A stmulator 18 discussed that provides a language and a structure
specifically designed for modeling computer systems to evaluate
their performance.

The simulator provides general equipment models, and the authors
discuss their experience in developing a general submodel of a multi-
programming operating system. The user assembles a system from
the equipment models, specifies parameters to allow stmulation of
his operating system functions, and provides models of his appli-
cation programs.

Simulating operating systems
by P. H. Seaman and R. C. Soucy

A suitable simulation language and structure is needed to satisfy
the requirements of computer system program simulation. One
simulation language frequently used to model computing systems
is provided by the General Purpose Simulation System (GPSS).'
As a result of experience with many GPSS computer system models,

the conviction crystallized that much of the equipment is standard,
although the programming is not. Attempts were made to provide
GPSS users with equipment submodels from which they could
quickly assemble total system models. However, there was no
convenient facility to incorporate such a higher-level system
language (which the submodels constituted) into the GPSS struc-
ture; and such attempts as were made ran rather slowly.

From this work, a specialized modeling system was developed,
called the Computer System Simulator (CSS)2 €SS is not built
on GPSS but is coded afresh in basic assembler language. It uses
many of the techniques of GPSS, but they have been adapted
to a structure specifically designed to model computer systems.
CSS incorporates general equipment models into its basic structure
and makes programming the operation of this equipment the
central feature of its use. Thus, a sharp dichotomy is instituted
between models of equipment provided by the simulator and
models of programs provided by the user. With equipment de-
tails built in, it was soon seen that a large share of modeling
complexity still lay in the simulated programs, especially in the
arca of what is called the operating system, which controls the
scheduling of operations on the equipment in processing jobs.

SEAMAN AND SOUCY IBM SYST J




To simplify C88 input specifications, it would be desirable to
provide a general submodel of the SYSTEM/360 Operating System
that is much like the equipment submodels provided in GPSS.
The user would supply only certain system parameters in addition
to his application program models to simulate his entire system.
The operating system submodel thus visualized would be a CS8
program written within the constraints of the simulator, imitating
the principal functions of the supervisor and data management
services.’

The user’s complete system model then would consist of the
following interacting parts:

o ('S8 base, providing configuration definition, equipment models,
input job definition, simulating capability, and statistics
gathering routines.

Operating system submodel, providing control functions to
simulate a multiprogramming environment.

Application programs, driving the above two components
in accordance with the input job stream and the user’s program
logic.

This paper discusses our experience in developing an experimental
submodel of the SYSTEM /360 Operating System for general use.

Design objectives

There are at least three cases in which one may wish to simulate
a computing system in detail. First, in the development of a
programming system, it is useful to have a model of the current
system so that proposed changes can be evaluated by modifying
the model rather than the real system. Second, in establishing
a system configuration for a given workload, it is desirable to
determine an optimum configuration before ordering the parts.
Third, after a system is operational, it is useful to keep a model
of the system that can be used to predict the effect of expected
or proposed changes to the actual system. In all three cases, the
requirement arises to measure job throughput, system response,
or equipment loading without the availability of some aspect
of the real system. In the first and third cases, quite detailed
models are necessary to observe the effects of many minor changes,
the cumulative effects of which may be significant. In the case
of system configuration, much grosser models usually suffice.

As an initial effort, it was decided to develop a CSS model pack-
age for both installation planners and program developers by
means of which they could simulate the behavior of their programs
within the constraints of the programming support provided
with the equipment. A tolerance of ten percent on model aceuracy
calibrated against a real system was aimed for in equipment
utilizations and total run time. The simulated system would
consist of the three major components mentioned above—
configuration definition, operating system submodel, and appli-
cation programs—all implemented in the CSS language.

NO. 4 - 1969 SIMULATING OPERATING SYSTEMS




System configuration was to be specified in terms of normal
0SS input. Predefined configurations are difficult to implement
because of the large number of permutations, and are not necessary
since the CSS format is easy to use. The actual device functions
were part of the basic CSS program.

