

The main theme of this paper is to illustrate the power and utility
of such a language as a mode of mathematid notation and
expression for programming purposes.

Although the APL language may seem alien and difficult' to
read a t first, the power of the notation is derived from such con-
ventions and definitions as the right-to-left execution convention.
Variables in AI% equations need not be scalar quant'ities, but
may also be vectors, matrices, and arrays of higher dimensions.
The notation is highly consist'ent internally, whereas standard
mathematical notation is a conglomerate of convent'ions that
have developed over many years from many different sources.
The st,ructure of t'he monadic :tnd dyadic functions (shown in
the Appendix) is very general and applies t'o data arrays of many
ranks and mixed types. (A monadic function is one that takes a
single argument, and a dyadic function takes two arguments.)
In APL one writes 1 A for the absolute value of A . The vertical
bar is a monadic operator, whereas the bar in R 1 A means the
residue of A modulo B . The st'andard mat'hematical notations are
]Ai and A mod B. In FORTIIAY, on the other hand, one writes
ABS(A) and MOD1 (U , A).

From a machine arrhitecture point of view, the most import-
ant asped of API, is the large amount of freedom in the order of
execution of the individual arithmetic: st'eps. This can be very
important' in the allocation of resources of a multiprocessor or a
vertor processor. For example, when one writes A = I3 + C in
APL, where A , B, and C are three-dimensiona,l makices, this
implies that a large number of addit'ions of components of H and
C yield the corresponding components of A . However, nothing
is said concerning the order in which these addit'ions take place
or concerning the number that can take place simultaneously.
A suitable compiler could use this freedom to avoid storage or
other resource allocation conflicts when necsessary. Thus, the APL
formulation is very concise concerning t'he final result's desired,
but allows considerable intermediate freedom whereby the system
achieves these results.

Large-problem formulation
Since the meteorological applic~~tion discussed in t<his paper ex-
emplifies partial differenhl equations, some of the general con-
siderations involved in their formulation for numcricd solution
are now presented. The first step is to understand the physical
phenomena and the applicable fundamental physiral laws.

From this understanding of the physical problem, a mathc-
matical model is prepared, usually in the form of part'ial differ-
ential equations with approximations for subscalc and superscale
phenomena. These phenomena are physical effect's that are either
much smaller or much larger than those being studied. The differ-
ential equat'ion model is then transformed into a difference equa-
tion form for computational purposes. Thc numericd mcteoro-

NO. 3 . 1969 PItOl<l,Ehl I"ORMUIA1'IOS

general
computational
procedures

205

logical simulat’ion equatiol~s discussed later are concerned \\-it11
numerically t’racing the time development of large-scale cyclonic:
motions in the atmosphere. Small-scale :ttmospheric motions,
such as storm froth and lo(-a1 thunderstorms, are considered
subscale. Long-term phenomena, such as glacial formation during
ice ages, are considered superscale in time for the model. However,
some subscale motions in the meteorological model are of sufficient
importance to be included in approximations that take into
account average effects of turbulent and convect’ive motions
smaller than the grid size in the difference equations. This is done
by including diffusion terms in the model.

Difference equat)ions are convent’ionally formulated using a
notation involving the components of the variables. This for-
mulation usually involves the use of subscripts to index spatial
locat~io11s and superscripts for t,he time steps of a given variable.
For example, TZ,l,,, implies the temperature at time step n at’
point indexed location lz, I , and m. When the differentials in the
part,ial differential equations are replaced by finite differences,
the subscripts and superscript’s i n some of these equahions can
become quite involved.

The next step in the general procedure is t’o lay out storage
and data flow for the model. It is here that the machine depen-
dence of the calculation is strongest. Often, the number of
points or the horizont’al spacing in a meteorological modcl are
determined largely on the basis of the storage size. A FOItTRAN
or €’L/I program is prepared using the difference equations, stor-
age layout8, and data flow. Frequently, the difference equations
and st’orage layout are modified during the writing of such a
program, and the original mat,hema,tical model may be modified
in t’his process. Finally, before making test’ experiments with the
complet’c program, there is 3, debugging and checkout of the pro-
gram parts.

