188

simulated and built. The cxperience thus gained has indicated
that: (1) It is possible to include simulation in a development
eycle and as a result shorten that cycle, even in a changeable
technology; (2) The efficiency of debugging hardware will improve
because those testing the system have an opportunity to develop
their troubleshooting techniques and to learn the computer
system prior to the availability of hardware; (3) Logic problems
that might otherwise remain undetected can be detected with
three-value simulation; and (4) Future technologies will demand
design verification simulators similar to the three-value simulator.

ACKNOWLEDGMENT

The authors wish to acknowledge development of the three-value
simulation system by the following individuals: R. W. Butler,
D. A. Haynes, J. S. Jephson, J. M. Krein, R. P. McQuarrie,
M. T. Talbott, and R. J. Suhocki.

CITED REFERENCE AND FOOTNOTE

1. Correction of design defects.

2. E. B. Eichelberger, “Hazard detection in combinational and sequential
switching cirecuits,” IBM Journal of Research and Development 9, No. 2,
90-99 (March 1965).

GENERAL REFERENCES

1. D. E. Muller, “Treatment of trausition signals in electronic switching
circuits by algebraic methods,” IRE Transactions EC-8, 401 (1959).

2. M. Yoeli and S. Rinon, “Applications of ternary algebra to the study of
static hazards,” Journal of the Association for Computing Machinery 11,
No. 1, 84-97 (January 1964).

JEPHSON, MCQUARRIE, AND VOGELSBERG IBM SYST J

An ordering operator that leads to the development of an algorithm
for internal sorting is described. An analysis of the algorithm is
presenled, together with a discussion of the number of comparisons
necessary for sorting.

It is shown that the number of comparisons is close to the theoretically
obtasnable number. The sorting algorithm is a variant of the two-way
merge.

Internal sorting with minimal comparing
by L. J. Woodrum

Internal sorting is such a common operation on today's digital
computer systems that primitive ordering operations were in-

cluded in the APL\360 Terminal System.'”® The operations, called
grade, are represented by the symbols 4 and y for ascending
and descending ordering, respectively, and they produce ordering
permutations as results. An ordering permutation can then be
used as a subscript on the original vector to order the data. In
APL, subscripts arc allowed to be vectors as well as scalars.
Either zero-origin or one-origin indexing is allowed; in zero-origin

indexing the first element of a vector A is A[0], in onc-origin
indexing the first element is A[1]. All indexing used in this paper
i8 zero-origin.

As an example of the use of a vector as a subseript, suppose
A is the vector 5, 3, 9, 1, and P is the vector 3, 1, 0, 2. Then A{/F°]
is 1, 3, 5, 9; A[0, 1} is the vector 5, 3; A[2, 1, 0] is the vector 9,
3, 5; and A[2, 3, 0, 0] is the vector 9, 1, 5, 5. When P is a per-
mutation vector and is the same length as A, A[F’] is a rearrange-
ment of the elements of A. When P is a permutation vector such
that A[P] arranges the elements of A in ascending or descending
order, P is called an ordering permutation.

The APL grade operator A A produces the ascending ordering
permutation for a vector A, and § A produces the descending
ordering permutation. The grade operators are also defined for

NO. 3 - 1969 INTERNAL SORTING

arbitrary multidimensional arrays A, and produce ordering per-
mutations for the elements along a selected coordinate. If A is
a matrix, then I’ « 4 A produces a matrix P such that P[¢;]
is the ordering permutation for row ¢ of A, i.e., Afz; P[¢;]] is row
7 of A arranged in ascending order. To operate on the columns
of A, the operator is subscripted to indicate that the operation
is to be performed along the first coordinate. If P «— 4 [c]4,
where ¢ = 0 in zero-origin indexing, and ¢ = 1 in one-origin
indexing, then P is o matrix the same size as A, such that A[P[;1];]
is column 7 of A arranged in ascending order. For the multidi-
mensional case, & [e]A4 produces an array the same size as A,
which contains ordering permutations along coordinate c.

In the selection of a sorting algorithm for the grade operators,
1he following requirements must be met:

e The algorithm should produce the result without using much
more space than needed to contain the result.
Tixtension to sorting along coordinates of multidimensional
arrays must be casy.
The algorithm should be efficient in its use of comparing,
since comparing is a fairly expensive operation in the context
of the interpreter.
The original array (the input) must not be disturbed.
The original order of equals must be preserved.

A variant of the conventional two-way merge, using a chaining
technique for merging to avoid the use of two areas, satisfies
these requirements. We develop the algorithm discussed here
by determining the theoretical lower limit on the number of
comparisons needed to sort n numbers, then finding the best
achievable two-way merge sort, based on the average number
of comparizons. The efficiency of this two-way merge is examined
in the light of the theoretical limits on comparing in internal sorts
in general. A mathematical model of comparing in two-way merge
sorting is developed, and the algorithm is derived from this model.
The algorithm so obtained is a recursive program, which is then
expressed nonrecursively, using two stacks instead of the recur-
sion. The one-dimensional case is considered first and then gen-
cralized to the multidimensional case.

Analysis of sorting algorithms

Threc paramecters are usually used to measure the performance
of a sorting algorithm. They arc the number of comparisons,
exchanges, and working spuce required for the sort. VFor this
application, it is desired that no more working space be required
than whatever is necessary to hold the result-——the ordering
permutation veetor P. An exchange is defined as the swapping,
moving, or exchanging of two numbers in the data being sorted,
ot of two addresses or indices of numbers in that data. The number

WOODRUM IBM SYST J

of exchanges required in an internal sort is usually closely related
to the number of comparisons, and for that reason, it is valid
to consider internal sorting algorithms based on the number of
comparisons required. Tor certain internal sorting algorithms,
the number of exchanges, or moves, required far exceeds the
number of comparisons required, e.g., the binary insertion tech-
nique.* Such techniques are not desirable and are not considered.

