Operating systems for small computers are more restricted in their
capabilities than those used on larger computers and are generally
not designed for multiprogramming. However, some facility is needed
to permit such actions as inquiries.

This paper discusses an option to a small operating system that
permits interruptions of a job, execution of a program to handle an
inquiry, and return to the interrupted job. A description of the operating
system serves as a basis in discussing the characteristics of the option.

On-line inquiry under a small-system operating system
by K. Darga

One of the most inconvenient restrictions to the user of a single-
partition-oriented operating system with no multiprogramming
capabilities is not having the computer available for other work
during execution of a large program. Many users, however, want
facilities that allow the execution of certain programs at any time.
In particular, they are interested in putting urgent inquiries to
their data files on disk, without being forced to abort the job in hand.
For systems with limited main storage, a roll-in/roll-out function,
which frees main storage for the execution of an intermediate pro-
gram, can be an adequate solution to this problem.

Such a function is offered by the IBM System /360 Model 20 Disk
Programming System (DPS) and is called an inquiry function.'
DPS was designed specifically for a computer system having a small
main storage and limited capabilities. In this paper, a description
of the DPS is first given as background for the discussion of the
development of the inquiry function, and is followed by the general
concept of the inquiry function, Of particular interest are the various
resource protection problems that had to be solved for the system to
function properly. It is shown that the protection feature is the key
to the operation of the inquiry function.

DARGA IBM SYST J




The Model 20 disk operating system

The Disk Programming System is the disk-oriented operating system
for the Model 20. Programming systems that were made for the
larger models of the System /360, such as the Operating System or
Disk Operating System, cannot be used for the Model 20 because
of several differences in hardware facilities. To contribute to a proper
understanding of Model 20 programming support, some of the
distinguishing characteristics of the Model 20 are listed:*"* (1) There
is no distinction between the supervisor state and problem state,
and consequently no supervisor-call instruction. (2) There is no
hardware protection feature and no wait state. (3) Interruptions
do not include machine and program checks; instead, the checks
lead to hard machine stops. (4) In the input/output operations,
there is no channel address word."® Unit record devices are not
started by channel command words, but by a special X10-instruction
that contains all information necessary to start an input/output
unit itself, The instruction set of the Model 20 is basically a subset
of the instructions of the larger models but has, in addition, some
instructions that are incompatible with the larger models.

Designed as a low-cost computer, this machine did not include a
multiprogramming capability, mainly because of the first two charac-
teristics listed. Consequently, DPS was developed as a single-partition
programming system.’ During execution, main storage is occupied
by that part of the control program for the system that resides
there, called the monitor, and one problem program. The basic
routines of the monitor are (1) the program loader which fetches
load modules (phases) from the core-image library (section of a
storage device in which program elements have been assigned the
actual main storage addresses they will occupy) into main storage,
(2) the end-of-job routine which fetches the job control program
into storage to initiate the next job, (3) the input/output routine
which starts input /output requests for disk and tape, (4) interruption-
handling routines, and (5) the input/output scheduler which queues
those input/output requests that cannot be started immediately.

Additional parts of the resident control program are a communica-
tion area and the physical and logical unit blocks. The communi-
cation area is divided into two parts. One of them, the permanent
link data area (PLDA), contains several switches, pointers, and entry
addresses reserved for the exclusive use of the computer system. The
other part of the communication area is provided for user programs.
It contains information such as the actual date, a user program
switch that can be set by job control cards, and areas available for
intraprogram and interprogram communication.

Normally, the size of the monitor does not exceed 4,600 bytes.
Its size depends on several options that can be requested at monitor-

generation time. For example, one of these options makes parts

No. 1 - 1970 SMALL-SYSTEM INQUIRY

DPS monitor




system
disk pack

of the monitor transient; that is, these parts do not remain in main
storage throughout the system operation and are overlaid by other
called routines. The inquiry support is another such option.

Monitor services for the problem program are requested by direct
branches into fixed locations of the permanent link data area. From
here, control is given to the indi' ‘dual service routines, such as the
disk input/output start routine. The monitor can be considered
as a pool of system resources available for the problem program.

Another pool of system resources is the system disk pack (SYSRES)
which contains the system as one data file. This file is divided into
two extents (devices and track boundaries), one containing the
loading program, the other containing the system libraries and their
directories. The library extent consists of the following areas: (1) a
system directory that describes the location of the individual libraries
and directories within this file, (2) one section that contains the
monitor in load module format, (3) the core-image library and its
directory that contain all programs to be executed in load module
or pointers to each module, (4) the macro facility library and its
directory that contain macro definitions in an internal format or
pointers to each macroinstruction (macro definitions can only be
used in assembler programs; the internal format is understood by
the assembler), and (5) the relocatable area, used as a work area for
compile-and-go or assemble-and-execute runs (the Report Program
Generator (RPG) compiler and the Assembler put the generated
object program into the relocatable area; the user can instruct the
system to include the contents of the relocatable area in the core-
image library as a temporary entry and then immediately execute
the program).

