


The main theme of this  paper is to  illustrate  the power and  utility 
of such  a  language  as  a mode of mathematid  notation  and 
expression for programming  purposes. 

Although the APL language  may seem alien and difficult' to 
read a t  first,  the power of the  notation  is derived  from  such con- 
ventions  and definitions  as the right-to-left  execution  convention. 
Variables in AI% equations need not be scalar  quant'ities,  but 
may also be  vectors,  matrices,  and  arrays of higher  dimensions. 
The  notation is highly consist'ent internally, whereas standard 
mathematical  notation is a  conglomerate of convent'ions that 
have developed over many  years  from  many different  sources. 
The  st,ructure of t'he monadic :tnd dyadic  functions (shown in 
the Appendix) is very general and applies t'o data  arrays of many 
ranks  and mixed types. ( A  monadic  function is one that  takes a 
single argument,  and a  dyadic  function  takes  two  arguments.) 
In APL one writes 1 A for the absolute  value of A .  The vertical 
bar  is a  monadic operator, whereas the  bar  in R 1 A means the 
residue of A modulo B .  The  st'andard  mat'hematical  notations  are 
]Ai and A mod B. In  FORTIIAY, on the  other  hand, one writes 
ABS(A) and MOD1 ( U ,  A). 

From a  machine arrhitecture  point of view, the most import- 
ant  asped of API, is the large amount of freedom  in the order of 
execution of the  individual arithmetic: st'eps. This can be very 
important'  in  the allocation of resources of a  multiprocessor  or a 
vertor processor.  For  example, when one writes A = I3 + C in 
APL, where A ,  B,  and C are three-dimensiona,l makices,  this 
implies that a large number of addit'ions of components of H and 
C yield the corresponding  components of A .  However,  nothing 
is said concerning the order  in which these  addit'ions take place 
or concerning the  number  that can take place simultaneously. 
A suitable compiler could use this freedom to avoid  storage  or 
other resource allocation conflicts when  necsessary. Thus,  the APL 
formulation is very concise concerning t'he final result's  desired, 
but allows considerable intermediate freedom whereby the system 
achieves these  results. 

Large-problem  formulation 
Since the meteorological applic~~tion discussed in t<his paper ex- 
emplifies partial  differenhl equations, some of the general con- 
siderations involved in their  formulation for numcricd solution 
are now presented.  The first step is to understand the physical 
phenomena and  the applicable  fundamental  physiral laws. 

From this  understanding of the physical  problem, a mathc- 
matical model is prepared,  usually  in the form of part'ial differ- 
ential  equations  with  approximations  for subscalc and superscale 
phenomena.  These  phenomena are physical effect's that  are either 
much  smaller or much  larger than those being studied. The differ- 
ential  equat'ion model is then  transformed  into a difference equa- 
tion  form for computational  purposes.  Thc  numericd mcteoro- 
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logical simulat’ion equatiol~s discussed later  are concerned \\-it11 
numerically  t’racing the  time development of large-scale cyclonic: 
motions in the atmosphere. Small-scale :ttmospheric motions, 
such  as storm froth  and lo(-a1 thunderstorms,  are considered 
subscale.  Long-term  phenomena,  such  as glacial formation  during 
ice ages, are considered superscale in time for the model.  However, 
some subscale  motions in  the meteorological model are of sufficient 
importance to be  included  in  approximations that  take  into 
account  average effects of turbulent  and convect’ive motions 
smaller than  the grid size in  the difference equations.  This is done 
by  including diffusion terms  in  the model. 

Difference equat)ions are convent’ionally  formulated using a 
notation involving the components of the variables.  This for- 
mulation  usually  involves the use of subscripts to  index spatial 
locat~io11s and  superscripts  for  t,he  time  steps of a  given  variable. 
For  example, TZ,l,,, implies the  temperature  at  time  step n at’ 
point  indexed  location lz, I ,  and m. When the differentials in  the 
part,ial  differential  equations are replaced by finite differences, 
the subscripts  and superscript’s i n  some of these equahions can 
become quite involved. 

The next  step  in  the general  procedure is t’o lay  out  storage 
and data flow for the model. It is here that  the machine  depen- 
dence of the calculation is strongest.  Often, the number of 
points or the horizont’al  spacing in a meteorological modcl are 
determined  largely on the basis of the storage size. A FOItTRAN 
or €’L/I program is prepared using the difference equations,  stor- 
age  layout8, and data flow. Frequently,  the difference equations 
and st’orage layout  are modified during the writing of such  a 
program,  and  the original  mat,hema,tical model may be modified 
in  t’his process. Finally, before making  test’  experiments  with the 
complet’c program,  there is 3, debugging and checkout of the pro- 
gram  parts. 