Given any internal sorting algorithm based on comparing,
the sorting of a set of n numbers requires a number of compuari-
sons, say ¢. This number ¢ will take on various values, based on
the particular set of n» numbers. However, the smallest value that
¢ can have is n — 1. I'or a given algorithm, ¢ is a random variable
that depends on the input or the set of numbers to be sorted.
In analyzing an algorithm, several items are of interest: the
smallest value ¢ can assume, the largest value ¢ cuu assume (the
worst case), and the expected value of ¢, I{(¢), which is the aver-
age number of comparisons to sort n numbers. Also of interest
is the probability that ¢ will exceed I(c) by a large amount, i.e.,
that the algorithm will encounter one of its “bad’ cases.

Of the entire possible set of internal sorting algorithms, there
is at least one algorithm that has F(e) less than or equal to the
E(¢) for any other algorithm. Ilor such an algorithm, E(c) is
greater than or equal to log,(In), that is, log,(1n) ix a lower limit
on the average number of comparisons taken by any internal
sorting algorithm (sce Section 3 of the Appendix). An internal
sort ean thus be evaluated by seeing how close its £'(¢) is to the
theoretical minimum.

Of the entire set of possible sorting algorithms, there is also
at least one where the maximum value that ¢ can assume is less
than or equal to the maximum value of ¢ assumed for any other
sorting algorithm. That is, there must be an algorithm whose
worst case 1s less than the worst case for any other algorithm.
Whatever the maximum value of ¢ is for such an algorithm. it is
greater than or equal to the ceiling of log.(1n) where the ceiling,
“I")’" of x denotes the smallest integer thut is not less than @, Ior at
least some values of n, it is possible to alwavs =ort with no more
than the ceiling of log.(1n) comparisons.” It is interesting to note
that the limit of the average comparison and the limit of the
worst-case comparison are so close to each other that they differ
by less than one for all n. The worst-case limit number of com-
parisons, the cciling of log,(In), ix listed in Table 1 for valuex of
n up to 1000.

Another criterion for evaluating sorting algorithms ix whether
or not the algorithm takes advantage of “natural sequencing”
present in the data. To use this criterion in evaluating o sort, we
must be able to measure the amount of “natural sequencing”
present in a sct of data, One way to measure the sequencing is to
see if the data are correlated with the ordered set of data; the
correlation cocfficient for this can be computed in the usual way.’
This method is not a very useful general measure of sequencing

NO. 3 - 1969 INTERNAL SORTING

comparisons

natural
sequencing

Table 1 Theoretical lower limit of the number of comparisons required

to sort n numbers

41

84

133

187

249

303

364

395 427

492

525 559

592 627

661 696

731 766

802 837

873 902 910

9u6 976 983
17--1020 1042 1050 1057
18--109% 1117 1124 1132
19--1170 1193 1200 1208
20--1246 1269 1277 1284
21--1323 1346 1354 1361
22--14%00 1424 1431 1439
23--1u478 1502 1510 1518
24--1557 1581 1589 1597
25--1637 1661 1669 1676
26--1717 1741 1749 1757
27--1797 1821 1829 1838
28--1878 1903 1911 1919
29--1960 1984 1992 2001
30--20u2 2066 2075 2083
31--2124 2149 2157 2166
32--2207 2232 2241 2249
33--2291 2316 2324 2333
34--2375 2400 2u0B 2417
35--2459 2484 2493 2501
35--25u% 2569 2578 2586
37--2629 2655 2663 2672
38--2714 2740 2749 2757
39--2800 2B26 2835 2843
40--2887 2913 2921 293¢
41--2973 2999 3008 3017
42--3060 3086 3095 3104
43--3148 3174 3183 3101
H4--3235 3262 3270 327¢
45--3323 3350 3359 3387
46--3412 3438 3447 3456
47--3500 3527 3536 3545
48--3589 3616 3625 3634
49--3678 3705 3714 3723
50--3768 3795 3804 3813
51--3858 3885 3894 3903
52~-3948 3975 3984 3993
53--4038 4065 4074 4083
S%--1%129 4156 4165 417y
55--4220 4247 4256 4265
§6--4311 4338 4347 4357
57~-4402 4430 4439 kh4ug
5B--u49y 4522 4531 4540
59--4586 4614 4623 4632
60--4678 4706 4715 4724
61--4771 4798 4808 4817
62~--u863 4891 4900 4910
£3--u958 4984 4993 5003
B4--5049 5077 5087 5096
65--5143 5171 5180 5189
66--5236 5264 5274 5283
67--5330 5358 53867 8377
68--5424 5452 5462 5471
69--5518 5546 5556 5565
70--5613 5641 5650 5660
71--5707 5736 S745 5755
72--5802 5830 5840 5849
73--5897 5928 5935 5945
74--5992 6021 6030 6040
75--6088 6116 6126 6135
76--6183 6212 6222 6231
77--6279 6308 6317 6327
78--6375 6404 6413 6423
79--6471 6500 6510 6519
B0--6568 6597 6606 6616
Bi--5664 6593 6703 6712
82--6761 6790 6800 6609
83--6858 6887 6837 6906
B4~-6955 69B4 6994 7003
85--7052 7081 7091 7101
86--7149 7179 7188 7198
87--7247 7276 7286 7296
88--7345 7374 7384 7394
89--7443 7472 7482 7492
90--7541 7570 7580 7590
91--7639 7668 7678 7688
92--7737 7767 7777 7787
93--7836 7865 7875 788S
94--7935 7964 7974 7984
95--8033 8063 8073 BOB3
96--8132 8162 8172 8182
97--8232 8261 8271 B281
98--8331 8361 8371 8381
99--8430 BuB0 BU70 B480

(M2611000)=8530

192 WOODRUM IBM SYST J

because it depends on the particular values of the data, i.e., it is
sensitive to the distribution from which the data were drawn.

To obtain a distribution-independent measure of order, create
a set of indices by replacing each number with the index of its
position in the ordered set. Then compute the sample correlation
coefficient of this set of indices with the ordered set of indices,
0,1,2 ... ,n — 1. The procedure for computing the sample
correlation coefficient for this special case is simpler than the
general case and is given in the Appendix.

