
4 simulator is discussed that provides a language and a structure
speciJically designed for modeling computer systems to evaluate
their performance.

T h e simulator prorides general equipment models, and the authors
discuss their experience in developin3g a general submodel of a mult i -
programming operating system. The user assembles a sys tem f rom
thc equipment models, specifies parameters to allow simulation, of
his operating system functions, and provides models of his appl i -
cation programs.

Simulating operating systems
by P. H. Seaman and R. C. Soucy

.4 suitable simulation language and structure is needed to satisfy
the requirements of computer system program simulation. One
simulation language frequently used to model computing systems
is provided by the General Purpose Simulation System (GPSS).'
As a result of experience with many GPSS computer system models,
the ronviction crystallized that much of the equipment is standard,
dthough the programming is not. At'tempts were made to provide
GPSS users with equipment submodels from which they could
quickly assemble total system models. However, there was no
convenient facility to incorporat>e such a higher-level syst.em
language (whic:h the submodels constituted) into the GPSS struc-
ture; and such attempts as were made ran rather slowly.

Prom t'his work, a specialized modeling system was developed,
called the Computer System Simulator (css).' CSS is not built
on GI's8 but' is coded afresh in basic assembler language. It uses
many of the techniques of GPSS, but they have been adapted
to a structure specifically designed to model computer systems.
CSS incorporates general equipment models into its basic structure
and makes programming the operation of this equipment the
central feature of its use. Thus, a sharp dichotomy is instituted
bet'ween models of equipment provided by the simulator and
models of programs provided by the user. With equipment de-
tails built in, it was soon seen t,hat a large share of modeling
complexity still lay in the simulated programs, especially in the
area of what is called the operating system, which controls the
scheduling of operations on the equipment in processing jobs.

264 SEAMAN AND SOUCY IBM SYST J

To simplify Ct;s input slmifications, it would be desirable to
provide a general submodel of the SYSTKMI3fiO Operating System
that is much like the equipment submodels provided in GPSS.
The user would supply only certain system paranlcters in addition
to his appliration program models to simulate his entire system.
The operating system submodel thus visualized would be a Css
program Jyritten within t,he c.onstraints of the simulator, imitating
the prinripal func~tions of the supervisor and data management
~erv ices .~

The user's complete syst,em model t,hen would comist of the
following interacting parts:

CSS base, providing c~onfiguratiou definit'ion, equipment models,
input job definition, simulat'ing capability, and statistics
gathering routines.
Operating sjptem s t h n o d e l , providing control functions to
simulate a multiprogramming environment.
Applicat ion programs, driving the above two components
in wc~ordancc with the input job stream and the user's program
logic..

This paper dismsses our experienre in developing a11 experimental
submodel of the SYS'1'E:RQ,&o 0per:hng System for general use.

Design objectives
There are at least three cases in which one rnay wish to simulate
a computing system in detail. First, in the development of a
programming system, it is useful to have a model of the current
system so that proposed changes can bc evaluated by modifying
t,he model rather than the real system. Second, in establishing
a system configuration for :t given workload, it is desirable to
determine an optimum configuratioll before ordering the parts.
Third, after a system is operational, it, is useful to keep a model
of the system that can be used to predict t'he effect, of expected
or proposed changes to the actual system. In all three cases, the
requirement arises to measure job throughput, system response,
or equipment loading without the availability of some aspect
of the real system. In t,he first and third cases, quite detailed
models arc ~~eressary to observe the effects of many minor cshanges,
the cumulativc etfects of which may he significmlt. In the case
of system configuration, much grosser models usually suffice.

As an initial effort,, it \vas decided to develop a CSS model pack-
age for both instnllation planners and program developers by
means of whivh they cwuld simuhte the behavior of t'heir programs
within the const'raint's of the programming support, provided
with the equipment. A tolerance of ten percent on model awurwy
cnlibrat'ed against, n real system was aimed for i n equipment'
utilizations and total run time. The simulat>ed system would
consist of the t,hree major components mentioned above-
configuration definition, operating syst'em submodel, and appli-
cation programs-all implemented in the Css language.