The ApI, procedure starts with the same  physical  phenomena 
APL procedure and  mathematical model, but, makes the transition to difference 

equations by using a  “compact”  notation.  This  notation is an 
extension of t’hat which has been used by Shuman,  Smagorinsky, 
and  others  in  the  field.“s4  The  aim of the procedure discussed 
here  is  toward an AFL fornlulation  in  which the  dat’a  arrays  are 
(*onsidered  as  a whole and  not as isolated  components.  After 
setting  up  the differelxc  equat’ions in compact notation, a layout 
and data flo\v mlalysis of the problem is made  using the APIA 
notat’ion.  The next step is to program the problem  in APL and 
to  check the logic:  of individual pieces using dummy datju. The 
AI% formulation is then  transcribed  into a higher-level language, 
such  as F O I ~ T R A X  or YL/I, for execution. Even  though  additiond 
errors may creep into  the problem  during the program  transc*rip- 
tion,  such errors  should be more “localized” and easily  caught  in 
c*hec.king out  the FORTRAN program.  Transcription is necessary 
because the current APL system  cannot  handle data  arrays of 
t’he size required  in the meteorological model and is presently 
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available only as an  interpretive time-shared  systcm.  Although 
program  debugging,  checkout, and  t,he t,est expcriment~s are ~ 0 1 1 -  

ventionally  performed, most, of the logic and  datu flow of t'he 
program have been previously checked by using t'hc AI% procedure. 

Of course, t8here is a class of errors  for which segmentary 
debugging of the logic is not sufficient. I'arts may ivork correctly, 
but  the problem  as a whole may be  unstable.  However,  these 
errors  really  represent  incorrect numericd modeling, not flaws in 
the logic or data flow. Research  weather calculat,ions have pro- 
duced  marked examples of such instability.  Smagorinsky4  found 
t,hat  certain  types of neutral instabilities can require  in the  order 
of hundreds of time-steps to reveal  themselves. This corresponds 
t,o advancing the west,her model by as much as t'hirty  days t,o 
verify the stability of the numerical  method. 

There  are  many ways in which finite differenres may be written, 
all of which reduce to  the same  differential  operator in t,he limit, 
when the spacing goes t'o zero. An example of a nonlinear partial 
different,ial eyuat'ion is as follows: 

A possible differellc.e-equat'iol1 representation of Equat'ion 1 is : 

" 

Au AU = u " At A x  

A difference star for one point  in  a  graphic  represcnt'at,ion for 
Equation 2 is shown in Figure 1. One particular scheme for 
solving Equation 2 is referred to as the leapfrog explicit di ference 
method. This method is defined by  Equation 3 .  

"ExplicitJ" implies that  the value of the  quantit'y  at  the next, 
t'ime step, n + 1, appears  explicitly  in the  equation. "Leapfrog" 
means that  the derivatives  are  centered differences taken strad- 
dling the point' x, at  time a. This finite-difference formulation 
may  be  written in compact, notation  as  shown  in  Equation 4. 
" u: = vug (4) 

where 

In this  notation,  the  subscripts represent differences and  t'he 
bars  represent  averages  in the  variable spevified. 

averaging  and 
differencing 
operators 
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An important  property of t,hc averaging and differencing 
operators is that  they change the centering of the points  from 
integer to half-integer  values. If a variable  is defined a t  half- 
integer  values, suc,h :is .E ,  + ;, then  applying  either  the differencing 
or the averaging  operat,or  results  in a quantity that is cwltered 
at integer v:tlues x , .  If a series of operat,ors is applied  sequentially 
to  a  variable,  then  the  results  alternate between  integer and 
half-int'eger values. An even  number of operators causes the 
result to be centered at  the original point. h possible by-product 
of this mct'hod is a  saving in  computation  time. In performing 
either a differencing or an  averaging  operation,  the  resultant 
values have one fewer meaningful  element than  the original 
values. That is, if one averages the elements of a  vector g, the 
first  with the second, the second with the  third,  etc.,  the  last 
element has no subsequent  element with which to  be  averaged. 

In addition to  t,he  averaging and differencing operators  pre- 
viously  mentioned,  it  is useful t>o generalize the averaging  operat'or 
to include a Lveighted averaging  operator. This is necessary to 
clescribe cases where t,hc dimension in which the differencing per- 
formed is not equ:tlly divided,  and where the function being 
tLveraged is centered at, t,he  same  points a t  which Ax is centered. 
The I\-eighted averaging  operator is 

(5 )  

This  operator is used particularly  in the vertical  dimension of the 
\\-eat,her model because the vertical dimension is not differenced 
equally. 