The ApI, procedure starts with the same physical phenomena
APL procedure and mathematical model, but, makes the transition to difference

equations by using a “compact” notation. This notation is an
extension of t’hat which has been used by Shuman, Smagorinsky,
and others in the field.“s4 The aim of the procedure discussed
here is toward an AFL fornlulation in which the dat’a arrays are
(*onsidered as a whole and not as isolated components. After
setting up the differelxc equat’ions in compact notation, a layout
and data flo\v mlalysis of the problem is made using the APIA
notat’ion. The next step is to program the problem in APL and
to check the logic: of individual pieces using dummy datju. The
AI% formulation is then transcribed into a higher-level language,
such as F O I ~ T R A X or YL/I, for execution. Even though additiond
errors may creep into the problem during the program transc*rip-
tion, such errors should be more “localized” and easily caught in
c*hec.king out the FORTRAN program. Transcription is necessary
because the current APL system cannot handle data arrays of
t’he size required in the meteorological model and is presently

206 KOLSKY II3U SYS‘I’ J

available only as an interpretive time-shared systcm. Although
program debugging, checkout, and t,he t,est expcriment~s are ~ 0 1 1 -

ventionally performed, most, of the logic and datu flow of t'he
program have been previously checked by using t'hc AI% procedure.

Of course, t8here is a class of errors for which segmentary
debugging of the logic is not sufficient. I'arts may ivork correctly,
but the problem as a whole may be unstable. However, these
errors really represent incorrect numericd modeling, not flaws in
the logic or data flow. Research weather calculat,ions have pro-
duced marked examples of such instability. Smagorinsky4 found
t,hat certain types of neutral instabilities can require in the order
of hundreds of time-steps to reveal themselves. This corresponds
t,o advancing the west,her model by as much as t'hirty days t,o
verify the stability of the numerical method.

There are many ways in which finite differenres may be written,
all of which reduce to the same differential operator in t,he limit,
when the spacing goes t'o zero. An example of a nonlinear partial
different,ial eyuat'ion is as follows:

A possible differellc.e-equat'iol1 representation of Equat'ion 1 is :

"

Au AU = u " At A x

A difference star for one point in a graphic represcnt'at,ion for
Equation 2 is shown in Figure 1. One particular scheme for
solving Equation 2 is referred to as the leapfrog explicit di ference
method. This method is defined by Equation 3 .

"ExplicitJ" implies that the value of the quantit'y at the next,
t'ime step, n + 1, appears explicitly in the equation. "Leapfrog"
means that the derivatives are centered differences taken strad-
dling the point' x, at time a. This finite-difference formulation
may be written in compact, notation as shown in Equation 4.
" u: = vug (4)

where

In this notation, the subscripts represent differences and t'he
bars represent averages in the variable spevified.

averaging and
differencing
operators

207 I

An important property of t,hc averaging and differencing
operators is that they change the centering of the points from
integer to half-integer values. If a variable is defined a t half-
integer values, suc,h :is .E , + ;, then applying either the differencing
or the averaging operat,or results in a quantity that is cwltered
at integer v:tlues x , . If a series of operat,ors is applied sequentially
to a variable, then the results alternate between integer and
half-int'eger values. An even number of operators causes the
result to be centered at the original point. h possible by-product
of this mct'hod is a saving in computation time. In performing
either a differencing or an averaging operation, the resultant
values have one fewer meaningful element than the original
values. That is, if one averages the elements of a vector g, the
first with the second, the second with the third, etc., the last
element has no subsequent element with which to be averaged.

In addition to t,he averaging and differencing operators pre-
viously mentioned, it is useful t>o generalize the averaging operat'or
to include a Lveighted averaging operator. This is necessary to
clescribe cases where t,hc dimension in which the differencing per-
formed is not equ:tlly divided, and where the function being
tLveraged is centered at, t,he same points a t which Ax is centered.
The I\-eighted averaging operator is

(5)

This operator is used particularly in the vertical dimension of the
\\-eat,her model because the vertical dimension is not differenced
equally.

Numerical meteorological modeling
We now consider some of the overall comput'ational aspect's of
:L large-sc*alc problem aimed toward its later description in the
Al'L language. Chosen as an illust,rativc model is :L numerical
met'eorologicd researczh c d d n t i o n o r i g i d l y \vrit,ten by C. E.
I,cith5 at the University of California, 1,an-rcnce Radiation
Laboratory, Berltcle)~, Cdifornia. A t the time it was writt'en,
this model (Fin:d Large Atmospheric M O ~ ~ I - F L A M) \\-as an
advanced research model for t,he numerical simulat,ion of the
earth's atmosphere. F ~ , A R I was written independently of the U. S.
Weather Bureau. Si11c.e the mid-I950's, Weather Bureau models
have used a plain rcctangu1:tr or ort~ngond grid of t'he nort'hern

hemisphere only, whereas Leith’s model uses a latitude and longi-
tude mapping scheme for the whole globe. His model also involves
the solution of the primitive equations of atmospheric motion
and energy transfer in place of empirical relationships that char-
acterize some production-oriented models.

