This paper discusses programming techniques for continuously
gathering performance data in a complex multijobbing environment.
The program takes advantage of computing system and support
program characteristics to count and time data processing activities.

The data gathered by the program enables installation managers to
measure the effects of modifications to equipment and programmaing
support configurations and to define work loads.

Measurement of system operational statistics
by W. I. Stanley

Current computing systems are often comprised of large amounts
of computing equipment, do a large volume and variety of work,
and are supported by complex operating systems. Such computing
systems are sometimes expected to process data on a real-time
basis, as well as provide conversational mode operation and tele-
processing. One effect of these trends is that computer installation

managers have an increased need for quantitative data about
work load characteristics (number of compilations, executions, etc.)
and processing activities (frequency and duration of use of CPU,
channels, etc.) in order to evaluate system performance. Providing
this data requires complex techniques for measuring the internal
activities of the systems and associating these activities with
specific units of work.

This paper presents a special-purpose program called the job ac-
counting system (JAS) for continuously and automatically moni-
toring the activities of a modern real-time operating system.'
The system being monitored is used both for multijobbing job-
shop operations and real-time support of NASA manned space
flight activities.

The monitoring system gathers statistics that are used to bill
users of the computer facilities and to evaluate system per-
formance. Emphasis in this paper is on performance evaluation.
Specifically, the data are used to assess the suitability of the
existing configuration for the work load being processed, to deter-
mine whether operating procedures are resulting in effective use
of system resources, and to anticipate needed configuration changes
to accommodate a changing work load. The data, which are

NO. 4 - 1969 MEASUREMENT OF STATISTICS




history

monitored
data

provided in terms of resource usage per job and per job step,® are
gathered over relatively long periods (days or weeks of processing
time).

The data obtained by JAS, which are called operational sta-
tistics in this paper, are used in two ways associated with per-
formance evaluation. Operational statistics are interpreted di-
rectly. For example, monitored central processing unit usage
might be low because insufficient advantage is being taken of the
multijobbing capabilities of the operating system. Operational
statistics are also used to characterize work loads in simulating
computing system operation. Expericnce with the real-time com-
puter complex indicates that, given suitably parameterized models
calibrated with detailed measured performance data,* few sta-
tistics are needed to characterize the work load. These data include
types of jobs and job steps (FORTRAN compilations, assemblies,
linkage-editor processing, etc.) and some information about the
equipment (main storage size, CPU speed, ete.). Using operational
statisties rather than hypothesized work loads enhances the ac-
curacy of system simulation.®

This paper first considers operation of JAS, including the
kinds of data gathered, and then discusses some of the factors
taken into account in its design. The final topic in the paper is
resolution of the timer used to measure clapsed times and the
effect of this resolution on results.

The job accounting system

The job accounting system arrived at its present state of develop-
ment by an evolutionary process. In 1966, JAS was implemented
to define the workload at a real-time computer complex (RTCC).
Statisties from this effort were primarily job names, step names,
1/0 device usage, CPU usage, and elapsed job time. This informa-
tion was used to derive a record of system performance (jobs per
hour, percent of operating time per day, ete.) and to define job
mix (percent assemblics, FORTRAN compilations, program execu-
tions, etc.). The statistics were used as input to General Purpose
Simulation System (GPSS) models of the computer system. Even
at that time, the potential for expanding the use of the statistics
obtained by JAS was apparent. Therefore, the JAS output was
defined to be unprocessed statistics stored in a data base. By
post-processing the data base with utility programs, performance
reports were generated. Since 1966, the JAS data base has been
expanded to include additional information for billing computer
users and for providing management information on program
development costs.

The data base contains three types of operational statistics:
static accounting data, dynamic statistics on job execution, and
special operator information entered through the computer con-
sole. However, the operator-supplied information is not presently
used in the performance reports. These operational statisties arc

STANLEY IBM SYST J




summarized by the collection program at three points during
job execution: at the start of a job, at the end of a job step, and
at the end of a job. Records of 1/0 activity are added at the start
of each job to indicate I/O activity of the operating system for
each job initiated, at the end of each step to indicate I/0 activity
for the step, and at the end of each job to record operating system
1/0 activity from the end of the last step in a job to the end of the
job. ,

Static information is supplied by the programmer and obtained
from job control statements. It includes job name, programmer
name, and similar accounting information. Items such as start-
of-job time, date, and computer identification are included in this
record.