Numerical meteorological  modeling 
We now consider some of the overall  comput'ational  aspect's of 
:L large-sc*alc problem  aimed  toward its  later description  in the 
Al'L language. Chosen as an  illust,rativc model is :L numerical 
met'eorologicd researczh c d d n t i o n   o r i g i d l y  \vrit,ten  by C. E. 
I,cith5 at  the University of California, 1,an-rcnce Radiation 
Laboratory,  Berltcle)~,  Cdifornia. A t  the  time  it was writt'en, 
this model (Fin:d Large Atmospheric M O ~ ~ I - F L A M )  \\-as an 
advanced  research model for t,he  numerical simulat,ion of the 
earth's  atmosphere. F ~ , A R I  was written  independently of the U. S. 
Weather  Bureau. Si11c.e the mid-I950's,  Weather  Bureau models 
have used a plain rcctangu1:tr or ort~ngond grid of t'he  nort'hern 



hemisphere only, whereas Leith’s model uses a latitude  and longi- 
tude mapping scheme for the whole globe. His model also involves 
the solution of the primitive  equations of atmospheric  motion 
and energy transfer  in place of empirical relationships that char- 
acterize some production-oriented models. 

Leith’s meteorological model resembles other  large fluid dy- 
namic problems in  that  it can require  a  much  larger  storage for 
the  primary variables than is usually available in existing com- 
puters.  The FLAM model, originally written  in FORTRAN, uses 
magnetic tape  units as external  storage.  Much of the FLAM pro- 
gram  is associated with  the blocking and  packing of data  to and 
from the tapes.  The  preparation of output  tapes for printing is 
another sizeable part.  The main logic of the  outer loops of the 
program is concerned with the manipulation of these  storage 
blocks. 

The size of a  weather  problem  can be estimated  by the number 
of mesh points used in  the difference equations for the model. 
The length of a time  step is determined  by  stability  requirements. 
In  the case of FLAM, the horizontal  spacing of the mesh is five 
degrees on a side at  the equator  with  varying  angular  spacing  in 
the east-west  direction when approaching the poles. A number 
of physical quantities  are stored for each atmospheric mesh point, 
and  several special quantities  are stored for each surface mesh 
point. In addition,  several  quantities that  vary only with longi- 
tude or only with latitude  are stored  as one-dimensional vectors. 
A given physical parameter of the atmosphere  is thus represented 
in the numerical model as a three-dimensional array of numbers 
(or, more precisely, as  two three-dimensional arrays of numbers, 
one for each  hemisphere). 

Often  in the logic of a  problem,  similar  calculations could be 
done on a  particular  physical  parameter for all mesh points of 
the  array.  The  nature of FORTRAN, however, is such that com- 
putations  are  done on one number a t  a  time, that is, one scalar 
member of the multidimensional array  at a time.  Therefore, a 
three-dimensional array  computation requires a t  least  a  triple 
DO-loop or equivalent to perform the computation. An advantage 
of the APL formulation,  in which the equations  contain  multi- 
dimensional  arrays as  their basic elements,  is that many DO- 
loops are eliminated,  thereby  improving  program logic. The 
remaining loops are those  having to do  with the actual  program 
flow. 

It should  not be assumed that  an APL formulation is struc- 
turally  machine-independent. As is true  in  other large computer 
programs, there is always a trade-off between generality and 
specialization and between storage  capacity  and speed. In prin- 
ciple, one could write APL equations so that  an entire  matrix 
of 500,000 words in a meteorological problem is referenced in 
one statement.  This extreme example might  result  in  a  simpler 
formulation,  but i t  certainly  is not a  practical  formulation of the 
problefn. It is better to  reference individual parts of data arrays 
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in  groups of possibly 10,000 words, since such  groups are more 
likely to be containable  within the high-speed storage. 

In  the formulation  presented  here,  Leith's  methods  are used 
t'o conserve storage  by processing submatrices of data for  one 
latit'ude line at  a  time.  Storage is so organized t'hat  data normally 
located in  adjacent  storage  locations  are  transferred  as  a  block. 
Thus, block transfer of data from  external  storage to  the high- 
speed storage is simulated. 

Leith's model is  similar to ot'her  numerical meteorological 
input/output problems in that  the  amount of computation that  must be done 

per data block read  in or read out) is large enough that  the  total 
program need not be I/O-limited, provided that  input/output 
can be scheduled to be simult~aneous  with the computation. In  
otjher words, total  computation  time is large  enough that  the 
input/output  time does not cause a  fundamental inefficiency. 
The requirement for simultaneous input/output  and  computation 
does mean that  data blocks must be  handled  properly to  avoid 
attempting  to use data  that is not  yet available or destroying 
data  that is  not  yet  read  out.  The APT, formulation of the FI,AM 
program to be described breaks each time-step  into  two  data 
cycles. This is done  mainly to keep  tjhe high-speed storage re- 
quirement  as sma,ll as possible. 