Leith’s meteorological model resembles other large fluid dy-
namic problems in that it can require a much larger storage for
the primary variables than is usually available in existing com-
puters. The FLAM model, originally written in FORTRAN, uses
magnetic tape units as external storage. Much of the FLAM pro-
gram is associated with the blocking and packing of data to and
from the tapes. The preparation of output tapes for printing is
another sizeable part. The main logic of the outer loops of the
program is concerned with the manipulation of these storage
blocks.

The size of a weather problem can be estimated by the number
of mesh points used in the difference equations for the model.
The length of a time step is determined by stability requirements.
In the case of FLAM, the horizontal spacing of the mesh is five
degrees on a side at the equator with varying angular spacing in
the east-west direction when approaching the poles. A number
of physical quantities are stored for each atmospheric mesh point,
and several special quantities are stored for each surface mesh
point. In addition, several quantities that vary only with longi-
tude or only with latitude are stored as one-dimensional vectors.
A given physical parameter of the atmosphere is thus represented
in the numerical model as a three-dimensional array of numbers
(or, more precisely, as two three-dimensional arrays of numbers,
one for each hemisphere).

Often in the logic of a problem, similar calculations could be
done on a particular physical parameter for all mesh points of
the array. The nature of FORTRAN, however, is such that com-
putations are done on one number a t a time, that is, one scalar
member of the multidimensional array at a time. Therefore, a
three-dimensional array computation requires a t least a triple
DO-loop or equivalent to perform the computation. An advantage
of the APL formulation, in which the equations contain multi-
dimensional arrays as their basic elements, is that many DO-
loops are eliminated, thereby improving program logic. The
remaining loops are those having to do with the actual program
flow.

It should not be assumed that an APL formulation is struc-
turally machine-independent. As is true in other large computer
programs, there is always a trade-off between generality and
specialization and between storage capacity and speed. In prin-
ciple, one could write APL equations so that an entire matrix
of 500,000 words in a meteorological problem is referenced in
one statement. This extreme example might result in a simpler
formulation, but i t certainly is not a practical formulation of the
problefn. It is better to reference individual parts of data arrays

NO. 3 . 1969 PROBLEM FORMULATION

in groups of possibly 10,000 words, since such groups are more
likely to be containable within the high-speed storage.

In the formulation presented here, Leith's methods are used
t'o conserve storage by processing submatrices of data for one
latit'ude line at a time. Storage is so organized t'hat data normally
located in adjacent storage locations are transferred as a block.
Thus, block transfer of data from external storage to the high-
speed storage is simulated.

Leith's model is similar to ot'her numerical meteorological
input/output problems in that the amount of computation that must be done

per data block read in or read out) is large enough that the total
program need not be I/O-limited, provided that input/output
can be scheduled to be simult~aneous with the computation. In
otjher words, total computation time is large enough that the
input/output time does not cause a fundamental inefficiency.
The requirement for simultaneous input/output and computation
does mean that data blocks must be handled properly to avoid
attempting to use data that is not yet available or destroying
data that is not yet read out. The APT, formulation of the FI,AM
program to be described breaks each time-step into two data
cycles. This is done mainly to keep tjhe high-speed storage re-
quirement as sma,ll as possible.

Two difficulties of large fluid dynamics problems are those of
fluid dynamics handling special and boundary cases. In APL, these cases can be

problems represented by the sides and edges of three-dimensional data
arrays. The APL statement of a problem can thus take the form of
a general expression for the array as a whole, plus special state-
ments for certain of the sides of edges of the array. The properties
of APL have two significant effects. One is that the total length of a
program written in API, is much shorter than that of FORTRAN.
(Ratios of five or ten to one are not uncommon.) Also, special
cases are stated explicitly and not obscured in the programming.

