
of test results and the test data itself. Two general approaches to
gathering performance data are discussed.

A perspective on system performance evaluation
by M. E. Drummond, Jr.

Although digital computers are entering their third decade of
existence, system performance evaluation techniques have been
lagging by almost a decade. In the early days, computers were
designed wit,h a fairly precise objective in mind-make them as
fast as possible, with accept'able reliability. However, the way
that speed was measured depended on the application area. At
that time, general-purpose computers were usually classified as
either scientific or commercial, evcrything else being special
purpose.

Scientific computers were judged by the speed of certain
discrete capabilities, such as add, multiply, or divide time, since
their principal application was to perform calculations. In many
instances, the proposed use of t'he system was a well-defined
application requiring a repet'itive set of calculations, which was
considered to be the main funrt'ion of the calculation process.
The user could then weigh t,he arithmetic speed of a system in
relation to his calculation process.

Underlying this approach to judging a computer was the twit
assumption that arithmetic processing was its most time-con-
suming activity. Other activities, such as transferring data between
main storage and auxiliary storage, were assumed to occur such a
small fraction of the time that they \vere not worth taking into
consideration.

The commercial data processing field assessed computing
systems from the opposite end of their capabilities-their
input./output, characterist,ics. The commercial environment was
rooted in card processing techniques, where literally tons of data
had to be passed through the processing equipment to produce

252 DRUMMOND IBM SYST J

payrolls, inventories, accounts, and billings. Thus, data for
commercial computing systems were organized by unit records,
and the main way of assessing a system's performance was by
its record reading and writing rate.

Over the years, numerous changes to computing systems and
their applications have combined to cause grossly erroneous results
when overly simple evaluation techniques are used.'

An early change was the introduction of 110 buffering, which
requires the analyst t o consider overlap factors in his evaluation.
Computer system performance was also affected by the develop-
ment of large-capacity, direct-access storage devices, which allow
the use of nonsequential access methods. Facilities that have
been added to computer system have frequently been in program-
ming packages. The earliest and simplest facility was a program-
ming package to load other programs from some input storage
medium into main storage in the format required by the central
processing unit. Then there were the basic utility routines to aid
the programmer. The earliest types were the dump routines, for
punching or printing the contents of the computer's main storage,
and binary-decimal conversion routines. Around the same time,
the symbolic assembly came into being. Provision was made in
symbolic assembly programs for subroutines. These widely used
instruction sequences (often collected together into a library)
were arranged so that many different programs could use them.
Relocatable loaders were developed so that subroutines could be
loaded anywhere in main storage and referred to by the host
program.

Perhaps one of the most important contributions to the field
of computer science was the compiler, which allows the writing
of programs in a source language that is reasonably close to the
natural language for the application. Libraries of complete pro-
cessing programs were introduced with utility programs to locate
a program in auxiliary storage and relocatably load it into main
storage.

Later, the various components (compilers, loaders, etc.) were
joined together into a programming system package with job
control facilities, which allow the user to specify the sequence of
steps and complete jobs that he wants performed automatically.
The job-to-job control provides a facility to assist operations per-
sonnel, rather than programmers, making computer systems easier
to operate and therefore more efficient. Facilities have been added
to the programming system packages to allocate computing system
resources for the execution of many different jobs concurrently.
Not only does this include batch processing, but also communi-
cations-oriented operations, such as remote inquiry or interactive
computing.

Thus, as computing systems have become more complex, the
analyst has had to take into consideration many new elements
in evaluating systems. The operating system functions take
computing system time that could otherwise be spent performing

NO. 4 ' 1969 SYSTEM PERFORMANCE EVALUATION

mathematical or data processing work. But the objective of
an operating system is to perform the main jobs more efficiently
and hence more economically. The tradeoff is computing system
capability against manual or semimanual procedures.

In setting the scene for the remaining papers in this issue,
this paper outlines the basic approaches used to judge computer
performance. The application of test results to actual situations
is considered next, followed by a discussion of test data. Finally,
the two basic methods for acquiring the performance data are
considered.

Classes of evaluation
Performance calculations can be placed into either of two primary
classes-availability or work capability. Availability expresses
how much of the time a system (or part of a system) is, or can be,
used for productive purposes. Work capability is an assessment
of a system’s ability and efficiency in performing an intended
function.

Availability may be expressed in absolute terms or as a per-
availability centage. In absolute terms, it is usually called good available

time, which is the total (power-on) time less the maintenance
time. However, in practice, an installation manager would con-
sider many more factors. For example, he would be concerned
with the distribution of total maintenance time into scheduled
and unscheduled maintenance times.

