
simulated and  built.  The experience thus gained has  indicated 
that: (1) It is possible to  include  simulation  in a development 
cycle and as a  result  shorten that cycle, even in a changeable 
technology; ( 2 )  The efficiency of debugging  hardware will improve 
because those  testing the  system  have an opportunity  to develop 
their troubleshooting  techniques and t’o  learn the computer 
system  prior to  the availability of hardware; (3) Logic problems 
t,hat might  otherwise  remain  undetected  can  be  detected  with 
t,hree-value simulation;  and (4) Future technologies will demand 
dcsign verification simulators  similar to  the three-value  simulator. 
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An ordering operator that  leads to the delmlopment of a n  algorithm 
for internal sorting i s  described. An analysis of the algorithm i s  
presented, togethcr with  a  discussion of the number of comparisons 
necessary  for  sorting. 

It is  shown  that the number of comparisons i s  close to the theoretically 
obtainable number.  The sorting algorithm i s  a  variant of the two-way 
merge. 

Internal sorting with  minimal  comparing 
by L. J. Woodrum 

Internal  sorting is such  a common operation on today’s  digital 
computer  systems that primitive  ordering  operations were in- 
cluded in  the APL\XN Terminal  The operations, (balled 
grade, are represented  by the symbols 4 and for ascending 
and descending  ordering,  respectively, and they produce  ordering 
permutations as results. An ordering  perrnutat,ion can then be 
used as  a  subscript on the original vcct,or to order  t,he data.  In 
APIA, subscripts  are allowed to  be  vect’ors as well as sc-alars. 
Either zero-origin or one-origin indexing is :dlowed; in zero-origin 
indexing the first element of a vector A is A [ O ] ,  in one-origin 
indexing  the first  element^ is A [ ] ] .  All indexing used in this  paper 
is zero-origin. 

As an example of the use of a vector as a subscript,  suppose 
A is the vector 5 ,  3 ,  9, I ,  and P is the vector 3 ,  I ,  0, 2. Then A[]’] 
is 1, X ,  5 ,  9; A[O, I] is the vector 5 ,  3 ;  A [ 2 ,  1, 01 is the  vertor 9, 
3,  5 ;  and A [ 2 ,  3 ,  0, 01 is the vect,or 9, 1, 5 ,  5 .  When P is :x per- 
mutat’ion  vertor  and is the same  lengt,h  as A, 11[1’] is n rearrange- 
ment of the element’s of A. When P is R permutxt’ion  vect’or such 
that A [ P ]  arranges the elements of A in ascending or descending 
order, P is called an ordering permutation. 

The Al’J, grade  operator 4 il produres the ascending ordering 
permutation for a vector A, and A4 produces the descending 
ordering  permutation. The gr:tdc opcrat’ors :we : d ~ o  defined for 
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arbitrnry multidimeusion:L1 arrays A, and produce  ordering per- 
mutations for the elements along a selected  coordinate. If A is 
a  matrix, then I' + 4 ,4 produces a matrix P such that P[i ;]  
is the ordering permutation for rotv i of A, i.e., A[i; P[ i ;  I ]  is row 
i of A arrmged  in ascwxdivg order. To operat'e on the columns 
of A, the operator is subscripted to indicate that  the operation 
is to be performed :tlong the first, coordinate. If P +- [CIA, 
Tvhere c = 0 in zero-origin indexing, and c = 1 in one-origin 
indexing, then P is a matrix the same size as A, such that A [ P [ ;  i ]  ; i] 
is column i of A arranged  in  ascending order. For the multidi- 
meusion:tl vase, 4 [ C I A  produces 311 array the same size as A, 
\\-hich c.ont:xins ordering permutations along  coordinat'e c. 

In t,he selcction of :I sorting  algorithm  for the grade  operators, 
the following rcquircments  must he met,: 

The algorithm  should  produce the result'  without  using much 
more s p : ~ ~  than needed to cont>ain the result'. 
Estension to sorting :tlong coordinat'cs of multidimensional 
arrn!-s must  be easy. 
Thc nlgorithm should be efirient, in its use of comparing, 
since comparing is :I fairly expensive operation  in the context 
of the interpreter. 
The origit1:d array (the input) must' not he disturbed. 
The original ordcr of ec@s must' be preserved. 

v:tri:ttlt of t'llc c.onvcntion:ll t\vo-\vay merge, using a c~haining 
te rh ique  for merging to  avoid the use of t,wo areas, satisfies 
these  requircnwuts. We develop the algorithm discussed here 
by determinitlg the  theoreticd  loner  limit on the  number of 
cmnp:trisotw necded to sort n numbers,  then finding t,he best 
:whievnhlc two-nxy mcrge sort, based on the average  number 
of csomptuisolrs. The efficiency of this t,wo-w\.ay merge is examined 
in the light o f  the  theoretical  limits on comparing i n  internal  sorts 
ilr gcner:ll. .I m:Lthernatic.al model of romparing in t\z.o-\vay merge 
sorting is tlevclopcd, :n~d the :dgorithm is derived  from this model. 
'l'he nlgorithm so obtained is a recursive  program, whirl1 is the11 
cqrcsscd nollrccuxivdy, using t \vo st,acks inst,ead of the recur- 
sion. Tllc otlc.-dirllellsiot1:11 (*:ISC is considered first and  then gel)- 
or:tlixed to  thc  ~nrtltitlilnetlsio~~:~l c m c .  







because it depends on the particular  values of the  data,  i.e.,  it is 
sensitive to  the distribution  from which the  data were drawn. 