The operating system can be premodeled, because its logic
is defined rather precisely; after deciding on particular modules
to be included in his operating system, the user is really sub-
jecting his programs to a small set of fixed and predictable rules.
The CSS instruction set is sufficient to write routines that model
the logical functions necessary for system control. The efficiency
of the €88 language for this purpose was open to study.

Finally, the application programs were to be completely user-
defined. However, it was desirable that the interface with the
operating system submodel be through a macro language as
similar as possible to that provided in the real operating system.
Thus, the application program models would call for services
from the operating system submodel in the same manner as their
real-world counterparts. This correlation was designed for ease
of use, so that a user familiar with operating system functions
could easily put together a system package largely in his own
terms without having to struggle with a host of new terms. How-
ever, no attempt was made to bridge the gap between the sub-
model package and the user unfamiliar with the operating system
who merely wanted to compare “typical’”’ systems. At that time,
it was felt there was not enough information available to usefully
define what might represent a set of typical systems.

Computer system simulator

To understand the submodeling effort, a short description of the
€SS program on which it is based is necessary.* CSS provides the
user with a language and structure with which he can model a
large variety of computer systems and at differing levels of detail.
The basic input in building a €SS model of a system consists of:

e Statement of system configuration
¢ Description of operating programs
e Description of job environment

The above specifications make up a single input card deck.
System configuration is specified by various statements, in pre-
scribed formats, that contain information on such characteristics
as size of main storage, data transfer rates for each different 1/0
device, and I/0 device connections to each channel. Following
these statements are the program descriptions in CSS language.
These consist of both the user’s application programs and the
system’s control program, and must include all timing information
as well as program logic. The job environment is implicit in both
the configuration and program specifications. Input message
rates may be specified for each terminal, or a job stream may

SEAMAN AND SOUCY IBM SYST J




be set up from an input device. Tasks may be generated by pro-
grams, and conversations defined between terminals and one
Or MOre Processors.

From these input statements, the CSS program assembles a
model, the only restriction being that the complete assembled
model must reside in main storage. CSS then creates messages
and tasks according to the input logic and commences to operate
the model in an interpretive fashion. Services such as updating
the system clock, maintaining a list of future events, and generating
random numbers and other statistical functions are automatically
provided by the simulator. The model runs until one of several
user-specified stopping conditions occurs, provided an error stop
does not occur earlier. The user may terminate a run after a given
number of messages have been processed, after a certain time
span has been simulated, or after a given amount of execution
time has elapsed.

Upon termination, an output report is generated summarizing
the statistics gathered during the run. The output automatically
provided includes:

Listing of input specifications.

Usage for all units of equipment—that is, the percentage of
time during which each unit was in operation.

Statistics on system queues occuring in the system.

Statistics on the usage of system resources, such as blocks
of main storage.

Activity statistics, such as number of messages generated
at each terminal.

In addition, the user may collect data of specific interest about
his system, such as distributions of various response times. This
output is used to determine the extent to which system perform-
ance meets desired criteria. Changes to the system to improve
performance can then be incorporated in the model, the program
can be rerun, and the quantitative effect of the changes studied.
The program does not optimize a design itself; it simply acts as
a tool to aid the judgment of the designer.
The following equipment can be simulated in CSS:

Multiple processors, including main storage and programs.
Input/output (1/0) interruptions and I/0 overlap are provided
for.

1/0 devices connected to processors through control units and
channels, including multiplexed channels and cross-channel
switching arrangements. I/0 devices include disks, tapes,
drums, printers, card reader/punches, data cells, and gen-
eralized I/0 units.

Communication lines connected to the channels. Both con-
tention and polling control are modeled.

Terminals connected to the lines. There may be several termi-
nals per line, with various polling disciplines. Both random
input and conversational mode can be handled.

