
simulated and built. The experience thus gained has indicated
that: (1) It is possible to include simulation in a development
cycle and as a result shorten that cycle, even in a changeable
technology; (2) The efficiency of debugging hardware will improve
because those testing the system have an opportunity to develop
their troubleshooting techniques and t’o learn the computer
system prior to the availability of hardware; (3) Logic problems
t,hat might otherwise remain undetected can be detected with
t,hree-value simulation; and (4) Future technologies will demand
dcsign verification simulators similar to the three-value simulator.

ACKNOWLEDGMENT

The authors wish to ac.knowledge development of the three-value
simulation system by the follo\\ring individuals: R. W. Butler,
11. A . Haynes, ,J. S. Jephson, J . AI . Krein, R. P. McQuarrie,
XI. T. Talbott, and R. J . Suhocki.

CITED ItEFERENCE AND FOOTNOTE

1. Correction of design defects.
2 . E. B. Eichelberger, “Hazard detection in combinational and sequential

swit,ching circuits,” IBBM Journal of Rrsmrch and Development 9, No. 2 ,
90-99 (March 1965).

GENERAL REFERENCES

1. D. E. Muller, “Treatment of transition signals in electronic switching
circuits by algebraic methods,” IRE Transactions EC-8, 401 (1959).

2. h4. Yoeli and 8. Itinon, “Applications of ternary algebra to the study of
stat>ic hazards,” Journal of the Association for Computing Machinery 11,
No. 1, 84-97 (January 1964).

IBM SYST J

An ordering operator that leads to the delmlopment of a n algorithm
for internal sorting i s described. An analysis of the algorithm i s
presented, togethcr with a discussion of the number of comparisons
necessary for sorting.

It is shown that the number of comparisons i s close to the theoretically
obtainable number. The sorting algorithm i s a variant of the two-way
merge.

Internal sorting with minimal comparing
by L. J. Woodrum

Internal sorting is such a common operation on today’s digital
computer systems that primitive ordering operations were in-
cluded in the APL\XN Terminal The operations, (balled
grade, are represented by the symbols 4 and for ascending
and descending ordering, respectively, and they produce ordering
permutations as results. An ordering perrnutat,ion can then be
used as a subscript on the original vcct,or to order t,he data. In
APIA, subscripts are allowed to be vect’ors as well as sc-alars.
Either zero-origin or one-origin indexing is :dlowed; in zero-origin
indexing the first element of a vector A is A [O] , in one-origin
indexing the first element^ is A []] . All indexing used in this paper
is zero-origin.

As an example of the use of a vector as a subscript, suppose
A is the vector 5 , 3 , 9, I , and P is the vector 3 , I , 0, 2. Then A[]’]
is 1, X , 5 , 9; A[O, I] is the vector 5 , 3 ; A [2 , 1, 01 is the vertor 9,
3, 5 ; and A [2 , 3 , 0, 01 is the vect,or 9, 1, 5 , 5 . When P is :x per-
mutat’ion vertor and is the same lengt,h as A, 11[1’] is n rearrange-
ment of the element’s of A. When P is R permutxt’ion vect’or such
that A [P] arranges the elements of A in ascending or descending
order, P is called an ordering permutation.

The Al’J, grade operator 4 il produres the ascending ordering
permutation for a vector A, and A4 produces the descending
ordering permutation. The gr:tdc opcrat’ors :we : d ~ o defined for

INTERNAL SORTING 189

1

arbitrnry multidimeusion:L1 arrays A, and produce ordering per-
mutations for the elements along a selected coordinate. If A is
a matrix, then I' + 4 ,4 produces a matrix P such that P[i ;]
is the ordering permutation for rotv i of A, i.e., A[i; P[i ; I] is row
i of A arrmged in ascwxdivg order. To operat'e on the columns
of A, the operator is subscripted to indicate that the operation
is to be performed :tlong the first, coordinate. If P +- [CIA,
Tvhere c = 0 in zero-origin indexing, and c = 1 in one-origin
indexing, then P is a matrix the same size as A, such that A [P [; i] ; i]
is column i of A arranged in ascending order. For the multidi-
meusion:tl vase, 4 [C I A produces 311 array the same size as A,
\\-hich c.ont:xins ordering permutations along coordinat'e c.