To  obtain a  distribution-independent  measure of order,  create 
:L set of indices by replacing  each  number  with the index of its 
position in  the ordered set.  Then  compute  the  sample correlation 
coefficient of this  set of indices  with the ordered set of indices, 
0, 1, 2 ,  . . . , n, - 1. The. procedure  for  computing the sample 
correlation coefficient for this special case is simpler than  the 
general case and is given in  the Appendix. 

For  data which are  already  in ascending  sequence, this cor- 
relation coefficient is 1, for inverse sequences the coefficient is - 1, 
and for “random” sequences this measure is zero. When  sorting 
experts  talk  about  “random”  data,  they mean that  this correlation 
coefficient is zero, or that  they assume it is zero. 

To determine if a  sorting  algorithm  takes  advantage of natural 
sequencing  in the  data  then means  examining the  number of 
comparisons taken, assuming that  the correlation coefficient is 
some fixed value, or is in  some given range.  This  kind of analysis 
of sorting  algorithms  has  rarely, if ever,  appeared  in the  literature, 
except for coefficients of - 1, 0, and 1 corresponding to inversely 
ordered files, “random” files, and in-sequence files. In  keeping 
with  this  tmdition,  the  algorithm  in  this  paper is evaluat’ed 
for coefficients of - I ,  0, and 1. 

Analysis of two-way merging 

Certain modifications permit the two-way merge to  be especially 
suitable for t>he  implementation of the API,\%O grade  operations. 
In  any  internal  sort  by  two-nay merging, there  is a final merge of 
two  sequences,  say of lengths a and b respectively, t’o form  the 
ordered sequencc of lengt’h n .  The  number of comparisons to do 
this merge is, at most, n - I .  Thus  the worst-case  number of 
romparisons is n - 1 plus the number of comparisons  required 
(worst cases) to  obtain  the ordered sequences of lengths a and b. 
These  lengths  depend 011 the  particular  algorithm,  and  may even 
be chosen in some random  fashion. The function for  the worst-case 
number of comparisons  for any  internal two-way merge sort 
is easily defined rernrsively, ns follows: 

1. w(1) = 0 ;  

2 .  ~ ( n )  = (n  - 1 )  w(a)  + w ( b ) ,  where n = n + b ;  

3 .  72, a ,  and 6 arc  positive nonzero int,egers. 

To minimize the tvorst case, a and b should  be chosen so that 
w(n) is as small as possible. It follows from  results  presented  by 
Glicl~sman’  that, w(n)  is minimized when a is chosen to  be  the 
wiling of onc half of n, and b is (.hose11 to be the floor of one half 





of n, where the floor, “I,” of 2 is the largest  integer not  greater  than 
x .  If a and b are chosen as  above, it is a mathematical curiosity 
t,hat w(n)  is given by the following two  formulas: 

w(n) = 1 + 27i - 1) + i(n - 2i) 
where i = L log, n and 

I The result w(n)  is listed for values of n up  to 1000 in  Table 2 .  
It is fairly well approximated  by n (log, (.5n)), an approximation 
that  has long been used for the average  number of comparisons 
for  sorting  by two-way merging. However, w(n)  is  not  the  average 
value of c for this  sort,  but  its worst case. Before giving the 
algorithm, let’s look at the expected  value of c for  such an algorithm. 

The expected  value of c, R ( c ) ,  can also he  computed  by  the 
following recursive  function : 

1. c(1) = 0; 
2 .  e(n) = e(a) + e(b)  + m(a;  b ) ,  where a = b = L.5n, 

and m(a; b)  is a funrtion of a and b that gives the expected 
value of the number of comparisons to merge two sequences 
of lengths a and 6 ,  respectively. 

The m function  is  given  in the Appendix. The e function has been 
evaluated for values of n up  to 1000 in  Table 3. From a comparison 
of the entries  in  Tables 1 and 3, it is  apparent  that E(c)  for this 
algorithm does not differ very  much  from the theoretical  limit  for 
E(c)  of any  algorithm.  For n = 1000, the difference is 177 com- 
parisons,  a  small  number  compared to 8530, the theoretical  limit. 

A sort based on the above  mathematical model will achieve 
its minimum  value  for c when the  data  are  already  in ascending 
order,  assuming that  the sequence of length b is  created  first, 
and  that numbers  are picked up from the  input  in  the order they 
occur, i.e., A[O] is the first  number  used, followed by A[1], etc. 
The  minimum  value of c can be calculated  by  replacing the 
“n - 1” in  function w by “b,” since if the numbers  in  the b se- 
quence  all precede the numbers  in the a sequence, it will take 
exactly b comparisons to merge t’he  two.  When the correlation co- 
efficient, is - 1 (the  data  are  in inverse order),  then  the  number of 
comparisons  taken will he close to  the  number  taken if the coeffi- 
cient is + 1 (the  data  are  in ascending order). An examination of 
this minimunl shows that  the algorithm does take  advantage of 
“natural sequencing”  present  in the  data. For example, to  sort 
an  ascending input of one hundred  numbers, it  takes 316 com- 
parisons  as opposed to the average of 542 comparisons. Note  that 
if an  algorithm rould  always sort  with a  worst case equal to  the 