Scheduled maintenance includes: the time to repair units
that were previously determined to require repair but are not
critical to the operation; preventive maintenance on those units
that have a predictable failure rate based on previous history;
and scheduled updating of the system to improve its performance.
This work can reasonably be scheduled ahead of time. Unscheduled
maintenance time, on the other hand, is that time during which
the system must be repaired, because it cannot performits intended
function. There are three approaches to reducing unscheduled
maintenance.

The first approach, building reliability into the various com-
ponents of the system, is totally within the realm of the manu-
facturer. He must not only use highly reliable components, but
also must recognize that some errors may be transient in nature.
This latter factor influences the design of error correction and error
retry schemes in system components.

The second method of reducing unscheduled maintenance,
redundancy of critical units, is within the realm of the user.
(This is analogous to the way in which a manufacturer improves
reliability by using redundancy of circuits in the design of units.)
Although we may think that redundancy is used principally in
real-time systems, it is in fact quite popular with normal business
applications. For example, a t an installation in which a large
number of magnetic tape drives is required a t all times, one or

I

254 DRUMMOND IBM SYST J

more additional units may be installed just to ensure that the
necessary number of units are available when needed. This, of
course, adds to the cost of the system, but may be economically
justifiable in light of the work to be performed.

The third way to achieve higher availability involves both the
manufacturer and the user. While a component necessary for
part of the work is taken out of the system for maintenance, other
work that does not need the unit is performed. In a way, it is
analogous to rescheduling work around a unit that just failed.
The primary difference is that the computer system itself does
the rescheduling, performs the work that can be performed, and,
if part of its capabilities are needed for the repair of the unit that
failed, concurrently provides such service. Various names have
been given to this type of operation, such as fail soft and graceful
degradation. Evaluation of the availability of such systems can
become extremely complex. Simulation techniques are generally
used to predict their availability.

The calculation of work capability can take many forms. The
three most popular measures of work capability are job time,
throughput, and response time. Job time is a calculation of how
long a system takes to perform an application. This criterion is
usually applied to jobs such as sorting, compiling, or file updating.
Throughput, which has a generic meaning that can be applied in
a variety of circumstances, relates in some way to the rate of
doing the total work of the system, rather than any single job.
For example, if card processing rate is the critical parameter,
a system’s throughput may be expressed as a card rate. In a
multiprogramming job shop environment, we are interested in
jobs per day. A few years ago, throughput was used to indicate a
relative performance factor between two systems. Because of the
diversity of use, we present the phrase relative system .throughput,
which is defined later in the paper. Response time is usually
expressed in absolute terms. But again, this is a phrase that re-
quires further definition, depending on the context of the evalu-
ation. In terminal-oriented systems, response time refers to the
amount of time that the computing system takes to react to
various transactions from the terminal. In other real-time systems,
such as process control systems, response time can indicate the
time needed to identify, load, and execute a critical function.
Although no response to the activating source is required, there
could be a requirement to finish some critical processing within
a specified time. Response time calculations must be well defined
within the context of their intended use.

Types of evaluation
The three primary types of evaluation are: classification, com-
parison, and time estimation.

Classification, probably the most popular form of analysis,
is seen in much of the literature on computing systems and is

NO. 4 . 1969 SYSTEM PERFORMANCE EVALUATION

also generally found in publications of companies that provide
consultation on computing. There are many different classification
schemes, ranging from systems based on a single attribute to
complex formulas for determining a figure of merit.

One type of classification is the listing of all products in order
of average (often assumed) purchase or rental price. Another type
of classification is one based on some particular attribute, such
as capacity of main storage, storage cycle time, or add time. In
classifying systems by a single attribute, we quite often find them
grouped in vague terms such as small, intermediate, and large
systems, along with further qualification, such as very large,
small intermediate, etc.

Classification by a single attribute can sometimes provide
misleading information. Consider an intermediate computing
system that has a processor storage cycle time of two microseconds
and a small computing system that has a processor storage cycle
time of 1.5 microseconds. A classification scheme based on storage
cycle time alone would rank the small processor above the inter-
mediate processor.