In t,he selcction of :I sorting algorithm for the grade operators,
the following rcquircments must he met,:

The algorithm should produce the result' without using much
more s p : ~ ~ than needed to cont>ain the result'.
Estension to sorting :tlong coordinat'cs of multidimensional
arrn!-s must be easy.
Thc nlgorithm should be efirient, in its use of comparing,
since comparing is :I fairly expensive operation in the context
of the interpreter.
The origit1:d array (the input) must' not he disturbed.
The original ordcr of ec@s must' be preserved.

v:tri:ttlt of t'llc c.onvcntion:ll t\vo-\vay merge, using a c~haining
te rh ique for merging to avoid the use of t,wo areas, satisfies
these requircnwuts. We develop the algorithm discussed here
by determinitlg the theoreticd loner limit on the number of
cmnp:trisotw necded to sort n numbers, then finding t,he best
:whievnhlc two-nxy mcrge sort, based on the average number
of csomptuisolrs. The efficiency of this t,wo-w\.ay merge is examined
in the light o f the theoretical limits on comparing i n internal sorts
ilr gcner:ll. .I m:Lthernatic.al model of romparing in t\z.o-\vay merge
sorting is tlevclopcd, :n~d the :dgorithm is derived from this model.
'l'he nlgorithm so obtained is a recursive program, whirl1 is the11
cqrcsscd nollrccuxivdy, using t \vo st,acks inst,ead of the recur-
sion. Tllc otlc.-dirllellsiot1:11 (*:ISC is considered first and then gel)-
or:tlixed to thc ~nrtltitlilnetlsio~~:~l c m c .

because it depends on the particular values of the data, i.e., it is
sensitive to the distribution from which the data were drawn.

To obtain a distribution-independent measure of order, create
:L set of indices by replacing each number with the index of its
position in the ordered set. Then compute the sample correlation
coefficient of this set of indices with the ordered set of indices,
0, 1, 2 , . . . , n, - 1. The. procedure for computing the sample
correlation coefficient for this special case is simpler than the
general case and is given in the Appendix.

For data which are already in ascending sequence, this cor-
relation coefficient is 1, for inverse sequences the coefficient is - 1,
and for “random” sequences this measure is zero. When sorting
experts talk about “random” data, they mean that this correlation
coefficient is zero, or that they assume it is zero.

To determine if a sorting algorithm takes advantage of natural
sequencing in the data then means examining the number of
comparisons taken, assuming that the correlation coefficient is
some fixed value, or is in some given range. This kind of analysis
of sorting algorithms has rarely, if ever, appeared in the literature,
except for coefficients of - 1, 0, and 1 corresponding to inversely
ordered files, “random” files, and in-sequence files. In keeping
with this tmdition, the algorithm in this paper is evaluat’ed
for coefficients of - I , 0, and 1.

Analysis of two-way merging

Certain modifications permit the two-way merge to be especially
suitable for t>he implementation of the API,\%O grade operations.
In any internal sort by two-nay merging, there is a final merge of
two sequences, say of lengths a and b respectively, t’o form the
ordered sequencc of lengt’h n . The number of comparisons to do
this merge is, at most, n - I . Thus the worst-case number of
romparisons is n - 1 plus the number of comparisons required
(worst cases) to obtain the ordered sequences of lengths a and b.
These lengths depend 011 the particular algorithm, and may even
be chosen in some random fashion. The function for the worst-case
number of comparisons for any internal two-way merge sort
is easily defined rernrsively, ns follows:

1. w(1) = 0 ;

2 . ~ (n) = (n - 1) w(a) + w (b) , where n = n + b ;

3 . 72, a , and 6 arc positive nonzero int,egers.

To minimize the tvorst case, a and b should be chosen so that
w(n) is as small as possible. It follows from results presented by
Glicl~sman’ that, w(n) is minimized when a is chosen to be the
wiling of onc half of n, and b is (.hose11 to be the floor of one half

of n, where the floor, “I,” of 2 is the largest integer not greater than
x . If a and b are chosen as above, it is a mathematical curiosity
t,hat w(n) is given by the following two formulas:

w(n) = 1 + 27i - 1) + i(n - 2i)
where i = L log, n and

I The result w(n) is listed for values of n up to 1000 in Table 2 .
It is fairly well approximated by n (log, (.5n)), an approximation
that has long been used for the average number of comparisons
for sorting by two-way merging. However, w(n) is not the average
value of c for this sort, but its worst case. Before giving the
algorithm, let’s look at the expected value of c for such an algorithm.

The expected value of c, R (c) , can also he computed by the
following recursive function :

1. c(1) = 0;
2 . e(n) = e(a) + e(b) + m(a; b) , where a = b = L.5n,

and m(a; b) is a funrtion of a and b that gives the expected
value of the number of comparisons to merge two sequences
of lengths a and 6 , respectively.

The m function is given in the Appendix. The e function has been
evaluated for values of n up to 1000 in Table 3. From a comparison
of the entries in Tables 1 and 3, it is apparent that E(c) for this
algorithm does not differ very much from the theoretical limit for
E(c) of any algorithm. For n = 1000, the difference is 177 com-
parisons, a small number compared to 8530, the theoretical limit.