Table 3 Expected value of the number of comparisons taken to sori n numbers 
using two-way merging 

0 1 2 3 4 5 6 1 8 9 

4 165.1 110.1  116.3  101.9  101.6 193.2 190.9 204.5 210.2 216.0 
5 221.9 227.8 233.6 239.5 245.4 251.3 251.2 263.2 269.1 215.1 
6 281.1 201.1 293.1 299.1 305.1 311.5 311.9 324.3 330.1 331.1 
1 343.5 350.0 356.4 362.9 369.3 315.0 302.3 388.0 395.3 401.8 
8 408.3 414.9 421.5 428.1 434.1 441.3 447.9 454.6 461.2 467.8 
9 
10 
11 
12 
13 

414.5 
541.8 
610.6 
680.2 
150.9 
825.1 
099.1 

1050.1 
914.6 

1203.6 
1121.0 

1201.7 
1360.4 

401.1 
540.1 
611.5 

750.3 
681.2 

032.5 
907.2 

1058.3 
902.2 

1134.6 
1211.2 
1289.6 
1368.3 

487.0 
555.6 
624.4 
694.2 
165.7 
840.0 
914.6 
989.0 

1065.9 
1142.3 
1210.9 
1297.4 
1316.1 

494.4 
562.4 
631.4 
701.1 
713.2 
841.4 
922.1 
991.4 

1013.5 
1149.9 
1226.1 
1305.3 
1304.0 
1463.0 
1542.6 

1102.3 
1622.3 

1185.1 
1069.2 

2038.0 
1953.5 

2122.0 

2293.1 
2379.1 
2465.2 
2551.4 
2631.9 
2724.5 

2201. n 

501.1 
569.3 
638.4 
108.1 
180.6 
054.0 

1005.0 
929.6 

1081.1 
1151.6 
1234.6 
1313.1 
1391.9 

501.0 
576.2 
645.3 
715.1 
188.0 
862.3 
937.1 

519.4 

652.3 
583.1 

722.1 
195.4 

944.6 
869.8 

1096.4 
1020.2 

1112.9 
1250.3 
1320.9 
1401.1 
1406.8 
1566.5 
1646.3 
1126.3 
1810.3 

521.3 

659.3 
590.0 

729.1 
802.0 
811.2 
952.1 

1021.8 
1104.0 
1100.6 
1250.1 
1336.7 
1415.6 
1494.8 
1514.4 
1654.3 
1734.7 
1810.1 

520.1 5 3 5 . 0  
596.8 
666.2 
736.1 
810.2 

603.1 
013.2 
743.5 
011 .l 

14 
15 
16 
11 
10 

20 
19 

21 
22 
23 
24 
25 

884.1 
959.6 

1035.4 
1111.1 
1180.2 
1266.0 
1344.6 
1423.5 
1502.1 1510.1 
1582.4 1590.4 
1662.3 1670.3 
1143.1 1151.5 
1021.1 1035.6 

092.2 

1043.0 
961.1 

1119.3 

1213.8 
1195.9 

1012.6 
1000.7 
1165.2 
1242.4 
1321.0 
1399.0 

1352.5 
1431.4 

1439.3 
1510.1 
1598.4 

1441.2 
1526.6 
1606.4 
1686.3 

1455.1 
1534.6 
1614.3 
1694.3 

1470.9 
1550.5 
1630.3 
1110.3 

1418.9 
1550.5 
1630.3 
1118.3 

26 
27 
28 
29 

1159.9 1768.3 1776.1 
~~ 

1193.5 
~~. 
1001.9 

1844.0 
1928.2 
2012.6 

1852.4 
1936.6 
2021.1 
2105.9 

1060.8 
1945.1 
2029.6 
2114.3 

1811.6 

2046.5 
1961.9 

2131.3 

1886.1 
1910.4 
2055.0 
2139.0 

1094.5 
1918.8 
2063.5 
2148.3 

1902.9 
1907.2 
2071.9 
2156.8 

1911.3 
1995.7 
2080.4 
2165.3 

1919.8 
2009.1 
2088.9 
2173.8 30 

31 2102.3 2190.0 2199.3 2216.3 2224.8 2233.3 

2409.9 
2310.9 

2491 . o  
2511.3 
2663.9 
2750.5 
2837.5 
2926.0 
3014.6 
3103.2 

3201.0 
3192.1 

3370.0 
3459.5 
3549.1 
3630.0 

3018.6 
3120.7 

3900.6 

2241.0 2250.3 
2336.1 
2422.1 
2500.3 
2594.6 
2681.2 

2855.2 
2761.0 

2943.1 
3032.3 
3121.0 
3209.9 
3290.0 
3301.0 
3411.4 
3561.1 
3656.0 

3836.6 
3746.1 

3926.6 
9019.0 
41  13 .O 
4207.1 
4301.3 

4489.9 
4395.6 

4584.3 
4619.0 
4713.0 
4068.6 

2z5a.n 
2344.1 
2430.1 
2516.9 
2603.3 
2689.8 
2716.5 
2064.0 
2952.6 
3041.2 
3129.9 
3218.8 
3301.1 
3396.8 
3486.4 
3576.0 
3665.8 