NO.4 - 1969 SIMULATING OPERATING SYSTEMS

CSS equipment
simulation




Figure 1 Simple system configuration

CENTRAL
CHANNEL | procmitinG | CHANNEL
1 UNIT 2

[

CONTROL
UNIT 1

TERMINAL 1
{70 MESSAGES/HR)

/)

TERMINAL 2
(90 MESSAGES/HR)

Table 1 Equipment configuration statements

Unit number Unit type Unit characteristics

SYSTEM PR1,CU1
LINE 14.7
TERMINAL 1

RATE 1/70,2/90
CHANNEL 1

2311 1,156000,25000
PATH 1/1-1,2/2—1

In the above equipment, start or clutch time, line transmission
delays, character transmission rates, etc., are specified by the
user. Thus, any particular tape unit, disk unit, or peripheral
I/0 device can be modeled by specifying the appropriate values.

The equipment configuration statements needed to specify
to CSS8 the system outlined in Figure 1 are shown in Table 1.

The SYSTEM statement indicates that there is one processor
and one control unit for which no further specifications are needed.
The LINE statement specifies that line 1 has a speed of 14.7 char-
acters per second. The TERMINAL statement specifies that termi-
nals 1 and 2 are connected via path 1, while the RATE statement
specifies an input rate of 70 messages per hour for terminal 1
and 90 messages per hour for terminal 2. The CHANNEL state-
ment indicates that channels 1 and 2 are both connected to pro-
cessor 1. The 2311 statement specifies that there are two IBM 2311
disk storage units connected to control unit 1, with 156,000 bytes
per second data transfer rate and 25 milliseconds (25,000 micro-
seconds) rotation period. The PATH statement specifies two
paths, the first connecting channel 1 and line 1, the second con-
necting channel 2 and control unit 1. Each of these configuration
statements may convey many other characteristic parameters
not shown. Other equipment models may be added similarly.

SEAMAN AND SOUCY IBM SYST J




Table 2 Typical application program

Initial processing

Log message on file A

Access file B

Overlapped processing with I/0
Suspend processing until I/0
completed

Unoverlapped processing

Send output response

Update file C

Overlapped final processing
Wait for I/0 completion

End of program, go to scheduler

PROCESS 3000
WRITE (file A)
READ (file B)
PROCESS 5000
WAIT SCHEDL

APPL

PROCESS 7500

SEND (destination)
WRITE (file C)
PROCESS 2000

WAIT SCHEDL
BRANCH SCHEDL

After the equipment has been defined, the programs that con-
trol the processing of messages or jobs must be specified. For this
purpose, CSS provides an instruction set that is used to construct
flowcharts of the programs.

The CSS instruction set includes 40 instructions, some directly
corresponding to operating system macroinstructions in the
system under study (READ, WRITE, BRANCH, ALLOCATE, etc.).
Others, such as PRINT and TABULATE, are used for statistical
purposes. Finally, instructions are provided for manipulation
of the simulation model. These include a probabilistic branch,
test instructions, queuing instructions, arithmetic instructions,
ete. In addition, the user may build a set of macroinstructions
from the basic set, in effect creating his own language. This
feature is much used in the modeling effort.

When modeling programs in CS88, two classes of programs must
be defined: application and control. The first of these represents
user-written programs to perform a specific job. The second
represents the operating system that controls execution of the
application program and regulates both the machine, including
interruption handling and task scheduling, and external conditions,
such as arrival rate of jobs.

An example of a simple application program is shown in the
flowchart in Iigure 2, and it can be written in CSS as shown in
Table 2.

The time unit in this example has been taken as 1 microsecond;
thus, a process time of 3 milliseconds appears as 3,000 micro-
seconds. The unit may be changed at the option of the user. The
1/0 information, which is indicated here only by the parentheses,
specifies the location and amount of data to be moved. The WAIT
instruction causes processing of the task to be suspended until
its outstanding 1/0 operation is completed. During this time,
processing can be carried out for other tasks in a multiprogramming
environment. Thus, control is returned to the operating system
scheduler (here called SCHEDIL) to find such work. Similarly,

NO. 4 - 1969 SIMULATING OPERATING SYSTEMS

Figure 2 Sample program, APPL

ENTER APPL

INITIAL PROCESSING
(3 mSEC)

:

LOG MESSAGE ON FILE A

:

GET DATA FROM FILE B

:

PROCESS
(5 mSEC)

:

WAIT FOR 1/0 TO BE COMPLETED

i

PROCESS
(7.5 mSEC)

!

