A trace-driven modeling technique for computer system evaluation
1s discussed. This approach intends to solve the inherent dilemma
in computer systems modeling of too many simplifying assumptions
or of too much detail.

An experimental model based on this technique is also discussed.
The objective of the model is to study the effect on performance of
various multiprogramming and mulliprocessing system design
choices. Model tmplementation is focused on those aspects of the
system contributing substantially to total system performance. While
the operating system is conceplually modeled, detailed logic and
timing are supplied in the job-trace profile, reducing modeling effort
and improving model flexibility.

Trace-driven system modeling
by P. S. Cheng

Although electronic computers have been in use for only about
twenty years, they are already in their third generation. Com-
puter systems have grown both in size and speed, and computer
system applications have become exceedingly complicated. The
number of significant variables in a present-day system is large
and their interrelationships are complex. Because of the burgeoning
of new equipment and the striking changes in programming
support, numerous problems are confronting computer systems
manufacturers and users in evaluating the effectiveness of both
equipment and operating system configurations for a given work-
load. However, few guides are available to aid in solving thesc
problems. System evaluation tools and techniques are more
urgently needed than ever before, both before and after system
design and system installation.

Of course, if the situation permits, the best way to obtain
quantitative data is to run the system and monitor the relevant
events.! Unfortunately, this ideal situation seldom exists. In-
stead, one of two alternative approaches is generally used in
attacking the evaluation problem.

The first approach is involved with simple algebraic, statisti-
cal, or algorithmic analysis applied to those sophisticated and
analytical techniques such as building a mathematical model based
on Markovian or probabilistic methods to meet a certain specific
evaluation goal. It has been proved by several models®™® that
results are quite satisfactory even for relatively complex situa-

CHENG IBM SYST J




tions. However, such models usually have rather limited ap-
plicability and lack the flexibility to permit a number of different
system or algorithmic modifications to be imvestigated with a
minimum of additional effort.® Moreover, mathematics itself is
subject to limitations, and a mathematician may be unable to con-
struct a model of a fairly complex system so as to obtain a desired
result.

The other alternative is simulation, in which experiments are
performed on a model that is supposed to match at least a set of
relevant characteristics of a real system. Although its history
is brief, simulation is becoming increasingly popular in many
disciplines. However, much room remains for improvement in
the practice of the technique.”

In general, system simulation is accomplished by building a
model in a time domain. The flow of control and of simulated
data through the model is similar to that in a real system. Be-
cause programming support is considered an integral part of
a system, a computer system configuration is modeled by speci-
fying the equipment, the supporting programs, and the inter-
actions between them. Among the basic equipment that must
be simulated are: the central processing unit (CPU), main storage,
channels, control units, disk and drum storage devices, tape
drives, and unit record equipment. These components have
characteristics, such as data transfer rates, access times, and seek
times, which must be reflected in the model. The modeler must also
specify the various scheduling and dispatching algorithms, data
management characteristics, interruption-handling disciplines, and
other operating-system functions.

Another basic requirement for computer system simulation
is the ability to specify formally the expected job mix and con-
straints under which the simulated system must operate. Al-
though there are some higher-order, special-purpose languages®
to relieve the modeler of most of the burden, the simulation
language itself provides only the modeling facilities. The model
must still be constructed. And to do this, the modeler must be
familiar with the operating system and the job mix, so that he
can represent them in the simulation language.

TFor complex systems, such as those providing multipro-
gramming and multiprocessing, it is generally not possible to
know completely all of the factors, or parameters, affecting the be-
havior of the real system. Some simplification is necessary, and
only the parameters strongly affecting certain preselected areas
are considered. In an extensive system, the number of parameters
involved becomes quite large; in order to stipulate some of the
free parameters, some parameters must be either ignored or esti-
mated indirectly as functions of more accessible ones. Aside from
the loss of flexibility and of predictive precision, this parameter-
selection process in itself is a painful task with no guarantee of
suecess. Perhaps one source of trouble is starting with assumptions
that are too vague; another source may be the introduction of

NO.4 - 1969 TRACE-DRIVEN MODELING




primary
requirement

pseudo-functions, i.e., functions that can be checked only by
limited individual cases.