3845.6 
3755.6 

3935.6 
4028.4 
4122.4 
4216.5 
4310.7 
4405.0 
u499.3 
4593.8 

4783.3 
4600.5 

4878.1 

32 

34 
33 

2261.3 

2439.3 
2353.3 

2215.9 
2361.9 
2441.9 

2204.5 
2310.5 
2456.6 

2301.7 

2473.8 
2381.1 

2560.0 

2310.3 
2396.3 
2482.4 
2568.1 

2321.5 

2499.6 
2413.5 

2586.0 35 
36 

~~. 
2525.5 

~ .~ 
2534.1 

~ ~ .~ 
2542.7 

2611.9 2620.6 2629.2 2646.5 
~ ~. 
2655.2 2612.5 

2759.1 
2846.3 
2934.9 
3023.4 
3112.1 
3201.0 
3289.9 
3318.9 
3460.5 
3558.1 
3647.8 
3131.1 
3021.6 
3911.6 
9009.6 
4103.6 
4191.7 
4291.9 
4386.1 
4480.9 
4574.8 
4669.6 

4059.1 
4764.3 

31 

39 
40 

3n 
2698.5 
2185.1 
2812.9 
2961.9 

2101.1 
2193.0 
2081.1 
2970.3 

2115.0 
2802.5 
2890.6 
1919.1 
3061.0 

2133.1 
2819.0 
2908.3 
2996.9 
3005.5 
3174.3 
3263.2 
3352.2 
3441.6 
3531.2 
3620.9 
3710.7 
3000.6 
3890.6 
3981.4 
4075.4 
4169.5 
4263.6 
4357.0 
4452.1 
4546.5 
4641.1 
4735.9 

2141.0 
2028.6 
2911.1 
3005.7 
3094.3 
3183.2 
3272.1 

2811.1 

2980.0 
2899.4 

3016.6 41 

43 
42 

44 
45 
4 6  
41 
48 
49 
50 
5 1  
52 
53 
54 
55 
56 
51 
50 
59 
60 
61 

63 
62 

65 
64 

66 
67 
6 0  
11  69 
10 

12 
13 
7 4  
15 
76 
11 

19 
10 

00 

~~ .. 
3050.0 

~~ .. 
3050.9 

3138.0 
3227.6 
3316.6 
3405.7 
3495.3 
3585.0 
3614.1 
3164.6 
3054.6 
3944.6 
4037.0 

4225.9 
4131.0 

4320.1 
4414.4 
4508.1 
4603.2 
4690.0 

3141.6 3156.5 
3295.4 

3165.4 
3236.5 

3414.1 
3325.5 

3504.3 
3594.0 

3254.3 

3432.6 
3343.3 

3522 .? 
3611.9 
3701.1 

3334.4 
3423.6 
3513.3 
3603.0 

3361.1 
3950.5 
3540.2 
3629.9 
3119.7 3683.1 

3713.6 
3692.7 
3782.6 3191.6 3809.6 

3863.6 
3953.6 
4047.2 
4141.3 

3872.6 
3962.6 
4056.6 

3801.6 
3972.0 
4066.0 
4160.1 

3899.6 
3990.0 
4004.8 
4178.9 

9000.2 
4094.2 
4180.3 

4235.4 
4329.6 
YU73.R 

4244.0 
4339.0 
4433.3 
4521.6 

4254.2 
4340.4 
4442.7 

4631.7 
4537.0 

4126.4 
9021.2 
4916.1 
5011.0 
5106.0 
5201.3 

5393.3 
5291.3 

5409.4 
5585.5 
5681.1 
5111.9 

4213.0 
4361.3 
9461.6 
4555.9 
9650.6 
4745.4 
4040.2 

4282.4 
4376.1 
4471.0 
4565.3 
4660.1 
4154.9 
4049 .l 
4944.6 
5039.5 
5134.5 
5230.1 

5422.1 
5326.1 

5614.4 
5510.2 

5710.5 
5806.0 

5999.8 
5903.3 

6193.0 
6096.3 

6289.6 
6306.3 
64811.4 
6582.9 
6681.4 
6700.0 
6870.6 
6977.2 
1076.0 
1174.8 
1273.1 
1312.1 
1411.6 

4510.2 
".. 

9612.7 4622.2 
4716.9 
4011.1 
9906.6 
5001.6 
5096.5 

5182.1 5191.1 
5287.1 
5303.1 
5U79.8 
5575.9 
5672.1 
5768.2 
5864.1 
5961.2 

6154.3 
6057.7 

6341.6 
6250.9 

6445.0 
6543.5 
6642.0 
6740.6 

4707.5 
4802.3 
4891.1 
4992.1 
5087.0 

4192.0 
4881.6 
4982.6 

4030.7 
4925.6 
5020.5 

5210.9 
5115.5 

4935.1 

5125.0 
5030.0 

5220.5 

4954.1 
5099.0 
5144.0 
5239.1 

4963.6 
5058.5 
5153.5 
5249.3 

4973.1 
5060.0 
5163.0 
5258.9 

5017.5 
~... 

