
4 simulator  is   discussed  that  provides a language  and a structure 
speciJically  designed  for  modeling  computer  systems  to  evaluate 
their  performance. 

T h e  simulator  prorides  general  equipment  models,  and  the  authors 
discuss  their  experience in developin3g a general  submodel of a mult i -  
programming  operating  system.  The  user  assembles a sys tem  f rom 
thc  equipment  models,  specifies  parameters  to  allow  simulation, of 
his operating  system  functions,   and  provides  models of his   appl i -  
cation  programs. 

Simulating  operating  systems 
by P. H. Seaman and R. C. Soucy 

.4 suitable  simulation  language and  structure is needed to satisfy 
the  requirements of computer  system  program  simulation. One 
simulation  language  frequently used to model computing  systems 
is provided by the General  Purpose  Simulation  System (GPSS).' 
As a  result of experience with  many GPSS computer  system models, 
the ronviction  crystallized that much of the equipment is standard, 
dthough  the programming is not.  At'tempts were made to  provide 
GPSS users with  equipment  submodels  from which they could 
quickly assemble total  system models. However, there was no 
convenient  facility to incorporat>e  such a higher-level syst.em 
language (whic:h the submodels constituted)  into  the GPSS struc- 
ture;  and such attempts as were made  ran  rather slowly. 

Prom t'his  work,  a specialized modeling system was developed, 
called the Computer  System  Simulator (css).' CSS is not built 
on GI's8 but' is coded afresh  in basic assembler language. It uses 
many of the techniques of GPSS, but  they  have been adapted 
to a structure specifically designed to model computer  systems. 
CSS incorporates general equipment models into  its basic structure 
and makes  programming the operation of this  equipment  the 
central  feature of its use. Thus, a sharp dichotomy is instituted 
bet'ween models of equipment  provided  by the simulator  and 
models of programs  provided by  the user.  With  equipment  de- 
tails  built  in, it was soon seen t,hat a  large  share of modeling 
complexity  still  lay  in the simulated  programs, especially in  the 
area of what is called the operating  system, which controls the 
scheduling of operations on the equipment  in processing jobs. 
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To simplify Ct;s input  slmifications,  it would be desirable to  
provide a general submodel of the SYSTKMI3fiO Operating  System 
that is much like the equipment submodels provided in GPSS. 
The user would supply only certain  system  paranlcters  in  addition 
to  his appliration  program models to simulate  his  entire  system. 
The  operating  system submodel thus visualized would be a Css 
program  Jyritten  within t,he c.onstraints of the simulator,  imitating 
the prinripal  func~tions of the supervisor and  data management 
~erv ices .~  

The user's  complete  syst,em model t,hen would comist of the 
following interacting  parts: 

CSS base, providing c~onfiguratiou definit'ion,  equipment  models, 
input job  definition,  simulat'ing  capability, and  statistics 
gathering  routines. 
Operating sjptem s t h n o d e l ,  providing  control  functions to 
simulate a multiprogramming  environment. 
Applicat ion  programs,  driving the above  two components 
in  wc~ordancc  with  the  input  job  stream and the user's program 
logic.. 

This  paper  dismsses our experienre  in  developing a11 experimental 
submodel of the SYS'1'E:RQ,&o 0per:hng System  for  general use. 

Design objectives 
There  are  at least three cases in which one rnay wish to simulate 
a  computing  system  in  detail. First,  in  the development of a 
programming  system, it is useful to have a model of the current 
system so that proposed changes can bc evaluated by modifying 
t,he model rather  than  the real system.  Second,  in  establishing 
a  system configuration for :t given workload, it is desirable to 
determine an optimum configuratioll before ordering the parts. 
Third,  after  a system is operational, it, is useful to keep a model 
of the system that can be used to predict  t'he effect, of expected 
or proposed changes to  the  actual system. In all three cases, the 
requirement arises to measure  job throughput,  system response, 
or equipment  loading  without the availability of some aspect 
of the real  system. In t,he first and  third cases, quite  detailed 
models arc  ~~eressary  to observe the effects of many  minor cshanges, 
the  cumulativc etfects of which may he significmlt. In the case 
of system  configuration,  much grosser models usually suffice. 

