Much of the arbitrariness of conventional program solutions to
large-scale scientific problems can be removed by the approach pre-
sented in this paper. The logical formulation of such problems can
be wmproved by using the programming language APL, which s
mathematically compact and explicit. The language also allows the
system much freedom in producing compuled results.

A meteorological problem is discussed as an illustration of APL-
augmented programming. Two approaches to programming the
solution are compared.

Problem formulation using APL
by H. G. Kolsky

The analysis of computer applications and the programming of
unbuilt computers for such applications are elements of an
uncertain art. A given application problem may be formulated
in many different ways; there may be differing opinions even
among experts in the same field, also, two different application
programmers may cast the same numerical model in different

ways on a new machine.

This paper proposes the use of a mathematical programming
language, such as APL, for removing some of the arbitrariness from
the problem-formulation stage.! The purpose of the proposed ap-
proach is to eliminate errors in the logical formulation early in the
design of a large scientific program. Using a mathematical pro-
gramming language for expressing the overall program logic in
an unambiguous, compact way prevents many of the logical errors
that can creep into a program because of its sheer size. As an
illustration of this approach to program design, the analysis of a
numerical meteorological model is discussed. In our discussion,
we compare a general approach using FORTRAN alone during
problem formulation with an approach in which APL augments
FORTRAN in the problem formulation stage. Although a knowl-
edge of APL is not required for an understanding of this paper,
an interest in programming large mathematical problems is
assumed.

The APL language is used here because it is a powerful and
concise way of representing complex relationships and because it
exists in the form of a time-sharing terminal language’ that en-
ables the testing of parts of the program as they are written.

KOLSKY IBM SYST J

The main theme of this paper is to illustrate the power and utility
of such a language as a mode of mathematical notation and
expression for programming purposes.

Although the APL language may seem alien and difficult to
read at first, the power of the notation is derived from such con-
ventions and definitions as the right-to-left execution convention.
Variables in APL equations need not be scalar quantities, but
may also be vectors, matrices, and arrays of higher dimensions.
The notation is highly consistent internally, whereas standard
mathematical notation is a conglomerate of conventions that
have developed over many years from many different sources.
The structure of the monadic and dyadic functions (shown in
the Appendix) is very general and applies to data arrays of many
ranks and mixed types. (A monadic function is one that takes a
single argument, and a dyadic function takes two arguments.)
In APL one writes | A for the absolute value of A. The vertical
bar is a monadic operator, whereas the bar in B | A means the
residue of A modulo B. The standard mathematical notations are
|A| and A mod B. In FORTRAN, on the other hand, one writes
ABS(A) and MOD1 (B, A).

From a machine architecture point of view, the most import-
ant aspect of APL is the large amount of freedom in the order of
execution of the individual arithmetic steps. This can be very
important in the allocation of resources of a multiprocessor or a
vector processor. For example, when one writes A = B + C in
APL, where A, B, and C are three-dimensional matrices, this
implies that a large number of additions of components of B and
C yield the corresponding components of A. However, nothing
is said concerning the order in which these additions take place

or concerning the number that can take place simultaneously.
A suitable compiler could use this freedom to avoid storage or
other resource allocation conflicts when necessary. Thus, the APL
formulation is very concise concerning the final results desired,
but allows considerable intermediate freedom whereby the system
achieves these results.

Large-problem formulation

Since the meteorological application discussed in this paper ex-
emplifies partial differential equations, some of the gencral con-
siderations involved in their formulation for numerical solution
are now presented. The first step is to understand the physical
phenomena and the applicable fundamental physical laws.

From this understanding of the physical problem, a mathe-
matical model is prepared, usually in the form of partial differ-
ential equations with approximations for subscale and superscale
phenomena. These phenomena are physical effects that are either
much smaller or much larger than those being studied. The differ-
ential equation model is then transformed into a difference equa-
tion form for computational purposcs. The numerical meteoro-

No. 3 - 1969 PROBLEM FORMULATION

general
computational
procedures

APL procedure

206

logical simulation equations discussed later are concerned with
numerically tracing the time development of large-scale cyclonic
motions in the atmosphere. Small-scale atmospheric motions,
such as storm fronts and local thunderstorms, are considered
subscale. Long-term phenomena, such as glacial formation during
ice ages, are considered superscale in time for the model. However,
some subscale motions in the meteorological model are of sufficient
importance to be included in approximations that take into
account average effects of turbulent and convective motions
smaller than the grid size in the difference equations. This is done
by including diffusion terms in the model.

Difference equations are conventionally formulated using a
notation involving the components of the variables. This for-
mulation usually involves the use of subscripts to index spatial
locations and superscripts for the time steps of a given variable.
TFor example, T} , , implies the temperature at time step n at
point indexed location &, {, and m. When the differentials in the
partial differential equations are replaced by finite differences,
the subsecripts and superseripts in some of these equations can
become quite involved.