5112.5 
5260.5 5270.1 

5314.1 
5470.2 
5566.3 

5306.9 

5199.0 
5402.9 

5595.1 
5691.3 
5107.5 

5316.5 
5U12.5 
5508.6 
5604.7 
5700.9 
5797.1 
5093.6 

5335.1 5345.3 53544.9 
5450.9 
55U7.1 
5643.2 
5139.4 
5035.1 

6019.1 6028.8 
5922.6 5932.2 

6115.1 6125.3 
6212.3 6221.9 
6300.9 6318.6 

6415.9 

5364.5 
5460.6 
5556.1 

5431.7 
5527.0 
5624.0 
5120.2 

5441.3 
5537.4 
5633.6 
5729.8 5652.8 

5149.0 

5941.9 
5045.4 

6030.4 
6135.0 
6231.6 
6328.3 
6425.3 
6523.0 
6622.3 
6720.8 

5662.4 
5750.6 

5951.5 
5855.0 

6048.1 

5016.4 
5912.9 

5826.1 
5074.3 
5970.0 
6067.4 

5004.0 
5980.5 
6017.0 
6173.6 

5990.1 
6006.7 
6103.3 

6009.4 
6106.0 
6202.6 6149.6 

.~ .. . 
6164.0 

6291.3 
6331.9 
6435.1 
6533.6 
6632.2 
6130.7 

6260.6 
6351.3 

6270.3 
6366.9 

6219.9 
6376.6 6395.9 6U05.6 

6454.0 

6651.9 
6553.3 

64614.7 

6661.7 
6563.2 

6474.5 
6573.0 
6611.6 
6170.1 

6499.2 
6592.7 
6691.3 
6709.9 

6504.1 
6602.6 
6101.1 
6799.1 

6513.9 

6711.0 
6612.4 

6009.6 6150.4 6160.3 
." 

01 
02 
03 

6819.4 
6910.1 
7016.7 
1115.5 

6029.3 
6921.9 
7026.6 
7125.4 

6931.8 
6039.2 

7036.4 
7135.3 

6049.0 
6941.6 
1046.3 
7145.2 
7244.1 
1343.0 
7441.9 
1540.9 
1639.9 
7739.3 
1039.0 
1938.6 
0038.3 
0130.0 
0231.1 
0531.4 
8431.3 
0531.3 
0631.2 

6858.9 6068.7 6808.5 
6981.1 
1005.9 
7184.1 
1203.6 
1302.6 
7481.5 
7500.5 
1679.6 
1179.2 

7970.4 
7818.0 

.~ 
6898.3 
~. 

6900.2 
~. 

6957.5 
7056.2 
1155.1 
725U.O 

6961.4 
7066.1 
1165.0 
7263.9 

6991.0 

7194.6 
1095.7 

1293.5 
7392.5 

7006.0 

1204.5 
1105.6 

77n3.4 85 1214.4 1224.3 7234.2 
~. 

06 
07 
8 8  

1313.3 

7511.2 
7412.2 

7610.2 
7109.5 

1323.2 
1422.1 
7521.1 

1119.4 
7620.1 

7333.1 
1432.0 
7531.0 
7630.0 
7129.4 

7920.6 
7029.0 

1352.9 7362.0 
~~ 

7402.3 
.. . 

7451.8 
7550.0 
7649.0 
77u9.3 

7461.7 
7560.7 
1659.1 
7159.3 
7058.9 
1950.5 
8058.2 
8151.9 
8251.6 
8357.4 

7491.4 1501.3 

7699.5 
7600.3 

1898.1 
1199.1 

1990.4 

7570.6 
1669.6 
1169.2 
1860.0 

1590.9 
7689.5 
1789.1 
7000.8 

~. 
89 
90 
91 1809.1 

7908.1 
0000.3 
8 1 0 8 . 0  
0201.7 
8301.5 
0407.4 
8501.3 

I 8107. 
8607.2 

1819.0 1048.9 
92 
9 3  
94 

1918.1 
0010.3 
0110.0 
0211.7 

1940.6 
8048.2 
0147.9 

8347.4 
0241.6 

0447.3 
0547.3 
0641.2 

1968.5 
0060.2 

1908.4 
0028.3 
0128.0 
8227.1 

8078.1 

8277.6 
0111.8 

8311.4 

8000.1 

8201.5 
8101.0 

8301.4 

8 0 9 8 . 1  
8191.0 
8291.5 
839 1.4 

8161.9 

0361.4 
8267.6 95 

96 
9 1  
98 
99 
101 

0311.5 8321.5 
8411.4 
8517.3 
8611.2 

2 

8521.3 
0427.4 

8621.2 

0457.3 
8557.1 
0651.2 

8461.3 
0561.2 
8661.2 

8971.3 
8577.2 
8677.2 

8401.3 
.. . 

0497.3 
~~. . 

8507.2 
0681.2 

8597 .2 
0691.2 
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I I Having Obtaining analyzed the  algorithm the efficiency of two-way merging in  terms of 

~ comparisons, we now develop the algorithm.  Recalling the con- 
straint  that no more space  should  be used than whatever is neces- 
sary  to hold the result, we see that  the conventional two-way 
merge technique, which requires  two  areas, is inappropriate. 
Instead, merging can  be  done  by a  chaining  technique  in the 
single area that is  used to  hold the result. With  this  area labeled 
as  the vector P, an ordered  sequence  can  be  represented  in P 
as a chained  list of indices. In  any sequence, there is a first, or 
lowest,  element.  Call the index of this  number  the  head of the 
chain. If i is the head of the chain, then  let P[i]  be the index of 
the next  number  in the sequence. That position in P contains the 
index of the next  number  in  the sequence, and so on to  the last 
number  in  the sequence. The  last position in  the chain  contains 
its own index. The following example  illustrates  these  concepts: 