Another approach to making simplifying assumptions—de-
tailed modeling by faithfully representing in a simulation language
both the real system and a simulated job stream—is often so time-
consuming and costly that it is impractical, Using this approach,
the modeler imitates the system as it is coded, with little pro-
vision for altering basic program modules. The resulting model
approaches the complexity of the real system. It is not very useful
for either demonstrating the principles or for revealing the un-
noticed interactions among various parts of the system.

To overcome these problems of modeling, a lesser-known
technique called ‘‘trace-driven modeling” is discussed in this
paper. In the trace-driven approach, data traced on a real, running
system are used to drive the model. The workload and the activities
of system components in response to the workload are supplied
as input to the model in the form of trace data. The trace data
are obtained dynamically by monitoring significant events while
the operating system and the workload interact.

Trace-driven simulation eliminates the tedious work of cither
specifying the relevant system parameters or coding in detail
the operating system and the workload in simulation language.
(Gross models of some portions of the operating system are
required.) This approach also eliminates the need for detailed
knowledge of the workloads.

In this paper, the discussion of trace-driven modeling includes
the concepts of the method with a description of the trace data.
The use of the trace-driven approach for a particular model in-
dicates its value in determining system performance.

Trace-driven modeling

In computer system modeling, system behavior is governed
by certain characteristic parameters. Ideally, parameter values
should be measured in a real system to fully realize the predictive
capability of modeling. In addition, models should be tested
with data from the real world. This is done by trace-driven model-
ing.

The primary requirement for trace-driven simulation is to run
the job strecam sequentially on a basic equipment configuration,
using an operating system under which a trace program can be
executed. System activities, including CPU processing and
input/output operations that pertain to the execution of a given
job, are monitored. Monitoring is the recording of all the system
functions required to process the work load. Because of the mod-
ular construction of the operating system, its parts are or are not
executed depending on whether or not the work load requires the
function. Consequently, a relatively simple job profile can be
created.

IBM SYST J




Given this kind of trace data, the only remaining items that
we must consider are the criteria used in the system to allocate the
resources needed for the workload. For example, the simulated
system would reflect the scheduling algorithm, task dispatching
and switching rules, input/output queuing principles, and inter-
ruption handling. The models would also reflect characteristics
of the new system, such as CPU speed and the number of input/out-
put channels. The simulated system makes some decisions dy-
namically, depending on the state of the system, just as though the
job stream were being executed in a real system.

From another perspective, the model can be looked upon as
a data-flow structure, in which data flows among system com-
ponents, queues build up, and contention patterns establish
themselves. Job queues, task queues, job scheduling, and resource
allocation are modeled. The equipment configuration and charac-
teristics are specified as system parameters to be used as input
to the model.

The overall data traffic pattern within the system is controlled
in accordance with the traced data that is supplied to the model as
well as with the system algorithms. The trace data accounts for all
the system times, broken down. All input/output activities and
CPU processing time (spent, for example, in executing problem
programs or in performing such system services as compiling)
is recorded; the time not spent in CPU processing is tallied either
as a wait for input/output completion or as idle time. By tracing
system activities in this manner, nearly all logical input/output
operations can be identified and associated with specific data sets.
So long as there is a minimum of operator intervention and no
equipment malfunctions to introduce uncontrolled variations, the
trace data can be considered as a faithful reproduction of the
actual workload in a static form. A sample of a traced record
format® is shown in Figure 1.

In evaluating computing systems through simulation, a
modeler’s motivation determines what information and level of
detail is of interest. Thus, an ideal model should have these dual
characteristics:'® the ability to simulate a wide variety of equip-
ment and operating system configurations without extensive
remodeling, and the ability to simulate different parts of the
configuration at different levels of specificity.

Sometimes it is difficult to build a model with these dual
capabilities, partly because of the need for making simplifying
assumptions. The modeler must decide which real-world attributes
to incorporate into the model. At a later time, other attributes of
the system or greater detail may be needed in the model.