NO. 4 . 1969 S I M U L A T I N G O P E K T I N C S Y S T E M S 265

css input. Predefined configurations are difficult to implement
because of the large number of permutations, and are not necessary
since the CSS format is easy to use. The actual device functions
were part of the basic CSS program.

The operating system can be premodeled, because its logic
is defined rather precisely; after deciding on particular modules
to be included in his operating system, the user is really sub-
jecting his programs to a small set of fixed and predictable rules.
The CSS instruction set is sufficient to write routines that model
the logical functions necessary for system control. The efficiency
of the CSS language for this purpose was open to study.

Finally, the application programs were to be completely user-
defined. However, it was desirable that the interface with the
operating syst’em submodel be through a macro language as
similar as possible to that provided in the real operating system.
Thus, the application program models would call for services
from the operating system submodel in the same manner as their
real-world counterparts. This correlation was designed for ease
of use, so that a user familiar with operating system functions
could easily put toget’her a system package largely in his own
terms without having to struggle with a host of new terms. How-
ever, no attempt was made to bridge the gap between the sub-
model package and the user unfamiliar with the operating system
who merely wanted to compare “typical” systems. At that time,
it was felt there was not enough information available to usefully
define what might represent a set of typical systems. I
Computer system simulator
To understand the submodeling effort, a short description of the
CSS program on which it is based is nece~sary.~ CSS provides the
user with a language and structure with which he can model a
large variety of computer systems and at differing levels of detail.
The basic input in building a CSS model of a system consists of:

Statement of system configuration
Description of operating programs
Description of job environment

The above specifications make up a single input card deck.
System configuration is specified by various statements, in pre-
scribed formats, that contain information on such characteristics
as size of main storage, data transfer rates for each different I/O
device, and 1/0 device connections to each channel. Following
these statements are the program descriptions in CSS language.
These consist of both the user’s application programs and the
system’s control program, and must include all timing information I

as well as program logic. The job environment is implicit in both
the configuration and program specifications. Input message
rates may be specified for each terminal, or a job stream may I

266 SEAMAN AND SOUCY IBM SYST J I

CONTROL
UNIT 1

Figure 3 Simple task scheduler

ENTER SCHEDULER

SCHEDULER PROCESS
(X rnSEC)

REMOVE FROM READY
QUEUE RESTART WORK

PREVIOUSLY SUSPENDED 1
IDLE UNTIL

INTERRUPTION
OCCURS

270

at the end of the program, all work on the current task having
been completed, control is returned to the scheduler to begin
a new task.

Such a scheduler, and other control programs like it, provide
the framework within which the application programs are executed.
Control programs are coded in the CSS instruction set in the
same manner as the application programs. Virtually any operating
discipline may be accounted for. For example, a flowchart for
the simple scheduler discussed above is shown in Figure 3. Each
block represents one css instruction.

Another important part of an operating system is made up
of the interruption-handling programs. These are automatically
branched to, and any program that is being executed is inter-
rupted, whenever an I/o operation, such as a seek or data transfer,
is completed. Such an interruption-handling program is shown
in Figure 4, providing control for a teletype line.

Again, every box represents a CSS instruction. Note that the
processing time to handle the interruption must be specified by
the user. Oftentimes, when considering a control module like
this, prepared by a remote developer, the user has little idea what
the detailed control logic is, or what time values to insert. In
such cases, a previously prepared module would be a convenient
way to complete his model.

Control functions, such as task scheduling and interruption-
handling, are standard within the framework of the SYSTEM/360
Operating System (OS/360). Therefore, for the large number of
users wishing to study a system using OS/360, standard blocks
of code modeling its functions could be provided to facilitate
model building and ensure that the operating system is modeled
with correct logic and timings. At the same time, submodels of
control functions like these would provide the OS/360 developers
with a convenient way to try out proposed changes. Such sub-
models are the subject of this study.

Scope of modeling effort
In the existing operating system concept, i t is necessary to define
the relationship between a device and its program support, since
each device type is dependent upon the availability of such sup-
port. Some program modules are device dependent and remain
in main storage only if that device is active. Others are not device
dependent and may be called by many device support modules.
It was decided that IBM 2311 direct-access storage devices, IBM 2400
series magnetic tape units, and IBiLl 1050 terminals would be
supported in this initial modeling effort. Therefore, the program-
ming support for only these devices was simulated, while other
modules would be considered later.