A sort based on the above mathematical model will achieve
its minimum value for c when the data are already in ascending
order, assuming that the sequence of length b is created first,
and that numbers are picked up from the input in the order they
occur, i.e., A[O] is the first number used, followed by A[1], etc.
The minimum value of c can be calculated by replacing the
“n - 1” in function w by “b,” since if the numbers in the b se-
quence all precede the numbers in the a sequence, it will take
exactly b comparisons to merge t’he two. When the correlation co-
efficient, is - 1 (the data are in inverse order), then the number of
comparisons taken will he close to the number taken if the coeffi-
cient is + 1 (the data are in ascending order). An examination of
this minimunl shows that the algorithm does take advantage of
“natural sequencing” present in the data. For example, to sort
an ascending input of one hundred numbers, it takes 316 com-
parisons as opposed to the average of 542 comparisons. Note that
if an algorithm rould always sort with a worst case equal to the

Table 3 Expected value of the number of comparisons taken to sori n numbers
using two-way merging

0 1 2 3 4 5 6 1 8 9

4 165.1 110.1 116.3 101.9 101.6 193.2 190.9 204.5 210.2 216.0
5 221.9 227.8 233.6 239.5 245.4 251.3 251.2 263.2 269.1 215.1
6 281.1 201.1 293.1 299.1 305.1 311.5 311.9 324.3 330.1 331.1
1 343.5 350.0 356.4 362.9 369.3 315.0 302.3 388.0 395.3 401.8
8 408.3 414.9 421.5 428.1 434.1 441.3 447.9 454.6 461.2 467.8
9
10
11
12
13

414.5
541.8
610.6
680.2
150.9
825.1
099.1

1050.1
914.6

1203.6
1121.0

1201.7
1360.4

401.1
540.1
611.5

750.3
681.2

032.5
907.2

1058.3
902.2

1134.6
1211.2
1289.6
1368.3

487.0
555.6
624.4
694.2
165.7
840.0
914.6
989.0

1065.9
1142.3
1210.9
1297.4
1316.1

494.4
562.4
631.4
701.1
713.2
841.4
922.1
991.4

1013.5
1149.9
1226.1
1305.3
1304.0
1463.0
1542.6

1102.3
1622.3

1185.1
1069.2

2038.0
1953.5

2122.0

2293.1
2379.1
2465.2
2551.4
2631.9
2724.5

2201. n

501.1
569.3
638.4
108.1
180.6
054.0

1005.0
929.6

1081.1
1151.6
1234.6
1313.1
1391.9

501.0
576.2
645.3
715.1
188.0
862.3
937.1

519.4

652.3
583.1

722.1
195.4

944.6
869.8

1096.4
1020.2

1112.9
1250.3
1320.9
1401.1
1406.8
1566.5
1646.3
1126.3
1810.3

521.3

659.3
590.0

729.1
802.0
811.2
952.1

1021.8
1104.0
1100.6
1250.1
1336.7
1415.6
1494.8
1514.4
1654.3
1734.7
1810.1

520.1 5 3 5 . 0
596.8
666.2
736.1
810.2

603.1
013.2
743.5
011 .l

14
15
16
11
10

20
19

21
22
23
24
25

884.1
959.6

1035.4
1111.1
1180.2
1266.0
1344.6
1423.5
1502.1 1510.1
1582.4 1590.4
1662.3 1670.3
1143.1 1151.5
1021.1 1035.6

092.2

1043.0
961.1

1119.3

1213.8
1195.9

1012.6
1000.7
1165.2
1242.4
1321.0
1399.0

1352.5
1431.4

1439.3
1510.1
1598.4

1441.2
1526.6
1606.4
1686.3

1455.1
1534.6
1614.3
1694.3

1470.9
1550.5
1630.3
1110.3

1418.9
1550.5
1630.3
1118.3

26
27
28
29

1159.9 1768.3 1776.1
~~

1193.5
~~.
1001.9

1844.0
1928.2
2012.6

1852.4
1936.6
2021.1
2105.9

1060.8
1945.1
2029.6
2114.3

1811.6

2046.5
1961.9

2131.3

1886.1
1910.4
2055.0
2139.0

1094.5
1918.8
2063.5
2148.3

1902.9
1907.2
2071.9
2156.8

1911.3
1995.7
2080.4
2165.3

1919.8
2009.1
2088.9
2173.8 30

31 2102.3 2190.0 2199.3 2216.3 2224.8 2233.3

2409.9
2310.9

2491 . o
2511.3
2663.9
2750.5
2837.5
2926.0
3014.6
3103.2

3201.0
3192.1

3370.0
3459.5
3549.1
3630.0

3018.6
3120.7

3900.6

2241.0 2250.3
2336.1
2422.1
2500.3
2594.6
2681.2

2855.2
2761.0

2943.1
3032.3
3121.0
3209.9
3290.0
3301.0
3411.4
3561.1
3656.0

3836.6
3746.1

3926.6
9019.0
41 13 .O
4207.1
4301.3

4489.9
4395.6

4584.3
4619.0
4713.0
4068.6

2z5a.n
2344.1
2430.1
2516.9
2603.3
2689.8
2716.5
2064.0
2952.6
3041.2
3129.9
3218.8
3301.1
3396.8
3486.4
3576.0
3665.8