As an  initial effort,, it \vas decided to develop a CSS model pack- 
age for both instnllation  planners and  program developers by 
means of whivh they cwuld simuhte  the behavior of t'heir  programs 
within the const'raint's of the programming  support,  provided 
with the equipment. A tolerance of ten percent on model awurwy 
cnlibrat'ed against, n real system was aimed for i n  equipment' 
utilizations and total  run  time.  The simulat>ed  system would 
consist of the t,hree major components mentioned above- 
configuration definition,  operating  syst'em  submodel, and  appli- 
cation programs-all implemented  in the Css language. 
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css input. Predefined configurations are difficult to implement 
because of the large  number of permutations,  and  are  not necessary 
since the CSS format  is  easy to use. The  actual device functions 
were part of the basic CSS program. 

The  operating  system can be premodeled, because its logic 
is defined rather precisely; after deciding on particular modules 
to be  included  in his operating  system, the user is really  sub- 
jecting  his  programs to  a  small set of fixed and  predictable  rules. 
The CSS instruction  set is sufficient to write  routines that model 
the logical functions necessary for  system  control. The efficiency 
of the CSS language  for this purpose was open to  study. 

Finally, the application  programs were to be  completely user- 
defined. However, it was desirable that  the interface  with the 
operating  syst’em  submodel be through  a  macro  language  as 
similar  as possible to  that provided in the real  operating  system. 
Thus,  the application  program models would call for services 
from the operating  system  submodel  in the same  manner  as  their 
real-world counterparts.  This correlation was designed for ease 
of use, so that a user familiar  with  operating  system  functions 
could easily put toget’her  a  system  package  largely in his own 
terms  without  having  to  struggle  with a  host of new terms. How- 
ever,  no attempt was made to  bridge the gap  between the sub- 
model package and  the user unfamiliar  with the operating  system 
who merely  wanted to compare “typical”  systems.  At  that  time, 
it was felt  there was not  enough  information  available to  usefully 
define what might  represent  a  set of typical  systems. I 
Computer system simulator 
To understand the submodeling  effort,  a short description of the 
CSS program  on which it is based is nece~sary.~ CSS provides the 
user with  a  language and  structure  with which he can model a 
large variety of computer  systems  and at  differing levels of detail. 
The basic input  in building  a CSS model of a  system  consists  of: 

Statement of system  configuration 
Description of operating  programs 
Description of job  environment 

The above specifications make  up a single input  card deck. 
System configuration is specified by  various  statements,  in pre- 
scribed formats,  that  contain  information on such  characteristics 
as size of main  storage, data transfer  rates for each  different I/O 
device, and 1/0 device  connections to each  channel. Following 
these  statements  are  the  program descriptions  in CSS language. 
These consist of both  the user’s application  programs and  the 
system’s  control  program,  and  must  include all timing  information I 

as well as  program logic. The job  environment is implicit in  both 
the configuration and  program specifications. Input message 
rates  may be specified for  each  terminal, or a  job stream  may I 
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at  the end of the program,  all work on the current  task  having 
been completed,  control  is  returned to  the scheduler to begin 
a new task. 

Such  a  scheduler, and  other control  programs like it, provide 
the framework  within which the application  programs are executed. 
Control  programs are coded in the CSS instruction  set  in  the 
same  manner  as  the application  programs.  Virtually any  operating 
discipline may  be  accounted  for. For example,  a  flowchart for 
the simple  scheduler discussed above is shown in  Figure 3. Each 
block represents  one css instruction. 

Another  important  part of an operating  system is made  up 
of the interruption-handling  programs.  These  are  automatically 
branched to,  and  any  program  that is being  executed is inter- 
rupted, whenever an I/o operation,  such  as  a seek or data  transfer, 
is completed.  Such an  interruption-handling  program is shown 
in  Figure 4, providing  control for a teletype line. 

Again,  every box represents  a CSS instruction.  Note  that  the 
processing time  to  handle  the  interruption  must be specified by 
the user.  Oftentimes, when considering a control  module like 
this,  prepared  by a  remote  developer, the user has  little  idea  what 
the detailed  control logic is, or  what  time values to insert. In 
such cases, a  previously  prepared module would be  a  convenient 
way to  complete  his model. 

Control  functions,  such as  task scheduling and  interruption- 
handling,  are  standard within the framework of the SYSTEM/360 
Operating  System (OS/360). Therefore, for the large  number of 
users wishing to  study a  system using OS/360, standard blocks 
of code modeling its functions could be  provided to  facilitate 
model building and ensure that  the operating  system  is modeled 
with  correct logic and  timings.  At  the same time, submodels of 
control  functions  like  these would provide the OS/360 developers 
with  a  convenient way to  try  out proposed changes. Such  sub- 
models are  the  subject of this  study. 