Figure 5 illustrates the scope of the modeling effort. The func-
tions in the solid boxes were included. Eighteen basic submodels
were produced, including both basic and queued access methods

SEAMAN AND SOUCY ISM SYST J

c7 SCHEDULER

Figure 5 Schematic of 05/360

JOB INPUl

I
JOB OUTPUT OPERATOR

t t
JOB SCHEDULER I MASTER SCHEDULER I I (NOT MODELED) I I (PRIMITIVE MODEL) I

L----t""-J L"--f""-"-l
TASK MANAGEMENT.
SUPERVISOR CALL ROUTINES'

OS BTAM

1/0 SUPERVISOR*
OS QTAM
EDAM

OTHER SUPERVISOR FUNCTIONS QSAM
BSAM

BISAM
QISAM

DATA MANAGEMER

Table 3 Simulated' macroinstructions

GET
PUT
RELSE
TRUNC
DCB

Obtain next logical record
Write next logical record
Release current buffer
Truncate an output buffer
Data control block

Table 4 File defining parameters

Blocksize
Buffers
Locate, move, and update modes of operation
Fixed- and variable-length, blocked and unblocked record format
Write verify

Table 5 Actual and simulated programs

Adml program

LA 6,1000 Set up counter

BAL 14,PROCESS Process it
PUT OUTPUT Write record
BCT 6,LOOP Branch per document

LOOP GET INPUT Read next logical record

INPUT DCB (file definition information)
OUTPUT DCB (file definit,ion information)

Simulated program

1 REFTL
2 REFTL

MOVE
LOOP GET

PROCESS
PUT
BRAD

INPUT DCB

OUTPUT DCB

N22,,l/(file definition information)
N25,,l/(file definition information)
lOOO,SV9 Set up counter
$INPUT Read next logical

1000 Process i t
$OUTPUT Write record
SV9,1,LOOP Branch per document
1 Refer to file informa-

record

tion in reference
table (REFTL) 1

tion in reference
table (REFTL) '2

2 Refer to file informa-

272 SEAMAN AND SOUCY IBM SYST J

(each access method representing one module) operating under
both the OS/%O and Disk Operating System (DOS)‘ supervisors.
Schedule requirements and frequency of use were the bases for
determining the functions covered. Functions required to start,
schedule, and service devices in a multiprogramming environment
\vere included, as wdl as supervisor calls, input/output routines,
and access-method modules. The supervisor functions had to
be carefully defined so as to be shareable by all access methods.
User program entry and exit conditions were specified as in any
programming system.

The major emphasis was on the simulation of teleprocessing
jobs, with and without background job interference. The real-
time program execution (i.e., polling terminals and processing
the resultant message inputs) can be investigated by sampling
intervals during which the teleprocessing job has no beginning
or end. Therefore, the scheduling of jobs is notJ necessary to study
the effects of background interference on the high-priority tele-
processing job. However, a partial facility to initiate background
jobs was provided. Similarly, the functions of thc master scheduler
were not pertinent to the teleprocessing study and were omitted.

As previously mentioned, the simulated system is driven by
user logic. After defining the configurat,ion by means of regular
css input, control is passed to the highest-priority program to
be executed. User programs are executed in the user-defined
partition and in user-preferred order. All statistics are based on
the logic of the user’s program, consisting of macroinstructions
(GET, PUT, READ, WRITE) whose form and operands are similar
to existing assembly language macroinstructions. The tabular
module technique (using DCB’s in OS/360 and DTF’s in
was incorporated in the models in order to define the files. The
various macroinstructions available in the simulated version
of QsAM are listed in Table 3, and file parameters that may be
specified are shown in Table 4. Similar instructions and parameters
exist for the other access methods. The similarity of the simulated
language to its assembler language counterpart is indicated in
Table 5. Much of the ease of using CSS is derived from the ability
to define user-oriented macroinstructions within the CSS language.