SEND OUTPUT MESSAGE

!

UPDATE FILE C

:

FINAL PROCESSING
(2 mSEC)

:

WAIT FOR 1/0 TO BE COMPLETED

GO TO
SCHEDULER




Figure 3 Simple task scheduler

ENTER SCHEDULER

SCHEDULER PROCESS
(X mSEC)

NEW WORK?

REMOVE FROM NEW
WORK QUEUE. GO
TO BEGIN NEW WORK

NY OLD
READY?

REMOVE FROM READY
QUEUE. RESTART WORK
PREVIOUSLY SUSPENDED

IDLE UNTIL
INTERRUPTION
OCCURS

at the end of the program, all work on the current task having
been completed, control is returned to the scheduler to begin
a new task.

Such a scheduler, and other control programs like it, provide
the framework within which the application programs are executed.
Control programs are coded in the CSS instruction set in the
same manner as the application programs. Virtually any operating
discipline may be accounted for. For example, a flowchart for
the simple scheduler discussed above is shown in Figure 3. Each
block represents one CSS instruction.

Another important part of an operating system is made up
of the interruption-handling programs. These are automatically
branched to, and any program that is being executed is inter-
rupted, whenever an 1/0 operation, such as a seek or data transfer,
is completed. Such an interruption-handling program is shown
in Figure 4, providing control for a teletype line.

Again, every box represents a CSS instruction. Note that the
processing time to handle the interruption must be specified by
the user. Oftentimes, when considering a control module like
this, prepared by a remote developer, the user has little idea what
the detailed control logic is, or what time values to insert. In
such cases, a previously prepared module would be a convenient
way to complete his model.

Control functions, such as task scheduling and interruption-
handling, are standard within the framework of the SYSTEM/360
Operating System (08/360). Therefore, for the large number of
users wishing to study a system using 08/360, standard blocks
of code modeling its functions could be provided to facilitate
model building and ensure that the operating system is modeled
with correct logic and timings. At the same time, submodels of
control functions like these would provide the 08/360 developers
with a convenient way to try out proposed changes. Such sub-
models are the subject of this study.

Scope of modeling effort

In the existing operating system concept, it is necessary to define
the relationship between a device and its program support, since
each device type is dependent upon the availability of such sup-
port. Some program modules are device dependent and remain
in main storage only if that device is active. Others are not device
dependent and may be called by many device support modules.
It was decided that IBM 2311 direct-access storage devices, IBM 2400
series magnetic tape units, and IBM 1050 terminals would be
supported in this initial modeling effort. Therefore, the program-
ming support for only these devices was simulated, while other
modules would be considered later.

Figure 5 illustrates the scope of the modeling effort. The func-
tions in the solid boxes were included. Eighteen basic submodels
were produced, including both basic and queued access methods

SEAMAN AND SOUCY IBM SYST J




Figure 4 Line inferruption handier

INTERRUPTION

INTERRUPTION
TYPE? l

CREATE NEW TASK, PUT
FREE STORAGE, ON NEW WORK QUEUE,
DESTROY TASK ALLOCATE STORAGE FOR
NEXT MESSAGE

| |

ANY MORE
OUTPUT
MESSAGES?

TRANSMIT
MESSAGE

INTERRUPT
PROCESS TIME
(X mSEC)

PROCESSING
INTERRUPTED?