For data which are already in ascending sequence, this cor-
relation coefficient is 1, for inverse sequences the coefficient is —1,
and for “random’” sequences this measure is zero. When sorting
experts talk about “random’’ data, they mean that this correlation
coefficient is zero, or that they assume it is zero.

To determine if a sorting algorithm takes advantage of natural
sequencing in the data then means examining the number of
comparisons taken, assuming that the correlation coefficient is
some fixed value, or is in some given range. This kind of analysis
of sorting algorithms has rarely, if ever, appeared in the literature,
except for coefficients of —1, 0, and 1 corresponding to inversely
ordered files, “‘random’ files, and in-sequence files. In keeping
with this tradition, the algorithm in this paper is evaluated
for coefficients of —1, 0, and 1.

Analysis of two-way merging

Certain modifications permit the two-way merge to be especially

suitable for the implementation of the AP1\360 grade operations.
In any internal sort by two-way merging, there is a final merge of
two sequences, say of lengths a and b respectively, to form the
ordered sequence of length n. The riumber of comparisons to do
this merge is, at most, n — 1. Thus the worst-case number of
comparisons is n — 1 plus the number of comparisons required
(worst cases) to obtain the ordered sequences of lengths a and b.
These lengths depend on the particular algorithm, and may even
be chosen in some random fashion. The function for the worst-case
number of comparisons for any internal two-way merge sort
is easily defined recursively, as follows:

1. w(l) = 0;
2. wn) = (n — 1) wla) + w(b), where n = a + b;
3. n, a, and b arc positive nonzero integers.
To minimize the worst case, a and b should be chosen so that
w(n) is as small as possible. It follows from results presented by

Glicksman” that w(n) is minimized when a is chosen to be the
cciling of one half of n, and b is chosen to be the floor of one half

No. 3 - 1969 INTERNAL SORTING

worst-case
number

Table 2 Worst-case number of comparisons needed to sort n numbers

using two-way merging

+/T20148
[

0=« 0

1-- 25

2-- 69

3-- 119

4-- 177

§-- 237

6-- 297

7-- 363

8-- 433

9-- 503

10-~ 573

11-- 643

12-- 713

13-- 78S

14-- 865

15-- 9us

16--1025 1049 1057 1065
17--1105 1129 1137 1145
18--118S5 1208 1217 1225
19--1265 1289 1297 1305
20--1345 1369 1377 1385
21--1425 1449 1457 1ugS
22--1505 1529 1537 1545
23--1585 1609 1817 1625
24--1665 1609 1697 1705
25--1745 1769 1777 1785
26--1829 1856 1865 1874
27--31919 1946 1955 1964
28--2009 2036 2045 2054
29--2099 2126 2135 21uu
30--2189 2216 2225 2234
31--2279 2306 2315 2324
32--23869 2396 2405 2414
33--2459 2u86 2895 2504
3u--25u49 2576 2585 2594
35--2639 2666 2675 2684
36--2729 2756 2765 2774
37--2819 2846 2855 2864
38--2909 2936 2945 2954
39--2989 3026 3035 3ouu
40--3089 3116 3125 3134
41--3179 3206 3215 3224
42--3269 3296 3305 3314
43--3359 3386 3395 340y
44--3449 3476 3485 3u9n
4§--3539 3566 3575 3584
46--3629 3656 3665 3674
47--3719 3746 3755 3764
48--3809 3836 3845 3854
49--3899 3926 3935 3%uy
50--3989 4016 4025 403
51--4079 4107 4117 w127
52--4177 5207 4217 4227
§3--4277 4307 4317 4327
54--4377 BU0T7 4417 uu27
55~-4477 4507 4517 4527
56--4577 4607 4617 u627
57--4877 4707 W717 4727
58--4777 4807 4817 4827
59--4877 4907 4817 4927
60--4977 5007 5017 5027
61--5077 5107 5117 5127
82--5177 5207 5217 5227
$3--5277 §307 5317 5327
64~--5377 5407 S417 5427
65--5477 5507 5517 5527
66--5577 S607 5617 5627
67--5677 §707 5717 5727
68--5777 5807 5817 5827
69--5877 $907 5917 5927
70--5977 6007 6017 6027
71--6077 6107 6117 6127
72--6177 6207 6217 6227
73--6277 6307 6317 6327
T4--6377 6407 6417 6427
75--6477 6507 6517 6527
76--6577 6607 6617 6627
77--6677 6707 6717 6727
78--6777 6807 6817 €827
79--6877 6907 6917 €927
80--6977 7007 7017 7027
81--7077 7107 7117 7127
82--7177 7207 7217 7227
83--7277 7307 7317 7327
84--7377 7407 7417 7427
85--7477 7507 7517 7527
86--7577 7607 7617 7627
87--7677 7707 7717 7727
88--7777 7807 7817 7827
89--7877 7907 7917 7927
90--7977 B0O7 8017 8027
91--8077 8107 8117 8127
92--8177 8207 8217 8227
93--8277 8307 8317 8327
94--8377 8u07 8417 8427
95--8477 8507 8517 8527
96--8577 8607 8617 8627
97--8677 8707 8717 8727
98--8777 8807 8817 8827
99--8877 8907 8917 8927

(+/0201411000)=8977

194 WOODRUM IBM SYST J

of n, where the floor, ‘|, of x is the largest integer not greater than
2. If a and b are chosen as above, it is a mathematical curiosity
that w(n) is given by the following two formulas:

wh) =14+ 2@ — 1) + i(n — 2%

where ¢ = [log, n and

wn) = i [log, ©

The result w(n) is listed for values of n up to 1000 in Table 2.
It is fairly well approximated by n (log, (.5n)), an approximation
that has long been used for the average number of comparisons
for sorting by two-way merging. However, w(n) is not the average
value of ¢ for this sort, but its worst case. Before giving the
algorithm, let’slook at the expected value of ¢ for such an algorithm.