Index or position number: 0 1 2 3 4 5 6 7 8 9 
The  vector A: I1 9 3 6 8 5 0 7 4 2 
The vector P: 0 0 3 4 I 7 5 7 8 8 

There  are  three chains  contained  in the vector P, one  repre- chain 
senting the sequence of numbers A [ 2  3 4 1 01, one representing the example 
sequence A[6 5 71, and one representing the sequence A [9 81. The 
first chain  is  stored in P in positions 2 ,  3, 4, 1, and 0. The head of 
the first  chain is 2 ,  the index of the lowest number in  the sequence 
3 6 8 9 1 I.  P[2] is 3, the index of the next  number  in the sequence, 
and P[3] is 4, the index of the  number 8 in A, the next  number 
in the sequence. P[4] is I, the index of the 9 in A, and P[1] is 0, 
the index of the 11 in A. Since A[0],11, is the  last  number  in 
this sequence, P[O] contains 0 to  indicate  this.  The  last position 
in the chain  always  contains its own index. The other  two se- Figure , APL program of the 

quences represented in P start  in positions 6 and 9, respectively, M2 function 

and  are represented  in the same  chained  fashion. If we have  any 
one of the  three  starting positions, 2 ,  6, or 9, we can  examine the 0 I P ; I ; J ; K ; L  

numbers  in  any one of the  three sequences in the proper  order. 
Given the heads of the chains  representing any  two sequences, 
we can merge them  to form  a new sequence, represented  by re- C61  PCJl+.t  

chaining the indices in P, and  the  starting position of the new 
chain  can  be  recorded. If this is done with  the  last  two sequences 
in the example, P becomes 0, 0, 3, 4, 1, 7, 9, 7, 5, 8. The head of 
the new chain is 6 ; the end of the new chain is 7. 

Let M2 be a  function to merge two sequences represented 
by  chains in  this way. M2, shown in Figure 1 as  an APL function, 
accepts the heads of two chains, i and j, and  returns  the head 
of the single chain  as  a  result. 

The M2 function  can now be used to  repeatedly merge sequences 
of appropriate  lengths,  until a single sequence  is  obtained. A v Z+MP N 

recursive  sorting  algorithm, MP, is given in  Figure 2 as an APL ::: ~ ~ ~ ~ r ~ ~ ~ x N ~  M 2  M P L O . S x N  

function. MP creates  a chained representation  in P of a  sequence [:: ,&+l+PcZI+Z+NEX 

c 1 1   P + - l - P  
c 2 1   I + P P  
[ 3 1  + L O D L + I + I - I  
C41  + 3  IF 0 6 J + P C I I  
C51 K + P C J + - l - J l  

C71 L+J 
Cel J+K 
C91 r5 IF d<O 
c 1 0 1  + 3  

V 

Figure 2 APL program  of  the 
MP function (user M2) 



The MP program also has all the comparison properties  implied 
MP function by the previous  mat'hematical model. If n = 1, then  the  head of a 

chain of length  one  is  needed, which can  easily be  obtained by 
getting the index of the next  unexamined  number  in the  input 
vector A and  storing  that  number  in  its own position in P, the 
signal  for the  end of the chain. The head of the one-element  chain is 
the result of executing LIP when n is 1. However, to  get the index 
of the next  unexamined  number  in A, a nonlocal variable, NEX, 
is needed to record this  information.  After using NEX, by  adding 
one to  it, we see that  i t  is all  set'  for the next  request. In  MP, NEX 
is  assumed to  have been set t o  zero before  t,he first execution of 
M 1'. 

If n is not one  in the hrp function,  then a  chain  must  be  created 
by merging two  other sequences, neither of which has been created 
yet.  The function hfP is used recursively to  create  these  other  two 
sequences first, and  then  the merging  function, k12, is used to 
produce the head of the single sequence of length n. When n is 
not one, the result of MP is set  to  the  output of M2, where M2 is 
used to merge the  two sequences formed by  asking for MP(L.5n) 
and MP(r.5n), respectively. If the vectors A and P are defined, 
NEX is set  to zero, and MP n is executed, then MP produces 
the head of a single chain  representing  a  sequence of n elements 
in ascending order.  Suppose,  for  example, that A is the vector 8,  
23, 11, 5,  3 ,  4, 23. The value of n is 7, the number of elements  in 
the vector A. After NEX is set to zero, and  the function MP 7 is 
executed, the value  returned  by SfP is 4, the index of the lowest 
element of A. The vector P is then 2 ,  6, 1, 0, 5, 3, 6. Note  that  the 
last  index in the chain is 6, and  that  the original  order of equals 
is preserved. 

Raving  obtained a chained  sequence  in P, we find that  it 
the  desired is still not  the desired permutation  vector.  Then,  what  must 

permutation be  done to  arrive  at  the desired permutation? As a first  step, 
vector trace  the chain from  beginning to  end,  replacing the links  in the 

chain  with their  relative positions  in the sequence. The head of 
the chain thus becomes zero, the second element of the chain 
becomes a one, eta., unt,il the  entire  chain is traced.  When  this 
procedure is applied to P in the above  example, it becomes 3, ti, 
4 ,2 ,0 ,1 ,6 .  A  number  in P, say P[z] ,  is now the  number of elements 
in A which come before '4[x] in the final ordering of A. P[O] is  a 3 ,  
thus  the element A[O] will be in position 3 in  the final result, since 
there  are t'hree  elements of A preceding it. If we now set A[P] to A, 
the elements of A will be in  ascending  order. Also, if  we set P[P]  to 
0, 1, 2 ,  . . . , n - 1, P would be the desired permutation, since 
A [ P ]  would be A in ascending order. 