3845.6
3755.6

3935.6
4028.4
4122.4
4216.5
4310.7
4405.0
u499.3
4593.8

4783.3
4600.5

4878.1

32

34
33

2261.3

2439.3
2353.3

2215.9
2361.9
2441.9

2204.5
2310.5
2456.6

2301.7

2473.8
2381.1

2560.0

2310.3
2396.3
2482.4
2568.1

2321.5

2499.6
2413.5

2586.0 35
36

~~.
2525.5

~ .~
2534.1

~ ~ .~
2542.7

2611.9 2620.6 2629.2 2646.5
~ ~.
2655.2 2612.5

2759.1
2846.3
2934.9
3023.4
3112.1
3201.0
3289.9
3318.9
3460.5
3558.1
3647.8
3131.1
3021.6
3911.6
9009.6
4103.6
4191.7
4291.9
4386.1
4480.9
4574.8
4669.6

4059.1
4764.3

31

39
40

3n
2698.5
2185.1
2812.9
2961.9

2101.1
2193.0
2081.1
2970.3

2115.0
2802.5
2890.6
1919.1
3061.0

2133.1
2819.0
2908.3
2996.9
3005.5
3174.3
3263.2
3352.2
3441.6
3531.2
3620.9
3710.7
3000.6
3890.6
3981.4
4075.4
4169.5
4263.6
4357.0
4452.1
4546.5
4641.1
4735.9

2141.0
2028.6
2911.1
3005.7
3094.3
3183.2
3272.1

2811.1

2980.0
2899.4

3016.6 41

43
42

44
45
4 6
41
48
49
50
5 1
52
53
54
55
56
51
50
59
60
61

63
62

65
64

66
67
6 0
11 69
10

12
13
7 4
15
76
11

19
10

00

~~ ..
3050.0

~~ ..
3050.9

3138.0
3227.6
3316.6
3405.7
3495.3
3585.0
3614.1
3164.6
3054.6
3944.6
4037.0

4225.9
4131.0

4320.1
4414.4
4508.1
4603.2
4690.0

3141.6 3156.5
3295.4

3165.4
3236.5

3414.1
3325.5

3504.3
3594.0

3254.3

3432.6
3343.3

3522 .?
3611.9
3701.1

3334.4
3423.6
3513.3
3603.0

3361.1
3950.5
3540.2
3629.9
3119.7 3683.1

3713.6
3692.7
3782.6 3191.6 3809.6

3863.6
3953.6
4047.2
4141.3

3872.6
3962.6
4056.6

3801.6
3972.0
4066.0
4160.1

3899.6
3990.0
4004.8
4178.9

9000.2
4094.2
4180.3

4235.4
4329.6
YU73.R

4244.0
4339.0
4433.3
4521.6

4254.2
4340.4
4442.7

4631.7
4537.0

4126.4
9021.2
4916.1
5011.0
5106.0
5201.3

5393.3
5291.3

5409.4
5585.5
5681.1
5111.9

4213.0
4361.3
9461.6
4555.9
9650.6
4745.4
4040.2

4282.4
4376.1
4471.0
4565.3
4660.1
4154.9
4049 .l
4944.6
5039.5
5134.5
5230.1

5422.1
5326.1

5614.4
5510.2

5710.5
5806.0

5999.8
5903.3

6193.0
6096.3

6289.6
6306.3
64811.4
6582.9
6681.4
6700.0
6870.6
6977.2
1076.0
1174.8
1273.1
1312.1
1411.6

4510.2
"..

9612.7 4622.2
4716.9
4011.1
9906.6
5001.6
5096.5

5182.1 5191.1
5287.1
5303.1
5U79.8
5575.9
5672.1
5768.2
5864.1
5961.2

6154.3
6057.7

6341.6
6250.9

6445.0
6543.5
6642.0
6740.6

4707.5
4802.3
4891.1
4992.1
5087.0

4192.0
4881.6
4982.6

4030.7
4925.6
5020.5

5210.9
5115.5

4935.1

5125.0
5030.0

5220.5

4954.1
5099.0
5144.0
5239.1

4963.6
5058.5
5153.5
5249.3

4973.1
5060.0
5163.0
5258.9

5017.5
~...