Two difficulties of large fluid dynamics  problems are those of 
fluid dynamics handling special and  boundary cases. In  APL, these cases can  be 

problems represented by  the sides and edges of three-dimensional data 
arrays.  The APL statement of a  problem  can thus  take  the  form of 
a  general expression for the  array  as a whole, plus  special state- 
ments  for  certain of the sides of edges of the  array.  The properties 
of APL have  two significant effects. One is that  the  total length of a 
program  written in API, is much  shorter than  that of FORTRAN. 
(Ratios of five or  ten  to one are  not uncommon.) Also, special 
cases are  stated explicitly and  not obscured in  the programming. 

Concerning special boundary  conditions in  Leith's model, 
quantities  are continuous  around the  earth  at a  given latitude. 
That is, if the problem  computation is indexing  eastward  from 
the Greenwich meridian at  a given lat'itude, when returning  to 
the  st'arting  point,  quantities  just  to  the west of Greenwich are 
adjacent to those at  Greenwich.  Such  a  circular boundary condi- 
tion is handled  naturally  and  automatically  in APL by  the  Rotate 
fun(-tion. 

Primitive  equation models in numerical meteorological re- 
search differ considerably in the way in which they  handle physical 
effects  such  as wind friction at  the  earth's surface,  and  the  treat- 
ment of mountains  and snow cover. Finite difference approxima- 
tion  methods  typically use an  Eulerian  spatial mesh that is fixed 
in  time  and  through which the fluid flows. A mesh that follows 
the fluid is called a  Lagrangian mesh. One of the main difficulties 
in using the Eulerian mesh is  correctly  computing the advection 
of physical  quantities of the fluid flow. (Advection, as used  here, 
implies the three-dimensional  motion of an  air mass.) We now 
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where 
a = X* - X; = uAt 
a = x .  - z xi-1 

b = x,+I - xi 
y;+1 = y: 
Using the compact notation previously discussed, Equation 7 
may  be  written  in  the simpler  form of Equation 8. 

Y? = Y ,  + a [“I ( Y J  i + a2[(Yz)zli (8) 
Equation 8 is  equivalent to  the advection  formula  given  in  Equa- 
tion 6, but  it is more general because i t  also applies to  nonuniformly 
spaced meshes. Equation 8 can be written  in  terms of APL opera- 
tors for weighted averages and differences as shown in  Equation 9. 

YW+YI+(ALlxDXAWX  YI)+AL2xDXDX YI (9 ) 

In  APL formulations of problems  such as those  represented by 
Equation 9, it is  convenient to  define combination  operators, 
such as diflerence  then  weighted average (DXAWX), double average 
(AXAY),  and double  difference (DXDX). Also, in  the case of our 
meteorological application, AY is constant  throughout the prob- 
lem, and AX is constant a t  a given latitude.  Thus, weighted 

Table 1 Combination and integration operators for the  meteorological  problem 

P AcAXAYAWP R 

P 
113 

Q 

A*DYAY R 
A*(RCIP;;I-BCIQ;;l) iDYX2 



Figure 3 Storage and data flow 
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averages may be replaced by  ordinary averages except in the 
vertical dimension. Combination  operators become simpler in 
such special cases, as well as faster to execute on the computer 
because certain generalized tests  are  not  required. APL statements 
for such  combination  operators,  as used in the met'eorological 
problems, are given in  Table 1. 

An idealized storage and data-flow schematic for the APL 
formulation of Equation 9 is shown in Figure 3. The computer 
is assumed to have  a  large  main  storage  and  a smaller high-speed 
storage. Data are  read from the main  storage, one latitude line 
a t  a time  into buffer IBL. These data, called a block, consist of 
all  variables  in  main  storage that have the same  dimensions; that 
is, IBL contains  all  variables  having m-by-k components. A sepa- 
rate block (IBT,1) is used for data having only k components,  such 
as surface  values.  These blocked values  are then assumed to be 
placed in working storage of one k-by-m table for eaeh variable. 

To allow for finite differencing, data for three  latitudes  are 
required to be in high-speed storage at  the same  time.  Latitude 
data  are labeled by indices IP, IV, and I& in  Figure 3. In order to 
avoid unnecessary moving of data within high-speed storage, 
the indices IP, IV,  and I& are rotated  after each use rather  than 
the  data. Computed values are placed in high-speed storage  area 
W ,  from where they  are read out  into buffers labeled OBL and 
OBLI. Content's of these output buffers are  then  transferred to 
main  storage. ReIationships of integer  and half-integer values at 
latitudes (L 's)  to buffers ( k ' s )  and working storage (IP, IV sild, 
IQ) are shown in  Figure 4. 

In practice, the unpacking and packing  operations,  indicated 
in Figure 3, are unnecessary when going from IBL to IP in high- 
speed dorage, Variables in IBL are already  properly  separated. 
However, by writing the storage  in  this  way, the following 
operations  are  carried  out  concurrently : 

Data is transferred from main  storage to IRL. 
Data in IP, IV, and I& are being used to compute W .  
Computed data are  read  from OBL to  the main  storage. 