A library facility was incorporated in CSS to vontain the various
modules of the operating system model package. A MODEL
statement allows the user to call those models that he wishes
to use during a simulation run. For example, the statement

MODEL L4,OSSPVR,OS&TAM,OSS40,OSQS40

calls in the operating system supervisor, the operating system
queued telecommunications access method &TAM, and the
SYSTEM/360 Model 40 timing modules for both. Timing modules
were independently specified so that the extensive logic in each
submodel would not have to be duplicated for each different,
machine. CSS assembles the user programs with the models specified
in his MODEL statement.

NO. 4 ’ 1969 SIMULATING OPERATING SYSTEMS

Implementation
The modeling project required the coordinated effort of two
independent groups. One group, close to simulation development,
was responsible for the detailed coding of the models, whereas the
other group, close to actual system development, was responsible
for logic definitions and timings. It was found that the spirited
interchange of ideas produced a much more effective result than
if either group had attempted the project alone.

To verify the logic and timings employed in the models,
test programs were measured and compared with their simulated
versions, both for execution time and equipment utilization.
Discrepancies between the measurements led to the conclusion
that the simulation results are extremely sensitive to device
timing characteristics, such as tape interrecord gap or arm motion
time. Further, measurements on several identical devices of
actual characteristic timings showed that variances in these
timings from their nominal values exist'. If the measured device
characteristics were used, the simulation run results were within
three percent of the real program results. Fortunately, device
timings are normal input parameters to Css and values other
than nominal specifications can easily be inserted. However,
this indicates that there is little value in extreme accuracy in a gen-
eral model if equipment tolerances are not correspondingly tight.

Model characteristics
The total operating system model library of 18 modules, plus
associated timing modules, consists of over 10,000 CSS instructions,
or roughly 150,000 bytes of storage. Most modules contain be-
tween 500 and 800 Css instructions, while the associated timing
modules contain about 100 individual timing segments each.
These figures indicate the great amount of detail of these modules.

Fortunately, only the modules required by the user need reside
in main storage. Table 6 shows the tJypical storage requirements
for a large teleprocessing system, indicating that it would be
rare to require main storage of more than 256K bytes to simulate
a system. Also note the small amount of user coding compared
to the space taken by the models. However, in addition to the
application code, the user must supply the equipment configuration
statements. In this example, the user supplied one-sixth of the
total model statements, the rest being obtained from the library.

Models of systems with no terminals run on the order of five to
ten times slower than real time when executed on an IBM
SYSTEM/360 Model 40 processor. Including lines and terminals,
which require time-consuming polling procedures, model running
times drop to twenty to fifty times slower than real time when
executed on a Model 40 processor. Execution time may be
shortened by a factor of nine by running on a Model 65 processor,
since CSS is processor bound. Use of the modeled Autopoll
feature also greatly decreases model execution time.

Table 6 Typical storage requirements for large teleprocessing systems

Storage
requirements

(kilobytes)

CSS equipment
(500 terminals, 70 lines, etc.) 20

Transient entity pools
(messages, tasks, events) 58

CSS models (OS/supervisor, &TAM, QISAM) 44
User application programs 3
CSS/360 program 42
OS/360 (including 1/0 buffer areas) 43

Total 210

The length of a simulation run is of concern to the model
analyst, both from the economic viewpoint and from the fast
turnaround time required to seriously consider the effects of
many small changes. Many factors affect the running time. To
meaningfully discuss these, one must first define the run time
ratio, R, as:

R = actual model execution time
simulated elapsed time during model execution

Thus, if i t requires ten minutes of execution time to simulate
1 minute of model time, R = 10 : 1, i.e., the model runs ten times
slower than real time. This ratio may often be usefully expressed
as the product of three factors:

R = (average macro time) X (model burden) X (event density)

Each of these factors is discussed below with specific reference
to CSS and the modeling effort.