A simulation model is arbitrary and can be anything its
creator desires it to be.'' The elements of the system configuration
to be modeled are similar to the modules of the operating system
in that each performs a certain function. These elements can be
considered as basic ‘‘building blocks’ in the trace-driven model.
Such blocks can be combined in a variety of ways so that many

NO.4 - 1969 TRACE-DRIVEN MODELING

data-flow
structure

model
characteristics




Figure 1 Sample traced record format

8 16

TIME SINCE
LAST EVENT JOB NAME STEP NAME

DETACH EVENT TIME JOB NAME STEP NAME

DATA CONTROL
EVENT TIME BLOCK ADDRESS DATA SET NAME

DATA SET

DATA CONTROL
EVENTTWME | g 0CK ADDRESS Zasion

EVENT
CONTROL LOCATION ON DIRECT
BLOC

EVENT TIME ACCESS STORAGE DEVICE

LOCK
ADDRESS ADDRESS

EVENT TIME

1/0 OLD PSW EVENT CONTROL

EVENT TIME | (NIT ADDRESS) | BLOCK ADDRESS

K—PROTECTION KEY

F —~DATA CONTROL BLOCK OPEN FLAG
CC—COMPLETION CODE
F1—EVENT CONTROL BLOCK WAIT ISSUED FLAG
F2—WAIT COUNT

representations of a system can be modeled as long as the rela-
tionship among these elements can be identified. Thus, although
the trace data are obtained using a given configuration, it can be
used to drive a model of a different system. Even changes in the
programming system can be mapped into the new configuration
as it is simulated by extrapolation or projection.

Simulation model

The trace-driven approach was used in an experiment directed
toward the determination of gross system performance as various
multiprogramming and multiprocessing system configuration
changes were made. Each configuration presented a unique set
of processing requirements. For example, the target system may
have changed in hardware components, the arrangement of
the components, the operating system, or the job mix. However,
to study computer system organizations like these, the major
interest is not in these elements by themselves but in the complex
interactions among them that cause changes in the performance
of multiprogramming and multiprocessing systems.

IBM SYST J




In this simulation model, we assume that execution of a given
job involves some system functions together with the job’s own
computing and input/output demands. The magnitude of these re-
quirements may vary from system to system, but the functional
requirements are independent of the equipment configuration on
which the job is performed. Model implementation is thus focused
on the aspects of a total system that substantially contribute to
system performance. The emphasis is on scheduling, dispatching,
resource allocation, and the effect of changing the operating
environment, that is, the equipment and the procedures for
interaction between devices.

Two sets of data are supplied to the model as input. The first
is the simulated target system configuration specified to the model
for each run; the other is supplied to the model for each set of
jobs in the form of trace data that contains the job profiles
resulting from executing the jobs in an existing system. In order
to eliminate from the trace data any of the effects of multi-
programming, the trace is performed while the job stream is being
executed sequentially on a known configuration under a known
operating system. Job mix profiles produced in this manner are
more nearly independent of the system in which they are ob-
tained. Nevertheless, trace data obtained in this way can be
used in the simulated multiprogramming system, where tasks
compete for system resources.

Each job is segregated into one or more job steps, and each
job step is represented as a collection of computing segments.
Within a computing segment, CPU processing time is coupled with
some associated input/output activity. The CPU processing time
is further broken down into a combination of CPU processing that
is and that is not overlapped with its own associated input/output
operations. Run time of a job executed sequentially is dependent
upon the number and duration of these CPU processing times and
their associated input/output activities. In a multiprogramming
system, throughput is further affected by interaction with the
other jobs being processed concurrently.

The implementation of a trace-driven model involves three
distinet phases: tracing a profile, selecting data, and simulating
activity. The flow of data among these phases is illustrated in
Figure 2.

The program for tracing a profile records computing segments
as previously mentioned. All requests for transmission of data to
and from input/output devices and the corresponding posting
of completion of input/output events are captured on a real-time
basis and recorded in chronological order. Although the jobs are
executed sequentially as they are monitored, the tracing is achieved
by using the multiprogramming facility provided by the IBM
SYSTEM/360 Operating System. Other techniques used in the
monitoring activity rely on characteristics of IBM SYSTEM /360
computers. The interface of the trace program with the operating
system is established by the new program status words (PSW);

NO. 4 - 1969 TRACE~-DRIVEN MODELING

implementation




data
selection

Figure 2 Overall flow

SEQUENTIAL JOB
JOB STREAM STREAM TRACE

DATA SELECTION

JoB
PROFILE
LIBRARY

SYSTEM CONFIGURATION b SIMULATION MODEL REPORT |

control is passed to the trace program upon the occurrence of a
CPU interruption.