5112.5
5260.5 5270.1

5314.1
5470.2
5566.3

5306.9

5199.0
5402.9

5595.1
5691.3
5107.5

5316.5
5U12.5
5508.6
5604.7
5700.9
5797.1
5093.6

5335.1 5345.3 53544.9
5450.9
55U7.1
5643.2
5139.4
5035.1

6019.1 6028.8
5922.6 5932.2

6115.1 6125.3
6212.3 6221.9
6300.9 6318.6

6415.9

5364.5
5460.6
5556.1

5431.7
5527.0
5624.0
5120.2

5441.3
5537.4
5633.6
5729.8 5652.8

5149.0

5941.9
5045.4

6030.4
6135.0
6231.6
6328.3
6425.3
6523.0
6622.3
6720.8

5662.4
5750.6

5951.5
5855.0

6048.1

5016.4
5912.9

5826.1
5074.3
5970.0
6067.4

5004.0
5980.5
6017.0
6173.6

5990.1
6006.7
6103.3

6009.4
6106.0
6202.6 6149.6

.~ .. .
6164.0

6291.3
6331.9
6435.1
6533.6
6632.2
6130.7

6260.6
6351.3

6270.3
6366.9

6219.9
6376.6 6395.9 6U05.6

6454.0

6651.9
6553.3

64614.7

6661.7
6563.2

6474.5
6573.0
6611.6
6170.1

6499.2
6592.7
6691.3
6709.9

6504.1
6602.6
6101.1
6799.1

6513.9

6711.0
6612.4

6009.6 6150.4 6160.3
."

01
02
03

6819.4
6910.1
7016.7
1115.5

6029.3
6921.9
7026.6
7125.4

6931.8
6039.2

7036.4
7135.3

6049.0
6941.6
1046.3
7145.2
7244.1
1343.0
7441.9
1540.9
1639.9
7739.3
1039.0
1938.6
0038.3
0130.0
0231.1
0531.4
8431.3
0531.3
0631.2

6858.9 6068.7 6808.5
6981.1
1005.9
7184.1
1203.6
1302.6
7481.5
7500.5
1679.6
1179.2

7970.4
7818.0

.~
6898.3
~.

6900.2
~.

6957.5
7056.2
1155.1
725U.O

6961.4
7066.1
1165.0
7263.9

6991.0

7194.6
1095.7

1293.5
7392.5

7006.0

1204.5
1105.6

77n3.4 85 1214.4 1224.3 7234.2
~.

06
07
8 8

1313.3

7511.2
7412.2

7610.2
7109.5

1323.2
1422.1
7521.1

1119.4
7620.1

7333.1
1432.0
7531.0
7630.0
7129.4

7920.6
7029.0

1352.9 7362.0
~~

7402.3
.. .

7451.8
7550.0
7649.0
77u9.3

7461.7
7560.7
1659.1
7159.3
7058.9
1950.5
8058.2
8151.9
8251.6
8357.4

7491.4 1501.3

7699.5
7600.3

1898.1
1199.1

1990.4

7570.6
1669.6
1169.2
1860.0

1590.9
7689.5
1789.1
7000.8

~.
89
90
91 1809.1

7908.1
0000.3
8 1 0 8 . 0
0201.7
8301.5
0407.4
8501.3

I 8107.
8607.2

1819.0 1048.9
92
9 3
94

1918.1
0010.3
0110.0
0211.7

1940.6
8048.2
0147.9

8347.4
0241.6

0447.3
0547.3
0641.2

1968.5
0060.2

1908.4
0028.3
0128.0
8227.1

8078.1

8277.6
0111.8

8311.4

8000.1

8201.5
8101.0

8301.4

8 0 9 8 . 1
8191.0
8291.5
839 1.4

8161.9

0361.4
8267.6 95

96
9 1
98
99
101

0311.5 8321.5
8411.4
8517.3
8611.2

2

8521.3
0427.4

8621.2

0457.3
8557.1
0651.2

8461.3
0561.2
8661.2

8971.3
8577.2
8677.2

8401.3
.. .

0497.3
~~. .

8507.2
0681.2

8597 .2
0691.2

196 WOODRUM

I I Having Obtaining analyzed the algorithm the efficiency of two-way merging in terms of

~ comparisons, we now develop the algorithm. Recalling the con-
straint that no more space should be used than whatever is neces-
sary to hold the result, we see that the conventional two-way
merge technique, which requires two areas, is inappropriate.
Instead, merging can be done by a chaining technique in the
single area that is used to hold the result. With this area labeled
as the vector P, an ordered sequence can be represented in P
as a chained list of indices. In any sequence, there is a first, or
lowest, element. Call the index of this number the head of the
chain. If i is the head of the chain, then let P[i] be the index of
the next number in the sequence. That position in P contains the
index of the next number in the sequence, and so on to the last
number in the sequence. The last position in the chain contains
its own index. The following example illustrates these concepts:

Index or position number: 0 1 2 3 4 5 6 7 8 9
The vector A: I1 9 3 6 8 5 0 7 4 2
The vector P: 0 0 3 4 I 7 5 7 8 8