Concerning special boundary conditions in Leith's model,
quantities are continuous around the earth at a given latitude.
That is, if the problem computation is indexing eastward from
the Greenwich meridian at a given lat'itude, when returning to
the st'arting point, quantities just to the west of Greenwich are
adjacent to those at Greenwich. Such a circular boundary condi-
tion is handled naturally and automatically in APL by the Rotate
fun(-tion.

Primitive equation models in numerical meteorological re-
search differ considerably in the way in which they handle physical
effects such as wind friction at the earth's surface, and the treat-
ment of mountains and snow cover. Finite difference approxima-
tion methods typically use an Eulerian spatial mesh that is fixed
in time and through which the fluid flows. A mesh that follows
the fluid is called a Lagrangian mesh. One of the main difficulties
in using the Eulerian mesh is correctly computing the advection
of physical quantities of the fluid flow. (Advection, as used here,
implies the three-dimensional motion of an air mass.) We now

210 KOLSKY IBM SYST J

where
a = X* - X; = uAt
a = x . - z xi-1

b = x,+I - xi
y;+1 = y:
Using the compact notation previously discussed, Equation 7
may be written in the simpler form of Equation 8.

Y? = Y , + a [“I (Y J i + a2[(Yz)zli (8)
Equation 8 is equivalent to the advection formula given in Equa-
tion 6, but it is more general because i t also applies to nonuniformly
spaced meshes. Equation 8 can be written in terms of APL opera-
tors for weighted averages and differences as shown in Equation 9.

YW+YI+(ALlxDXAWX YI)+AL2xDXDX YI (9)

In APL formulations of problems such as those represented by
Equation 9, it is convenient to define combination operators,
such as diflerence then weighted average (DXAWX), double average
(AXAY), and double difference (DXDX). Also, in the case of our
meteorological application, AY is constant throughout the prob-
lem, and AX is constant a t a given latitude. Thus, weighted

Table 1 Combination and integration operators for the meteorological problem

P AcAXAYAWP R

P
113

Q

A*DYAY R
A*(RCIP;;I-BCIQ;;l) iDYX2

Figure 3 Storage and data flow

QeI
MAIN STORAGE

J
k
jT ARITHMETIC

averages may be replaced by ordinary averages except in the
vertical dimension. Combination operators become simpler in
such special cases, as well as faster to execute on the computer
because certain generalized tests are not required. APL statements
for such combination operators, as used in the met'eorological
problems, are given in Table 1.

An idealized storage and data-flow schematic for the APL
formulation of Equation 9 is shown in Figure 3. The computer
is assumed to have a large main storage and a smaller high-speed
storage. Data are read from the main storage, one latitude line
a t a time into buffer IBL. These data, called a block, consist of
all variables in main storage that have the same dimensions; that
is, IBL contains all variables having m-by-k components. A sepa-
rate block (IBT,1) is used for data having only k components, such
as surface values. These blocked values are then assumed to be
placed in working storage of one k-by-m table for eaeh variable.

To allow for finite differencing, data for three latitudes are
required to be in high-speed storage at the same time. Latitude
data are labeled by indices IP, IV, and I& in Figure 3. In order to
avoid unnecessary moving of data within high-speed storage,
the indices IP, IV, and I& are rotated after each use rather than
the data. Computed values are placed in high-speed storage area
W , from where they are read out into buffers labeled OBL and
OBLI. Content's of these output buffers are then transferred to
main storage. ReIationships of integer and half-integer values at
latitudes (L 's) to buffers (k ' s) and working storage (IP, IV sild,
IQ) are shown in Figure 4.

In practice, the unpacking and packing operations, indicated
in Figure 3, are unnecessary when going from IBL to IP in high-
speed dorage, Variables in IBL are already properly separated.
However, by writing the storage in this way, the following
operations are carried out concurrently :

Data is transferred from main storage to IRL.
Data in IP, IV, and I& are being used to compute W .
Computed data are read from OBL to the main storage.

Thus, the model assumes simultaneous input/output and comput>e.