A special data file located on the system disk pack is the label infor-
mation area (LIA), which serves as a communication area between
data management routines (IOCS) and the job control function. All
pertinent file information, which must be provided by means of job
control cards, is put into this area and can be retrieved from this
area by the 10CS routines of the user’s program.

Another characteristic of DPS is that it is a batch-oriented system.
That part of main storage not occupied by the monitor is alternately
used by a problem program and the job control program. The func-
tion of job control is to select control information required for the
next job to be executed and to cause transfer of control to the first
phase of this job. This job could be a user-written program or one of
the system programs. The DPS programs include:

The programming language translators: Assembler and RPG
compiler

Several utility programs such as disk sort, tape sort, and file-
to-file utilities

IBM SYST J




& Library service programs which are used to add or delete modules
to or from the libraries

In addition, DPS provides a set of macro definitions that can be
used in assembler programs to generate I0CS routines, routines that
require monitor services, and a monitor.

The inquiry support

The inquiry option of DPS allows stacked-job processing to be
interrupted for the execution of an intervening program, called an
inquiry program. To initiate an inquiry program, the user presses
the REQUEST key on the printer-keyboard causing an interruption of
the job in progress that indicates to the system the user’s intentions
to start an inquiry program. The system checks to see whether or
not the current mainline program has indicated any objections
against the execution of inquiry programs. An objection would result,
for example, if the mainline program turned on an inquiry control bit
in the communication region. If the system does not encounter this
indicator, it asks for the name of the inquiry program the user wants
executed. This is accomplished by issuing the message ENTER
PROGNAME on the printer-keyboard. In accordance with the
instructions of this message, the system sets up a printer-keyboard
read instruction, giving the operator the opportunity to enter the
name of the inquiry program. When the name has been entered, the
system saves the status of the mainline program by writing it into a
reserved area of the core-image library. Then the inquiry program
is fetched from the same library and control is transferred to it.
After execution of the inquiry program, the status of the interrupted
mainline program is restored, and the latter resumes execution.

Observe that the execution of inquiry programs is not preceded by a
job control function. Label information and assignments of input/
output devices required for the execution of a specific inquiry pro-
gram can be provided by any previous job control run in the batched-
job stream and is stored as permanent information by the system.

An interesting feature of the DPS inquiry support is the printer-
keyboard input area, which can be incorporated into the monitor
at its generation. The implementation of this feature was determined
by the expected structure of application inquiry programs. Such
programs select one or more records from an indexed sequential
file and display these records or parts of them via the printer-key-
board. The decision as to which records are to be displayed occurs
at execution time. The input information required for this decision
is provided by the operator, for example, by typing the keys of the
records on the printer-keybroad. If this typing takes place at execu-
tion time of the inquiry program, it probably cannot be overlapped
meaningfully with other processing. The inquiry program spends

No. 1 - 1970 SMALL-SYSTEM INQUIRY




most of the time waiting for information, and the interrupted main-
line program is held up for an inconvenient length of time.

The incorporation of a printer-keyboard input area into the monitor
allows its use as a communication area. The key information for the
standard inquiry program can be typed when the name of the inquiry
program is typed. The system automatically sets up a second printer-
keybroad read instruction at inquiry-initiation time thus allowing
the operator to enter information into the input area. The inquiry
program can retrieve this information later. The advantage of using
the input area is that the operator’s typing can be completely over-
lapped with processing of the mainline program.

Another feature available in the DPS inquiry support is the printer-
keyboard output area, which can be incorporated adjacent to the
monitor when the monitor is generated. Its purpose is similar to
that of the printer-keyboard input area. If the output area is used
in an inquiry program, the output at the end of the program can be
overlapped with the restoring and processing of the mainline pro-
gram, provided that the interrupted mainline program does not
make use of, or overlay, the printer-keyboard output area.

The simplified schematic flow of events that takes place after a
request for execution of an inquiry program is illustrated in Figure 1.
This figure also shows all operations on the printer-keyboard being
overlapped with processing of the current mainline program.