Scope of modeling effort 
In  the existing  operating  system  concept, i t  is necessary to  define 
the relationship  between  a  device and  its  program  support, since 
each device type is dependent  upon the availability of such  sup- 
port. Some  program modules are device  dependent  and remain 
in  main  storage only if that device  is  active.  Others are  not device 
dependent  and  may be called by  many device support modules. 
It was decided that IBM 2311 direct-access storage devices, IBM 2400 
series magnetic tape  units,  and IBiLl 1050 terminals would be 
supported  in  this  initial modeling effort.  Therefore,  the program- 
ming support for only these devices was simulated, while other 
modules would be considered later. 

Figure 5 illustrates the scope of the modeling effort.  The  func- 
tions  in the solid boxes were included.  Eighteen basic submodels 
were produced,  including both basic and queued access methods 
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Table 3 Simulated' macroinstructions 

GET 
PUT 
RELSE 
TRUNC 
DCB 

Obtain next logical  record 
Write next logical  record 
Release current buffer 
Truncate  an  output buffer 
Data control block 

Table 4 File defining parameters 

Blocksize 
Buffers 
Locate, move, and update modes of operation 
Fixed- and variable-length, blocked and unblocked  record format 
Write verify 

Table 5 Actual and simulated programs 

Adml program 

LA  6,1000 Set up counter 

BAL 14,PROCESS Process it 
PUT  OUTPUT Write record 
BCT 6,LOOP Branch per document 

LOOP GET  INPUT Read next logical  record 

INPUT DCB (file definition information) 
OUTPUT DCB (file  definit,ion information) 

Simulated program 

1 REFTL 
2 REFTL 

MOVE 
LOOP GET 

PROCESS 
PUT 
BRAD 

INPUT  DCB 

OUTPUT  DCB 

N22,,l/(file definition information) 
N25,,l/(file definition information) 
lOOO,SV9 Set  up counter 
$INPUT Read next logical 

1000 Process i t  
$OUTPUT Write record 
SV9,1,LOOP Branch per document 
1 Refer to file informa- 

record 

tion in  reference 
table (REFTL) 1 

tion in  reference 
table (REFTL) '2 

2 Refer to file informa- 
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(each access method  representing  one  module)  operating  under 
both  the OS/%O and Disk  Operating  System (DOS)‘ supervisors. 
Schedule  requirements  and  frequency of use were the bases for 
determining the functions  covered.  Functions  required to  start, 
schedule, and service devices in a  multiprogramming  environment 
\vere included,  as wdl as  supervisor calls, input/output  routines, 
and access-method modules. The supervisor  functions had  to 
be carefully defined so as to be  shareable  by all access methods. 
User program entry  and exit  conditions were specified as  in  any 
programming  system. 

The major  emphasis was on the simulation of teleprocessing 
jobs,  with and  without background job interference. The real- 
time  program execution (i.e., polling terminals  and processing 
the  resultant message inputs)  can  be  investigated  by sampling 
intervals  during which the teleprocessing job  has  no beginning 
or end.  Therefore, the scheduling of jobs is notJ necessary to  study 
the effects of background  interference  on the high-priority  tele- 
processing job.  However,  a partial facility to  initiate  background 
jobs was provided.  Similarly, the functions of thc master  scheduler 
were not  pertinent  to  the teleprocessing study  and were omitted. 

As previously mentioned, the simulated  system is driven  by 
user logic. After defining the configurat,ion by  means of regular 
css input, control is passed to  the highest-priority  program to 
be  executed.  User  programs are executed  in the user-defined 
partition  and  in user-preferred  order. All statistics  are based  on 
the logic of the user’s  program, consisting of macroinstructions 
(GET, PUT, READ, WRITE) whose form and operands are similar 
to existing assembly language  macroinstructions.  The  tabular 
module  technique  (using DCB’s in OS/360 and DTF’s in 
was incorporated  in the models in order to define the files. The 
various  macroinstructions  available  in the simulated  version 
of QsAM are  listed  in  Table 3, and file parameters  that  may be 
specified are shown in  Table 4. Similar  instructions  and  parameters 
exist for the  other access methods. The similarity of the simulated 
language to  its assembler language counterpart is indicated  in 
Table 5. Much of the ease of using CSS is  derived  from the ability 
to define user-oriented  macroinstructions  within the CSS language. 