Dynamic statistics are stored in both the end-of-job and end-
of-step records. Dynamie statistics are measured use of resources,
such as CPU time per job and per job step, frequency of 1/0 device
usage, main storage usage, job and job step elapsed execution
time, and three system statistics. These three statistics are:
system 1/0 wait time, when the CPU is in the wait state but at
least one I/0 device is operating; system idle time, when the
CPU is in the wait state and no 1,0 devices are active; and system
task CPU time, when the CPU is being used to perform system
tasks, such as reading a job stream into the system or accepting
operator commands.

To create a performance report, statistics are taken from the
start-of-job, end-of-step, and end-of-job records, plus the as-
sociated 1/0 records in the data base. The CPU time used to
execute the operating system job scheduler can be calculated from
the data base records. (Job scheduler CPU time equals job time
minus the sum of the job step times.) The associated I/0 records
reveal the 1/0 activity performed for the job schedulér and for
job steps. The step names and the number of steps per job char-
acterize the work load. The time of day recorded in each end-
of-job and start-of-job record is used to calculate the time between
the end of one job and the beginning of another job entered via
the same job initiator task.® Also, the number of active job ini-
tiators reveals the level of multijobbing at any given time, which,
in turn, can be related to system resource usage.

The amount of time that the computer system is actually in
operation is indicated by the number of times that the operating
system must be loaded into the computer (called initial program
loading or IPL in this system) and the length of time the com-
puter is not operating prior to being restarted by an IPL. Another
measure of unused computing capacity is the amount of system
idle time, which is accumulated and recorded in each end-of-step
and end-of-job record. Operator information may be needed to
account for unproductive time.

The utility program that processes the data base to provide
performance information summarizes these statistics and produces
an eight- to ten-page report. Much of the report is self-explanatory.

NO. 4 - 1969 MEASUREMENT OF STATISTICS

performance
reports




Table 1 General job statistics

Total counts
Jobs run
IPL’s

Abnormally terminated jobs

Operator accounting
messages
Background utilities
Concurrent, initiators
Total times (hr/min/sec)
CPU time for job stream
CPU time for system tasks
CPU time for utilities
System I/0 wait time
System idle wait time
Job run time
Nonjob time
Sample time
Job averages
Number of jobs per hour
(based on sample time)
Number of jobs per hour
(based on job run time)
Average time (hr/min/sec)
Job elapsed time
Job CPU time
Initiator between-job time
Time to IPL
Time between IPL’s

For example, job statistics, as shown in Table 1, give a general
breakdown of how time was spent during a sampling period.
Included are statistics on installation throughput, measured in
jobs processed per hour. The use of computer time as a function of
CPU utilization is recorded in:

o Percentages of job run time
CPU time for job stream
CPU time for system tasks
CPU time for utilities
Time CPU is waiting for 1/0
Time CPU is idle

o Percentages of total sample time
Job run time
Nonjob time

The ideal is for 100 percent of the CPU capacity to be used for
100 percent of the total sample time. Because of limited main
storage and 1/0 device resources, this goal can never be reached,
and the report shows the degree of success in achieving the goal.
As a basis for determining the makeup of the work load of the in-
stallation, the report provides statistics on the kind of job step
executed:

o General step statistics
Number of completed steps
Average steps per job
Average steps per hour
Average step elapsed time
Average step CPU time

o Step statistics by step name
Average CPU time
Number in sample
Percent of step type
Step-to-job CPU time

This information is used as input for models of new equipment
configurations. Usage of computer resources, other than the CPU,
are not defined for each job step. The information presented is not
particularly detailed ; additional information is needed to define the
basic configuration model. The frequency with which job steps refer
to I/0 devices is also provided in the report. The collection pro-
gram does not collect statistics of references per data set. In
actuality, 1/0 statistics are reported for each job step.

Design and implementation considerations

The statistics that might be collected during normal job processing
appear endless. An effort was made to implement a collection
system to gather specific information at a reasonable cost in
productive use of the collection system. Comparisons of computer

STANLEY IBM SYST J




system performance with and without the job accounting system
indicate that main storage and CPU requirements reduce processing
capabilities by about one percent. Several factors were considered
to minimize throughput degradation.