The expected value of ¢, F{(c), can also be computed by the
following recursive function:

1. ¢(1) = 0;

2. e(n) = e(a) + ed) 4+ mla; b), where a = [.5n, b = |.5n,
and m(a; b) is a function of a and b that gives the expected
value of the number of comparisons to merge two sequences
of lengths @ and b, respectively.

The m function is given in the Appendix. The e function has been
evaluated for values of 7 up to 1000 in Table 3. From a comparison
of the entries in Tables 1 and 3, it is apparent that E(c¢) for this
algorithm does not differ very much from the theoretical limit for
E(c) of any algorithm. For n = 1000, the difference 1s 177 com-
parisons, a small number compared to 8530, the theoretical limit.

A sort based on the above mathematical model will achieve
its minimum value for ¢ when the data are already in ascending
order, assuming that the sequence of length b is created first,
and that numbers are picked up from the input in the order they
occur, i.e., A[0] is the first number used, followed by A[l], ete.
The minimum value of ¢ can be calculated by replacing the
“n — 1" in function w by *b,”" since if the numbers in the b se-
quence all precede the numbers in the a sequence, it will take
exactly b comparisons to merge the two. When the correlation co-
efficient is —1 (the data are in inverse order), then the number of
comparisons taken will be close to the number taken if the coefhi-
cient is +1 (the data are in ascending order). An examination of
this minimum shows that the algorithm does take advantage of
“natural sequencing’ present in the data. IFor example, to sort
an ascending input of one hundred numbers, it takes 316 com-
parisons as opposed to the average of 542 comparisons. Note that
if an algorithm could always sort with a worst case equal to the
ceiling of log,(!n), it could not take advantage of natural
sequencing occurring in the data.

NO. 3 - 1969 INTERNAL SORTING

196

Table 3 Expected value of the number of comparisons token
using two-way merging

to sort n numbers

e

.0
22.7
63.5

111.5
165.1
221.9
281.1
343.5
408.3
u74.5
541.8
610.6
§80.2
750.9
825.1
899.7
974,68
1050.7
1127.0
1203.6
1281.7
1360 .4
1439.3
1518.7
1598.4
1€78.3
1759.9
1844 .0
1928.2
2012.6
2097.4
2182,3
2267.3
2353.3
2439,3
2525.5
2611,9
2698.5
2785.1
2872,9
2961.4
I050.0
3138,0
3227,6
3316.6
3405.7
3495.3
3585.0
3674,7
37864.6
3854.6
9uu,6
4037.8
4131.8
4225,9
4320.1
Bu1y.y
4508.7
4603,2
4698,0
4792,8
4887.6
4882.6
5077.5
5172.5
5268.5
5364.5
5460.6
5556.7
5652.8
5749.0
S84S5 .4
59u41.9
6038,4
6135.0
6231.6
6328.3
8825,3
6523.8
6622,.3
6720.8
65019.4
6918.1
7016.7
7115.5
72144
7313.3
T412.2
7511.2
7610.2
7709.5
7809,1
7908,7
8008.3
8108.0
8207.7
8307.5
BUOT . 4
8507.3
8607.2
100 8707.2

A R N L]

2

1.0
30.0
72.7

121.5
176.3

233.6

293.1
356.4
¥21.5
487.8
555.6
624 .4
694,2
765.7
840.0

214.6

989.8
1065.9
1142.3
1218.9
1297.4
1376.1
14585.1
1534.6
1614.3
169%,3
1776.7
1860.8
19u45,1
2029.6
2114.3
2199.3
228u4,5
2370.5
2456.6
2542.7
2629.2
2715.8
2802,5
2890.6
2979.1
3067.8
3156.5
3245, 4
3334.4
3423.6
3513.3
3603.0
3692.7
3782.6
3872.6
3862.8
4056,6
4150.7
424k4,8
4339.0
4433,3
4527.6
4622,2
4716.9
4811.7
4906.6
5001.6
5096.5
5191.,7
5287.7
5383.7
5479.8
5575.9
$672.1
5768.2
$864,7
5961.2
6057.7
6154.3
6250.9
6347.6
6445,0
£543,5
6642.0
6740.6
6839.2
£937.8
7036, 4
7135.3
7234.2
7333,1
7432.0
7531.0
7630.0
7729.4
782%.0
7928.6
8028,3
B128.0
8227.7
8327.5
BU27 .4
8527.3
8627,2

3

2.7
33.8
7.4

126.9
181.9
239.5
299.1
362.9
428.1
[3: 2
562.4
631.4
701.1
773.2
8u7.u4
922.1
997.4
1073.5
1149.,9
1226.7
1305.3
1384,0
1463.0
1542,6
1622.3
1702.3
1785.1
1869.,2
1953.5
2038.0
2122.8
2207.8
2293.1
2379.1
2465.2
2551.4
2637.9
2724.5
2811.1
2699.4
2988.0
3076.6
3165.4
3254.3
3343.3
3u32.6
3522.2
3611.9
3701.7
3791.6
3881.6
3972.0
4066,0
4160.1
4254.2
4348 .4
4u42,7
4537.0
4631.7
4726.4
ug21.2
4916,1
5011.0
§106.0
§201.3
§297.3
5393,3
5uB9. 4
5685.5
5681.7
5777.9
5874.3
§970.8
6067 .4
6164.0
6260.6
8367.3
6454 .8
6553.3
6651.9
6750.4
6849.0
6947,6
7046.3
Tik5,2
72h4 .1
7343.0
Tuul,9
7540.9
7639.9
7739.3
7839.0
7938.6
8038.3
8138.0
8237.7
8337.4
B8437,3
8537,3
8637.2