There are three chains contained in the vector P, one repre- chain
senting the sequence of numbers A [2 3 4 1 01, one representing the example
sequence A[6 5 71, and one representing the sequence A [9 81. The
first chain is stored in P in positions 2 , 3, 4, 1, and 0. The head of
the first chain is 2 , the index of the lowest number in the sequence
3 6 8 9 1 I. P[2] is 3, the index of the next number in the sequence,
and P[3] is 4, the index of the number 8 in A, the next number
in the sequence. P[4] is I, the index of the 9 in A, and P[1] is 0,
the index of the 11 in A. Since A[0],11, is the last number in
this sequence, P[O] contains 0 to indicate this. The last position
in the chain always contains its own index. The other two se- Figure , APL program of the

quences represented in P start in positions 6 and 9, respectively, M2 function

and are represented in the same chained fashion. If we have any
one of the three starting positions, 2 , 6, or 9, we can examine the 0 I P ; I ; J ; K ; L

numbers in any one of the three sequences in the proper order.
Given the heads of the chains representing any two sequences,
we can merge them to form a new sequence, represented by re- C61 PCJl+.t

chaining the indices in P, and the starting position of the new
chain can be recorded. If this is done with the last two sequences
in the example, P becomes 0, 0, 3, 4, 1, 7, 9, 7, 5, 8. The head of
the new chain is 6 ; the end of the new chain is 7.

Let M2 be a function to merge two sequences represented
by chains in this way. M2, shown in Figure 1 as an APL function,
accepts the heads of two chains, i and j, and returns the head
of the single chain as a result.

The M2 function can now be used to repeatedly merge sequences
of appropriate lengths, until a single sequence is obtained. A v Z+MP N

recursive sorting algorithm, MP, is given in Figure 2 as an APL ::: ~ ~ ~ ~ r ~ ~ ~ x N ~ M 2 M P L O . S x N

function. MP creates a chained representation in P of a sequence [:: ,&+l+PcZI+Z+NEX

c 1 1 P + - l - P
c 2 1 I + P P
[3 1 + L O D L + I + I - I
C41 + 3 IF 0 6 J + P C I I
C51 K + P C J + - l - J l

C71 L+J
Cel J+K
C91 r5 IF d<O
c 1 0 1 + 3

V

Figure 2 APL program of the
MP function (user M2)

The MP program also has all the comparison properties implied
MP function by the previous mat'hematical model. If n = 1, then the head of a

chain of length one is needed, which can easily be obtained by
getting the index of the next unexamined number in the input
vector A and storing that number in its own position in P, the
signal for the end of the chain. The head of the one-element chain is
the result of executing LIP when n is 1. However, to get the index
of the next unexamined number in A, a nonlocal variable, NEX,
is needed to record this information. After using NEX, by adding
one to it, we see that i t is all set' for the next request. In MP, NEX
is assumed to have been set t o zero before t,he first execution of
M 1'.

If n is not one in the hrp function, then a chain must be created
by merging two other sequences, neither of which has been created
yet. The function hfP is used recursively to create these other two
sequences first, and then the merging function, k12, is used to
produce the head of the single sequence of length n. When n is
not one, the result of MP is set to the output of M2, where M2 is
used to merge the two sequences formed by asking for MP(L.5n)
and MP(r.5n), respectively. If the vectors A and P are defined,
NEX is set to zero, and MP n is executed, then MP produces
the head of a single chain representing a sequence of n elements
in ascending order. Suppose, for example, that A is the vector 8,
23, 11, 5, 3 , 4, 23. The value of n is 7, the number of elements in
the vector A. After NEX is set to zero, and the function MP 7 is
executed, the value returned by SfP is 4, the index of the lowest
element of A. The vector P is then 2 , 6, 1, 0, 5, 3, 6. Note that the
last index in the chain is 6, and that the original order of equals
is preserved.

Raving obtained a chained sequence in P, we find that it
the desired is still not the desired permutation vector. Then, what must

permutation be done to arrive at the desired permutation? As a first step,
vector trace the chain from beginning to end, replacing the links in the

chain with their relative positions in the sequence. The head of
the chain thus becomes zero, the second element of the chain
becomes a one, eta., unt,il the entire chain is traced. When this
procedure is applied to P in the above example, it becomes 3, ti,
4 ,2 ,0 ,1 ,6 . A number in P, say P[z] , is now the number of elements
in A which come before '4[x] in the final ordering of A. P[O] is a 3 ,
thus the element A[O] will be in position 3 in the final result, since
there are t'hree elements of A preceding it. If we now set A[P] to A,
the elements of A will be in ascending order. Also, if we set P[P] to
0, 1, 2 , . . . , n - 1, P would be the desired permutation, since
A [P] would be A in ascending order.

Let P be some permutation vector of the same length as A,
and let ir(F') be the inverse of P. P[iv(P)] is the identity permutat-
ion, 0, I , 2 , 3 , . . . , etc. Let X = ALP]. Then X[iv (P)] = A . Since
the vector P obtained above is such that X [P] = A , where X is
the elements of A i n ascending order, then X = A[iv(P)]. It is
tlhen necessary to change P into i?l(P) without' using anot,her area

198 WOODRUM IDM SYST J

to do SO. This problem is the same as that faced in the sorting
method called reserved-seat sorting, and essentially involves in-
verting a permutation in its own space. Algorithms that do this
efficiently have been known for a t least the last ten years, and
One such algorithm to perform this inversion (IP) is shown in
Figure 3.