Computer resource usage can be counted at less cost in CPU
execution time and main storage buffer space than the duration
of resource utilization can be measured. For example, the fre-
quencies with which data sets are accessed for a job or job step
can be counted with less performance degradation than occurs
when the time is measured during which an 1/0 device is utilized
in accessing data sets used in a job or job step. The frequency
statistic may be just as useful in an analysis of a new hardware
configuration, since an approximate 1/0 device utilization figure can
be determined by simulating the allocation of data sets and the
accesses to them.

Another factor considered is uses of the statistics, which can
affect their exact definition. For instance, at many computer
installations, it is necessary to implement accounting routines for
billing users of a multijobbing system. Many of the fundamental
statistics useful for billing are also useful for performance analysis.
However, if the objective for statistics collection is strictly
oriented toward billing, the recorded statistics may be of limited
value for analysis. For example, a statistic that combines CPU
time and I/0 wait time may be suitable for billing but not for
performance analysis. In measuring for billing purposes, this
statistic may be further confused by an algorithm that weights
the combined time depending on the amount of main storage used,
the use of peripheral equipment, etc. In order to avoid such
problems, the fundamental statistics—CPU time, 1/0 wait time,
and computer resource usage—are collected and saved in the
statistical data base.

In order to reduce the volume of output supplied to the data
base, some compromise is necessary between producing a chrono-
logical record of every interesting event and creating event sum-
maries. A multipurpose data base of fundamental, unprocessed
statistics can answer a greater variety of needs. The cost of this
approach may not be any greater than the cost of providing in-
formation useful for a single purpose. The data base can be
subsequently processed according to whether the interest is in
billing computer users, in performance analysis, or in general
management information.

Another design consideration is the implementation of optional
levels of statistical detail, which avoids continuously gathering
statistics that are mot necessary for most purposes. Statistics
gathering is selectable from the console at two levels of detail.
At the more general level, which is normally used for billing, data
are collected for the start-of-job and end-of-job records, supple-
mented by information from the operator’s console. At the other
level, which is used for performance evaluation, all statistics
possible using JAS are collected, including job step and 1/0 device

NO. 4 - 1969 MEASUREMENT OF STATISTICS

resource
usage

statistical
data base

levels of
detail




collection
points

operating
system
modifications

statistics
collection

usage data. Thus, at the more detailed level, both sampling fre-
quency and the types of data monitored increase. The basic reason
for allowing data to be collected at more than one level of detail
is that the cost of collecting the more detailed statistics can be
incurred only when the data are nceded. The sampling interval
should be sufficiently long so that the data are statistically valid.
Such statistics may then be used to monitor changes in processing
requirements or for planning configuration changes.

Another consideration is the requirement for flexibility.
Because it is impossible to collect one set of statistics that can
satisfy every need, the capability should exist to augment the data
base to suit particular needs. This flexibility is obtained by having
entries to the collection program at key collection points in the
operating system and operating system options to enable instal-
lation personnel to add information to the data base. The first
feature implies the need to anticipate those statistics that might be
useful. The second feature implies development of simple methods
for logging installation information in the data base.

Two types of collection were considered: a computer console
command language for use by the operator and a special job
control statement or accounting field in an existing statement.
The console language permits the operator to add information
concerning the operating environment, such as the reasons for
computer ‘“‘down time.” The operator information is not presently
used in the performance reports. The job control statement, or
accounting field, provides a means of identifying the jobs processed
and for defining information about them.

A basic design goal for the monitoring system was the ease
with which operators could control the system. The console
language provided with JAS permits the operator to select the
level of statistical detail, choose the output device (punch or tape
drive), add information to the data base, or stop statistics col-
lection entirely. Implementing these facilities requires adding
code to the operating system nucleus, the console command
modules, and the job scheduler. Main storage space is also neces-
sary for statistics buffers (132 bytes or 588 bytes per active job,
depending on the level of detail selected) and the job accounting
system output routines. Since the output routines reside in main
storage during job accounting system operations, approximately
5000 to 7000 bytes of main storage (depending on the level of
statistical detail selected) are required for single jobbing. This
figure excludes both the code in the job scheduler that does not
normally reside in main storage and the additional statistics
buffers needed during multijobbing operation. Most job accounting
system code resides in external storage until it is needed.