4

k.7
37.7
2.1

132.3
187.%
245 .4
305.1
369.3
4348.7
so1.1
569.3
638.4
708.1
780.6
854,8
929.6
1005.0
1081.1
1157.6
1234.6
1313.1
1391.9
1470.9
1550.5
1630.3
1710.3
1793.5
1877.6
1961.9
2046,5
2131.3
22186.3
2301.7
2387.7
2u73.8
2560.0
2646,5
2733.1
2819.8
2908.3
2996.9
3085.5
3174.3
3263.2
3352.2
34u1.6
3531.2
3620.9
3710.,7
3800.6
3B90.6
3981.4
4075.4
4169.5
4263.6
4357.8
4N52.1
45u6.5
ueut .1
4735,9
4830.7
4925.6
5020.5
§115,5
5210.9
5306.9
5402.9
5488,0
5595.1
5691.3
5787.5
5884.0
5980.5
6077.0
6173.86
6270.3
6366 .9
64BN .7
6563,2
6661.7
6760.3
6858.9
6957.5
7056,2
7155.1
7254.0
7352.9
7451.8
7550.8
7649.8
7749.3
78u8,9
7948.6
3088.2
8147.9
8247.6
8347.4
B84u7.3
8547.3
8647 .2

H

7.2
41,7
86,9

137.7
193,2
251,3
311.,5
375.8
441,93
507.8
$76.2
6u5.3
715.1
788.0
862.3
937.1
1012,6
1088.7
1165.2
1242.4
1321.0
1399.8
1478.9
1558.5
1638.3
1718.3
1801.9
1886.1
1970.%
2055,0
2139.8
2224,8
2310,3
2396.3
2482, 4
2568.7
2655.2
2741.8
2828.6
2917.1
3005.7
3094,3
3183,2
3272.1
3361.1
3450,5
3540,2
3629.9
3719.7
3809.6
3899.6
3990.8
4084 .8
4178.9
4273,0
4367,3
4461.6
4555.9
4650.6
4745 .4
4840, 2
4935,1
§030.0
5125.0
5220.5
§316.5
5412,5
5508.6
$604,7
5700.9
5797.1
5893.6
5990.1
6086.7
6183,3
6279.9
6376.6
Bu74.5
6€573,0
6671,6
6770.1
6866.7
8967 .4
7066.1
7165.0
7263.9
7362.8
7461, 7
7560.7
7659.7
7759.3
7858.9
7958,5
B8058.2
8157.9
8257.6
B357.4
8457.3
85857.2
8657,2

6

9.8
45,7
91.8

1u3.2
198.9
257.2
317.9
382.3
447.9
S1u.4
$83,1
652.3
722.1
795 .4
869.8
Iul .6
1020.2
1096 .4
1172.9
1250.3
1328.9
1407.7
1486.,8
1566.5
1646,3
1726.3
1810.3
1894.5
1978.8
2063.5
2148,.3
2233.3
2318.9
2404.9
2491.0
2577.3
2663,9
2750.5
2837.5
2926,0
3014.6
3103,2
3182.1
3281.0
3370.0
3459.5
3549.1
3638.8
3728,7
3818.6
3908.8
4000.2
4094 .2
L188.3
4282.4
4376.7
u471.0
4565.3
4660.1
475u4.9
4849.7
4944 .6
$039.5
5134.5
§230.1
5326.1
Su22.1
5518.2
5614, 4
5710.5
5806.8
5903.3
$999.8
6096.3
6193,0
6269.6
€3886.3
6L4BY .4
6582.,9
6681.4
8780.0
6878.6
6977.2
7076.0
7174.8
7273.7
7372.7
T471.6
7570.6
7669.6
7769.2
7868.8
7968.5
B0BB.2
8167.9
8267.6
BIBT7 .4
B467.3
8567.2
8667.2

7

12,7

50,1

96,7
148,86
204.5
263.2
324.,3
388.8
4546
§21.3
590,0
659.3
729,1
802.8
877.2
952.1
1027.8
1104.0
11806
1258.1
1336.7
1415.6
1494.8
1574, 4
1654,3
17347
1818,7
1902.9
1987,2
2071,9
2156.8
2241.8
2327.5
2413,5
2489.6
2586.0
2672.5
2759.1
2846,3
2934,9
3023.4
3112.1
3201,0
3289.9
3378.9
3468.5
3558.1
3647.8
3737,7
1827,6
3917,6
4009.6
4103,6
$197.7
4291.9
4386.1
4480, 4
457u.8
4669.6
4764 ,3
4859,1
L9541
5049,0
S144.0
5239,7
5335.7
5431.7
5527.8
56240
5720.2
58164
5912,9
6009, n
6106.0
6202.6
6299,3
§395.9
€484 ,2
6592,7
6691.3
6789,9
6668.5
6987.1
7085,9
7184 ,7
7283.6
7382.6
7481.5
7580.5
7679.6
7779.2
7878.8
7978.4
8078.1
8177.8
8277.6
8377.4
8477.3
8577.2
8677.2

15.7
54.5
101.6
154.1
210.2
269.1
330.7
395,23
461.2
s28.1
596.8
666.2
736.1
810.2
884,7
959.6
1035.4
1111.7
1188,2
1266,0
1344 .6
1423.5
1502,7
1582.4
1662.3
17u3.1
1827.1
1921.3
1995.,7
2080, 4
2165.3
2250.3
2336.1
248221
2508.3
2594.6
2681,2
2767.8
2855.2
2943,7
3032.3
3121.0
3209,.9
3298.8
3387.8
77,4
3567.1
3656.8
3746,7
3836.6
3926.6
%019,0
4113.0
4207.1
4301.3
4395.6
wuga,8
4584.3
467%.0
4773.8
4B6B.6
4963.6
$058.5
5153.5
5249,3
5345.3
S441.3
5537.4
5633.6
5729.8
§826,1
5922.6
6019.1
6115.7
6212,3
6308,9
6405.6
6504.1
6602.6
6701.1
6799,7
6898,3
6997.0
7095,7
7194.6
7293.5
7392.5
7491, 4
7590.4
7689.5
7789,1
70888.8
798B.4
8088.1
8187.8
8287.5
B8387.4
8487.3
9987.2
8687.2