To overcome such deficiencies, techniques to provide figures
of merit have been derived. For example, the classification can be
based on maximum storage bus rate (MSBR) :

MSBR =
data length

storage cycle time
X degree of interleave

where data length is the total number of bits of information
(including parity and control bits) accessed in one main storage
cycle; storage cycle time is the time needed tJo read out from a
physically identifiable storage unit one data length of information
and to be ready to repeat the operation; and degree of interleave
is a numerical value assigned to the ability of the system t,o have
one or more physical storage units operating concurrently.

If we now reconsider the previous example, tjhe small processor,
which reads out nine bits of information in one storage cycle
without interleaving, has a maximum storage bus rate

MSBR, = - X 1 = 6 megabits per second 9
1.5

and the intermediate processor, which accesses 36 bits in one
cycle, has a

MSBRz = - X 1 = 18 megabits per second 36
2

Using this classification scheme, the intermediate system is
ranked higher than the small system. Simply considering maximum
storage bus rate in a comparative evaluation may be misleading,
since it does not ensure that a system will use data at that rate.
There could be peculiar uses of processor storage that do not allow
the storage unit itself to operate at that rate. In addition, classi-

256 DRUMMOND IBM SYST J

fication based on only a few attributes always involves the risk
of ignoring attributes that significantly affect overall system
performance.

When more than two systems are to be compared, one system
is usually chosen as the base system, against which all others are
evaluated. In producing a simple relative estimate, one makes
the underlying assumption that the answers produced are indica-
tive of relative performance of the systems being compared. In
fact, performance may be influenced by many factors not taken
into account in t,he comparison.

Comparative evaluations like other types often consider only
the CPU and processor storage elements, with all auxiliary opera-
tions omitted. Two interdependent approaches have been devel-
oped: the instruction mix method and the kernel method. The
methods differ more in the interpretation and subsequent use of
the results than in their representation of any calculating or
processing phenomena.

In the mix method, each instruction or related group of in-
structions in the repertoire of a computer is assigned a weighting
factor obtained by analysis or measurement of a program or
programs in execution. Applying the weight to each instruction
provides an average instruction time that can form a basis of
comparison between two or more systems. A major shortcoming
of the mix approach is the use of a single set of weighting factors
to assess the performance of systems with different instruction
sets. In these circumstances, subjective judgment must be applied
when using a mix approach.

The kernel method gets its name from the fact t,hat the central
or essential part of the application under study is examined. The
general technique is to determine the most frequently used
portions of an application and to program these portions in the
various instruction sets of the central processing units being
compared. A mix generally purports to represent a broader range
of use than a kernel, because of the kernel's direct relationship
to a single application, although i t should be pointed out that
some kernels are enormous in size, complexity, and analysis time.
A kernel is structured after the scope of interest is determined.
Usually a complex problem is broken down into a series of simple
kernels for evaluation. After each kernel has been evaluated, they
are recombined according to some weighting function, just as
instruction times are combined in a mix process.

The kernel approach overcomes the deficiency of the mix
approach between systems of different architecture, because the
kernels are programmed or coded in the instruction sets of the
various systems. Furthermore, the kernel retains the sequence
of the instructions used. Although coding efficiency may affect
performance, this approach provides reasonably accurate in-
formation for each kernel. However, it does take quite a bit of
manpower to cover a broad range of applications. An example
of the kernel approach was demonstrated by Hahn and Hankam.'

NO. 4 . 1969 SYSTEM PERFORMANCE EVALUATION

In comparing complete systems rather than merely central
processing units or other individual devices, we use the concept
of job time for the nonteleprocessing-oriented system. Relative
system throughput (RST) is an estimate of performance of a
computing system when measured against some base computing
system. It is defined as the ratio of the time of computation for a
given load on the base system (T ,) divided by the time of com-
putation for the same load on the new svstem (T,) or RST =

For this definition, the base computing system is an opera-
tional entity consisting of the interconnected components and
devices of an electronic computer, a set of support programs
(control program, compilers, etc.), and a set of procedures or
application programs and the data processed by those programs.
The set of procedures and associated data is usually called an
environment. Naturally, the systems to be compared must have
equivalent facilities, and the comparisons are no longer valid for
a different environment.

Notice that the RST definition does not explicitly take into
account two other measures of performance of a computing
system-response time (or turnaround time) and availability.
Relative system throughput is, therefore, an assessment of a
system's job processing capability during the time that the jobs
are under the influence and control of the system and the system
is working.