Even though the job accounting system operates with several
load modules that are brought into main storage only as needed
and provides optional levels of statistical detail, normal processing
of jobs could be significantly delayed without proper integration
into the operating system structure. Use of the punch as an output

STANLEY IBM SYST J




device and the conversational use of the computer console offer
prime examples of potential throughput delays eaused by slow
1,0 devices. To avoid such delavs, the monitoring function is
accomplished as a series of system tasks. The output task involves
recording statistics asynchronously with their collection, while
the rest of the tasks are concerned with the collection of statistics.
Communication among the tasks involves WAIT/POST logic,® a
chain of statistics buffers ready for output, and statistics col-
lection buffers associated with each job as it is executed.

To begin statistics collection, either the output task is created
at IPL time as a result of & program switch in the operating sys-
tem or the operator imitiates the output task via the console.
Tu either case, the system is initialized for statistics collection.
The output task is then delayed until, as part of one of the sta-
tistics collecting tasks, o statistical buffer is added to an output
chain. The output task is then allowed to proceed with formatting
and recording of the statistics.

The collection tasks are gencrally associated with normal job
execution. Tach time the job scheduler initiates a new job, a
statistics buffer is obtained. The job name, job start time, and
other information is collected. The buffer is then added to the
output chain, and the statistics are recorded. The job scheduler
task is not delayed while the statistics are being recorded; but
rather, another buffer is obtained and the job step proceeds
normally. This second buffer is used to accumulate CPU time and
1/0 device statistics for the job step if the job step level of statistics
collection was selected. In this case, the bulfer is passed to the job
accounting system output routine at the end of the step. If statis-
tics are being collected only at the job level, statistics are acecumu-
lated for all steps in the job but I/0 statistics are not collected. In
all eases, the job accounting control section of the job scheduler
contains the code to chain statistieal buffers for output, to initiate
recording of the new statistics, and to obtain a new buffer for con-
tinued collection.

The other task that involves collecting information for the
data base is the console communications task. In this case, sta-
tisties collection involves requesting input from the operator,
adding an output buffer to the output chain containing his re-
sponse, and posting completion of the task.

Obviously, with multiple statisties-collecting tasks, the output
chain could contain more than one entry, which is permitted.
The statistical buffers are added in chronological order to one
end of the output chain. The output task involves removing
buffers from the other end of the output chain, formatting the
statistics, and recording statistics from each buffer as fast as the
selected output device permits. As soon as the contents of one
buffer have been recorded, the next is removed, formatted, and re-
corded. The output task continues (concurrently with other
tasks) until all statistics have been recorded. As part of the output
task, all buffer space is made available again after use.

NO. 4 - 1969 MEASUREMENT OF STATISTICS




Timing source resolution

Operational statistics that include measurements of elapsed time
require the use of a clock, which may be read internally by the
collection program. Measurement accuracy depends on several
variables: the clock resolution (related to the elapsed time between
the instances when a clock steps to a new value), the total time
measured for one or more events, and the independence of the
clock from the event being measured. If clock resolution is small,
so that a clock count of one measures time that is insignificant
compared to the duration of the event, the second two variables
that determine accuracy are unimportant. Otherwise, time must
be approximated from a statistical sample.

The significance of clock resolution can be seen by considering
the measurements of CPU time required to execute a particular
job. If an interval timer with, for example, a resolution of 16 2/3
milliseconds per clock count is used to measure CPU time, accuracy
problems may occur. Any measurement of CPU execution time on
a high-speed computer is likely to give either one of two answers:
the clock reading at the start of execution is equal to the reading
at the end of execution (zero time), or the clock has counted once
between the start and end of execution (16 2/3 milliseconds).

The fact that an individual time measurement may be in-
accurate is not necessarily a problem. If a user job is given the
CPU resource 1000 times during its execution, 900 of the time
measurements could be zero and 100 of them could be 16 2/3
milliseconds. The total CPU time for the job is 900 X 0 + 100 X
16 2/3 milliseconds, or 1667 milliseconds. Now, if the clock operates
independently of the manner in which the CPU resource is used,
1667 milliseconds is statistically a good approximation of the
actual CPU time required for execution. However, if the user job
is synchronized with the clock (as can be done using IBM’s
SYSTEM /360 Operating System STIMER system macroinstrue-
tion), the resulting execution time could be biased to produce a
Jower number than the true value.