With the above results, the function MERGESORT1, shown
in Figure 4, creates the permutation P, given A, by using the recur-
sive funct'ion MP and the function IP to do so. Line 1 sets NEX
to zero, the index of the first element of A. NEX is incremented
by one each time i t is used in the MP function to incorporate
the elements of A into the sort one at a time. Line 2 sets P to a
vector that is the same length as A, containing all zeros. The
zeros are not used, and P could be set to anything, as long as i t
is the same length as A. Line 2 then executes MY, giving it the
length of P for an argument. A chained representation of a single
sequence involving all the elements of A is created in P, and the
head of this chain is returned as a result. I is set to the head of
this chain.

Lines 3 through 7 trace out this chain, replacing each index
in the chain wit)h the index of its position in the final ordering.
A permutation is now obtained in P that is the inverse of the
permutation desired. The permutation inversion function is
then used, on line 8, t80 invert P in its own space, yielding the
final result.

Looking at the recursive sorting algorithm, we see that the
equivalent nonrecursive algorit'hm is obtained and extended to
multidimensional arrays. The new algorithm, shown in Figure 5
as GRAIIE, uses two stacks to implement the recursion. In Figure
5 , C is the coordinate along which ordering permutations are
created, Z is the resulting array containing the ordering permuta-
tions, and A is the input array. The two stacks are the vectors P
and R. P contains the lengths of the sequences needed at various
stages of the sort, whereas R contains the heads of chains represent-
ing merged sequences. The lengths of P and R must be at least one
more than log,(n), where n is the number of elements to be sorted.
This is reflected on line 8 of GRADE, where P and R are initially
set to zeros.

Lines 1 through G of GRADE perform the initial housekeeping
and are executed only once. Lines 7 through 10 are executed
once for each ordering permutation produced in the output array.
The variable Z serves the same purpose as NEX does in MP, i.e.,
it is used to pick up the next unexamined element of the data
being sorted. J and K are indices for awessing the two stacks
P and R, respectively.

Tines I 1 through 1 3 examine the P stark, determining the
length of the next sequence required. When a sequence of length
one is required, line 12 creates it. When a sequence of length
greater than one is needed, lines 14 through 29 create it by merging
two c2h:Lins and store t'he head of the resulting chain at R(K].

NO. 3 . 1969 INTERNAL SORTING

[e l PCOl+L
C9l I+N-W
[lo] K+-l+J+O
C111 +ll IF ~ ~ P C J + J + ~ I + ~ O . S ~ ~ P C J] - P ~ J] < O
E121 RCK+Ktll+ZCIl+I+It~
C131 +ll IF O>PCJ]+-P[J+J-I]
C141 S+RCKl
CIS1 6?+RCK+K-l]
C161 +19 IF ACSl<ACgl
C171 RCKl+Q
cl81 +23
C191 RCKlcS

c211 +26 IF ACSl<A[g]

C231 +21 IF T:Q+ZCT+Q]
C241 ZCTl+S

C261 ZCTl+S
C251 +29

C271 +21 IF T:S+ZCT+S]

C291 +13 IF JzO
C301 I+RCKl

C321 J+ZCII
C311 K+l

C331 ZCIl+-K+K+W

C351 +32 IF K<III+Y
E341 I+J

C361 +44 IF N>S+K+K-W
C371 +36 IF OsJ+ZCKI
C381 I+ZCJ+-K+J]
C391 ZCJl+ZlLStW

c221 ZCTl+Q

I C281 ZCTI+Q

I
c421

C441
E431

C461
CItSl

C471
r u e 1

V

J+I
+38 IF J<O

N+N+ 1
+36

N+NtY-w
+8 IF W>B+B+l

+7 IF N < E
Z+HpZ

E11 Z+ArtB
V Z+A IF B

V

When a chain of the right length for one of the ordering per-
mutations is obtained, lines 30 through 35 trace it,, rcplacing
its dements with the indices of their positions in the final ordering.
Then lines 36 through 43 invert the permutation in place. Lines
44 through 47 check for completion of t'he entire process. Line
48 ('auses the result, 2, to bc an array of the same size that A
is originally.

200 WOODRUM L

Summary comment
The machine language implementation was derived from the
APL function GRAIIE directly. The modeling process used to
obtain the final machine language program eliminated a sub-
stant,ial number of defeds before a machine language program
even existed and gave an approximate idea of the performance of
the rnachine language program. If an algorithm is to be imple-
mented in machine language, it is recommended that it first he
modeled in t'he fashion used in this paper, starting with a mathe-
matical analysis of the algorithm, then obtaining successive algo-
rithms at more detailed levels of description until the machine
language program has been obtained.