A library  facility was incorporated in CSS to vontain the various 
modules of the operating  system model package. A MODEL 
statement allows the user to call those models that  he wishes 
to use during  a  simulation run.  For example, the  statement 

MODEL L4,OSSPVR,OS&TAM,OSS40,OSQS40 

calls in  the  operating  system supervisor, the operating  system 
queued  telecommunications access method &TAM, and  the 
SYSTEM/360 Model 40 timing modules for both.  Timing modules 
were independently specified so that  the extensive logic in  each 
submodel would not  have  to be duplicated  for  each different, 
machine. CSS assembles the user programs  with the models specified 
in  his MODEL statement. 
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Implementation 
The modeling project  required the coordinated effort of two 
independent  groups.  One  group, close to simulation  development, 
was responsible for the detailed coding of the models, whereas the 
other  group, close to  actual  system development, was responsible 
for logic definitions and  timings. It was found that  the spirited 
interchange of ideas  produced a much  more effective result than 
if either  group  had  attempted  the project  alone. 

To verify the logic and  timings employed  in the models, 
test programs were measured and compared  with their  simulated 
versions, both for execution time  and  equipment  utilization. 
Discrepancies between the measurements led to  the conclusion 
that  the simulation  results are extremely  sensitive to device 
timing  characteristics,  such  as tape interrecord  gap or arm motion 
time.  Further, measurements on several  identical devices of 
actual  characteristic  timings showed that variances in  these 
timings  from  their  nominal  values exist'. If the measured  device 
characteristics were used, the simulation run results were within 
three  percent of the real  program  results.  Fortunately, device 
timings are normal  input  parameters  to Css and  values  other 
than nominal specifications can  easily  be  inserted.  However, 
this  indicates  that  there  is  little  value in extreme  accuracy  in a gen- 
eral model if equipment  tolerances are  not correspondingly tight. 

Model characteristics 
The  total  operating  system model library of 18 modules,  plus 
associated  timing modules, consists of over 10,000 CSS instructions, 
or roughly 150,000 bytes of storage.  Most modules contain be- 
tween 500 and 800 Css instructions, while the associated  timing 
modules contain  about 100 individual  timing  segments  each. 
These figures indicate the great  amount of detail of these modules. 

Fortunately, only the modules required  by  the user need  reside 
in  main  storage. Table 6 shows the tJypical  storage  requirements 
for a large teleprocessing system,  indicating  that  it would be 
rare  to require  main  storage of more than 256K bytes to simulate 
a  system. Also note  the small  amount of user coding compared 
to  the space taken  by  the models. However, in  addition to  the 
application code, the user must  supply  the  equipment configuration 
statements.  In  this example, the user supplied  one-sixth of the 
total model statements,  the  rest being obtained  from the  library. 

Models of systems  with  no  terminals  run  on the order of five to 
ten times slower than real time when executed on an IBM 
SYSTEM/360 Model 40 processor. Including  lines  and  terminals, 
which require  time-consuming polling procedures, model running 
times drop  to  twenty  to fifty  times slower than real  time when 
executed  on  a  Model 40 processor. Execution  time  may be 
shortened by a  factor of nine by  running on  a  Model 65 processor, 
since CSS is processor bound. Use of the modeled Autopoll 
feature  also  greatly decreases model execution time. 



Table 6 Typical storage requirements for large teleprocessing  systems 

Storage 
requirements 

(kilobytes) 

CSS equipment 
(500 terminals, 70 lines, etc.) 20 

Transient  entity pools 
(messages, tasks,  events) 58 

CSS models (OS/supervisor, &TAM, QISAM) 44 
User application  programs 3 
CSS/360 program 42 
OS/360 (including 1/0 buffer areas) 43 

Total 210 

The length of a  simulation run is of concern to  the model 
analyst,  both  from  the economic viewpoint and from the fast 
turnaround  time  required  to seriously consider the effects of 
many  small changes. Many  factors affect the running  time. To 
meaningfully discuss these, one must first define the  run  time 
ratio, R, as: 

R =  actual model execution time 
simulated elapsed time  during model execution 

Thus, if i t  requires ten minutes of execution time  to  simulate 
1 minute of model time, R = 10 : 1, i.e., the model runs  ten  times 
slower than real  time.  This  ratio  may often  be usefully expressed 
as  the product of three  factors: 

R = (average  macro  time) X (model burden) X (event  density) 

Each of these  factors is discussed below with specific reference 
to CSS and  the modeling effort. 