The next step in the general procedure is to lay out storage
and data flow for the model. It is here that the machine depen-
dence of the calculation is strongest. Often, the number of
points or the horizontal spacing in a meteorological model are
determined largely on the basis of the storage size. A FORTRAN
or PL/T program is prepared using the difference equations, stor-
age layout, and data flow. Frequently, the difference cquations
and storage layout are modified during the writing of such a
program, and the original mathematical model may be modified
in this process. Finally, before making test experiments with the
complete program, there is a debugging and checkout of the pro-
gram parts,

The APL procedure starts with the same physical phenomena
and mathematical model, but makes the transition to difference
cquations by using a “‘compact’”’ notation. This notation is an
extension of that which has been used by Shuman, Smagorinsky,
and others in the field.>'* The aim of the procedure discussed
here is toward an APL formulation in which the data arrays are
considered as a whole and not as isolated components. After
setting up the difference equations in compact notation, a layout
and data flow analysis of the problem is made using the APL
notation. The next step is to program the problem in APL and
to check the logic of individual pieces using dummy data. The
APL formulation is then transcribed into a higher-level language,
such as FORTRAN or PL/1, for execution. Even though additional
errors may creep into the problem during the program transcrip-
tion, such errors should be more ‘‘localized” and easily caught in
checking out the FORTRAN program. Transcription is necessary
because the current APL system cannot handle data arrays of
the size required in the meteorological model and is presently

KOLSKY IBM 8YST J

available only as an interpretive time-shared system. Although
program debugging, checkout, and the test experiments are con-
ventionally performed, most of the logic and data flow of the
program have been previously checked by using the APL procedure.

Of course, there is a class of errors for which segmentary
debugging of the logic is not sufficient. Parts may work correctly,
but the problem as a whole may be unstable. However, these
errors really represent incorrect numerical modeling, not flaws in
the logic or data flow. Research weather calculations have pro-
duced marked examples of such instability. Smagorinsky* found
that certain types of neutral instabilities can require in the arder
of hundreds of time-steps to reveal themselves. This corresponds
to advancing the weather model by as much as thirty days to
verify the stability of the numerical method.

There are many ways in which finite differences may be written,
all of which reduce to the same differential operator in the limit,
when the spacing goes to zero. An example of a nonlinear partial
differential equation is as follows:

Gu _ g o (1

at ~ Yox

A possible difference-equation representation of Kquation 1 is:

Au Ay @

at YAz

A difference star for one point in a graphic representation for
Equation 2 is shown in Figure 1. One particular scheme for
solving Equation 2 is referred to as the leapfrog explicit difference
method. This method is defined by Equation 3.

e Y (A u?_1>

240 “(9Ax ®)
“Ixplicit” implies that the value of the quantity at the next
time step, n + 1, appears explicitly in the equation. “Leapfrog”
means that the derivatives arc centered differences taken strad-
dling the point x; at time n. This finite-difference formulation
may be written in compact notation as shown in Equation 4.

Ul = UU: ()

where

t+1/2 t—1/2
LA —f2—u — o that

1
W —

2A¢

-1

In this notation, the subscripts represent differences and the
bars represent averages in the variable specified.

NO. 3 - 1969 PROBLEM FORMULATION

averaging and
differencing
operators

Figure 1

Star representation of
a difference-equation

207

An important property of the averaging and differencing
operators is that they change the centering of the points from
integer to half-integer values. If a variable is defined at half-
integer values, such as x,,, then applying either the differencing
or the averaging operator results in a quantity that is centered
at integer values x;. If a series of operators is applied sequentially
to a variable, then the results alternate between integer and
half-integer values. An even number of operators causes the
result to be centered at the original point. A possible by-produect
of this method is a saving in computation time. In performing
either a differencing or an averaging operation, the resultant
values have one fewer meaningful element than the original
values. That is, if one averages the elements of a vector g, the
first with the second, the second with the third, ete., the last
element has no subsequent element with which to be averaged.

In addition to the averaging and differencing operators pre-
viously mentioned, it is useful to generalize the averaging operator
to include a weighted averaging opcrator. This is necessary to
describe eases where the dimension in which the differencing per-
formed is not equally divided, and where the function being
averaged is centered at the same points at which Az is centered.
The weighted averaging operator is

w

(F), = Afiie + B fioisa

i

where

AT 45 + AZiiy/e

This operator is used particularly in the vertical dimension of the
weather model because the vertical dimension is not differenced
equally.

Numerical meteorological modeling

We now consider some of the overall computational aspects of
a large-scale problem aimed toward its later description in the
APL language. Chosen as an illustrative model is a numerical
meteorological research calculation originally written by C. E.
Leith® at the University of California, Lawrence Radiation
Laboratory, Berkeley, California. At the time it was written,
this model (Iinal Large Atmospheric Model—FLAM) was an
advanced research model for the numerical simulation of the
carth’s atmosphere. FLAM was written independently of the U. S.
Weather Bureau. Since the mid-1950's, Weather Bureau models
have used a plain rectangular or octagonal grid of the northern

KOLSKY IBM SYST J

hemisphere only, whereas Leith's model uses a latitude and longi-
tude mapping scheme for the whole globe. His model also involves
the solution of the primitive equations of atmospheric motion
and energy transfer in place of empirical relationships that char-
acterize some production-oriented models.