In addition to input/output events, some system functions
are monitored either by use of an interruption or by the supervisor-
call (S8VC) instruction. For each occurrence of these events, a record
is created. While timing is read from the internal clock and re-
corded; the related job step or data set name is preserved and
subsequently passed to the second phase (data selection) for
further analysis. Figure 1 shows such a trace.

Data selection involves reducing the data captured during the
dynamic trace, so as to reduce the volume of data processed by
the model, and selecting the data needed for the particular simu-
lation. This compression is achieved with the aid of utility pro-
grams that correlate, for example, a request for data transmission
and the posting of completion of the input/output event into
a single event. As a result of this process, job steps are identi-
fied and segregated. Data set names, together with their associated
block sizes and disk or drum addresses, are resolved, if applicable.
The information extracted from the dynamic trace represents the
system load on the original configuration and consequently is
mapped into the new configuration to be simulated by the model.

Another function of this phase is to prepare the trace data for
the particular system to be modeled. For example, a detailed
profile of events would not be usable in a gross system model.
The data selection programs are designed as supporting programs

CHENG IBM SYST J




to be run periodically with the model as the demands of the
simulated systems require. In our case, the data compression for
each set of jobs is a one-time operation designed to separate the
time-consuming tracing and data-reduction activities from the
modeling development process. Upon completion of this operation,
data in the reduced form are kept on a direct-access device in a
job profile library. Sometimes it may be desirable to measure
the effect of changes other than those to the system configuration;
for example, the effect of a data set organizational change might
be of interest. Such changes can usually be done in this phase
simply by rearranging or reorienting the data-set characteristics.
Under such circumstances, short periodic runs may be necessary
to prepare the input to the model for various requirements de-
pending on the simulated conditions.

Design of the model is based on a local autonomy principle
that is used in the operating system for optionally allocating
its resources. The model is made up of several units called sub-
routines, each of which assumes some control, operational, or
housekeeping function, or a combination of these functions.
These subroutines can be considered as subsystems of the total
system. Interfaces are established via event flows among them.
Whereas details needed in each such subroutine depend on what
is being investigated, the local autonomy permits an individual
subroutine to make decisions in its simulated environment that
is within its jurisdiction. When an event occurs, appropriate
action takes place in one or more subroutines to reflect the change
of status. The combination of these actions represents the full
functional capability of the operating system. The need for de-
tailed modeling is thereby sharply reduced, and coding and model-
processing time is correspondingly minimized.

The model was implemented in an event-based language.'”
In this context, event suggests a relatively significant activity,
such as the transfer of data from main storage to an input/output
device, rather than the execution of a machine instruction. It
should also be noted that the occurrence of an event may some-
times change the status of the simulated system, causing the
occurrence of one or more other events. Throughout the model,
the duration of an event is modeled with two occurrences, one at
the beginning and one at the end of that period during which
the activity is taking place.

In the job profile, the traced job data that are required to
drive the model are ordered into events, and all necessary informa-
tion and timing are preserved as attributes in an event parameter
list. Once the system configuration has been specified and resources
allocated, the primary function of the model is to time these
CPU-input/output events in accordance with the scheduling and
dispatching procedures built into the model. The traced CPU
processing times in the CPU-input/output segments are either
expanded or contracted in conformity with a computing factor
specified for the simulated system. Logic and algorithms are

NO.4 - 1969 TRACE-DRIVEN MODELING

local
autonomy




provided in the model to issue the simulated input/output request
and to compute the related device’s access, seek, rotational delay,
and data transmission times. In the simulated system, jobs are
initiated, executed, and terminated according to the availability
of resources and operational specifications for the simulation run.
All job step starts, stops, and elapsed times are tabulated and
accumulated in the total simulated processing time for all jobs
within the workload.

In addition to reporting the simulated throughput and elapsed
time for all jobs in the specified workload at job-step level, the
model collects and reports device utilization for all CPU’s, main
storages, input/output devices, control units, and channels. Data
set reference statistics and information on all system queues and
components are also included in the-output at the end of a simula-
tion run.

Prior to the simulation, the model requires just about the
same type of information that a system analyst must consider:
given a specific equipment configuration, operating system, and
job mix, in what manner should the application be organized on
this system configuration? Invariably the system analyst is faced
with a variety of tradeoffs in allocating the resources to the
requirements of the job mixes. The model requires a similar
allocation of resources.