Thus,  the model assumes simultaneous input/output  and comput>e. 
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Table 2 APL storage-handling 
and control program 

CONTROL 

C11 ILOAD 
V SEQ1 

c21  +.(LM<L+Lt1)/8 
c 3 1  1 4 + 1 t 3 1 1 ~ + ~ + 3 1 1 ~ + 1 + 3 t r p  
C41 LOADS 
C S l  CYCLl 
C6l STORES 

I81 POLE1 
, C9l ILOAD 

ClOI+(LM~L+Lt1)/16 
~ 1 1 1 1 0 + ~ + 3 1 1 l r t ~ t 3 1 1 ~ c 1 + 3 1 1 ~  
C121 LOADS 
C13l CYCLZ 
C1111STORES 
C151 +10 
C161  POLE2 

Q ILOAD 
INITIALIZATION 

IBL+SMC;L;;l 
L+l 

IBLl+SfIlC;L;I 

TCIP;;l+TCIV;;l~IBLC1;;1 
WTCIP;;I+WTClV;:JcIRLC2;;1 
UCIP;;l+UCIV;:l+IBLC3;;J 

~ C71 + 2  

1 

rQ+l+rv+1+rr+l 

~ s c r ~ ~ 1 + ~ s ~ r v : 1 + r ~ ~ ~ c 1 ; 1  
v C I P ; ; I + V C I V ; ; ~ + I B L C ~ ; ; ~  

LtltL 

INPUT 
Q LOADS 

1BLcSMC;L;;I 

I OUTPUl 
0 STORES 

OBLCl;;l+WTCIV;;l 
OBL[2::l+WTWCIV::l 

The A1'L timc-sharing system,  as i t  is currently  implemented, 
(wlnot execute  programs of this  magnitude. A production  mete- 
orologicd  problem  requires data blocks from  hundreds of thou- 
sands t o  millions of words.  Although the t'ime-sharing APL syst,em 
cannot  handle  such blocks, it is possible to check out  parts of the 
program  and  the logic of data manipulation  for  small data sam- 
ples. The i1lust)rations in this paper  have been done in  this mode. 

The FLAW1 program  (Final Large  Atmospheric  Model) uses 
the fractional  time-step  t'echnique  in which each time  step is 
divided into  three parts: north-south  advection, which is done 
first;  east-west,  second; vert'ical  motion, third. An example of 
t,he general advection  equations in one dimension is given in 
AI'L as follows: 

ALltDLTxAXAYAWP V (10) 

AL2+(AL1*2)tDlxDLT (11) 

TWtTCIV;; It(AL1xDYAY  T)+AL2xDYDY T (12) 

The coefficient of the AI,1 term in Equation 10 uses t'he  triple 
averaging  operator AXAYAWP. This is required  because the 
velocity Ti is rentcred at, half-spaces  in all three dimensions, 
lvhereas the  temperature is locat,ed on t,he  even points  (black  dots 
in  Figure 4). Temperature is the  quant,ity being advected. 

The sccond step  in  the general advehon formula (Equation 
11) ronsists of adding  two  terms,  i.e.,  the  square of the first 
t,erm  plus n diffusion t'erm.  (Physical diffusion is characterized 
by a diflerent  furldament'al  equation than fluid Bow.) Without 
going t'hrough the derivation, the 111 X nI,T t'erm  in  Equation 
11  is equivalent to solving a  separate diffusion equation,  since 
the coefficient of that  term is the same as the second difference in 
t,he Y direction. 

The  third  step,  indicated  by  Equation 12 of the general ad- 
vevtion formula, uses the ])YAY and L)YI)Y operators.  This is 
a case in which t'he weighted average  can be replaced by an or- 
dinary  average. 

The main AI'L program for the advection  problem is shown 
in  Table 2 .  The control  program (SEQl) calls the  other  programs. 
Referring to 1"igure 3 and  Table 2 ,  the first  program called (ILOA I)) 
performs the load operation,  in which the first two blocks for 
I V  and I& are  read  into \\orking  storage before computations 
begin. This  input' is a  three-dimensional array selected  from  a 
four-dimensional array  in main  storage.  (The  fourth dimension 
indicates the names of variables.) An initialization  step  (i.e., 
I& in ILOAT)) sets the  three indices. Statements in II,OAI) labeled 
with semicolons, but'  without  indices,  indicatJe that  the ent'ire 
dimension is used.  Referring  again  t'o the control  program (SEQl), 
the second step  tests whether the last  latitude line has been 
reached. If so, the program  branches to  the  step labeled I'OLE1, 
which pcrforms special compuhtions for the  north or south polc 
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v CYCLl 
113  ALl*DLTxAXAYAUP  V 