An absolute evaluation is one that produces time estimates
absolute for the performance of a required function or operation. An

evaluation absolute evaluation can serve either as a necessary step in the
calculation of comparative performance or be the desired end
product in itself. The techniques of obtaining absolute evaluations
can vary depending on the accuracy required for the end use.
A technique known to contain a consistent error, which produces
some bias in the result, may be satisfactory for the intermediat'e
calculations of relative system throughput, because of an assump-
tion that the error will cancel out in the division. Also the data
going into a relative evaluation may not be very accurate. On
the other hand, if a specific job time is to be predicted, the
tolerance for error may be very small. Given the end objective
of the calculation, techniques should be chosen to fit requirements.
An absolute evaluation obtained by simulative techniques was
given by Baldwin, Gibson, and P ~ l a n d . ~

As an example of an absolute evaluation, consider the case of
projecting compile time on a system. We can build up a job time
from a calculation involving amount of CPU time required, amount
of I/O time required, dependencies on data sets, and other relevant
factors. Alternatively, we may take a more simplified approach.
If we consider the act of compiling to be just another application
and the compiler to be a known application program, we can
express a timing formula for this application. Even though there
are a large number of variables in the process of timing a com-

258 DRUMMOND TRM SYST .l

pilation (20 or so), we can calculate job time to satisfactory
accuracy using a three-term equation. Therefore, assume that
the time of each compiling job is expressed by the formula:

T , = K + n X R + p X S

where T , is time of compilation, K is a constant factor in the
, process of compiling, R is the time per source card of input, and

S is the time per additional subprogram after the first. In evalu-
atling the equation, n is the number of source cards in a program,
and p is the number of subprograms after the first.

Therefore, calculating compile time on some new system
would be merely the application of the compile time formula
using coefficients relative to the new system with the data gathered
(n and p for each compilation) from the present system. Summing
all of the job times calculated for the new system, we may calcu-
late the expected total compile time. It should be noted, however,
that the result of the calculation indicates performance on only
the application base of compiling. Furthermore, this simple
equation does not take into account any effects of multipro-
gramming. It does provide a time estimate of a series of individual
compilations.

Application of results
The preceding example would produce a single number as an
expression of a system’s merit. The next question is how can that
result be applied to some other environment. To change an
environmental or application characteristic requires a completely
new calculation. When considering the almost infinite number of
combinations of environmental data, we can foresee a never
ending regimen of calculation. To overcome this problem, many
approaches have been taken. Two approaches, which are more
popular than the others, involve standard environments and
average environments.

In considering the use of these two approaches, we can draw
a parallel with the stock market. The Dow Jones average is a
weighted average of a selected set of stocks. Statistically, this
average is considered to be a reasonable measure of market
activity. On the other hand, the New York Stock Exchange index
actually averages all transactions that took place that day and
is truly an average. We all realize, however, that neither of these
indicators lets us know what happened to any particular portfolio.
Furthermore, because of the difference in approach, it is possible
to have one technique indicating that the market is up and another
indicating that it is down. This does not mean that, one is right
and the other is wrong. It simply means that while there is general \

correlation for the complete market over a period of time, there
are instances where there is divergence of results.

We have the same situation with regard to performance data.
Although we may establish standard environments, i t is always
possible that some average environment produres results that

NO. 4 . 1969 SYSTEM PERFORMANCE EVALUATION 259

is applicable to a particular system configuration in a particular
environment.

In many cases, it may be more desirable to calculate a range
of answers for plotting purposes. If a major attribute of interest
can be isolated, i t can be used as an independent variable for the
projection of system performance. Consider an example in which
a system component (physical device or program) has an influence
on relative system throughput depending on the proportion of
time spent on compilation and linkage editing. The effect can be
plotted as RST versus the ratio of compile and link-edit time to
total process time. Given such a plot, an analyst can then deter-
mine the relative system throughput for any particular environ-
ment. Many times, the shape of the curve itself may be more
important than any particular point. If the region of interest is
in the flat area of the curve, coarse information may be applied.
If the region is in the steep portion of the curve, the probability
of error and resulting deviation of the answer is greater.

I
Choice of data
In structuring an evaluation, we must not only consider the
information gained from the output of the evaluation and the
technique of the evaluation, but also the choice of the data used
in the evaluation. In general, those calculations that are oriented
to the evaluation of a specific application require data that in
some way represent that application. On the other hand, calcu-
lations that are oriented to the "guideline" type of information
ought to cover the extremes of the expected range of interest with
sufficient intermediate points to allow approximation.

