
AB,G
AB,HAA
AB,HAB
AC

B

[e>INo R0 SREN e NV RN NRIVE S ™

—

In locating the record to be retrieved, the input is compared with
each directory element starting with an element that is near the
bottom of the list and is greater than the input (in the sense that
A < B < ... < Z). Thus, comparisons for an input beginning
with A start with the lowest ordered element beginning with B .
and proceed, element by element, until the directory element being
compared is less than the input. At that point, the record whose
directory element is just greater than the input is retrieved. On the
other hand, if the directory equals the input, two records—the one
equal and the next higher—are retrieved. Suppose the input is
ABOUT. Then, for the above directory

AB,HAB < ABOUT < AC

is true, and record 9 with directory entry AC is retrieved. For an
input ABSENT, the expression

AB,E = ABSENT < AB,FGH

is true, and records 4 and 3 are retrieved.

The directory search procedure, followed by a sequential search of
the retrieved record entries, assures that the dictionary entry repre-
senting the longest match to the input is selected. Records are of
arbitrary size, and their retrieval requires no more than one storage
access.

A typical segment of Stenotype argument-function formats for
language-processing computers are shown in Table 1. The search
procedure for a compacted dictionary is shown in the flowchart in
Figure 4. Entries in Table 1 are given in reverse alphabetical order;
consequently, comparisons with an input proceed from top to bottom
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in arriving at the longest match. Redundancy in the original Steno-
type dictionary is clearly illustrated by the redundancy in entry
arguments. The format for System /360 processing eliminates redun-
dancy and minimizes byte comparisons, as shown in the last two
columns of the table.

The essential idea of dictionary compaction is to include in each
entry the number of bytes that entry has in common with the
preceding entry (L,). When this is done, a comparison of identical
bytes in successive entries need never be repeated. Instead, a single
numeric comparison is substituted.

As an illustration, assume the following input:

TRAITT/$ITOOR/XYZ . ..

In a serial search, comparisons would begin with the first entry
in the second column, and the given input would match to the
tenth entry, translating as TRAITOR.

Table 1 Comparison of Stenotype dictionary programs

Stenotype entries for serial processing

Entries for System /360 processing

Entry
number

Stenotype
argument

English
function

Compaction
length L.

Argument
remainder

1
2
3
4
5
6
7
8
9

TRA,TJ/KO,M/KA,L
TRA,T}/KO,M/D,Q/
TRA,TJ/KO,M/$,M[,BG/
TRA,TI/KA,L
TRA,TJ/D,Q
TRA,TT/$,TRU,S,
TRA,TT/$,TRLS,/
TRA,TT/S,TRE,S,/
TRA,TT/$,TO,R /$,RU.S,
TRA,TT/$,TO,R
TRA,TT/$,TE,R
TRA,TI/$,J1,BG
TRA=TJ/$,JIQ/D,Q
TRA,TJ/$,JE,/D,Q
TRATJ/$,J,Q

TRA,TT

TRAT,
TRAASS/RU,S/
TRAASS/R,Q
TRAASS/$,SEE=SZ/
TRAASS/3,S,E,R /$,R,Q
TRAASS/$,S,E,R
TRAASS/$,S,A,BL/
TRA =SS

TRAISS

TRAASS

TRA,SS
TRA,RB/YE,S, /--T/
TRA,RB/YE,R/
TRA,RB/YE,F,TT/

TRAG-I-COM-I-CAL
TRAG-I-COM-E-DY =
TRAG-I-COM-IC=
TRAG-I-CAL
TRAG-E-D
TRAI-TOR-OUS
TRAITRESS =
TRAI-TRESS =
TRAI-TOR-OUS
TRAL-TOR'S4’
TRAITOR'S4
TRAG-IC'S4
TRAG-E-D*S8’
TRAG-E-D‘S8
TRAG-EDS8’
TRAIT‘S4
TRAIT'S#
TRAC-ER-IES =
TRAC-ER
TRACES =
TRAC-ER
TRACER
TRACEABLE =
TRASS =

TRAC

TRAC

TRAC
TRASH-I-EST =
TRASH-I-ER =
TRASH-1-EST=

0
12
12

8

7

5
11
11
10
13
10

5

3
10

TRA,TJ/KO,M/KA,L
D,Q/

$,MI,BG/

AL

D’Q

T/$,TRU,S,

LS,/

ES,/

O,R/$.RU.S,

E,R
1/$,J1,BG
=TJ/$,J1Q/D,Q
E,/D,Q

s

T
ASS/RU,S,/

Q
$,SSEE=SZI
;E.R/3.R.Q

SS
RB/YE,S,/--T/
R/

F,TT/
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Table 2 Dictionary-program compaction

Original Stenotype dictionary program 3,411,000 bytes
Compacted System /360 dictionary program 2,580,000 bytes
Added by short matches 13,000 bytes
Resultant System /360 dictionary program 2,593,000 bytes

We now consider the compacted entries in the last two columns
and use the compacted-dictionary search algorithm for System/360
shown in Figure 4. The number of bytes (n) in the first entry that
correctly match the input is stored (m = 5). Since this is not a
complete match, the search continues to the second entry where the
number of matching bytes (m) is compared to L., which is 12.
Since L, = 12 is greater than m = 5, the procedure goes to the
third entry. Not until the sixth entry is it necessary to make another
character comparison. This is followed by five more comparisons as
a result of which the matching-byte number is increased to 10, and
a mismatch occurs. Entries 7 and 8 are bypassed because L. is
greater than m. Entry 9 increases m to 14 before mismatching. Then
for the tenth entry, the input and entry pointers are backed up one
character before comparison starts. Entry 10 immediately matches
the input because no more bytes are found in the argument remainder.