Macro  here refers to  the instructions of the model language, average 
e.g.,  the CSS instructions. The execution time of such  a  macro macro time 
is a  function of the complexity built  into  it  and  the efficiency of 
coding it  in  the basic  machine  language (i.e., machine  instructions 
per macro),  as well as  the speed of the machine  exewting  the 
model.  Since the timing  for  various  macros  varies  greatly, an 
average  must be struck for  a  typical mix. For  instance,  in CSS, 
the number of machine  instructions  per Css instruction  ranges 
from 30 up  to 1,000, with the usual  average of 200. Operating 
on  a  Model 40 processor, css averages about 1.5 microseconds 
per machine  instruction,  resulting  in  an  average css instruction 
time of three milliseconds. This  value  drops to  about 0.34 milli- 
seconds on a  Model 65 processor. 

to  support  an  event. An event  is defined as  one of the major burden 
occurrences in the model, the sequence of which constitutes a 

Model  burden  represents how many macros must  be  executed model 
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run. For example, the processing of a message in  a teleprocessing 
model would be an  event. In this vase, tmhe  burden would represent 
the number of css instructions  executed to process a message 
from beginning to  end, including  all  control service plus polling 
and  interruption-handling  instructions. It may be  simply cal- 
culated  after one run  by dividing the t,otal  number of instructions 
execut'ed by the  total  number of messages processed during the 
run.  The burden is a  function of several  secondary  considerations. 
One is macro c.omplexit,y. For simple  macros, the burden is large- 
that is,  many simple marros  must' be executed to represent  a 
complex event. Hotvever, t,his  may be compensat'ed for by  fast 
macro time resulting from t,he  simplicity. A similar  consideration 
is t'he closeness of t,he ma(8ro operat'ions  t'o the real  system  func- 
tions being modeled. This is where c>sS gains its principal  ad- 
vantage over GI%S in modeling computer  systems.  Another  obvious 
ronsideration affecting model burden is the complexity of the 
model. Inrorporating fine details  adds  many  instructions per 
event'.  Not so obvious is the inclusion of fixed scans,  such  as 
polling, which do so many  operations  per  minute, regardless of 
message load. This result,s in an increasing  burden  with  decreasing 
message rat'e. 

Events per u~l i t  of model time is the  rate  at which system 
event events,  such  as messagc arrivals, occur in  t'he  real  system. Since 

density t,hese events  must  be processed serially by the simulator,  even 
t'hough  parallelism is being modeled, the  run  time is a t  least pro- 
portional to  the occurrence rst,e.  That  is,  to model one hour's 
operat'ion of a  syst,em processing 10,000 messages per  hour  takes a t  
least twice as long as the same model processing only 5,000 mess- 
ages per hour. It will probably  t'ake  longer, because the model 
burden will be increased due to system  procedures  invoked to 
handle overflows and queues  resulting  from congestion at  the 
higher  rat'e.  This  may also result  in longer average  macro  time, 
bemuse the new macros called int'o  play  may be more complex 
t'han the regular mix. Thus,  all  t,hree major  fact'ors  may  be  relat'ed. 

Applying  these  factors t,o a  typical Css run employing t,he 
operating  system models, i t  is  found that average  macro  time 
is three milliseconds on the Model 40 processor, model burden is 
2000 C ~ S  instructions  per message, and  event  density is 1.5 mes- A 

sages per second. Thus, I 
( 

This  running  time is largely  a  result of the extreme  detail 
included  in the operating  system. It means that realistically only 
a  few  minutes of such  a  system's  operation  can be studied.  This 
is no handicap  with  most teleprocessing-oriented systems, since 
stable  operation  can  be  determined  within  this  time  span.  However, 
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studies of daily or weekly work schedules using this  technique 
are  out of the question. For such  efforts,  a  much less detailed 
level is required,  perhaps  based  on  formulas  rather than simu- 
lation,  though  quite possibly various  operating  parameters  might 
be derived  from the detailed  run. 

There is some hope that job  shop  environments which are 
not teleprocessing-oriented can  be modeled. Here the job arrival 
rate  (event  density)  is  typically  in  minutes  rather  than seconds, 
resulting  in  a  theoretical sixty-fold decrease  in the run-time  ratio. 
This would require a model of job  scheduling  functions, which 
\yere not  incorporated  into  the experimental models. However, 
work along this  avenue  appears  fruitful. 