Leith’s meteorological model resembles other large fluid dy-
namic problems in that it can require a much larger storage for
the primary variables than is usually available in existing com-
puters. The FLAM model, originally written in FORTRAN, uses
magnetic tape units as external storage. Much of the FLAM pro-
gram is associated with the blocking and packing of data to and
from the tapes. The preparation of output tapes for printing is
another sizeable part. The main logic of the outer loops of the
program is concerned with the manipulation of these storage
blocks.

The size of a weather problem can be estimated by the number
of mesh points used in the difference equations for the model.
The length of a time step is determined by stability requirements.
In the case of FLAM, the horizontal spacing of the mesh is five
degrees on a side at the equator with varying angular spacing in
the east-west direction when approaching the poles. A number
of physical quantities are stored for each atmospheric mesh point,
and several special quantities are stored for each surface mesh
point. In addition, several quantities that vary only with longi-
tude or only with latitude are stored as one-dimensional vectors.
A given physical parameter of the atmosphere is thus represented
in the numerical model as a three-dimensional array of numbers
(or, more precisely, as two three-dimensional arrays of numbers,
one for each hemisphere).

Often in the logic of a problem, similar calculations could be
done on a particular physical parameter for all mesh points of
the array. The nature of FORTRAN, however, is such that com-
putations are done on one number at a time, that is, one scalar
member of the multidimensional array at a time. Therefore, a
three-dimensional array computation requires at least a triple
DO-loop or equivalent to perform the computation. An advantage
of the APL formulation, in which the equations contain multi-
dimensional arrays as their basic elements, is that many DO-
loops are eliminated, thereby improving program logic. The
remaining loops are those having to do with the actual program
flow.

It should not be assumed that an APL formulation is struc-
turally machine-independent. As is true in other large computer
programs, there is always a trade-off between generality and
specialization and between storage capacity and speed. In prin-
ciple, one could write APL equations so that an entire matrix
of 500,000 words in a meteorological problem is referenced in
one statement. This extreme example might result in a simpler
formulation, but it certainly is not a practical formulation of the
problem. It is better to reference individual parts of data arrays

NO. 3 - 1969 PROBLEM FORMULATION

storage

input/output

fluid dynamics
problems

in groups of possibly 10,000 words, since such groups are more
likely to be containable within the high-speed storage.

In the formulation presented here, Leith’s methods are used
to conserve storage by processing submatrices of data for one
latitude line at a time. Storage is so organized that data normally
located in adjacent storage locations are transferred as a block.
Thus, block transfer of data from cxternal storage to the high-
speed storage is simulated.

Teith’s model is similar to other numerical meteorological
problems in that the amount of computation that must be done
per data block read in or read out is large enough that the total
program need not be I/0-limited, provided that input/output
can be scheduled to be simultaneous with the computation. In
other words, total computation time is large enough that the
input/output time does not cause a fundamental inefficiency.
The requirement for simultancous input/output and computation
does mean that data blocks must be handled properly to avoid
attempting to use data that is not yet available or destroying
data that is not yet read out. The APL formulation of the FLAM
program to be deseribed breaks each time-step into two data
cycles. This is done mainly to keep the high-speed storage re-
quirement as small as possible.

Two difficulties of large fluid dynamics problems are those of
handling special and boundary cases. In APL, these cases can be
represented by the sides and edges of three-dimensional data
arrays. The APL statement of a problem can thus take the form of
a general expression for the array as a whole, plus special state-
ments for certain of the sides of edges of the array. The properties
of APL have two significant effects. One is that the total length of a
program written in APL is much shorter than that of FORTRAN.
(Ratios of five or ten to one are not uncommon.) Also, special
cases are stated explicitly and not obscured in the programming.

Concerning special boundary conditions in Leith’s model,
quantities are continuous around the earth at a given latitude.
That is, if the problem computation is indexing eastward from
the Greenwich meridian at a given latitude, when returning to
the starting point, quantities just to the west of Greenwich are
adjacent to those at Greenwich. Such a circular boundary condi-
tion is handled naturally and automatically in APL by the Rotate
function.

Primitive equation models in numerical meteorological re-
search differ considerably in the way in which they handle physical
effects such as wind friction at the earth’s surface, and the treat-
ment of mountains and snow cover. Finite difference approxima-
tion methods typically use an Eulerian spatial mesh that is fixed
in time and through which the fluid flows. A mesh that follows
the fluid is called a Lagrangian mesh. One of the main difficulties
in using the Eulerian mesh is correctly computing the advection
of physical quantities of the fluid flow. (Advection, as used here,
implies the three-dimensional motion of an air mass.) We now

KOLSKY IBM SYST J

discuss Leith's treatment of stable advection calculations and
methods that yield good approximations for uniform fluid flow.