NORTIl+SOUTli A D V E C T I O I  AIlD D I F F U ' S I O N  

121 AL2+(AL1*2)+nlxDLT 

C6l ALl+DLTxVCIV:;l 
173 AL2*(ALl*Z)tD2xDh? 
181 U W ~ U ~ I V ; ; I + ( A L ~ ~ D Y A Y   U ) + A L ~ X D Y ~ Y  u 
191  VW*VCIV;;I+(AL~~DIAY  V)+ALZXDYDY v 
r101 ALl+DL?xAXAYAWP il 

EAST+IIBST ADVECTIOI  AND D I F F U S I O R  

CllJ 
C121 

C I U I  
1131 

1151 
1161 

TK+TWt(ALlxDXAX  TH)+AL2xDXDX TW 
KTW+HTl~t~ALlxDXAX  WTW)+AL2xnXDX NTW 
PS~~*PSIl+~ALlC;~~M-llxDXAX PSFl)+AL2C:MM- 
ALl*DLTxllW 
AL2+(PCI*2)+DUxDLT 

.11 m x n x  PS w 

Table 4 Second main advection/diffusion program in SEQl  

v CYCLZ 

C I I  nrv+(AYnx  u)+AxnY v 
r 2 1 OMW+INTP nrv 

VERTICAL  ADVECTIOn  AND D I F F U S I O N  

C 3 1  ALl+DLTxOblW 
[ U I  AL2+AL1*2 
[SI  TH+TCIV;;IxRML 
161  TW+TCIV::lt((ALl*DPAWP  TH)+AI,ZxDPDP  TH)+HML 
C71  WTW+WTCIV;;I+(ALlxDPAWP  WT1IV;;I)tALZxDPDP  WTCIV;;l 
IS1 PSW+PS1IV;l+DLTx~OMWC;MWltDIV1;l~l~lx~PRRS1MM1-PSCIV;1)) 
C91 HHL[;M~f-1l+HB1MM-1It(PSCIV:l-PRBSCM~~-1l)r~CNT 
ClOl PHCIV;;l*INTPH(?W~(ltDSxWTW)) 
[ I l l  OMCIV;;I+OMW 
1121  ALltAXAYAP OM 
Cl3l AL2+AL1*2 

C151 WXS+TE+(ALlxDPAIIP TE)+(ALZxDPDP  TE)+((DPAP  TE)~DIH.DLTIDPL)+DXAY PI/ 
r161  TE+VrIV::l 

~ I U I  T E 4 I V ; ; l  

f171 WX6+TEtiALlxDPAWP  TE)+((DPAP TE).DIR.DL?iDPL)+DYAX PI1 

[191 WK2+1tWK1*2 
1203 UW+(WK5tCiKlxWKB)rllKZ 
C211 VW*(FIK6-lIKlxWKS)i~lK2 

C I S I  w x ~ ~ ~ ~ ~ c o ~ r t ~ ~ + c s a r ~ ~ ~ ~ r ~ v ; ; ~  

V 

(not discussed in t,his  paper). The  third line  in the ront,rol pro- 
gram  rotates  the indices I]', IV, and I&, as previously ment'ioncd. 
Then  the  standard load program  (line 1) reads the  input block 
from  main  storage and relabels it in t,erms of the data for 11'. 

The first main program called by SEQ1 is (CYCLI), shown in 
Table 3 .  This  program  performs the north-south  and the east- 
west advection and diffusion ralculation. Aft'er finishing this 
calculation, the control  program calls the STORES program,  whirh 
reads  t,he newly computed quantities  into  the  output block and 
puts it,  in  main  storage. This is repeated until  the whole hemisphere 
is cdculatcd.  The  serond cyde through the hemisphere begins 
with the calling of tjhe second ILOAI) in the control  program,  and 
logic similar t80 the first cycle is performed. The second main 
program of SIQ2 is CYCLJ shown in  Table 4. This  program cal(:u- 
lates  vertical  advection for all physical  quantit'ies.  Most of the 
physical  complications occur in the  verticd dimension.  When the 
entire  hemisphere is finished, lJoI,E~ in the control  program does 
the vomplction of t,he  north-south pole c.ompulations. The  program 
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then  repeats SEQl for the southern  hemisphere before advancing 
to  the next  time cycle. (This is an  outer control loop not, indicated 
here. ) 

Regarding the function of CYCLl (Table 3 ) ,  the program is 
mainly R reapplicat'ion of the general advection  formula (Equa- 
t<ions 10, 11, and 12) for each of the  related  variables  in the two 
directions,  north-south and  east-west.  Most of the differencing in 
Equations 10,  11, and 12 in CYCLl arises from the use of sub- 
routines  such as DYAY, L)XAX, as shown in  Table 1. The equa- 
t'ions being solved stand  out clearly instead of being obscured in 
a variety of subscripts  and nO-loops, as can  be the case in  the 
conventional  approach. The APL progra,m for CYCLl requires  one 
half of a typewritten page, as shown in  Table 3,  whereas the 
FORTRAN program  requires many pages, including references to  
several  subroutines.  The  exact  ratio,  however, is not  as  important 
as the  fact  that  the APL listing  is  much more easily understood 
than  the FORTRAN listing. 