GO TO RETURN TO
SCHEDULER PROCESSING

Figure 5 Schematic of OS/360

TERMINAL
JOB INPUT JOB OUTPUT OPERATOR COMMUNICATION

——memmeTTTY

JOB SCHEDULER MASTER SCHEDULER
(PRIMITIVE MODEL) (NOT MODELED)

b —

TASK MANAGEMENT* DATA MANAGEMENT ACCESS METHODS
DOS BTAM

SUPERVISOR CALL ROUTINES® i
1/0 SUPERVISOR* SDMOD

S VIS0 MTMOD
OTHER SUPERVISOR FUNCTIONS® DAMOD
ISMOD
PRMOD
CDMOD
CNMOD

APPLICATION PROGRAMS
(PROVIDED BY USER) AUXILIARY
STORAGE

“MODELS REFLECT THE FUNCTIONS OF RELEASE 12 OF
SYSTEM/360 OPERATING SYSTEM AND RELEASE 16 OF
DISK OPERATING SYSTEM

NO.4 - 1969 SIMULATING OPERATING SYSTEMS




Table 3 Simulated macroinstructions

Macroinstruction Function

GET Obtain next logical record
PUT Write next logical record
RELSE Release current buffer
TRUNC Truncate an output buffer
DCB Data control block

Toble 4 File defining parameters

Blocksize

Buffers

Locate, move, and update modes of operation

Fixed- and variable-length, blocked and unblocked record format
Write verify

Table 5 Actual and simulated programs

Actual program

6,1000 Set up counter
INPUT Read next logical record
14, PROCESS Process it
OUTPUT Write record
6,LOOP Branch per document
INPUT (file definition information)
OoUTPUT (file definition information)

Simulated program

1 REFTL N22,,1/(file definition information)
2 REFTL N25,,1/(file definition information)
MOVE 1000,8V9 Set up counter
GET $INPUT Read next logical
record
PROCESS 1000 Process it
PUT $OUTPUT Write record
BRAD SV9,1,LOOP  Branch per document
INPUT DCB 1 Refer to file informa-
tion in reference
table (REFTL) 1
OUTPUT DCB Refer to file informa-
tion in reference
table (REFTL) 2

SEAMAN AND SOUCY IBM SYST J




(each access method representing one module) operating under
both the 08/360 and Disk Operating System (DOS)® supervisors.
Schedule requirements and frequency of use were the bases for
determining the functions covered. Functions required to start,
schedule, and service devices in a multiprogramming environment
were included, as well as supervisor calls, input/output routines,
and access-method modules. The supervisor functions had to
be carefully defined so as to be shareable by all access methods.
User program entry and exit conditions were specified as in any
programming system.

The major emphasis was on the simulation of teleprocessing
jobs, with and without background job interference. The real-
time program execution (i.e., polling terminals and processing
the resultant message inputs) can be investigated by sampling
intervals during which the teleprocessing job has no beginning
or end. Therefore, the scheduling of jobs is not necessary to study
the effects of background interference on the high-priority tele-
processing job. However, a partial facility to initiate background
jobs was provided. Similarly, the functions of the master scheduler
were not pertinent to the teleprocessing study and were omitted.

As previously mentioned, the simulated system is driven by
user logic. After defining the configuration by means of regular
CSS input, control is passed to the highest-priority program to
be executed. User programs are executed in the user-defined
partition and in user-preferred order. All statistics are based on
the logic of the user’s program, consisting of macroinstructions
(GET, PUT, READ, WRITE) whose form and operands are similar
to existing assembly language macroinstructions. The tabular
module technique (using DCB’s in 087360 and DTF’s in DOS)’
was incorporated in the models in order to define the files. The
various macroinstructions available in the simulated version
of QSAM are listed in Table 3, and file parameters that may be
specified are shown in Table 4. Similar instructions and parameters
exist for the other access methods. The similarity of the simulated
language to its assembler language counterpart is indicated in
Table 5. Much of the ease of using CS8 is derived from the ability
to define user-oriented macroinstructions within the CSS language.