NO. 3 . 1969 PROBLEM VORMULATIOX

APL
advection

formula

Table 2 APL storage-handling
and control program

CONTROL

C11 ILOAD
V SEQ1

c21 +.(LM<L+Lt1)/8
c 3 1 1 4 + 1 t 3 1 1 ~ + ~ + 3 1 1 ~ + 1 + 3 t r p
C41 LOADS
C S l CYCLl
C6l STORES

I81 POLE1
, C9l ILOAD

ClOI+(LM~L+Lt1)/16
~ 1 1 1 1 0 + ~ + 3 1 1 l r t ~ t 3 1 1 ~ c 1 + 3 1 1 ~
C121 LOADS
C13l CYCLZ
C1111STORES
C151 +10
C161 POLE2

Q ILOAD
INITIALIZATION

IBL+SMC;L;;l
L+l

IBLl+SfIlC;L;I

TCIP;;l+TCIV;;l~IBLC1;;1
WTCIP;;I+WTClV;:JcIRLC2;;1
UCIP;;l+UCIV;:l+IBLC3;;J

~ C71 + 2

1

rQ+l+rv+1+rr+l

~ s c r ~ ~ 1 + ~ s ~ r v : 1 + r ~ ~ ~ c 1 ; 1
v C I P ; ; I + V C I V ; ; ~ + I B L C ~ ; ; ~

LtltL

INPUT
Q LOADS

1BLcSMC;L;;I

I OUTPUl
0 STORES

OBLCl;;l+WTCIV;;l
OBL[2::l+WTWCIV::l

The A1'L timc-sharing system, as i t is currently implemented,
(wlnot execute programs of this magnitude. A production mete-
orologicd problem requires data blocks from hundreds of thou-
sands t o millions of words. Although the t'ime-sharing APL syst,em
cannot handle such blocks, it is possible to check out parts of the
program and the logic of data manipulation for small data sam-
ples. The i1lust)rations in this paper have been done in this mode.

The FLAW1 program (Final Large Atmospheric Model) uses
the fractional time-step t'echnique in which each time step is
divided into three parts: north-south advection, which is done
first; east-west, second; vert'ical motion, third. An example of
t,he general advection equations in one dimension is given in
AI'L as follows:

ALltDLTxAXAYAWP V (10)

AL2+(AL1*2)tDlxDLT (11)

TWtTCIV;; It(AL1xDYAY T)+AL2xDYDY T (12)

The coefficient of the AI,1 term in Equation 10 uses t'he triple
averaging operator AXAYAWP. This is required because the
velocity Ti is rentcred at, half-spaces in all three dimensions,
lvhereas the temperature is locat,ed on t,he even points (black dots
in Figure 4). Temperature is the quant,ity being advected.

The sccond step in the general advehon formula (Equation
11) ronsists of adding two terms, i.e., the square of the first
t,erm plus n diffusion t'erm. (Physical diffusion is characterized
by a diflerent furldament'al equation than fluid Bow.) Without
going t'hrough the derivation, the 111 X nI,T t'erm in Equation
11 is equivalent to solving a separate diffusion equation, since
the coefficient of that term is the same as the second difference in
t,he Y direction.

The third step, indicated by Equation 12 of the general ad-
vevtion formula, uses the])YAY and L)YI)Y operators. This is
a case in which t'he weighted average can be replaced by an or-
dinary average.

The main AI'L program for the advection problem is shown
in Table 2 . The control program (SEQl) calls the other programs.
Referring to 1"igure 3 and Table 2 , the first program called (ILOA I))
performs the load operation, in which the first two blocks for
I V and I& are read into \\orking storage before computations
begin. This input' is a three-dimensional array selected from a
four-dimensional array in main storage. (The fourth dimension
indicates the names of variables.) An initialization step (i.e.,
I& in ILOAT)) sets the three indices. Statements in II,OAI) labeled
with semicolons, but' without indices, indicatJe that the ent'ire
dimension is used. Referring again t'o the control program (SEQl),
the second step tests whether the last latitude line has been
reached. If so, the program branches to the step labeled I'OLE1,
which pcrforms special compuhtions for the north or south polc

KOLSKY IBht SYST 3

v CYCLl
113 ALl*DLTxAXAYAUP V

NORTIl+SOUTli A D V E C T I O I AIlD D I F F U ' S I O N

121 AL2+(AL1*2)+nlxDLT

C6l ALl+DLTxVCIV:;l
173 AL2*(ALl*Z)tD2xDh?
181 U W ~ U ~ I V ; ; I + (A L ~ ~ D Y A Y U) + A L ~ X D Y ~ Y u
191 VW*VCIV;;I+(AL~~DIAY V)+ALZXDYDY v
r101 ALl+DL?xAXAYAWP il