Let P be some permutation vector of the same  length  as A, 
and  let ir(F') be the inverse of P. P[iv(P)]  is the  identity  permutat- 
ion, 0, I ,  2 ,  3 ,  . . . , etc.  Let X = ALP]. Then X[ iv (P)]  = A .  Since 
the vector P obtained  above  is  such that X [ P ]  = A ,  where X is 
the elements of A i n  ascending  order, then X = A[iv(P)].  It is 
tlhen necessary to change P into i?l(P) without' using anot,her area 
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to  do SO. This problem is the  same  as  that faced in  the  sorting 
method called reserved-seat  sorting, and essentially involves in- 
verting  a  permutation  in  its own space.  Algorithms that  do  this 
efficiently have been known for a t  least the  last  ten  years,  and 
One such  algorithm to perform this inversion (IP) is shown in 
Figure 3. 

With  the above  results, the function MERGESORT1, shown 
in  Figure 4, creates the  permutation P, given A, by using the recur- 
sive  funct'ion MP and  the  function IP to do so. Line 1 sets NEX 
to zero, the index of the first  element of A. NEX is incremented 
by one  each  time i t  is used in  the MP function to  incorporate 
the elements of A into  the  sort one at a time. Line 2 sets P to a 
vector that is the same  length  as A, containing  all zeros. The 
zeros are  not used, and P could be set  to  anything, as long  as i t  
is the same  length  as A. Line 2 then executes MY, giving it  the 
length of P for an argument. A chained  representation of a single 
sequence  involving  all the elements of A is  created  in P, and  the 
head of this chain  is returned  as a  result. I is set to  the head of 
this chain. 

Lines 3 through 7 trace  out  this chain,  replacing  each  index 
in the chain wit)h the index of its position in  the final ordering. 
A permutation is now obtained  in P that is the inverse of the 
permutation  desired. The  permutation inversion  function  is 
then  used, on line 8, t80 invert P in  its own space, yielding the 
final result. 

Looking at  the recursive  sorting  algorithm, we see that  the 
equivalent  nonrecursive  algorit'hm  is  obtained and  extended to  
multidimensional  arrays. The new algorithm, shown in  Figure 5 
as GRAIIE, uses two  stacks to  implement the recursion. In  Figure 
5 ,  C is the coordinate  along which ordering permutations  are 
created, Z is the resulting array containing the ordering  permuta- 
tions,  and A is the  input  array.  The  two  stacks  are  the vectors P 
and R. P contains the lengths of the sequences needed at various 
stages of the  sort, whereas R contains the heads of chains  represent- 
ing merged sequences. The lengths of P and R must be at least  one 
more than log,(n), where n is the  number of elements to  be  sorted. 
This  is reflected on line 8 of GRADE, where P and R are  initially 
set to  zeros. 

Lines 1 through G of GRADE perform the  initial housekeeping 
and  are executed  only once. Lines 7 through 10 are executed 
once for  each  ordering  permutation produced in the  output  array. 
The  variable Z serves the same  purpose  as NEX does in MP, i.e., 
it is used to pick up  the next  unexamined  element of the  data 
being sorted. J and K are indices for awessing the  two  stacks 
P and R, respectively. 

Tines I 1  through 1 3  examine the P stark, determining the 
length of the next sequence required.  When  a sequence of length 
one is required, line 12 creates it. When  a  sequence of length 
greater than one is  needed, lines 14 through 29 create it by merging 
two c2h:Lins and  store  t'he  head of the resulting  chain at  R(K]. 
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[ e l  PCOl+L 
C9l I+N-W 
[lo] K+-l+J+O 
C111 +ll IF ~ ~ P C J + J + ~ I + ~ O . S ~ ~ P C J ] - P ~ J ] < O  
E121 RCK+Ktll+ZCIl+I+It~ 
C131 +ll IF O>PCJ]+-P[J+J-I] 
C141 S+RCKl 
CIS1 6?+RCK+K-l] 
C161 +19 IF ACSl<ACgl 
C171 RCKl+Q 
cl81  +23 
C191 RCKlcS 

c211  +26 IF ACSl<A[g] 

C231 +21 IF T:Q+ZCT+Q] 
C241 ZCTl+S 

C261 ZCTl+S 
C251 +29 

C271 +21 IF T:S+ZCT+S] 