APL formulation of the meteorological problem

The problem of advection in one spatial dimension x is character-
ized by a fixed fluid velocity u. If Y is the value of a dependent
variable, that is, a quantity imbedded in and unchanged at a
material point during the flow, we have the cquation

o L,

Instead of directly setting up finite-difference approximations of
the partial derivatives 3/0t and 9/dx, it is helpful to consider
again the Lagrangian point of view. The heavy arrow in Figure 2
shows the characteristic space-time path of the material point,
which is at a position z; at time £"*'. At time ¢", this point was at
position x, = wAfl. If we know the value of ¥ = Y at time (",
we can set

+1 n
AR)

At time ", however, we only know values of ¥ at mesh points
Tio1, Ti, Tiiy, ete., and we have to use an interpolation procedure
to determine Y. The three values Y;_,, V7, Y7,, determine a
quadratic dependence of Y on x, which is evaluated at x, to give
Y. Assuming a uniformly spaced mesh of interval Az, the result-
ing expression used by Leith is

o v = vi- o, - v

*

2
+ 5 (Vi = 2Y0 4 Y1)

where

=TT % uAl

Az Az
is a dimensionless interpolation parameter. This expression may
be written for nonuniform spacing, as shown in Equation 7,
using the averaging and differencing operators discussed earlier
in this paper.

_ Yi —_ Y¢_1 b Yi+1 - Yi a
Y*‘Y”L“K p)(a+b>+< b ><a+b)]

(Y,i.(_l - Y¢> _ (Yl - Yi—l)
2 b a

a+b

+a)

NO. 3 - 1969 PROBLEM FORMULATION

Figure 2 Space-time path for
the advection problem

where

o = ¥ — x, = uAt

4 =T — Ting

b=z —

yitt =Y

Using the compact notation previously discussed, Equation 7
may be written in the simpler form of Equation 8.

Vi = ¥, + ol + LTI ®)
Equation 8 is equivalent to the advection formula given in Equa-
tion 6, but it is more general because it also applies to nonuniformly
spaced meshes. Equation 8 can be written in terms of APL opera-
tors for weighted averages and differences as shown in Equation 9.

YW«YI+(AL1xDXAWX YI)+AL2xDXDX YI 9)

In APL formulations of problems such as those represented by
Equation 9, it is convenient to define combination operators,
such as difference then weighted average (DXAWX), double average
(AXAY), and double difference (DXDX). Also, in the case of our
meteorological application, AY is constant throughout the prob-
lem, and AX is constant at a given latitude. Thus, weighted

Table 1 Combination and integration operators for the meteorological problem

A«AXAYAWP B 9 A<DPAWP B

TE«BLIV; 3 1+BLIP;; 1+416011(BIIP;;1+BIIV;5]) (1) TE<((1¢B)-B)+DPEL

A«0,25x((DPLx " 10TE)+TEx " 16DPL)+ (DPL+ 14DPL) 21 A+((TEx 10DPEL)+DPELx"1¢TE)+(DPEL+ 1$DPRL)
AL 31]+0,25xTE[;1] 3] AL:11+7E[;1)

A+«DYAY F
A+(BLIP;;]-B0IQ;31)sDYx2 A+DPDP B
TR«(B-"1¢B)+DPL

A«<((14TE)-TE)+ (DPL+1¢DPL
A~D¥DY B «((1¢ Y+ (DPL+1¢DPL)

A«(BLIP;;)+B[IQ;;1-2xBlIV;;]1)+DY*2
A<INTPH B
A<DYAY1L B 0
A«(BLIP;1-BLIQ;1):DYx2 AL 31« (B s M=11xHALL ;43)+BC s MIxHBLL ;M)
>{1=MeM-1)/7
AU MI<AT 3 M43+ (B M- IxHALT s M)+ (BUsMIxHBLL s #1)

A<DYDY1 B +(BI M+)xHCLI3MY)

A«(BEIP;)+BIIQ;]1-2%BlIV;1)+DY*2

>l
AL MI«AT 344134 (BL s MIXHBLT M))+ (BL s M+1 IxHCLT 3 H])

A«DXAX B
A«({716013 B)-14[1] B):DXx2

A+AXAYAP B
A«DXDX B TE+BLIV;;J+BLT10;531+1001)(BIIV;;1+BLIQ;5:5 1)

Z - 2 A+0,125x(TE+~1¢[2] TE)
A«C(T16T1T B)+(1601) B)-2xB) tDX+2 AT:1740.128xTEL51]

A<AYDX B
A« (10011(BLIV: 3 1+BOIP;31)-(BLIV;; 1+BIP; ;1))eDXx2
A+DPAP B
TR«{(198)+B)+DPL
A+AXDY B d A«0,5x(FE+ 14TE)
A+(((16L1) BOIP;;1)+BIIP;;1)xCOSLIIPI-((14011 B[TV;:])
+BLIV331)xCOSLITVY)

A+DXAY B
AvIvTP B A+(190L1(BIIV;; 1+BITQ;31)- (BLIV;31+BLT0331))DXx2
A«(pB)p0
AL 3M1«=-BU ;MIxDPLT 3 M]
>(MM<MeM+1) /0
ALsM)«AL 3 M-1]-BL; MIxDPL i M] A+DYAX B
s A<(B[IV3;3-BUIO;;1+10011(BLIV;31-BLIG;:3)))+DYx2

212 KOLSKY IBM SYST J

Figure 3 Storage and data flow

MAIN STORAGE HIGH-SPEED STORAGE

BUFFERS WORKING STORAGE
IBL

P

|-

averages may be replaced by ordinary averages except in the
vertical dimension. Combination operators become simpler in
such special cases, as well as faster to execute on the computer
because certain generalized tests are not required. APL statements
for such combination operators, as used in the meteorological
problems, are given in Table 1.