A library facility was incorporated in CSS to contain the various
modules of the operating system model package. A MODEL
statement allows the user to call those models that he wishes
to use during a simulation run. For example, the statement

MODEL L4,08SPVR,0SQTAM,08840,08Q840

calls in the operating system supervisor, the operating system
queued telecommunications access method QTAM, and the
SYSTEM/360 Model 40 timing modules for both. Timing modules
were independently specified so that the extensive logic in each
submodel would not have to be duplicated for each different
machine. CSS assembles the user programs with the models specified
in his MODEL statement.

No.4 - 1969 SIMULATING OPERATING SYSTEMS

language

library




Implementation

The modeling project required the coordinated effort of two
independent groups. One group, close to simulation development,
was responsible for the detailed coding of the models, whereas the
other group, close to actual system development, was responsible
for logic definitions and timings. It was found that the spirited
interchange of ideas produced a much more effective result than
if either group had attempted the project alone.

To verify the logic and timings employed in the models,
test programs were measured and compared with their simulated
versions, both for execution time and equipment utilization.
Discrepancies between the measurements led to the conclusion
that the simulation results are extremely sensitive to device
timing characteristics, such as tape interrecord gap or arm motion
time. Further, measurements on several identical devices of
actual characteristic timings showed that variances in these
timings from their nominal values exist. If the measured device
characteristics were used, the simulation run results were within
three percent of the real program results. Fortunately, device
timings are normal input parameters to CSS and values other
than nominal specifications can easily be inserted. However,
this indicates that there is little value in extreme accuracy in a gen-
eral model if equipment tolerances are not correspondingly tight.

Model characteristics

The total operating system model library of 18 modules, plus
associated timing modules, consists of over 10,000 CSS instructions,
or roughly 150,000 bytes of storage. Most modules contain be-

tween 500 and 800 CSS instructions, while the associated timing
modules contain about 100 individual timing segments each.
These figures indicate the great amount of detail of these modules.

Fortunately, only the modules required by the user need reside
in main storage. Table 6 shows the typical storage requirements
for a large teleprocessing system, indicating that it would be
rare to require main storage of more than 256K bytes to simulate
a system. Also note the small amount of user coding compared
to the space taken by the models. However, in addition to the
application code, the user must supply the equipment configuration
statements. In this example, the user supplied one-sixth of the
total model statements, the rest being obtained from the library.

Models of systems with no terminals run on the order of five to
ten times slower than real time when executed on an IBM
SYSTEM /360 Model 40 processor. Including lines and terminals,
which require time-consuming polling procedures, model running
times drop to twenty to fifty times slower than real time when
executed on a Model 40 processor. Execution time may be
shortened by a factor of nine by running on a Model 65 processor,
since CSS is processor bound. Use of the modeled Autopoll
feature also greatly decreases model execution time.

SEAMAN AND SOUCY IBM SYST J




Table 6 Typical storage requirements for large teleprocessing systems

Storage
requirements
(kilobytes)

CS8S equipment
(500 terminals, 70 lines, etc.)
Transient entity pools
(messages, tasks, events)
CSS models (0S/supervisor, QTAM, QISAM)
User application programs
CS88/360 program
08/360 (including I/0 buffer areas)

Total

The length of a simulation run is of concern to the model
analyst, both from the economic viewpoint and from the fast
turnaround time required to seriously consider the effects of
many small changes. Many factors affect the running time. To
meaningfully discuss these, one must first define the run time
ratio, R, as:

actual model execution time

 simulated elapsed time during model execution

Thus, if it requires ten minutes of execution time to simulate
1 minute of model time, B = 10 : 1, i.e., the model runs ten times
slower than real time. This ratio may often be usefully expressed
as the produet of three factors:

R = (average macro time) X (model burden) X (event density)

Each of these factors is discussed below with specific reference
to €SS and the modeling effort.

Macro here refers to the instructions of the model language,
e.g., the CSS instructions. The execution time of such a macro
is a function of the complexity built into it and the efficiency of
coding it in the basic machine language (i.e., machine instructions
per macro), as well as the speed of the machine executing the
model. Since the timing for various macros varies greatly, an
average must be struck for a typical mix. For instance, in CSS,
the number of machine instructions per CSS instruction ranges
from 30 up to 1,000, with the usual average of 200. Operating
on a Model 40 processor, CSS averages about 15 microseconds
per machine instruction, resulting in an average CSS instruction
time of three milliseconds. This value drops to about 0.34 milli-
seconds on a Model 65 processor.