The SYSTEM/360 interval timer, with a 16 2/3-millisecond
resolution, is used in JAS to measure elapsed times. To verify
the reliability of timing statistics using this timer, a model of a
multijobbing environment with a SYSTEM /360 Model 75 computer
was used. This model was coded in GPSS/360 and contained routines
that characterized the operating system and a job stream com-
posed of jobs with assembly, FORTRAN compilation, linkage
editing, and user program execution steps. By executing the
model, statistics are produced that reflect theoretical performance
in that environment.

A model of the SYSTEM /360 standard clock was added to the
original GP88/360 model and used to obtain a secondary measure-
ment of system wait time. The implementation of the secondary
measurement in the model paralleled the actual use of the stand-
ard timer in the real-time operating system. Each time the simu-
lated computer went into a system wait state, a reading was taken

STANLEY IBM SYST J




Figure 1 SYSTEM/360 standard timer accuracy

MEASUREMENT ERROR IN ABSOLUTE PERCENT DIFFERENCE

60

SAMPLE INTERVALS IN SECONDS

of the simulated clock; each time the simulated computer was
interrupted, another clock reading was obtained. The elapsed time
was accumulated over an interval and compared to the absolute
wait time normally produced by the model. Several time intervals
of different lengths were tried to determine something about the
stability of time measurements for a Model 75 using a clock with
a resolution of 16 2/3 milliseconds. The results showed that errors
were not significant for sampling periods as short as five seconds.
Figure 1 shows the absolute deviation of percent system wait

time approximated by the 16 2/3-millisecond clock compared
to the absolute statistic produced by the model. The time in-
tervals over which system wait time was accumulated were 60
seconds, 30 seconds, 15 seconds, 5 seconds, and 1 second. A devia-
tion of one percent over a 60-second interval would mean that
the measurement was in error by 0.6 seconds, or approximately
0.0002 hours.

Summary comment

A variety of statisties useful to installation managers can be
obtained continuously at little cost in computing time. The
designers of programming support for gathering such information
must be cognizant of those areas where unreasonable amounts
of machine time can be consumed. For greater efficiency, they must
also carefully consider the kinds of information that are actually
needed, while providing sufficient flexibility to obtain additional
data the need for which was not originally anticipated.

Two general approaches were of major significance in achieving
these objectives for the job accounting system. The first was the
decision to provide data at optional levels of detail, thus reducing

No. 4 - 1969 MEASUREMENT OF STATISTICS




308

the time lost in collecting unwanted information. The second was
the use of a data base in which to store all monitored information.
Post-processing of the data base can then be used to produce
reports tailored to particular needs.

ACKNOWLEDGMENTS

The author is pleased to acknowledge the work of L. S. McCollum
and J. A. Hudson, who were the principal implementers of the
job accounting system for the real-time computer complex project.

CITED REFERENCES AND FOOTNOTE

1. W. 1. Stanley and H. F. Hertel, “Statistics gathering and simulation for
the Apollo real-time operating system,” IBM Systems Journal 7, No. 2,
85-102 (1968).

. J. L. Johnstone, “RTOS-Extending OS/360 for real-time spaceflight con-
trol,”” AFIPS Conference Proceedings, Spring Joint Computer Conference,
(1969).

. B. 1. Witt, “The functional structure of OS8/360, Part II, Job and task
management,” IBM Systems Journal 5, No. 1, 12-29 (1966).

. For example, the detailed statistics of control and application program
performance described in Reference 1 are used for analyzing system design
and for calibrating models of system programs,

. Analysis and simulation are discussed in several of the papers in the series
“On teleprocessing system design’’ in the IBM Systems Journal 5, No. 3
(1966).

. WAIT/POST logic, as well as other types of task interdependencies are
discussed by J. W. Havender in “Avoiding dead-lock in multitasking
systems,”” IBM Systems Journal 7, No. 2, 74-84 (1968).

STANLEY IBM SYST J