Summary comment

This paper has attempted to introduce the basic coneept of trace-

driven modeling. As in all simulation approaches, one major
concern is the precision of predicitive capability. The trace-driven
approach lends itself to accurate predictive evaluations by sue-
cessive calibration steps. Given an existing configuration capable
of executing a given job mix in an operating-system environment,
the time required to run the jobs can be measured and firmly
established. On the other hand, the job profiles for this set of
jobs can also be obtained using a trace program under the same
conditions. The output from the model that runs with the param-
eters representing the physical system can be compared directly
with the measured results. Because of this inherent property,
accuracy of the model can be established prior to its use on a
configuration that cannot be measured.

In this paper, the model was presented as a demonstration of
trace-driven modeling. Although no formal effort was conducted
toward validation of the model, results from a preliminary investi-
gation were satisfactory. The experience gained from this experi-
ment has convinced us that the trace-driven approach is feasible for
computing-system evaluation. In computing science, as in-other
scientific areas, changes generally oceur in an evolutionary fashion.
Therefore, the trace-driven technique may well be applicable for
future system evaluations.

CHENG IBM SYST J




ACKNOWLEDGMENTS

The trace-driven model development is a composite of the con-
tributions of a number of individuals. Special credit goes to
L. Corbet and D. 1. Jones for their work on trace-driven simula-
tion and the development of the trace program. The author is
indebted to D. M. Braddock and C. B. Dowling for their design
and development of the SEAL language and their many contribu-
tions to the trace-driven modeling approach, and to J. C. Gibson
and W. M. Kochant for their early insight into multiprogramming,
tracing, and simulation.

CITED REFERENCES AND FOOTNOTES

1. C. T. Apple, “The program monitor—a device for program performance
measurement,” Proceedings of the 20th National Conference of the Associa-
tion for Computing Machinery P-65, 66-75 (1965).

. A. L. Scherr, An Analysis of Time-Shared Computer Systems, MIT Press,
Cambridge, Massachusetts (1967).

3. J. L. Smith, “An analysis of time-sharing computer systems using Markov
models,”” AFIPS Conference Proceedings, Spring Joint Computer Con-
ference 34, 87-95, (1969).

. D. P. Gaver, Jr., “Probability models for multiprogramming computer
systems,”” Journal of the Assoctation for Computing Machinery 14, No. 3,
(July 1967).

. J. D. Foley, ‘“A Markovian model of the University of Michigan executive
system,” Communications of the ACM 10, No. 9, 584-588 (September
1967).

. N. R. Nielsen, “The simulation of time-sharing systems,”” Communications
of the ACM 10, No. 7, 397-412 (July 1967).

. R. W. Conway, “Some tactical problems in digital simulation,” Manage-
ment Science 10, No. 1, 47-61 (October, 1963).

. P. H. Seaman and R. C. Soucy, “Simulating operating systems,’
issue.

. The terms used in Figure 1 are explained in Parts I1 and III of the article,
“The functional structure of OS/360:” B. 1. Witt, “Job and task manage-
ment,” and W. A, Clark, “Data management,” IBM Systems Journal 5,
No. 1, 12-51 (1966). Further explanations are found in the articles by
J. W. Havender, ‘“Avoiding deadlock in multitasking systems,” and
W. I. Stanley and H. F. Hertel, “Statistics gathering and simulation for
the Apollo real-time operating system,” IBM Systems Jowrnal 7, No. 2,
74-102 (1968).

. L. R. Huesmann and R. P. Goldberg, ‘“Evaluating computer systems
through simulation,”” Computer Journal 10, No. 2 (August 1967).

. L D. J. Bross, “Models,” Management Sysiems, John Wiley & Sons,
New York, New York, 327-336 (1968).

. D. M. Braddock and C. B. Dowling, Simulation, Evaluation, and Analysis
Language (SEAL), IBM Contributed Program Library, 360D 15.1.005,
International Business Machines Corporation, Program Information
Department, Hawthorne, New York. The reader should be aware that
SEAL is not the only language that can be used to implement the model.
Other languages such as SIMSCRIPT, CSS, and GPSS can also be used.

;

in this

TRACE-DRIVEN MODELING 289