Model burden represents how many macros must be executed
to support an event. An event is defined as one of the major
occurrences in the model, the sequence of which constitutes a

NO. 4 - 1969 SIMULATING OPERATING SYSTEMS

average
macro time

mode!
burden




event
density

run. For example, the processing of a message in a teleprocessing
model would be an event. In this case, the burden would represent
the number of CSS instructions executed to process a message
from beginning to end, including all control service plus polling
and interruption-handling instructions. It may be simply cal-
culated after one run by dividing the total number of instructions
executed by the total number of messages processed during the
run. The burden is a function of several secondary considerations.
One is macro complexity. For simple macros, the burden is large—
that is, many simple macros must be executed to represent a
complex event. However, this may be compensated for by fast
macro time resulting from the simplicity. A similar consideration
is the closeness of the macro operations to the real system fune-
tions being modeled. This is where CSS gains its principal ad-
vantage over GPSS in modeling computer systems. Another obvious
consideration affecting model burden is the complexity of the
model. Incorporating fine details adds many instructions per
event. Not so obvious is the inclusion of fixed scans, such as
polling, which do so many operations per minute, regardless of
message load. This results in an inereasing burden with decreasing
message rate.

Events per unit of model time is the rate at which system
events, such as message arrivals, occur in the real system. Since
these events must be processed serially by the simulator, even
though parallelism is being modeled, the run time is at least pro-
portional to the occurrence rate. That is, to model one hour’s
operation of a system processing 10,000 messages per hour takes at
least twice as long as the same model processing only 5,000 mess-
ages per hour. It will probably take longer, because the model
burden will be increased due to system procedures invoked to
handle overflows and queues resulting from congestion at the
higher rate. This may also result in longer average macro time,
because the new macros called into play may be more complex
than the regular mix. Thus, all three major factors may be related.

Applying these factors to a typical CS8 run employing the
operating system models, it is found that average macro time
is three milliseconds on the Model 40 processor, model burden is
2000 €SS instructions per message, and cvent density is 1.5 mes-
sages per second. Thus,

execution seconds
macro

macr@)
event,

> X <2000

R = <O .003

> (1 events > _ , execution seconds
“ model second model second

This running time is largely a result of the extreme detail
included in the operating system. It means that realistically only
a few minutes of such a system’s operation can be studied. This
is no handicap with most teleprocessing-oriented systems, since
stable operation can be determined within this time span. However,

SEAMAN AND SOUCY IBM SYST J




studies of daily or weekly work schedules using this technique
are out of the question. For such efforts, a much less detailed
level is required, perhaps based on formulas rather than simu-
lation, though quite possibly various operating parameters might
be derived from the detailed run.

There is some hope that job shop environments which are
not teleprocessing-oriented can be modeled. Here the job arrival
rate (event density) is typically in minutes rather than seconds,
resulting in a theoretical sixty-fold decrease in the run-time ratio.
This would require a model of job scheduling functions, which
were not incorporated into the experimental models. However,
work along this avenue appears fruitful.

Tt has been suggested that an increase in speed could be at-
tained by coding the models directly in machine language rather
than using the higher-level CSS language. However, an investiga-
tion has shown that, except for isolated cases, the gain would not be
so dramatic as the CSS/GPSS gain because the CSS instructions
largely do what must be done in the operating system logic in
an expeditious manner with little superfluous overhead resulting
from generality. However, certain small operations, which are
highly repetitive and consist of a series of elementary steps, have
been coded in machine language to speed up the models. Even so,
such an operation rarely accounts for more than ten percent of a
total run time, and eliminating it altogether does not speed up
the run by more than that ten percent. The trouble with the
models is that they do so much, not that they are especially
inefficient. Also, to code the operating system models in machine
language would make them much less flexible, reducing their
utility in aiding the design of new operating systems.