Macro here refers to the instructions of the model language, average
e.g., the CSS instructions. The execution time of such a macro macro time
is a function of the complexity built into it and the efficiency of
coding it in the basic machine language (i.e., machine instructions
per macro), as well as the speed of the machine exewting the
model. Since the timing for various macros varies greatly, an
average must be struck for a typical mix. For instance, in CSS,
the number of machine instructions per Css instruction ranges
from 30 up to 1,000, with the usual average of 200. Operating
on a Model 40 processor, css averages about 1.5 microseconds
per machine instruction, resulting in an average css instruction
time of three milliseconds. This value drops to about 0.34 milli-
seconds on a Model 65 processor.

to support an event. An event is defined as one of the major burden
occurrences in the model, the sequence of which constitutes a

Model burden represents how many macros must be executed model

NO. 4 . 1969 SIMULATING OPERATING SYSTEMS 275

run. For example, the processing of a message in a teleprocessing
model would be an event. In this vase, tmhe burden would represent
the number of css instructions executed to process a message
from beginning to end, including all control service plus polling
and interruption-handling instructions. It may be simply cal-
culated after one run by dividing the t,otal number of instructions
execut'ed by the total number of messages processed during the
run. The burden is a function of several secondary considerations.
One is macro c.omplexit,y. For simple macros, the burden is large-
that is, many simple marros must' be executed to represent a
complex event. Hotvever, t,his may be compensat'ed for by fast
macro time resulting from t,he simplicity. A similar consideration
is t'he closeness of t,he ma(8ro operat'ions t'o the real system func-
tions being modeled. This is where c>sS gains its principal ad-
vantage over GI%S in modeling computer systems. Another obvious
ronsideration affecting model burden is the complexity of the
model. Inrorporating fine details adds many instructions per
event'. Not so obvious is the inclusion of fixed scans, such as
polling, which do so many operations per minute, regardless of
message load. This result,s in an increasing burden with decreasing
message rat'e.

Events per u~l i t of model time is the rate at which system
event events, such as messagc arrivals, occur in t'he real system. Since

density t,hese events must be processed serially by the simulator, even
t'hough parallelism is being modeled, the run time is a t least pro-
portional to the occurrence rst,e. That is, to model one hour's
operat'ion of a syst,em processing 10,000 messages per hour takes a t
least twice as long as the same model processing only 5,000 mess-
ages per hour. It will probably t'ake longer, because the model
burden will be increased due to system procedures invoked to
handle overflows and queues resulting from congestion at the
higher rat'e. This may also result in longer average macro time,
bemuse the new macros called int'o play may be more complex
t'han the regular mix. Thus, all t,hree major fact'ors may be relat'ed.

Applying these factors t,o a typical Css run employing t,he
operating system models, i t is found that average macro time
is three milliseconds on the Model 40 processor, model burden is
2000 C ~ S instructions per message, and event density is 1.5 mes- A

sages per second. Thus, I
(

This running time is largely a result of the extreme detail
included in the operating system. It means that realistically only
a few minutes of such a system's operation can be studied. This
is no handicap with most teleprocessing-oriented systems, since
stable operation can be determined within this time span. However,

276 SEAMAN AND SOUCY IRM SYST J

studies of daily or weekly work schedules using this technique
are out of the question. For such efforts, a much less detailed
level is required, perhaps based on formulas rather than simu-
lation, though quite possibly various operating parameters might
be derived from the detailed run.

There is some hope that job shop environments which are
not teleprocessing-oriented can be modeled. Here the job arrival
rate (event density) is typically in minutes rather than seconds,
resulting in a theoretical sixty-fold decrease in the run-time ratio.
This would require a model of job scheduling functions, which
\yere not incorporated into the experimental models. However,
work along this avenue appears fruitful.

It has been suggested that an increase in speed could be at-
tained by coding the models directly in machine language rather
than using the higher-level CSS language. However, an investiga-
tion has shown that, except for isolated cases, the gain would not be
so dramatic as the CSS/GPSS gain because the CSS instructions
largely do what must be done in the operating system logic in
an expeditious manner with little superfluous overhead resulting
from generality. However, certain small operations, which are
highly repetitive and consist of a series of elementary steps, have
been coded in machine language to speed up the models. Even so,
such an operation rarely accounts for more than ten percent of a
total run time, and eliminating it altogether does not speed up
the run by more than that ten percent. The trouble with the
models is that they do so much, not that they are especially
inefficient. Also, to code the operating system models in machine
language would make them much less flexible, reducing their
utility in aiding the design of new operating systems.