The function of the CYCI,B program, shown in  Table 4, is 
complicated by  the fact that atmospheric  functions vary more 
rapidly  vertically than  they  do  horizontally.  The model assumes 
that  the atmosphere  is  always in  hydrostatic equilibrium,  which 
means that  the pressure at  a given point  is  determined  by the 
weight per unit  area of the air  above that point. A differential 
expression of this assumption  is the hydrostatic  relation d p  = 

"gpdx, giving the increment  in  pressure d p  in  terms of an in- 
crement  in  height dx for given density p. Here g is the (assumed 
constant) acceleration of gravity  that  transforms  the mass ele- 
ment pdx into  the weight element gpdx. 

In  the hydrostatic  assumption, the influence of the vertical 
acceleration on the pressure is neglected. That is, vertical ac- 
celeration  (averaged over a  grid area) is small  compared with 9. 
For horizontal scales of motion,  large  compared to  the thickness 
of the atmosphere,  this  assumption  is  thought  to be  valid. The 
hydrostatic  a,ssumption  permits the replacement of vertical  dis- 
placement x by pressure p as  an  independent  variable. The use 
of pressure a,s a  vertical  coordinate  is  in  keeping  with  current 
practice of reducing the number of observations  in which the 
validity of the hydrostatic  assumption  is  assumed. The substi- 
tution of pressure for vertical  displacement  provides a simpler 
upper  boundary to  the atmosphere  and serves  as  a  mass or weight 
coordinate.  However, the lower boundary becomes free and,  thus, 
more complicated. 

There  must also be a  replacement of p by x as the dependent 
variable, which yields the geopotential (@ = g x )  i.e., the potential 
energy  per  unit mass that serves as a measure of the height of a 
given pressure  surface. In  the topography of pressure  surfaces, 
a region that is higher (in the x-coordinate system)  corresponds to  
a region of higher pressure. 

Because of the action of gravity,  the  important  vertical  quan- 
t'ity  is  not  the  absolute  temperature  but a quantity known as 
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the  “potential  temperature.” A given parcel of air cools adi- 
abatically when raised to  a  higher altitude,  and  potential  tem- 
perature  is  a  measure of the decrease  in  absolute temperature 
with  altitude with no  net energy  change. CYCL:! uses a  dif- 
ferent  mathematical  formulation  for  this than is used by  Leith. 
The present  formulation is physically  equivalent,  but  more  natural 
for an APL formulation. In  FLAM the potential  temperature  is 
computed  relative to each  individual  pressure level. In  the 
present  formulation,  potential  temperatures are all  referred to  
the pressure of one  atmosphere,  thereby  eliminating  the need to 
be computed  sequentially. 

but which must be  present  in  a working model, can  be called 
ANALYSIS. In  practice,  analysis  programs  are  usually  relatively 
short  in  running  time. Averages over  various  physical  observables 
are  computed.  Correlations between quantities  at different points 
are calculated.  Contour  maps,  such  as  surface  pressure, precipi- 
tation,  and geopotential are  prepared for display.  Often,  analysis 
is  most  valuable when comparing the averages of two separate 
calculations  having  slightly  different input  parameters. In  this 
case, one must assume the storage of selected results of previous 
problems in  an  archival  storage, which can  be accessed during 
the analysis  phase. 

The last  program, which is  not included  in the main  program analysis 

Concluding remarks 
The APL formulation of a large-scale scientific problem  can 
specify the solution precisely, while allowing the system  much 
freedom in producing  computed  results. The testing  and de- 
bugging stages of such  applicatJion  programming  can  be  carried 
out  at  a terminaI. The simplicity of APL helps the programmer see 
the main design of the problem by reducing the program size. In  
the problem-formulation  phase, the APL programmer is aided  by 
the mathematical consistency of the language and  by  the  inherent 
explicitness of APL program  statements from  a  mathematical  point 
of view. 
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Ravel 