Although the inquiry facilities were made for application programs
requiring the operations described, the user cannot be prevented

Figure 1 Execution of an inquiry program

INQUIRY

PROGRAM

CONTROL

ATTENTION
ROUTINE ROLL-OUT

9%
)

END OF JOB

ROLL-IN

PROGRAM

‘INITIATE INQUIRY

PROGRAM

MAINLINE
PROGRAM

PRINTER-KEYBOARD
OPERATIONS

RETURN

N\

ATTENTION INTERRUPTION

START PRINTER-KEYBOARD OUTPUT

START PRINTER-KEYBOARD
END OF TRANSMISSION

OUTPUT FROM
READ PROGRAM PRINTER-KEYBOARD
NAME OUTPUT AREA

PRESS
REQUEST KEY

\

MESSAG READ INTO
ENTER PROGNAME PRINTER-KEYBOARD
INPUT AREA

IBM SYST J




from calling any program residing in the core-image library. For
that reason, the system must have safeguards. Protection methods
to prevent unauthorized access to resources are discussed in the
following section.

Protection of system resources

The intermediate execution of a program during the processing of
another one implies problems similar to those that exist when two
or more programs are executed concurrently in multiprogramming.
Difficulties are apt to arise when the intervening program attempts
to access any serially reusable system resources that are currently in
use by the interrupted mainline program.” Such system resources
could be input/output devices, data files, libraries, or routines of the
control program in main storage.

From experience with multiprogramming systems, we know the
following two general methods to prevent simultaneous access to
serially reusable resources:

1. Enqueuing requests for such resources, which means that any
program requesting a serially reusable resource and finding it
allocated to another program has to wait (is not dispatched) until
the resource is available.

Preventing those programs that need currently occupied resources
for their execution from entering main storage.

For a roll-in/roll-out function, the first method is not applicable. A
program allocated to a serially reusable resource could not release

this resource if it were rolled out of main storage.

The second method can only be employed when the system knows
in advance all resources that are required for the execution of a
program. This would force the user to provide control information
for all resources he uses in his program, so that a program initiator
could check for resource conflicts with the program currently in
process. DPS automatically handles all control of serially reusable
system resources without requesting any control information to be
provided by the user. The following discussion is a description of the
protection features implemented to prevent uncontrolled errors.

Resources in DPS that are the object of protection can be grouped
into three classes: (1) monitor routines, (2) the system file on the
system disk pack, and (3) user data files.

Routines of the monitor usually run disabled (all interruptions
masked off in the program status word), so that any request for
inquiry service is delayed until the routines are finished. If the
request occurs during execution of a monitor routine when inter-

No. 1 - 1970 SMALL-SYSTEM INQUIRY

access
prevention

monitor
routines




system
file

ruptions are temporarily not masked off for some reason (for exam-
ple, during program fetch), the inquiry service is logically delayed
to prevent simultaneous access to serially reusable monitor resources
(transient area). Monitor routines are normally not very time-
consuming; the delay of the inquiry program is not very great.

Various protection methods are implemented for the libraries within
the system file. When a system service program is in the process of
rearranging the core-image library or the core-image directory, or
when another service program is reorganizing the whole system file,
it would not be possible to fetch any inquiry program from the core-
image library. The system is informed of this situation by an inquiry
control bit in the communication area. If the operator were to try
to start an inquiry program, he would get a message on the printer-
keyboard indicating that no inquiry programs can be executed for
the duration of the current mainline program.

Another type of resource conflict could occur when a system service
program running in the batched-job stream is rearranging, for
example, the macro facility library. This library is only required for
the execution of a very few system programs. No user-written pro-
gram would get access to this library.

It would not be reasonable to prevent the execution of inquiry
programs in general when the library is in a pending state. For this
reason, indicators are set in the communication region by programs
that temporarily disarrange those areas of the system file not neces-
sarily required for the execution or control of inquiry programs.
System programs that require access to such areas of the system file
test these indicators when they run as inquiry programs. If they find
an indicator on, they are aborted and processing of the interrupted
mainline program is resumed.

One of the main problems in a roll-in/roll-out environment is that
of protecting shared direct-access storage-device files against simul-
taneously being updated. Let us briefly illustrate this problem.

Assume that the mainline program is updating the records of a disk
file. A record may be read into main storage and updated. Before it
is written back onto a disk, an inquiry program is started. But this
inquiry program updates the same record of that specific file. When
the mainline program later resumes execution, it writes its update
to the same disk position, and the results of the updating by the
inquiry program are completely lost. If the inquiry program, instead
of updating a record, added records to the same disk file which the
mainline program is processing, the file could be destroyed.

The easiest way to prevent these problems from occurring would be
to eliminate any sharing of data files. However, this restriction would

not be justified. If both the mainline program and the inquiry

DARGA IBM SYST J




program only read records of the same disk file, no difficulties would
occur.