Consider the case where the prime coefficients of the applica-
tion of compiling are to be calculated. A way of doing this would
be to put together a set of jobs that spans the extremes of all of
t'he known variables of the solution in such a way as to allow a
regression analysis or some similar technique to be applied. In
this case, a wide range of jobs would be structured.

Since there is a wide span of requirements for the data to be
used in evaluation, the question of the use of actual applications
versus artifirial applications immediately comes to mind. An
actual application is one that is being performed at some installa-
tion as a portion of the productive work of that installation. An
artificial applicatian is one that is structured to give the system
loading effect of some real application, but does not even pretend
to produce the true result of the real application. A word of
caution should be noted. In attempting to obtain an actual
application, we may in fact obtain many artificial attributes.
To obtain an actual application, we must obtain not only the
application program but also the data that goes with it. In some
cases, we must also obtain all other procedures and data that
may be in some stage of concurrent processing with the job under

260 DRUMMOND IBM SYST J

study. To really obtain all of that information, we may in many
cases face the requirement that capturing the data may involve
up to 40 disk packs of information, as well as about 100 reels of
tape, for just one day's observation.

A way of overcoming these data requirements is to use an
application program known as a benchmark. A benchmark is a
particular programmed procedure with some associated data
chosen in such a way as to impart meaning to the originator of
the benchmark. Two classical benchmark problems are matrix
inversion for the scientifically oriented community and payroll
gross-to-net, calculation for the commercially oriented community.
For other applications, benchmark programs may be developed
to provide information of interest to the user.

An alternative to the actual application or benchmark is the
synthetic program. The synthetic program must match in its
principal attributes the attributes of the applications that it is
purporting to either represent or span. Note that the synthetic
program need not necessarily produce the results of a particular
program. Parameters may be varied to allow a study of sensitive
functions. In this way, the results of the evaluation can provide
either tables or graphs that through simple interpolation provide
expected performance for particular applications. An example of
a synthetic. job is provided by Buchholz in this issue.

Finally, there are many predictive tecxhniques that do not
require detailed information on how applications were processed
in the base system. The principal requirement is to know the
identity and incidence of use of the applications.

Data acquisition
Two classes of t)echniques for the acquisition of data for evalua-
tion purposes are currently being used-sofhare measurement
and hardnnrc measurement. Almost, all data may be acquired
using software terhniques. The principal reasons for using hard-
ware tecshniques are case of installation, ease of use, and the
ability to obtaiu data in a way that does not interfere with the
work in process. On the other hand, t'here are many attributes
that are much more easily obt>ained by software techniques, such
as job identification, data set identification, origin of request,s
for facilities, :md other data-dependent inform' J t' 1011.

Most software techniques intercept in some way the normal
flow of progr:Lmmed procedures to obtain the required informa-
t>ion. The extent to which this intercept technique is used depends
heavily 011 the type of infornmtion required. If, for example, we
merely wish to determine the type of jobs being processed by the
system, :L relatively simple interception of the job scheduler is all
that is required. On the other hand, if we wish t,o have a distribu-
tion of each exerut,ion of all t'ypes of instrurtions in some particular
program, the measurement technique takes the form of the
interpretivc trace program, with the consequent degradation of

NO. 4 . 1969 SYSTEM PERFORMANCE EVALUATION 261

Although the original application or procedure performed on
the system may remain basically the same, the system does not.
Continual evaluation is required to track the system’s perform-
ance during its installed life.

CITED REFERENCES
1. W. Buchholz, “A selected bibliography on computer system performance

evaluation,” Computer Group News 2, No. 8 (March 1969).
2. S. G. Hahn and E. V. Hankam, “Kernel analysis of elliptic partial dif-

ferential equations,” I B M System Journal 5 , No. 4, 248-270 (1966).
3. F. R. Baldwin, W. B. Gibson, and C. B. Poland, “Amultiprocessing approach

to a large computer system,” IBM Systems Journal 1, No. 1, 64-76 (Sep-
tember 1962).

4. W. I. Stanley and H. F. Hertel, “Statistics gathering and simulation for
the Apollo real-time operating system,” IBM Systems Journal 7, No. 2,

5 . Throughput Evaluation . ‘ . ZBM 7090/7094 Data Processing Systems, @
1963 by International Business Machines Corporation.

6. F. D. Schulman, “Hardware measurement device for IBM SYSTEM/360
time sharing evaluation,” Proceedings of the 12nd National Conference of
the Association for Computing Machinery P-67, 103-109 (August 1967).

85-102 (1968).

SYSTEM PERFORMANCE EVALUATION 263