It has been suggested that  an increase in speed could be at- 
tained  by coding the models directly  in  machine  language  rather 
than using the higher-level CSS language.  However, an investiga- 
tion  has shown that, except  for  isolated cases, the gain would not  be 
so dramatic as the CSS/GPSS gain  because the CSS instructions 
largely do  what  must be  done  in the operating  system logic in 
an expeditious  manner  with little superfluous  overhead  resulting 
from  generality. However,  certain  small  operations, which are 
highly  repetitive  and consist of a series of elementary  steps,  have 
been coded in  machine  language to speed up  the models. Even so, 
such an operation  rarely  accounts for more than  ten percent of a 
total  run  time,  and eliminating it altogether does not speed up 
the  run  by more than  that  ten percent. The trouble  with the 
models is that  they  do so much, not  that  they  are especially 
inefficient. Also, to code the operating  system models in  machine 
language would make  them  much less flexible, reducing  their 
utility  in aiding the design of new operating  systems. 

This raises an interesting question-for whom is the general 
model intended? It is now clear that  the developers and  the 
installation  planners  represent  two  incompatible user groups. 
The developers wish to use the model to judge how well a new 
system will perform and  the effect of proposed changes to  the 
structure. For developers, then,  the model must be  very  detailed 
to be  sensitive to minor  changes.  However,  speed is not a  critical 
factor. The installation  planner,  on the  other  hand, is willing 
to  accept a  much less accurate model, as long  as i t  is  fast  and 
easy to  use. The  uncertain  accuracy of his input  data  from  the 
field makes  any fine model detail  unwarranted. 

These models have been found  relatively easy to  use 
by  both development and  installation  planning groups. The direct 
macro  capability allows a user familiar  with the supervisor and 
an access method  (and  having a  superficial knowledge of Css) 
to  set  up a complex model in a day  that would formerly have 
taken  him several weeks. However,  these models are more suitable 
for the  laboratory. A different modeling package  from that dis- 
cussed here  may  be  required  for  general use in  installation  planning, 
one  with grosser logic (and  thus somewhat less accuracy) but  an 
order of magnitude  faster. 
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The basic CSS program  makes  a  great  many checks for erro- 
diagnostics neous conditions throughout  the execution  phase. The operating 

system model makes  relatively few checks, partly  as a result of its 
experimental nature  and  partly because such checks are  just too 
costly in  time  to  make  in  the high-level CSS language. As a  result, 
debugging  a model employing the library  submodels  can  be 
cumbersome. This is a common problem in  any  system  im- 
plemented  in  a higher-level language. In order for such  a  system 
to find the general use for which it is intended,  the  naive user 
should  be shielded from the intricacies of low-level debugging  as 
well as the  labyrinth of operating  system logic. 

Summary  comment 
The operating  system models have been used for both development 
and  installation  work.  They  can  be modified to simulate the 
effect of a proposed change,  as well as  simulating  the  activity 
of a specific Configuration of equipment to  be  installed. Since 
the models are  miniature  systems,  they can  serve  as an educational 
tool, to elucidate the functions of the operating  system  and  its 
relationship to  user programs. The models have been written 
for  general use. However,  feedback  from the pilot  users  indicates 
that two  versions of the same  package are really  required:  a 
detailed  version  similar to  that described above,  and a gross version 
with  additional  input opt,ions. 

Some effort was made to speed up  the package  over that 
indicated.  By  rewriting the modules, coalescing many segments 
while still holding to  the initial  ten  percent  accuracy  criterion, 
simulation  running time was cut  in  half. 

The development of a  trace-edit  feature would enhance the 
modeling effort by  providing a trace of the execution of a user 
program  and  automatically  editing it  to CSS format.  The  initial 
package  requires  a user to define his own application  programs. 
It is necessary to define a  program’s logic in  this way if the pro- 
gram code does not exist. 

In  addition, a  trace-edit  program could be used to  create a 
library of jobs. Typical jobs such  as FORTRAN and PL/I could 
be  traced  and placed in  edited  form  in the library to  be referred 
to  by a user calling for representative work loads. The  feature 
could also be used to  trace  control  program  functions,  such  as 
job  scheduling, and include them  as  an  integral  part of the existing 
models. The  resultant  input  options could allow the user to simu- 
late  the scheduling of typical or existing jobs within  a  multi- 
processing environment,  with or without a teleprocessing load. 
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