Before the file protection mechanism of DPS is explained, let us
briefly consider the 1BM System/360 Operating System (0S/360).° A
multiprogramming system such as 0S/360 has exactly the same
problems of providing protection of shared files. 0S/360 allows
concurrent access to the same file (data set) by more than one pro-
gram if the user declares in a control statement which file is to be
shared. Any control over serializing of updating operations on a
shared data set is left to the user’s responsibility. The system only
helps by providing the necessary supervisor service with use of the
macroinstructions ENQ and DEQ.? The user has to request explicitly
in his program the exclusive control over a data set or records of a
data set. The system serializes any subsequent requests to the same
resources by enqueuing them. For the 0S/360 enque and deque
service to work properly, all programs must follow the conventions
and ask for the resources before using them.

File protection in DPS is controlled by data management routines.
The OPEN routine for any disk file in a mainline program sets
protection bits in the label of that file. These protection bits indicate
which specific operations are currently performed on the file (for
example, updating or additions, etc.).

The OPEN routine of any inquiry program automatically tests the
protection bits, The protection bits set by the mainline program may
cause the inquiry program to be aborted if it attempts to perform
certain operations on the protected file. If, for example, the mainline

program is in the process of updating a data file, any attempt of an
inquiry program to update the same file or to add records to the file
would be prohibited. An inquiry program, however, that only
retrieves records from the same file would be allowed to run. The
conditions under which indexed sequential disk files are protected
from being accessed by inquiry programs and those under which
such access is allowed are shown in Table 1.

Table 1 Protection of indexed sequential files

Inquiry program

Mainline
program UPDATE RETRIEVE

LOAD extend P
UPDATE P
ADD A
RETRIEVE A

P—Access to file is not allowed for inquiry program
A—Access to file is allowed for inquiry program

No. 1 - 1970 SMALL-SYSTEM INQUIRY

file
protection



The protection bits in the file labels are cleared in the CLOSE routine
of the mainline program. File protection for direct access files and
for sequential disk files is achieved in the same way as that for
indexed sequential files.

Performance considerations

Functions available in a programming system are usually evaluated
according to two main features: the main storage requirements and
the execution time requirements. Therefore, it might be of interest
to know how much main storage is required in the monitor for the
inquiry function, and how much time it takes to initiate an inquiry
program.

The main storage requirements of the inquiry function within the
monitor are rather small, since roll-in and roll-out are transient
routines. The number of bytes by which the monitor increases is
about 300, excluding the printer-keyboard input and output areas.
The time which is required for the initiation of an inquiry program
depends on the size of main storage. For a machine with a main
storage of 16K bytes, it takes about one second. This time, of course,
does not include the time needed by the operator to type the program
name or any inquiry program input. But as the operator’s typing can
be overlapped by processing of the mainline program, this time is of
no importance,

Summary

The original purpose of the DPS inquiry support—to provide a
function that allows inquiries to disk files during stacked-job
processing—was surpassed. The DPS inquiry function more generally
offers the possibility of starting almost any type of high-priority
program during stacked-job processing without aborting the current
job in the job stack. This function is offered in a small system with
reasonable safeguards to protect the user against mistakes.

CITED REFERENCES AND FOOTNOTES

1. Some concepts similar to those of the inquiry function were available
in the IBM 1401 Disk System and the IBM 305 RAMAC.

2. G. M. Amdahl, G. A. Blaauw, and F. P. Brooks, Jr., “Architecture of
the IBM System/360,” IBM Journal of Research and Development 8,
No. 2, 87-101 (April 1964).

. G. A. Blaauw and F. P. Brooks, Jr., “The Structure of System/360, Part
I—Outline of the logical structure,” IBM Systems Journal 3, No. 2, 119~
135 (1964).

. IBM System/360 Model 20 DPS Input/Output Control System, Systems
Reference Library, C24-9007, International Business Machines Corpora-
tion, Data Processing Division, White Plains, New York.

. A. Padegs, “The structure of System/360, Part IV—Channel design con-
siderations,” IBM Systems Journal 3, No. 2, 165-180 (1964).

IBM SYST J




. Documentation pertaining to the IBM System/360 Model 20 Disk Pro-
gramming System published by the International Business Machines
Corporation, Data Processing Division, White Plains, New York, in-
cludes: Guide to DPS (C33-6001), System Generation and Maintenance
(C33-6006), Operating Procedures (C33-6004), and Performance Esti-
mates (C33-6003).

. J. W. Havender, “Avoiding deadlock in multitasking systems,” IBM Sys-
tems Journal 7, No. 2, 74-84 (1968).

. The concepts of the IBM System/360 Operating System are described in
more detail in the three-part article “The functional structure of 0S/360,”
IBM Systems Journal 5, No. 1, 2-51 (1966).

. IBM System/360 Operating System Supervisor and Data Management
Services, Systems Reference Library, C28-6646, International Business
Machines Corporation, Data Processing Division, White Plains, New
York.

SMALL-SYSTEM INQUIRY

11