EAST+IIBST ADVECTIOI AND D I F F U S I O R

CllJ
C121

C I U I
1131

1151
1161

TK+TWt(ALlxDXAX TH)+AL2xDXDX TW
KTW+HTl~t~ALlxDXAX WTW)+AL2xnXDX NTW
PS~~*PSIl+~ALlC;~~M-llxDXAX PSFl)+AL2C:MM-
ALl*DLTxllW
AL2+(PCI*2)+DUxDLT

.11 m x n x PS w

Table 4 Second main advection/diffusion program in SEQl

v CYCLZ

C I I nrv+(AYnx u)+AxnY v
r 2 1 OMW+INTP nrv

VERTICAL ADVECTIOn AND D I F F U S I O N

C 3 1 ALl+DLTxOblW
[U I AL2+AL1*2
[SI TH+TCIV;;IxRML
161 TW+TCIV::lt((ALl*DPAWP TH)+AI,ZxDPDP TH)+HML
C71 WTW+WTCIV;;I+(ALlxDPAWP WT1IV;;I)tALZxDPDP WTCIV;;l
IS1 PSW+PS1IV;l+DLTx~OMWC;MWltDIV1;l~l~lx~PRRS1MM1-PSCIV;1))
C91 HHL[;M~f-1l+HB1MM-1It(PSCIV:l-PRBSCM~~-1l)r~CNT
ClOl PHCIV;;l*INTPH(?W~(ltDSxWTW))
[I l l OMCIV;;I+OMW
1121 ALltAXAYAP OM
Cl3l AL2+AL1*2

C151 WXS+TE+(ALlxDPAIIP TE)+(ALZxDPDP TE)+((DPAP TE)~DIH.DLTIDPL)+DXAY PI/
r161 TE+VrIV::l

~ I U I T E 4 I V ; ; l

f171 WX6+TEtiALlxDPAWP TE)+((DPAP TE).DIR.DL?iDPL)+DYAX PI1

[191 WK2+1tWK1*2
1203 UW+(WK5tCiKlxWKB)rllKZ
C211 VW*(FIK6-lIKlxWKS)i~lK2

C I S I w x ~ ~ ~ ~ ~ c o ~ r t ~ ~ + c s a r ~ ~ ~ ~ r ~ v ; ; ~

V

(not discussed in t,his paper). The third line in the ront,rol pro-
gram rotates the indices I]', IV, and I&, as previously ment'ioncd.
Then the standard load program (line 1) reads the input block
from main storage and relabels it in t,erms of the data for 11'.

The first main program called by SEQ1 is (CYCLI), shown in
Table 3 . This program performs the north-south and the east-
west advection and diffusion ralculation. Aft'er finishing this
calculation, the control program calls the STORES program, whirh
reads t,he newly computed quantities into the output block and
puts it, in main storage. This is repeated until the whole hemisphere
is cdculatcd. The serond cyde through the hemisphere begins
with the calling of tjhe second ILOAI) in the control program, and
logic similar t80 the first cycle is performed. The second main
program of SIQ2 is CYCLJ shown in Table 4. This program cal(:u-
lates vertical advection for all physical quantit'ies. Most of the
physical complications occur in the verticd dimension. When the
entire hemisphere is finished, lJoI,E~ in the control program does
the vomplction of t,he north-south pole c.ompulations. The program

NO. 3 . l9G9 PROBLEM FORMULATION 215

then repeats SEQl for the southern hemisphere before advancing
to the next time cycle. (This is an outer control loop not, indicated
here.)

Regarding the function of CYCLl (Table 3) , the program is
mainly R reapplicat'ion of the general advection formula (Equa-
t<ions 10, 11, and 12) for each of the related variables in the two
directions, north-south and east-west. Most of the differencing in
Equations 10, 11, and 12 in CYCLl arises from the use of sub-
routines such as DYAY, L)XAX, as shown in Table 1. The equa-
t'ions being solved stand out clearly instead of being obscured in
a variety of subscripts and nO-loops, as can be the case in the
conventional approach. The APL progra,m for CYCLl requires one
half of a typewritten page, as shown in Table 3, whereas the
FORTRAN program requires many pages, including references to
several subroutines. The exact ratio, however, is not as important
as the fact that the APL listing is much more easily understood
than the FORTRAN listing.