ACA ;. . . ;A 
Index 
generator3 

I 

?ompress5 

3xpand5 V\A 

Pranspose 

Iecode VI v 
Cncode 

S?S 
VTS 

ctions 

D e f i n i t i o n   o r  example‘ 

p P  ++ 4 pE ++ 3 4 0 5  ++ 1 0  

Reshape A to  dimension V 
12pE ++ 112 O p E  ++ t O  

3 4 0 1 1 2  ++ E 

,A ++ (x/pA)pA ,E + + 1 1 2  p , 5  ++ 1 

P . 1 2  ++ 2 3 5 7 1 2 ’T’,’HIS’ ++ ‘THIS‘ 
PC21 ++3 PC4 3 2 11 ++7 5 3 2 

E L 1  3;3 2 11 ++ 3 2 1 
1 1  10 9 

EC1;I ++ 1 2 3 4 A BCD 
EC;11 +* 1 5 9 ‘ABCDEFCHIJKL‘CEI ++ EFCH 

IJKL 
F i r s t  S i n t ege r s  1 4  ++ 1 2 3 4 

I O  ++ an empty vec tor  

Least  index  of A P I  3 ++2 
i n  V, o r  1+DV 

5 1 2 5  
PIE ++ 3 5 4 5 

~~ . 
4 4 1 4  ++ 1 

Take o r  drop IVCIl f i r s t  
5 5 5 5  

(VCIIzO) o r   l a s t  (VlIlro) - 
2 3tX ++ ABC 

EFG 
elements  of  coordinate I 2 t P  ++ 5 7 
The permutation  which A 3 5 3 2 + + 4 1 3 2  
would o rde r  A (ascend- 
ing   o r   descending)  v 3 5 3 2 + + 2 1 3 4  

1 0 1 O/P ++ 2 5 1 0 1 O / E  ++ 5 7 
1 3  

9 11 
1 0 l/ClIE ++ 1 2 3 4 ++ 1 0 1 f E  

9 10 1 1  1 2  

1 0 1\12 ++ 1 0 2 1 0 1 1 1\X ++ E FGH 
A BCD 

I JKL 
DCBA 

OX ++ HCFE 
LKJI 0P ++ 7 5 3 2 

IJKL 
$[I ]X ++ eX ++ EFGH 

ABCD 
B CDA 

LIJK 
30P ++ 7 2 3 5 ++ -1QP 1 0 -10X ++ EFGH 

Zoordinate I of A 
3ecomes coordinate 
VCII o f   r e s u l t  

Pranspose l a s t  two coord ina tes  B E  ++ 2 IQE 

, K E Y  ++ p w  
D E 1 4  ++ 1 1 0 0 

AEI 
2 1 B X  ++ BFJ 

CCK 
1 1BE ++ 1 b 11  DHL 

0 1 1 0  
EcP ++ 1 0 1 0 

0 0 0 0  
1011 7 7 6 ++ 1776 2 4  60 6011 2 3 ++ 3723 

24 60 60T3723 ++ 1 2 3 60 60T3723 ++ 2 3 
v’?Y +* Random deal   of  W elements  from I Y  



APL primitive scalar functions 

Monadic 

or example 
Def in i t ion  

1 - 3 . 1 4  ++ 3 . 1 4  

.. 

+ E  ++ O+B 

- B  ++ 0 - 5  

x E  ++ ( B > O ) - ( B < O )  

i E  ++ 1 t E  * 3 . 1 4  

* B  ++ ( 2 . 7 1 8 2 8 . . ) * . ?  

m*N ++ N ++ +eN 

! O  ++ 1 
!B ++ U x ! B - I  
3 1  ! E  ++ Gamma(B+l) 

? B  ++ Random choice 
from t B  

3B ++ B x 3 . 1 4 1 5 9 .  

-1 ++ 0 -0 +* 

Arccos B 
Arctan B 

Arcsinh U 
Arccosh E 
Arctanh B 

orm  fB 

Name 

Plus  

Negative 

Signum 

Reciprocal 

Cei l ing  

Floor 

Exponential 

Natural 
logarithm 

Magnitude 

Fac tor ia l  

Roll 

P i  t imes 

VOt 

(1-B*2)*.5 
Sine B 

Tangent B 
Cosine E 

Sinh B 
Cosh B 
Tanh B 

Table of Dvadic o Functions 

Dyadic  form AfB 

Name 

Plus  

Minus 

Times 

Divide 

Maximum 

Minimum 

Power 

Logarithm 

Residue 

c o e f f i c i e n t  
Binomial 

Dea 1 

Circu lar  

Or 
And 

Nand 
Nor 

Not grea te r  
Less 

Not l e s s  
Equal 

Greater  
Not  Equal 

T 
or examole 
Def in i t ion  

2 + 3 . 2  ++ 5 

2 - 3 . 2  ++ 

2 x 3 . 2  ++ 6 

2 i 3 . 2  ++ 0 

3 r 7  ++ 7 

317 ++ 3 

2 * 3  ++ 8 

8.2 

1 . 2  

. 4  

. 6 2 5  

I m B  ++ Log B base A 
IE'B ++ (eL3)te.A 

I ! B  ++ ( ! B ) i ( ! A ) x ! B - A  
'!5 +' 10 3 ! 5  ++ 10 

i Mixed Function 

:ee  Table a t   l e f t  

l e la t ions  
Result i s  1 i f   t h e  
re la t ion   ho lds ,  0 
i f  it does  not: 

3 s 7  ++ 1 
7 s 3  ++ 0 