An idealized storage and data-flow schematic for the APL
formulation of Equation 9 is shown in Iigure 3. The computer
is assumed to have a large main storage and a smaller high-speed
storage. Data are read from the main storage, one latitude line
at a time into buffer IBL. These data, called a block, consist of
all variables in main storage that have the same dimensions; that
is, IBL contains all variables having m-by-k components. A sepa-
rate block (IBL1) is used for data having only £ components, such
as surface values. These blocked values are then assumed to be
placed in working storage of one k-by-m table for each variable.

To allow for finite differencing, data for three latitudes are
required to be in high-speed storage at the same time. Latitude
data are labeled by indices 1P, 1V, and 1Q in Figure 3. In order to
avoid unnecessary moving of data within high-speed storage,
the indices 1P, 1V, and IQ are rotated after each use rather than
the data. Computed values are placed in high-speed storage area
W, from where they are read out into buffers labeled OBL and
OBL1. Contents of these output buffers are then transferred to
main storage. Relationships of integer and half-integer values at
latitudes (L's) to buffers (k’s) and working storage (IP, IV and,
IQ) are shown in Figure 4.

In practice, the unpacking and packing operations, indicated
in Figure 3, are unnecessary when going from IBL to IP in high-
speed storage, Variables in IBL are already properly separated.
However, by writing the storage in this way, the following
operations are carried out concurrently:

}IV
ARITHMETIC
} UNIT

e Data is transferred from main storage to IBL.
* Data in IP, 1V, and IQ are being used to compute W.
¢ Computed data are read from OBL to the main storage.

Thus, the model assumes simultaneous input/output and compute.

No. 3 - 1969 PROBLEM FORMULATION

data flow

Figure 4

Integer, half-integer,
and storage
relationships

APL
advection
formuila

Table 2 APL storage-handling
and control program

CONTROL

v_SEQ1

[1]1 ILOAD

[2] ~+(LM<L+L+1)/8

[3) IQ«1+43|IV«1+3|IP+«1+43|IP
(4] LOADS

{51 cycot

(6] STORES

(71 =2

(81 POLE1

[9]1 IroAD

(10] »(LM<L«L+1)/16

(111 7Q«143{TV«1+3[IP«143|IP
{12] LOADS

f13] cyYcr2

[14] STORES

[151 +10

[16] POLE?2

INITIALIZATION

v ILOAD
L+1
IBL+SM{ ;L33
IBL1«SM1[;L3 1
IQ«1+IVe1+IP«1
TOIP;;1«T(IV;;3«IBLT1;35]
WTLIP;; J+WTLIV;;1«IBLI2;3]
ULIP;31+ULIV;;3)<«IBLI3:5]
VIIP;;)«VIIV;;3«IBLl4;; 1
PS[IP;1«PS{IV;1«IBL101;]
Le1+L

INPUT

V_LOADS
IBL+SM[;L;;]
IBL1«SM1[;L]
P(IP;31«IBL{1:;1]
WTL[IP;;]«IBLI2;3;]
ULIP;;]«IBLI3;5]
VLIP;;1«IBLCu;;]
PS[IP;1«IBL1[1;1

QUTPUT

Y _STORES
OBL[1;;1«WT{IV;;]
OBL{2;3«WTWIIV;;]
OBL[3;;)«WULIV;;])
OBL{Y4;; 1«WVIIV;;]
OBLA(1;1«PSWIIV;]
SMU;L-2;;1+0BL
SM1[;L-2;1«0BL1

The APL time-sharing system, as it is currently implemented,
cannot execute programs of this magnitude. A production mete-
orological problem requires data blocks from hundreds of thou-
sands to millions of words. Although the time-sharing APL system
cannot handle such blocks, it is possible to check out parts of the
program and the logic of data manipulation for small data sam-
ples. The illustrations in this paper have been done in this mode.

The FLAM program (Final Large Atmospheric Model) uses
the fractional time-step technique in which each time step is
divided into three parts: north-south advection, which is done
first; east-west, second; vertical motion, third. An example of
the general advection equations in one dimension is given in
APL as follows:

AL1<DLTxAXAYAWP V (10)
AL2<(AL1%2)Y+D1xDLT (a
TW<T[IV;; 1+(AL1xDYAY T)+AL2xDYDY T (12)

The coeflicient of the AL1 term in Equation 10 uses the triple
averaging operator AXAYAWP. This is required because the
velocity V is centered at half-spaces in all three dimensions,
whereas the temperature is located on the even points (black dots
in Figure 4). Temperature is the quantity being advected.