The function of the CYCI,B program, shown in Table 4, is
complicated by the fact that atmospheric functions vary more
rapidly vertically than they do horizontally. The model assumes
that the atmosphere is always in hydrostatic equilibrium, which
means that the pressure at a given point is determined by the
weight per unit area of the air above that point. A differential
expression of this assumption is the hydrostatic relation d p =

"gpdx, giving the increment in pressure d p in terms of an in-
crement in height dx for given density p. Here g is the (assumed
constant) acceleration of gravity that transforms the mass ele-
ment pdx into the weight element gpdx.

In the hydrostatic assumption, the influence of the vertical
acceleration on the pressure is neglected. That is, vertical ac-
celeration (averaged over a grid area) is small compared with 9.
For horizontal scales of motion, large compared to the thickness
of the atmosphere, this assumption is thought to be valid. The
hydrostatic a,ssumption permits the replacement of vertical dis-
placement x by pressure p as an independent variable. The use
of pressure a,s a vertical coordinate is in keeping with current
practice of reducing the number of observations in which the
validity of the hydrostatic assumption is assumed. The substi-
tution of pressure for vertical displacement provides a simpler
upper boundary to the atmosphere and serves as a mass or weight
coordinate. However, the lower boundary becomes free and, thus,
more complicated.

There must also be a replacement of p by x as the dependent
variable, which yields the geopotential (@ = g x) i.e., the potential
energy per unit mass that serves as a measure of the height of a
given pressure surface. In the topography of pressure surfaces,
a region that is higher (in the x-coordinate system) corresponds to
a region of higher pressure.

Because of the action of gravity, the important vertical quan-
t'ity is not the absolute temperature but a quantity known as

216 KOLSKY IRM SYST J

the “potential temperature.” A given parcel of air cools adi-
abatically when raised to a higher altitude, and potential tem-
perature is a measure of the decrease in absolute temperature
with altitude with no net energy change. CYCL:! uses a dif-
ferent mathematical formulation for this than is used by Leith.
The present formulation is physically equivalent, but more natural
for an APL formulation. In FLAM the potential temperature is
computed relative to each individual pressure level. In the
present formulation, potential temperatures are all referred to
the pressure of one atmosphere, thereby eliminating the need to
be computed sequentially.

but which must be present in a working model, can be called
ANALYSIS. In practice, analysis programs are usually relatively
short in running time. Averages over various physical observables
are computed. Correlations between quantities at different points
are calculated. Contour maps, such as surface pressure, precipi-
tation, and geopotential are prepared for display. Often, analysis
is most valuable when comparing the averages of two separate
calculations having slightly different input parameters. In this
case, one must assume the storage of selected results of previous
problems in an archival storage, which can be accessed during
the analysis phase.

The last program, which is not included in the main program analysis

Concluding remarks
The APL formulation of a large-scale scientific problem can
specify the solution precisely, while allowing the system much
freedom in producing computed results. The testing and de-
bugging stages of such applicatJion programming can be carried
out at a terminaI. The simplicity of APL helps the programmer see
the main design of the problem by reducing the program size. In
the problem-formulation phase, the APL programmer is aided by
the mathematical consistency of the language and by the inherent
explicitness of APL program statements from a mathematical point
of view.

CITED REFERENCES AND FOOTNOTE

1. K. E. Iverson, “Programming notation in system design,” ZBM Systems
Journal 2, 117-128 (June 1963).

2. The APL\360 program, 360D-03.3.007, which is not formally supported
by IBM, and the APL\S6O User’s Manual by A. D. Falkoff and K. E.
Iverson may be obtained through any IBM branch office.

3. F. G. Shuman and J. B. Hovermale, “An operational six-layer primitive
equation model,” Journal of Applied Meteorology 7, No. 4, 525-547 (August
1968).

4. J. Smagorinsky, S. Manabe, and J. L. Holloway, “Numerical results from
a nine-level general circulation model of the atmosphere,” Monthly Weather
Review 93, No. 12, 727-768 (December 1965).