This raises an interesting question—for whom is the general
model intended? It is now clear that the developers and the
installation planners represent two incompatible user groups.
The developers wish to use the model to judge how well a new
system will perform and the effect of proposed changes to the
structure. For developers, then, the model must be very detailed
to be sensitive to minor changes. However, speed is not a critical
factor. The installation planner, on the other hand, is willing
to accept a much less accurate model, as long as it is fast and
easy to use. The uncertain accuracy of his input data from the
field makes any fine model detail unwarranted.

These models have been found relatively easy to use
by both development and installation planning groups. The direct
macro capability allows a user familiar with the supervisor and
an access method (and having a superficial knowledge of CSS)
to set up a complex model in a day that would formerly have
taken him several weeks. However, these models are more suitable
for the laboratory. A different modeling package from that dis-
cussed here may be required for general use in installation planning,
one with grosser logic (and thus somewhat less accuracy) but an
order of magnitude faster.

No.4 - 1969 SIMULATING OPERATING SYSTEMS




diagnostics

The basic CSS program makes a great many checks for erro-
neous conditions throughout the execution phase. The operating
system model makes relatively few checks, partly as a result of its
experimental nature and partly because such checks are just too
costly in time to make in the high-level €SS language. As a result,
debugging a model employing the library submodels can be
cumbersome. This is a common problem in any system im-
plemented in 2 higher-level language. In order for such a system
to find the general use for which it is intended, the naive user
should be shielded from the intricacies of low-level debugging as
well as the labyrinth of operating system logic.

Summary comment

The operating system models have been used for both development
and installation work. They can be modified to simulate the
effect of a proposed change, as well as simulating the activity
of a specific configuration of equipment to be installed. Since
the models are miniature systems, they can serve as an educational
tool, to elucidate the functions of the operating system and its
relationship to user programs. The models have been written
for general use. However, feedback from the pilot users indicates
that two versions of the same package are really required: a
detailed version similar to that described above, and a gross version
with additional input options.

Some effort was made to speed up the package over that
indicated. By rewriting the modules, coalescing many segments
while still holding to the initial ten percent accuracy criterion,
simulation running time was cut in half.

The development of a trace-edit feature would enhance the
modeling effort by providing a trace of the execution of a user
program and automatically editing it to CSS format. The initial
package requires a user to define his own application programs.
It is necessary to define a program’s logic in this way if the pro-
gram code does not exist.

In addition, a trace-edit program could be used to create a
library of jobs. Typical jobs such as FORTRAN and PL/I could
be traced and placed in edited form in the library to be referred
to by a user calling for representative work loads. The feature
could also be used to trace control program functions, such as
job scheduling, and include them as an integral part of the existing
models. The resultant input options could allow the user to simu-
late the scheduling of typical or existing jobs within a multi-
processing environment, with or without a teleprocessing load.

CITED REFERENCES AND FOOTNOTE

1. R. L. Gould, “GPSS/360—An improved general purpose simulator,”
IBM Systems Journal 8, No. 1, 16-27 (1969).
2. The Computer System Simulator is an IBM proprietary program.

SEAMAN AND SOUCY IBM SYST J




3. G. H. Mealy, B. I. Witt, and W. A. Clark, “The functional structure of
08/360,” IBM Systems Journal 5, No. 1, 3-51 (1966).

4, P. H. Seaman, “On teleprocessing system design, Part VI, The role of
digital simulation,” IBM Systems Journal 5, No. 3, 175-189 (1966).

5. G. Bender, D. N. Freeman, and J. D. Smith, “Function and design of
DOS/360 and TOS/360”’ 1BM Systems Journal 6, No. 1, 2-21 (1967).

6. A. R. Cenfetelli, “Data management concepts for DOS/360 and TOS/360,”
IBM Systems Journal 6, No. 1, 22-37 (1967).

NO. 4 - SIMULATING OPERATING SYSTEMS 279