The sccond step in the gencral advection formula (Equation
11) consists of adding two terms, i.e., the square of the first
term plus a diffusion term. (Physical diffusion is characterized
by a different fundamental equation than fluid flow.) Without
going through the derivation, the D1 X DLT term in Equation
11 is equivalent to solving a separate diffusion equation, since
the coefficient of that term is the same as the second difference in
the YV direction.

The third step, indicated by Equation 12 of the general ad-
vection formula, uses the DYAY and DYDY operators. This is
a cage in which the weighted average can be replaced by an or-
dinary average.

The main APL program for the advection problem is shown
in Table 2. The control program (SEQ1) calls the other programs.
Referring to I'igure 3 and Table 2, the first program called (ILOAD)
performs the load operation, in which the first two blocks for
1V and IQ are read into working storage before computations
begin. This input is a three-dimensional array selected from a
four-dimensional array in main storage. (The fourth dimension
indicates the names of variables.) An initialization step (i.e.,
IQ in ILOAD) sets the three indices. Statements in ILOAD labeled
with semicolons, but without indices, indicate that the entire
dimension is used. Referring again to the control program (SEQ1),
the second step tests whether the last latitude line has been
reached. If so, the program branches to the step labeled POLEL,
which performs special computations for the north or south pole

KOLSKY IBM SYSTJ

Table 3 First main advection/diffusion program in SEQ1

cYCL1
NORTH+SOUTH ADVECTION AND DIFFJSTON
AL1«DLTXAXAYANP V

AL2«(AL1%2)+D1xDLT

TW+TLIV;; 1+(ALAXDYAY T)+AL2xDYDY T
WTHeWT{IV; ;14 (ALIXDYAY HT)Y+AL2xDYDY WT
PSH+PS[IV;1+(AL1L ;MM-1)xDYAY1 PS)+AL2[;MM-11xDYDY1 PS
AL1«DLTxVIIV;;]

AL2«(AL1%2)+D2xDLT

UW+ULIV;; 14 (AL1xDYAY U)+AL2XxDYDY U
VWeVLIV;;1+(AL1xDYAY V)+AL2xDYDY V

EAST+WEST ADVECTION AND DIFFUSION

AL1«DLTXAXAYAWP U

AL2+(AL1%2)+D3xDLT

TU«TW+ (AL1XDXAX TH)+AL2xDXDX TVW

WTH«WTW+ (ALLxDXAX WTW)+AL2xDXDX WTW

PSH+PSI/+(AL1C ;MM-11xDXAX PSWY+AL2[;MM-1)xDXDX PSYW
AL1+DLT*UN

AL2+(AL1%2)+DUxDLT

W<+ (ALIXDXAX UW)+AL2xDXDX UW

VW+VW+ (ALAXDXAX VIIY+AL2xDXDX VW

Second main advection/diffusion program in SEQ1

cYCL2
VERTICAL ADVECTION AND DIFFUSION

DIV«(AYDX U)Y+AXDY V

OMW+INTP DIV

AL1+DLTxOMW

AL2+AL1%2

TH+PLIV;; IxRML

TW«TCIV; 3]+ ((ALLIXDPAWP TH)+AL2xDPDP TH)%RML
WTW«WPLIV;; 1+ (AL1xDPAWP WT(IV;3))+AL2xDPDP WTLIV;:]
PSW+«PS[IV;+DLTx(OMWT ; MMI+DIVI ;MM1x (PRESIMMI-PS[IV3]))
HBL(;MM-11<HBIMM~114(PS(IV;1-PRESTMM-1])xGCNT

PHCIV;; 1«INTPH(TNx(1+D5xHTH))

OMLIVy; J«OMy

AL1<AXAYAP OM

AL2«AL1+%2

TE«ULIV;;]

WXS+TE+(ALAXxDPAYP TE)+(AL2xDPDP TE)+{(DPAP TE)xDINxDLT+DPL)+DXAY PH
TE«V[IV;;]

WK6+TE+(AL1xDPAWP TE)+((DPAP TE)xDIHxDLTsDPL)+DYAX PH
WK1+ (2xCORLLIY+CENCLIxULIV; ;]

WHE2+1+HK1%2

U« (WKS+HK1xWK6)t HK2

VW« (WK6-HKAxWKS) s VK2

(not discussed in this paper). The third line in the control pro-
gram rotates the indices IP, IV, and 1Q, as previously mentioned.
Then the standard load program (line 4) reads the input block
from main storage and relabels it in terms of the data for IP.

The first main program called by SEQ1 is (CYCL1), shown in
Table 3. This program performs the north-south and the east-
west advection and diffusion calculation. After finishing this
calculation, the control program calls the STORES program, which
reads the newly computed quantities into the output block and
puts it in main storage. This is repeated until the whole hemisphere
is calculated. The second cycle through the hemisphere begins
with the calling of the second ILOAD in the control program, and
logic similar to the first cycle is performed. The second main
program of $1KQ2 is CYCL2 shown in Table 4. This program calcu-
lates vertical advection for all physical quantities. Most of the
physical complications occur in the vertical dimension. When the
entire hemisphere is finished, POLE2 in the control program does
the completion of the north-south pole computations. The program

No. 3 - 1969 PROBLEM FORMULATION

then repeats SEQ1 for the southern hemisphere before advancing
to the next time cvele. (This is an outer control loop not indicated
here.)