Experimental results

To evaluate the practicality of on-line Stenotype transcription, we
programmed our dictionary-file organization. In addition, we tested
the dictionary program developed for the language processor using

Stenotype notes made by practicing reporters. Dictionary-program
compaction reduced the dictionary size by 24 percent, as shown in
Table 2. A major concern was how many bytes would be added by
the short-match entries. Based on the compacted dictionary, experi-
mental directories were programmed for several record sizes. For a
record size of 3,000 bytes, the directory contains 860 elements
(4,260 bytes) or an average of 5 bytes per directory element. We found
(as shown in Table 2) that, under these conditions, only 13,000
additional bytes had to be added to the dictionary for short-watch
entries. Thus it is shown that the short matches contribute a retatively
small addition to the dictionary-program (which was the key
unknown factor in the System /360 implementation).

Transcription testing was done using the original dictionary program
on the language processing computer with no modifications and
with no special training of stenotype reporters. In this test, we
transcribed and analyzed samples of Stenotype notes taken by three
different reporters at public hearings. There were 27.3 percent word
discrepancies between the machine-transcribed output and that
produced by the Stenotype transcribers,
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An analysis of the results of the transcription tests are summarized
in the first data column of Table 3. It was found that most of the
errors fall into categories that can be individually studied and im-
proved. Typical of these improvements are dictionary addition and
deletions and special training of Stenotype reporters. That is, there
were no fundamental flaws in Galli’s extended Stenotype language
or in the procedures developed to translate it. Only 1.5 percent of
the words in error could be attributed to inadequacies in the basic
transcription algorithm.

We first discuss special reporter training to avoid- the homograph
errors given in Table 3. Homographs are a characteristic of the
conventional Stenotype language wherein one Stenotype form stands
for more than one English word. There are several causes of homo-
graphs: (1) homonyms, (2) ambiguous word boundaries, and
(3) ambiguities in conventional Stenotype language. Stenotype
reporters resolve these ambiguities by their context.

Consider first homographs caused by homonyms such as “steel”
(transcribed as “‘steal”) and ‘“‘daze” (transcribed as “‘days”). Errors
due to homonyms have remained most resistant to correction and
account for most of the 1.5 percent residual homographic errors. To
the extent that the dictionary program can resolve homonyms, it is
done probabilistically, i.e., “days” is printed rather than “daze.”

Typical of word-boundary homographs are those based on ex-
pressions such as “sell fish” (transcribed “selfish™) and ‘‘agent
sees” (transcribed ‘“‘agencies™). The resolution of word-boundary
ambiguities is accomplished to a large degree in the Stenotype
dictionary program with full-phase arguments such as “to sell fish”

and ““a selfish.” Referring to the third cause of homographs, consider
the words “sink,” “sing,” and “singe” in which no distinction is
made among the final consonants in the conventional Stenotype
language. Stenotype extensions correct this problem by introducing
new keyboard fingerings for — NK and — NG.

Another example of the third source of homographs is that both
the left hand T and right hand T, as shown in Figure 1, are commonly

used to abbreviate either “it” or “‘the.” Called “paired abbrevia-

Table 3 Experimental Stenotype transcription word errors

Initial Corrected
Error analysis analysis
classes (percentage) (percentage)

Homograph 13
Missing dictionary entry 8
Proper name 2
Unedited words 4
Total 27
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tions,” such homographs are resolved in the extended Stenotype
language by assigning one abbreviation to each hand—the right T
for “the” and the left T for “it.”

Language extensions, such as those discussed, may involve reporter
retraining. For example, we found that many of the paired abbrevia-
tions that were resolved one way by extensions to the dictionary-
program were often resolved in the opposite way by practicing
reporters. Such discrepancies can be corrected either by personnel
retraining or by tailoring dictionary entries to transcribe paired
abbreviations as each reporter expects them to be.

The major portion of the homographic errors shown in Table 3
were found to be correctable by the procedures just discussed.
Of the thirteen percent errors due to homographs, it is possible to
approach seven percent correctability through retraining and four
percent correctability through improvements in the dictionary-
program. The residue of two percent uncorrectable homographs is
due primarily to homonyms.

Errors caused by missing dictionary entries can be made to approach
zero by appropriate additions. Several available methods enable a
reporter to enter proper names so that they can be correctly
transcribed.

There is a four percent error residue that the transcriber corrects by
editing his tape prior to transcription. Providing a machine facility
to correct such errors requires a system configuration that is beyond
the scope of this experiment. Transcription requires a comparable
post-transcription editing time to correct similar errors. In machine

transcription, there is also an additional residue of errors requiring
editing of a little over one percent, resulting from logical inade-
quacies, that have so far remained resistant to improvements in the
basic algorithms.

Concluding remarks

We have experimentally demonstrated the technical feasibility of
on-line Stenotype transcription for System/360 using a compacted
dictionary program and a search algorithm for content addressing
variable-length dictionary arguments, Methods of reducing word
errors from twenty-seven percent to approximately six percent are
discussed. Retraining in Stenotype extensions as well as modifi-
cations of the dictionary organization algorithm permit this reduction
in the word-error rate.
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