5. C. E. Leith, Numerical Simulation of the Earth’s Atmosphere, University of

Ravel

ACA ;. . . ;A
Index
generator3

I

?ompress5

3xpand5 V\A

Pranspose

Iecode VI v
Cncode

S?S
VTS

ctions

D e f i n i t i o n o r example‘

p P ++ 4 pE ++ 3 4 0 5 ++ 1 0

Reshape A to dimension V
12pE ++ 112 O p E ++ t O

3 4 0 1 1 2 ++ E

,A ++ (x/pA)pA ,E + + 1 1 2 p , 5 ++ 1

P . 1 2 ++ 2 3 5 7 1 2 ’T’,’HIS’ ++ ‘THIS‘
PC21 ++3 PC4 3 2 11 ++7 5 3 2

E L 1 3;3 2 11 ++ 3 2 1
1 1 10 9

EC1;I ++ 1 2 3 4 A BCD
EC;11 +* 1 5 9 ‘ABCDEFCHIJKL‘CEI ++ EFCH

IJKL
F i r s t S i n t ege r s 1 4 ++ 1 2 3 4

I O ++ an empty vec tor

Least index of A P I 3 ++2
i n V, o r 1+DV

5 1 2 5
PIE ++ 3 5 4 5

~~ .
4 4 1 4 ++ 1

Take o r drop IVCIl f i r s t
5 5 5 5

(VCIIzO) o r l a s t (VlIlro) -
2 3tX ++ ABC

EFG
elements of coordinate I 2 t P ++ 5 7
The permutation which A 3 5 3 2 + + 4 1 3 2
would o rde r A (ascend-
ing o r descending) v 3 5 3 2 + + 2 1 3 4

1 0 1 O/P ++ 2 5 1 0 1 O / E ++ 5 7
1 3

9 11
1 0 l/ClIE ++ 1 2 3 4 ++ 1 0 1 f E

9 10 1 1 1 2

1 0 1\12 ++ 1 0 2 1 0 1 1 1\X ++ E FGH
A BCD

I JKL
DCBA

OX ++ HCFE
LKJI 0P ++ 7 5 3 2

IJKL
$[I]X ++ eX ++ EFGH

ABCD
B CDA

LIJK
30P ++ 7 2 3 5 ++ -1QP 1 0 -10X ++ EFGH

Zoordinate I of A
3ecomes coordinate
VCII o f r e s u l t

Pranspose l a s t two coord ina tes B E ++ 2 IQE

, K E Y ++ p w
D E 1 4 ++ 1 1 0 0

AEI
2 1 B X ++ BFJ

CCK
1 1BE ++ 1 b 11 DHL

0 1 1 0
EcP ++ 1 0 1 0

0 0 0 0
1011 7 7 6 ++ 1776 2 4 60 6011 2 3 ++ 3723

24 60 60T3723 ++ 1 2 3 60 60T3723 ++ 2 3
v’?Y +* Random deal of W elements from I Y

APL primitive scalar functions

Monadic

or example
Def in i t ion

1 - 3 . 1 4 ++ 3 . 1 4

..

+ E ++ O+B

- B ++ 0 - 5

x E ++ (B > O) - (B < O)

i E ++ 1 t E * 3 . 1 4

* B ++ (2 . 7 1 8 2 8 . .) * . ?

m*N ++ N ++ +eN

! O ++ 1
!B ++ U x ! B - I
3 1 ! E ++ Gamma(B+l)

? B ++ Random choice
from t B

3B ++ B x 3 . 1 4 1 5 9 .

-1 ++ 0 -0 +*

Arccos B
Arctan B

Arcsinh U
Arccosh E
Arctanh B

orm fB

Name

Plus

Negative

Signum

Reciprocal

Cei l ing

Floor

Exponential

Natural
logarithm

Magnitude

Fac tor ia l

Roll

P i t imes

VOt

(1-B*2)*.5
Sine B

Tangent B
Cosine E

Sinh B
Cosh B
Tanh B

Table of Dvadic o Functions

Dyadic form AfB

Name

Plus

Minus

Times

Divide

Maximum

Minimum

Power

Logarithm

Residue

c o e f f i c i e n t
Binomial

Dea 1

Circu lar

Or
And

Nand
Nor

Not grea te r
Less

Not l e s s
Equal

Greater
Not Equal

T
or examole
Def in i t ion

2 + 3 . 2 ++ 5

2 - 3 . 2 ++

2 x 3 . 2 ++ 6

2 i 3 . 2 ++ 0

3 r 7 ++ 7

317 ++ 3

2 * 3 ++ 8

8.2

1 . 2

. 4

. 6 2 5

I m B ++ Log B base A
IE'B ++ (eL3)te.A

I ! B ++ (! B) i (! A) x ! B - A
'!5 +' 10 3 ! 5 ++ 10

i Mixed Function

:ee Table a t l e f t

l e la t ions
Result i s 1 i f t h e
re la t ion ho lds , 0
i f it does not:

3 s 7 ++ 1
7 s 3 ++ 0