9

19,2
59.0
106.5
169.6
216.0
275.1
337.1
401.8
467,8
535.0
603.7
673.2
TU3.S
817.7
892,2
967.1
1043.0
1119,2
1195.9
1273.8
1352.5
1431.4
1510.7
1590.4
1670.3
1751.5%
1835.6
1919.8
2004.,1
2088.9
2473.8
2258.8
2344.7
2430.7
2516.,9
2603.3
2689.8
2776.5
2864.0
2952.6
3041,2
3129.9
321B.8B
3307.7
3396.8
34B6. 4
3576.0
3665.8
3755.6
3845,.6
3935.6
w028 .4
41224
u216.5
4310.7
4405.0
4499,3
4593.8
46BB.5
4783.3
4878.1
4973.1
5068.0
5163.0
5258.9
5354.9
5450.9
5547 .1
5643.2
5739.4
5835.7
$932.2
6028.8
6125,3
6221.9
6318.6
6415.4
£513.9
6612.4
6711.0
6809.6
6908.2
7006.8
7105.6
7204,5
7303.4
7402.3
7%501.3
7600.3
7699.5
7799.1
7898.7
7998.4
8098.1
8197.8
8297.5
8397.4
8497.3
8597.2
B8697,2

WOGDRUM

IBM SYST J

Obtaining the algorithm

Having analyzed the efficiency of two-way merging in terms of
comparisons, we now develop the algorithm. Recalling the con-
straint that no more space should be used than whatever is neces-
sary to hold the result, we see that the conventional two-way
merge technique, which requires two areas, is inappropriate.
Instead, merging can be done by a chaining technique in the
single area that is used to hold the result. With this area labeled
as the vector P, an ordered sequence can be represented in P
as a chained list of indices. In any sequence, there is a first, or
lowest, element. Call the index of this number the head of the
chain. If ¢ is the head of the chain, then let P[7] be the index of
the next number in the sequence. That position in P contains the
index of the next number in the sequence, and so on to the last
number in the sequence. The last position in the chain contains
its own index. The following example illustrates these concepts:

Index or position number: 0 1 2 3 4 5 6 7 8 9
The vector A: 11 9 3 6 8 5 0 7 4 2
ThevectorP: 0 0 3 4 1 7 5 7 8 8

There are three chains contained in the vector P, one repre-

senting the sequence of numbers A[2 3 4 1 0], one representing the

sequence A{6 5 7], and one representing the sequence A[9 8]. The
first chain is stored in P in positions 2, 3, 4, 1, and 0. The head of
the first chain is 2, the index of the lowest number in the sequence
3689 11. P[2] is 3, the index of the next number in the sequence,
and P[3] is 4, the index of the number 8 in A, the next number
in the sequence. P[4] is 1, the index of the 9 in A, and P[1] is 0,
the index of the 11 in A. Since A[0],11, is the last number in
this sequence, P[0] contains 0 to indicate this. The last position
in the chain always contains its own index. The other two se-
quences represented in P start in positions 6 and 9, respectively,
and are represented in the same chained fashion. If we have any
one of the three starting positions, 2, 6, or 9, we can examine the
numbers in any one of the three sequences in the proper order.
Given the heads of the chains representing any two sequences,
we can merge them to form a new sequence, represented by re-
chaining the indices in P, and the starting position of the new
chain can be recorded. If this is done with the last two sequences
in the example, P becomes 0, 0, 3, 4,1, 7,9, 7, 5, 8. The head of
the new chain is 6; the end of the new chain is 7.

Let M2 be a function to merge two sequences represented
by chains in this way. M2, shown in Figure 1 as an APL function,
accepts the heads of two chains, ¢ and j, and returns the head
of the single chain as a result.

The M2 function can now be used to repeatedly merge sequences
of appropriate lengths, until a single sequence is obtained. A
recursive sorting algorithm, MP, is given in Figure 2 as an APL
function. MP creates a chained representation in P of a sequence
of n numbers and gives the head of the chain as a result.

NO. 3 - 1969 INTERNAL SORTING

chain
example

Figure 1 APL program of the
M2 function

V IP3;IyJ;KiL
Pe"1-P
IT+«pP
1 0>LeI«T-1
+3 IF 0sJ+P(I]
K+P[J+"1-J]
PLJI+L
L+d
J+K
+s IF J<0
+3

Figure 2 APL program of the
MP function (uses M2)

V Z+«MP ¥
-4 IF 1=N
Z+(MP[0.5xN) M2 MPLO.SxN

+0
NEX+1+P{Z]«Z+NEX

MP function

the desired
permutation
vector

The MP program also has all the comparison properties implied
by the previous mathematical model. If n = 1, then the head of a
chain of length one is needed, which can easily be obtained by
getting the index of the next unexamined number in the input
vector A and storing that number in its own position in P, the
signal for the end of the chain. The head of the one-element chain is
the result of executing MP when n is 1. However, to get the index
of the next unexamined number in A, a nonlocal variable, NEX,
is needed to record this information. After using NEX, by adding
one to it, we see that it is all set for the next request. In MP, NEX
is assumed to have been set to zero before the first execution of
MP.

If n is not one in the MP function, then a chain must be created
by merging two other sequences, neither of which has been created
vet. The function MP is used recursively to create these other two
sequences first, and then the merging function, M2, is used to
produce the head of the single sequence of length n. When n is
not one, the result of MP is set to the output of M2, where M2 is
used to merge the two sequences formed by asking for MP(| .5n)
and MP([.5n), respectively. If the vectors A and P are defined,
NEX is set to zero, and MP n is executed, then MP produces

-the head of a single chain representing a sequence of n elements

in ascending order. Suppose, for example, that A is the vector 8,
23,11, 5, 3, 4, 23. The value of n is 7, the number of elements in
the vector A. After NEX is set to zero, and the function MP 7 is
executed, the value returned by MP is 4, the index of the lowest
element of A. The vector P is then 2, 6, 1, 0, 5, 3, 6. Note that the
last index in the chain is 6, and that the original order of equals
is preserved.