This raises an interesting question-for whom is the general
model intended? It is now clear that the developers and the
installation planners represent two incompatible user groups.
The developers wish to use the model to judge how well a new
system will perform and the effect of proposed changes to the
structure. For developers, then, the model must be very detailed
to be sensitive to minor changes. However, speed is not a critical
factor. The installation planner, on the other hand, is willing
to accept a much less accurate model, as long as i t is fast and
easy to use. The uncertain accuracy of his input data from the
field makes any fine model detail unwarranted.

These models have been found relatively easy to use
by both development and installation planning groups. The direct
macro capability allows a user familiar with the supervisor and
an access method (and having a superficial knowledge of Css)
to set up a complex model in a day that would formerly have
taken him several weeks. However, these models are more suitable
for the laboratory. A different modeling package from that dis-
cussed here may be required for general use in installation planning,
one with grosser logic (and thus somewhat less accuracy) but an
order of magnitude faster.

NO. 4 . 1969 SIMULATING OPERATING SYSTEMS 277

The basic CSS program makes a great many checks for erro-
diagnostics neous conditions throughout the execution phase. The operating

system model makes relatively few checks, partly as a result of its
experimental nature and partly because such checks are just too
costly in time to make in the high-level CSS language. As a result,
debugging a model employing the library submodels can be
cumbersome. This is a common problem in any system im-
plemented in a higher-level language. In order for such a system
to find the general use for which it is intended, the naive user
should be shielded from the intricacies of low-level debugging as
well as the labyrinth of operating system logic.

Summary comment
The operating system models have been used for both development
and installation work. They can be modified to simulate the
effect of a proposed change, as well as simulating the activity
of a specific Configuration of equipment to be installed. Since
the models are miniature systems, they can serve as an educational
tool, to elucidate the functions of the operating system and its
relationship to user programs. The models have been written
for general use. However, feedback from the pilot users indicates
that two versions of the same package are really required: a
detailed version similar to that described above, and a gross version
with additional input opt,ions.

Some effort was made to speed up the package over that
indicated. By rewriting the modules, coalescing many segments
while still holding to the initial ten percent accuracy criterion,
simulation running time was cut in half.

The development of a trace-edit feature would enhance the
modeling effort by providing a trace of the execution of a user
program and automatically editing it to CSS format. The initial
package requires a user to define his own application programs.
It is necessary to define a program’s logic in this way if the pro-
gram code does not exist.

In addition, a trace-edit program could be used to create a
library of jobs. Typical jobs such as FORTRAN and PL/I could
be traced and placed in edited form in the library to be referred
to by a user calling for representative work loads. The feature
could also be used to trace control program functions, such as
job scheduling, and include them as an integral part of the existing
models. The resultant input options could allow the user to simu-
late the scheduling of typical or existing jobs within a multi-
processing environment, with or without a teleprocessing load.

CITED REFERENCES AND FOOTNOTE

1. R. L. Gould, “GPSS/360”An improved general purpose simulator,”

2. The Computer System Simulator is an IBM proprietary program.
I B M Systems Journal 8, No. 1, 16-27 (1969).

278 SEAMAN AND SOUCY IBM SYST J

3. G. H. Mealy, B. I. Witt, and W. A. Clark, “The functional structure of
OS/360,” ZBM Systems Journal 5 , No. 1, 3-51 (1966).

4. P. H. Seaman, “On teleprocessing system design, Part VI, The role of
digital simulation,’’ ZBM Systems Journal 5 , No. 3, 175-189 (1966).

5. G. Bender, D. N. Freeman, and J. D. Smith, “Function and design of
DOS/360 and TOS/360” ZBM Systems Journal 6 , No. 1, 2-21 (1967).

6. A. R. Cenfetelli, “Data management concepts for DOS/360 and TOS/360,”
ZBM Systems Journal 6, No. 1, 22-37 (1967).

SIMULATING OPERATING SYSTEMS 279