Appendix
Section 1 . The usual sample correlation coefficient, is

e = o =

[2 (X i - 2)' (ys - g) 2 i=o 2 = U I"' n-1

If x and y are zero-origin permutation vectors of length n,
then

n-1 [E x 4 - 3n(n - 1)'
b = -____--__- n3 - n

When y is the ident'ity permutation, then

x , yi = %.X,

Section 9. The expected value of the nunher of comparisons taken
to merge two sequences of lengths x and y, where the sequences
have been formed by ordering two sets of independent identi-
cally distributed random variables, is given by:

where x i i ' and (x + y)ii' denote falling factorials, z(x - I) (J - 2)
. . . (x + 1 - i), i terms in the product, and 2'" = I . The term
x r 14 is t'he larger of either x or y.

Section 3. For m y sorting algorithm based or1 csomparing, E (C) 2
log, (!n>, provided that the n numbers are distinct, or provided
that tests for equality are not made, and the !n arrangements
of the n numbers are equally likely.

Proof: Let X be the vect,or of n numhers to be sort>ed, and let Y
be the vector of the n numbers sorted i n ascending order. Then

Y[P] -= X, where P is a permutat,ion vector, and P is unique
because of the requirement that X cont'ains distinct numbers.
When two numbers X; and Xi are compared, if X i < Xi, then
Pi < Pi, and if X , > X ; , then Pi > Pi. Initially the permutation
P can be ally one of the !n permutations. The comparison restricts
P t'o one of two subsets of !n permutations, either the subset where
P , < P , , or t'he subset where P , > P,. The next comparison
similarly partitions one of these two subsets into two mutually
exclusive sets, one containing P, and the other not. This process
continues until a one-element set containing P has been
determined.

Now, suppose that, when a sort is performed where P is the
ordering permutation, the results of all the comparisons that the
program performed while sorting, Le., determining P, were
recorded in the order the comparisons were done. When two
numbers Xi and X i are compared, record a zero if X i < X , , and
record a 1 if Xi > X , , where i < j. The result of t'he comparison,
i.e., a zero or a one, determines which subset of the possible
permutations contains P.

Lemma. The sequence of zeros and ones recorded for a given
permutation P is not identical with the sequence of zeros and
ones which would have been recorded for a permutation Q # P.

Proof: Each time a comparison is done, a set of permutations
is partitioned into two subsets, one containing P and the
other not. If Q is not the same as P, and if Q had been the
permutation to be determined, then if Q was in the set not
containing P, the result of the comparison would have been
different, i.e., a zero would have been recorded instead of a
one, or a one instead of a zero. I n this case, the sequences
recorded for P and Q are different. The only way for the
sequences to be the same is for Q to always be in the set
containing Q. But eventually a one-element set containing P
alone is obtained; hence, Q must have been in a set not con-
taining P at some point. Thus, the sequences for P and Q
are dlffercnt somewhere.

Since P and Q are arbitrary permutations, then the sequences
recorded for any pair of permutations are different. This means
t>hat the sequence for a given permutation P is unique. Since
tjhere are ! n . permutations, there are !n distinct sequences of
zeros and ones. In any system of C distinct equally likely codes,
an optimal enroding of the system using zeros and ones must
have an average of a t least log, C bits in a code. Hence, the average
number of zeros and ones in a recorded sequence is a t least
log,(!n), or the average number of comparisons to sort is at least
log, (!n) .

The above result also applies to any met’hod of sort’ing where
a series of tests is applied, and where each t’est has only two possible
outccmes. The extension to tests where more than two outcomes
can result is similar.

CITED REFERENCES

1. K. E. Iverson, A Programming Language, John Wiley & Sons, New York,
New York (1962).

2. K. E. Iverson, Elementary Functions: An Algorithmic Treatment, Science
Research Associates, Chicago, Illinois (1966).

3. A. D. Falkoff and K. E. Iverson, APL\360 User’s Manual , International
Business Machines Corporation, Thomas J. Watson Research Center,
Yorktown Heights, New York (August 1968). Alt,hough not’ formally
supported by IBM, the APL\360 program may be obtained through any
IBM branch office.

4. H. Steinhaus, Mathernutical Snapshots, Oxford University Press, New
York, New York, 30-40 (1950).

5. R. G. Busacher and T. L. Saaty, Finite Graphs and Nctworks, McGraw-Hill
Book Company, New York, New York, 228-231 (1965).

6. G. J. Hahn and S. S. Shapiro, Statistical Models in Engineering, Johu Wiley
& Sons, New York, New York, 64 (1967).

7. S. Glicksman, “Concerning the merging of equal length tape files,”
Journal of the Association jor Computing Machinery, 12, No. 2, 254-258
(April 1965).