Having obtained a chained sequence in P, we find that it
is still not the desired permutation vector. Then, what must
be done to arrive at the desired permutation? As a first step,
trace the chain from beginning to end, replacing the links in the
chain with their relative positions in the sequence. The head of
the chain thus becomes zero, the second element of the chain
becomes a one, ete., until the entire chain is traced. When this
procedure is applied to P in the above example, it becomes 3, 5,
4,2,0,1, 6. A number in P, say P[z], is now the number of elements
in A which come before Alz] in the final ordering of A. P[0] is a 3,
thus the element A[0] will be in position 3 in the final result, since
there are three elements of A preceding it. If we now set A[P] to A,
the elements of A will be in ascending order. Also, if we set P[P] to
0,1,2 ..., n — 1, P would be the desired permutation, since
A[P] would be A in ascending order.

Let P be some permutation vector of the same length as A,
and let 7(P) be the inverse of P. P[iv(P)] is the identity permutat-
ion, 0,1,2 3, ---, ete. Let X = A[P]. Then X[{ww(P)] = A. Since
the vector P obtained above is such that X[P] = A, where X is
the elements of A in ascending order, then X = A{w(P)]. It is
then necessary to change P into 7v(P) without using another area

WOODRUM IBM SYST J

to do so. This problem is the same as that faced in the sorting
method called reserved-seat sorting, and essentially involves in-
verting a permutation in its own space. Algorithms that do this
efficiently have been known for at least the last ten years, and
one such algorithm to perform this inversion (IP) is shown in
Figure 3.

With the above results, the function MERGESORT1, shown
in Figure 4, creates the permutation P, given A, by using the recur-
sive function MP and the function IP to do so. Line 1 sets NEX
to zero, the index of the first element of A. NEX is incremented
by one each time it is used in the MP function to incorporate
the elements of A into the sort one at a time. Line 2 sets P to a
vector that is the same length as A, containing all zeros. The
zeros are not used, and P could be set to anything, as long as it
is the same length as A. Line 2 then executes MP, giving it the
length of P for an argument. A chained representation of a single
sequence involving all the elements of A is created in P, and the
head of this chain is returned as a result. [is set to the head of
this chain.

Lines 3 through 7 trace out this chain, replacing each index
in the chain with the index of its position in the final ordering.
A permutation is now obtained in P that is the inverse of the
permutation desired. The permutation inversion function is
then used, on line 8, to invert P in its own space, yielding the
final result.

Looking at the recursive sorting algorithm, we see that the
equivalent nonrecursive algorithm is obtained and extended to
multidimensional arrays. The new algorithm, shown in Figure 5
as GRADE, uses two stacks to implement the recursion. In Figure
5, C is the coordinate along which ordering permutations are
created, Z is the resulting array containing the ordering permuta-
tions, and A is the input array. The two stacks are the vectors P
and R. P contains the lengths of the sequences needed at various
stages of the sort, whereas R contains the heads of chains represent-
ing merged sequences. The lengths of P and R must be at least one
more than log,(n), where n is the number of elements to be sorted.
This is reflected on line 6 of GRADE, where P and R are initially
set to zeros.

Lines 1 through 6 of GRADE perform the initial housekeeping
and are executed only once. Lines 7 through 10 are executed
once for each ordering permutation produced in the output array.
The variable I serves the same purpose as NEX does in MP, i.e.,
it is used to pick up the next unexamined element of the data
being sorted. J and K are indices for accessing the two stacks
P and R, respectively.

Lines 11 through 13 examine the P stack, determining the
length of the next sequence required. When a sequence of length
one is required, line 12 creates it. When a sequence of length
greater than one is needed, lines 14 through 29 create it by merging
two chains and store the head of the resulting chain at R{K].

NO. 3 - 1969 INTERNAL SORTING

Figure 3 An adlgorithm for in-

verting a permutation

[1]
[2)]
[31
(]

v z«I M2 J;T
+4 IP A[T1<ALJ)
Z+J
+8
Z+I
+12
+11 IF A[I)<A(J]
PLT]+J
+6 IP TaJ+P(T+J]
P[7]+I
+0
PI[T]eI
+6 IF T=2I+P[P+I]
PL2)ed

nonrecursive
algorithm

Figure 4 Function MERGESORT1

(uses MP, 1P)

1]
[2]
£33
[4]
[sl
(43}
[7]
[€:-3)

Y P+«MERGESORT1 A;NEX;I;J:X
NEX«0
I+«MPpP«(pA)p0
K+"1

J+PlI]
PLIJeK+K+1
Ieg

+4 JP K< 1+pP

IP

Figure 5 Nonrecursive sorting algorithm

VY Z+C GRADE A;B;E‘;H;I;J;K;L;N;T;W;Y;S;P;Q;R
11 E«pZ« ,(H+pA)poO
[21] A+ A
[3] L+H[C]
4] Y<LxWN+Hi1C=1pH
[s] N+0
[6] P+«R«(1+472[,@1TH)p0O
[71 B0
[8] PLO]«L
{91 I+N~-W
[10] K<+T14J40
[11] =+11 IF 12P[J+J+11+L0.5%x | P[J]-P[J <0
[12] ROK+K+11«Z[I)«I<«I+W
[13] +11 IF 0>PLJ+-P[J«J-1]
[14] S+RI[X)]
[15] Q+R[k<«k-1]
[16] +19 IF A[S])<A[Q]
[17) RIK]«Q
f18] =23
£19]1 R[K1+sS
[20] =»27
[21] 26 IF A[S1<A[Q]
[22] z[Tl«qQ
23] =+21 IF T2Q+Z[T+q1
[24] 2Z[T]<«s
[251 =29
[26] 2Z[P)<S
[27] +21 IF T2S5+Z[T«S]
[28] 2z[T)+q
{29] 13 IF J=0
[30) I<R[X)]
[31] KN
[32] J+Z[I]
[33] Z[Ide-K+K+W
[34] I+J
[35] 32 IF K<N+Y
[36) 44 IP N>SeK+K-W
[{37) +36 IF 0sJ+«Z[X]
[38] I+2[Je-W+J]
[39] 2Z[J)«L|LSsW
[u0] S<+J
[41] JeI
[42] +38 IF J<0
{431 =36
{uu] NeN+1
[45] +8 IP W>B«B+1
[u6] NeN+Y-W
[47] =+7 IF N<E
[u8] Z<HpzZ

Z+«A IF B
Z+A[\B

When a chain of the right length for one of the ordering per-
mutations is obtained, lines 30 through 35 trace it, replacing
its clements with the indices of their positions in the final ordering.
Then lines 36 through 43 invert the permutation in place. Lines
44 through 47 check for completion of the entire process. Line
48 causes the result, Z, to be an array of the same size that A
is originally.