Regarding the function of CYCL1 (Table 3), the program is
mainly a reapplication of the general advection formula (Equa-
tions 10, 11, and 12) for each of the related variables in the two
directions, north-south and east-west. Most of the differencing in
Equations 10, 11, and 12 in CYCL1 arises from the use of sub-
routines such as DYAY, DXAX, as shown in Table 1. The equa-
tions being solved stand out clearly instead of being obscured in
a variety of subscripts and DO-loops, as can be the case in the
conventional approach. The APL program for CYCLI requires one
half of a typewritten page, as shown in Table 3, whereas the
FORTRAN program requires many pages, including references to
several subroutines. The exact ratio, however, is not as important
as the fact that the APL listing is much more easily understood
than the FORTRAN listing.

The function of the CYCIL2 program, shown in Table 4, is
complicated by the fact that atmospheric functions vary more
rapidly vertically than they do horizontally. The model assumes
that the atmosphere is always in hydrostatic equilibrium, which
means that the pressure at a given point is determined by the
weight per unit area of the air above that point. A differential
expression of this assumption is the hydrostatic relation dp =
—gpdz, giving the increment in pressure dp in terms of an in-
crement in height dz for given density p. Here ¢ is the (assumed
constant) acceleration of gravity that transforms the mass ele-
ment pdz into the weight element gpdz.

In the hydrostatic assumption, the influence of the vertical
acceleration on the pressure is neglected. That is, vertical ac-
celeration (averaged over a grid area) is small compared with g.
For horizontal scales of motion, large compared to the thickness
of the atmosphere, this assumption is thought to be valid. The
hydrostatic assumption permits the replacement of vertical dis-
placement z by pressure p as an independent variable. The use
of pressure as a vertical coordinate is in keeping with current
practice of reducing the number of observations in which the
validity of the hydrostatic assumption is assumed. The substi-
tution of pressure for vertical displacement provides a simpler
upper boundary to the atmosphere and serves as a mass or weight
coordinate. However, the lower boundary becomes free and, thus,
more complicated.

There must also be a replacement of p by z as the dependent
variable, which yields the geopotential (& = gz) i.e., the potential
energy per unit mass that serves as a measure of the height of a
given pressure surface. In the topography of pressure surfaces,
a region that is higher (in the z-coordinate system) corresponds to
a region of higher pressure.

Because of the action of gravity, the important vertical quan-
tity is not the absolute temperature but a quantity known as

KOLSKY IBM SYST J

the “potential temperature.” A given parcel of air cools adi-
abatically when raised to a higher altitude, and potential tem-
perature is a measure of the decrease in absolute temperature
with altitude with no net energy change. CYCL2 uses a dif-
ferent mathematical formulation for this than is used by Leith.
The present formulation is physically equivalent, but more natural
for an APL formulation. In FLAM the potential temperature is
computed relative to each individual pressure level. In the
present formulation, potential temperatures are all referred to
the pressure of one atmosphere, thereby eliminating the need to
be computed sequentially.

The last program, which is not included in the main program
but which must be present in a working model, can be called
ANALYSIS. In practice, analysis programs are usually relatively
short in running time. Averages over various physical observables
are computed. Correlations between quantities at different points
are calculated. Contour maps, such as surface pressure, precipi-
tation, and geopotential are prepared for display. Often, analysis
is most valuable when comparing the averages of two separate
calculations having slightly different input parameters. In this
case, one must assume the storage of selected results of previous
problems in an archival storage, which can be accessed during
the analysis phase.

Concluding remarks

The APL formulation of a large-scale scientific problem can
specify the solution precisely, while allowing the system much
freedom in producing computed results. The testing and de-

bugging stages of such application programming can be carried
out at a terminal. The simplicity of APL helps the programmer see
the main design of the problem by reducing the program size. In
the problem-formulation phase, the APL programmer is aided by
the mathematical consistency of the language and by the inherent
explicitness of APL program statements from a mathematical point
of view.

CITED REFERENCES AND FOOTNOTE

1. K. E. Iverson, “Programming notation in system design,” IBM Systems
Journal 2, 117-128 (June 1963).

2. The APL\360 program, 360D-03.3.007, which is not formally supported
by IBM, and the APL\360 User's Manual by A. D. Falkoff and K. E.
Iverson may be obtained through any IBM branch office.

. F. G. Shuman and J. B. Hovermale, ‘“An operational six-layer primitive
equation model,” Journal of Applied Meteorology 7, No. 4, 525-547 (August
1968).

. J. Bmagorinsky, S. Manabe, and J. L. Holloway, ‘“Numerical results from
a nine-leve] general circulation model of the atmosphere,” Monthly Weather
Review 93, No. 12, 727-768 (December 1965).

. C. E. Leith, Numerical Simulaiion of the Earth’s Atmosphere, University of
California (Berkeley), Lawrence Radiation Laboratory Report, UCRL-
7986-T (1964).

NO. 3 - 1969 PROBLEM FORMULATION

analysis

Appendix

APL primitive mixed functions

Name Sign' | Definition or example?