C291  +13 IF JzO 
C301 I+RCKl 

C321 J+ZCII 
C311 K+l 

C331 ZCIl+-K+K+W 

C351  +32 IF K<III+Y 
E341 I+J 

C361  +44 IF N>S+K+K-W 
C371 +36 IF OsJ+ZCKI 
C381 I+ZCJ+-K+J] 
C391 ZCJl+ZlLStW 

c221 ZCTl+Q 

I C281 ZCTI+Q 

I 
c421 

C441 
E431 

C461 
CItSl 

C471 
r u e 1  

V 

J+I 
+38 IF J<O 

N+N+ 1 
+36 

N+NtY-w 
+8  IF W>B+B+l 

+7 IF N < E  
Z+HpZ 

E11 Z+ArtB 
V Z+A IF B 

V 

When  a chain of the right  length  for one of the ordering per- 
mutations is obtained, lines 30 through 35 trace  it,, rcplacing 
its  dements with the indices of their positions in the final ordering. 
Then lines 36 through 43 invert  the  permutation  in place. Lines 
44 through 47 check for completion of t'he  entire process. Line 
48 ('auses the result, 2, to bc an  array of the same size that A 
is originally. 
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Summary comment 
The machine  language  implementation was derived  from the 
APL function GRAIIE directly.  The modeling process used to  
obtain the final machine  language  program  eliminated  a sub- 
stant,ial  number of defeds before a  machine  language  program 
even existed and  gave  an  approximate idea of the performance of 
the rnachine language  program. If an  algorithm is to  be  imple- 
mented  in  machine  language, it is  recommended that  it first  he 
modeled in t'he fashion used in this  paper,  starting  with a mathe- 
matical  analysis of the algorithm,  then  obtaining successive algo- 
rithms at more detailed levels of description until  the machine 
language  program has been obtained. 

Appendix 
Section 1 .  The usual  sample  correlation coefficient,  is 

e = o  = 

[ 2 ( X i  - 2)' (ys - g ) 2  i=o 2 = U  I"' n-1 

If x and y are zero-origin permutation  vectors of length n, 
then 

n-1 [E x 4  - 3n(n - 1)' 
b = -____--__- n3 - n 

When y is the ident'ity  permutation,  then 

x ,  yi = %.X, 

Section 9. The expected value of the  nunher of comparisons taken 
to merge two sequences of lengths x and y, where the sequences 
have been formed  by  ordering two  sets of independent  identi- 
cally distributed  random  variables,  is given by: 

where x i i '  and (x + y)ii' denote falling factorials, z(x - I )  (J - 2 )  
. . . (x  + 1 - i), i terms  in  the  product,  and 2'" = I .  The  term 
x r 14 is t'he  larger of either x or y. 

Section 3.  For m y  sorting  algorithm  based or1 csomparing, E ( C )  2 
log, (!n>, provided that  the n numbers are distinct, or provided 
that  tests  for  equality  are not made, and  the !n arrangements 
of the n numbers are  equally likely. 

Proof: Let X be the vect,or of n numhers to  be sort>ed, and let Y 
be the vector of the n numbers  sorted i n  ascending order.  Then 



Y[P] -= X, where P is a permutat,ion  vector,  and P is unique 
because of the requirement that X cont'ains  distinct  numbers. 
When  two  numbers X; and Xi are  compared, if X i  < Xi, then 
Pi < Pi, and  if X ,  > X ; ,  then Pi > Pi. Initially  the  permutation 
P can be ally one of the !n permutations. The comparison  restricts 
P t'o one of two  subsets of !n permutations,  either the subset  where 
P ,  < P , ,  or t'he  subset where P ,  > P,. The  next comparison 
similarly partitions one of these  two  subsets  into  two  mutually 
exclusive sets, one containing P, and  the  other  not.  This process 
continues until a one-element set containing P has been 
determined. 

Now, suppose that, when a sort  is performed where P is the 
ordering permutation,  the  results of all the comparisons that  the 
program  performed while sorting, Le., determining P, were 
recorded in the order the comparisons were done.  When two 
numbers Xi and X i  are  compared, record  a zero if X i  < X , ,  and 
record  a 1 if Xi > X , ,  where i < j. The result of t'he  comparison, 
i.e.,  a zero or a  one,  determines which subset of the possible 
permutations  contains P. 

Lemma. The sequence of zeros and ones recorded  for  a  given 
permutation P is not  identical  with  the sequence of zeros and 
ones which would have been recorded for a permutation Q # P. 

Proof: Each  time a  comparison is done,  a set of permutations 
is partitioned  into  two subsets, one containing P and  the 
other  not. If Q is not  the same as P, and if Q had  been  the 
permutation  to  be  determined,  then if Q was in  the set  not 
containing P, the result of the comparison would have been 
different, i.e., a zero would have been recorded instead of a 
one, or a one instead of a zero. I n  this case, the sequences 
recorded for P and Q are different. The only way for  the 
sequences to  be  the same is for Q to  always be  in  the  set 
containing Q. But eventually  a one-element set  containing P 
alone is obtained; hence, Q must  have been in a set  not con- 
taining P at  some  point.  Thus,  the sequences for P and Q 
are dlffercnt somewhere. 

Since P and Q are  arbitrary  permutations,  then  the sequences 
recorded for any pair of permutations  are different. This means 
t>hat  the sequence for a given permutation P is unique.  Since 
tjhere are ! n .  permutations,  there  are !n distinct sequences of 
zeros and ones. In  any  system of C distinct  equally  likely codes, 
an optimal  enroding of the system using zeros and ones must 
have an average of a t  least log, C bits  in a code. Hence, the average 
number of zeros and ones in a recorded  sequence is a t  least 
log,( !n), or the average  number of comparisons to  sort  is  at  least 
log, ( !n) . 



The above  result also applies to  any met’hod of sort’ing where 
a series of tests is applied, and where each t’est has only two possible 
outccmes. The extension to  tests where more than two outcomes 
can result  is  similar. 
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