WOODRUM IBM SYST J

Summary comment

The machine language implementation was derived from the
APL function GRADE directly. The modeling process used to
obtain the final machine language program eliminated a sub-
stantial number of defects before a machine language program
even existed and gave an approximate idea of the performance of
the machine language program. If an algorithm is to be imple-
mented in machine language, it is recommended that it first be
modeled in the fashion used in this paper, starting with a mathe-
matical analysis of the algorithm, then obtaining successive algo-
rithms at more detailed levels of description until the machine
language program has been obtained.

Appendix

Section 1. The usual sample correlation coefficient is
n—1
Z (@~ Dy: — 9
n-1 = n—1 1/2
[; (x;, — &)° ;) (y: — ?7)2]

If 2 and y are zero-origin permutation vectors of length n,
then

n—1
[12 §::myi] — 3n(n — 1)°
“ i=0

= E3

n —n

b=

When y is the identity permutation, then

T = X,

Section 2. The expected value of the number of comparisons taken
to merge two sequences of lengths z and y, where the sequences
have been formed by ordering two sets of independent identi-
cally distributed random variables, is given by:

z My

o 2y +y'er oy +y+2)
m;y) = 2 @+ @+ DH D

where z'"! and (z + y)'" denote falling factorials, x(x — 1) (x — 2)
<o« (x4 1 ~ %), 1 terms in the product, and z'* = 1. The term
x [y is the larger of either x or y.

Section 3. For any sorting algorithm based on comparing, K£(C) >
log, (In), provided that the n numbers are distinct, or provided
that tests for equality are not made, and the !n arrangements
of the n numbers are equally likely.

Proof: Let X be the vector of n numbers to be sorted, and let Y
be the vector of the n numbers sorted in ascending order. Then

NO, 3 - 1969 INTERNAL SORTING

Y[P] = X, where P is a permutation vector, and P is unique
because of the requirement that X contains distinct numbers.
When two numbers X; and X; are compared, if X, < X, then
P, < P, andif X, > X;, then P, > P,. Initially the permutation
P can be any one of the In permutations. The comparison restricts
P to one of two subsets of 'n permutations, either the subset where
P, < P;, or the subset where P, > P,. The next comparison
similarly partitions one of these two subsets into two mutually
exclusive sets, one containing P, and the other not. This process
continues until a one-element set containing P has been
determined.

Now, suppose that, when a sort is performed where P is the
ordering permutation, the results of all the comparisons that the
program performed while sorting, i.e., determining P, were
recorded in the order the comparisons were done. When two
numbers X; and X; are compared, record a zero if X, < X;, and
record a 1 if X, > X, where ¢ < j. The result of the comparison,
i.e.,, a zero or a one, determines which subset of the possible
permutations contains P.

Lemma. The sequence of zeros and ones recorded for a given
permutation P is not identical with the sequence of zeros and
ones which would have been recorded for a permutation Q = P.

Proof: Kach time a comparison is done, a set of permutations
is partitioned into two subsets, one containing P and the
other not. If Q is not the same as P, and if Q had been the
permutation to be determined, then if Q was in the set not
containing P, the result of the comparison would have been
different, i.e., a zero would have been recorded instead of a
one, or a one instead of a zero. In this case, the sequences
recorded for P and Q are different. The only way for the
sequences to be the same is for Q to always be in the set
containing Q. But eventually a one-clement set containing P
alone is obtained; hence, Q must have been in a set not con-
taining P at some point. Thus, the sequences for P and Q
are different somewhere.

Since P and Q are arbitrary permutations, then the sequences
recorded for any pair of permutations are different. This means
that the sequence for a given permutation P is unique. Since
there are !n permutations, there are !n distinct sequences of
zeros and ones. In any system of € distinet equally likely codes,
an optimal encoding of the system using zeros and ones must
have an average of at least log, C bits in a code. Hence, the average
number of zeros and omnes in a recorded sequence is at least
log,(n), or the average number of comparisons to sort is at least
log,(n).

WOODRUM IBM SYST J

The above result also applies to any method of sorting where
a series of tests is applied, and where each test has only two possible
outccmes. The extension to tests where more than two outcomes
can result is similar.

CITED REFERENCES

1. K. E. Iverson, A Programming Language, John Wiley & Sons, New York,
New York (1962).

2. K. E. Iverson, Elementary Functions: An Algorithmic Treatment, Science
Research Associates, Chicago, Illinois (1966).

3. A. D. Falkoff and K. E. Iverson, APL\360 User's Manual, International
Business Machines Corporation, Thomas J. Watson Research Center,
Yorktown Heights, New York (August 1968). Although not formaily
supported by IBM, the APL\360 program may be obtained through any
IBM branch office.

. H. Steinhaus, Mathematical Snapshots, Oxford University Press, New
York, New York, 30-40 (1950).

. R. G. Busacher and T. L. Saaty, Finile Graphs and Nclworks, McGraw-Hill
Book Company, New York, New York, 228-231 (1965).

. G.J. Hahn and S. 8. Shapiro, Statistical Models in Enginecring, John Wiley
& Song, New York, New York, 64 (1967).

. 8. Glicksman, ‘“Concerning the merging of equal length tape files,”
Journal of the Association for Computing Machinery, 12, No. 2, 254-258
(April 1965).

INTERNAL SORTING

203