Size pP «> 4 oE «+ 3 4 p5 ++ 10

Reshape Reshape 4 to dimension V 3 4p1l12 «» F
12pE +> 112 0pE +> 10
Ravel LA > (x/pA)pA LJE «>112 0,5 «+ 1

Catenate P12 <> 2 35 7 12 'TLUHISY > 'THIS!
P{2] «»3 P[4 3 2 1] +»7 5 3 2

Index34 E[1 3;3 2 11 «» 3 2 1
11 10 9
3 4 ABCD
9 "ABCDEFGHIJKL'LE] <~ EFGH
IJKL

B[1;] «» 1 2
E[;1] «» 1 5

Index First S integers 14 «> 1 2 3 4
generator3? 10 +» an empty vector

Index of3 Least index of 4 P13 =2
in V, or 1+pV P1E +»
4 L4 e 1
Take } Take or drop |V[I] first 2 31X >

B
(V[I]20) or last (V[I]<o0) F
Drop elements of coordinate I T24P > 5 7
Grade up3,5 } The permutation which A3 532 «>u 1372

would order 4 (ascend-
ing or descending) $3 5 3 2 «> 2 1 3 4
1 3
Compress$® 10 10/P «> 25 101 0/E <« 5 7
9 11
10 1/[1]E «» 1 2 3 4 > 1 0 14F
9 10 11 12

Grade down¥®

A BCD
Expand$5 10 1\12 +> 1 0 2 101 1 1\X «> E FGH
I JKL
DCBA IJKL
Reverse® $X <+ HGFE SL1]X <> oX «» EFGH
LKJI G¢P «» 7 5 3 2 ABCD
BCDA
Rotate’ 30P «» 7 2 3 5 «> “1¢P 1 0 T16X «> EFGH
LIJK
AET
Coordinate I of 4 2 18X <> BFJ
becomes coordinate CGK
Transpose V{11l of result 1 198 <+ 1 6 11 DHL

Transpose last two coordinates QE «» 2 1QF

E
1
0
0]

0
Membership oWeY +> pW EeP +> 1
Per4 +> 1 1 0 0 0
Decode 1011 7 7 6 «» 1776 24 60 6011 2 3 <> 3723

Encode 24 60 6073723 «+ 1 2 3 60 6013723 <+ 2 3
Deal3 ¥?Y +» Random deal of ¥ elements from 1Y

Notes:

1 Restrictions on argument ranks are indicated by: S for
scalar, v for vector, ¥ for matrix, A for Any. Except as
the first argument of 514 or S[A], a scalar may be used
instead of a vector. A one-element array may replace any
scalar.

Arrays used 1 2 3 4 ABCD
in examples: P «+ 2357 E «+5 6 7 8 X «+ EFGH

9 10 11 12 IJKL
Function depends on index origin.

Elision of any index selects all along that coordinate.

The function is applied along the last coordinate; the
symbols #, %, and @ are equivalent to /, \, and ¢,
respectively, except that the function is applied along the
first coordinate., If [S] appears after any of the symbols,
the relevant coordinate is determined by the scalar S.

218 KOLSKY IBM SYST J

APL primitive scalar functions

Monadic form £B Dyadic form 4fB

Definition Name Name Definition
or example or example

0+8 Plus Plus W2 +> 5,2
++ 0-B Negative Minus
+«> (B>0)~(B<0) Signum Times
<+ 1:B Reciprocal : | Divide

[18 Ceiling Maximum

T1G
1T

r
3 Floor Minimum 3
<> (2,71828,.,)xB|Exponential Power 2%3 «+ 8

@xN «> N <> xal Natural Logarithm AeB +> Log B base 4
logarithm A®B <> (@B):e4

[73.14 «> 3.14 Magnitude Residue Case | AlB

A=0 B-(1A)xLB=:tA
A=0,B20}B
A=0,B<0|Domain error

> 1 Factorial t | Binomial A'B +> (!'B):(!A)x'B-4
«+ Bx!B-1 coefficient |2!5 «» 10 315 «+ 10
!B «»> Gamma(B+1)

+> Random choice{Roll ? | Deal A Mixed Function
from 18

Bx3.14159... |[Pi times Circular See Table at left

0 ~0 «>1 Not

|B|aaB|avB|anB|avs
o o[1

and A
AOB Oor a
(1-B*2)%.5 Nand 0
1
1

(-A)oB
(1-B*2)*.
Arcsin
Arccos
Arctan
(T14B*2) %,
Arcsinh
Arccosh
Arctanh

Sine B Nor
Cosine B
Tangent B
(14B#%2)*,5
Sinh B
Cosh B
Tanh B

B
0
1
0
1

»
1
0 1 1 0
¢ 1 1 o
1 1 0 o

Less Relations

Not greater Result is 1 if the
Equal relation holds, ¢
Not less if it does not:
Greater 3<7 «» 1

Not Equal 7<3 «» 0

WX e W e;
NO U FE WD R Ol

RV IV A A

Table of Dyadic o Functions

PROBLEM FORMULATION 219

