Described is an experimental system for verifying logic designs in
the development of a compuler before a commitment to produce the
computer is made.

The system simulates logic activity with both known (0, 1) and unknown
(X) values. The use of the third value facilitates the generation of
tests and the detection of circuit hazards.

A three-value computer design verification system

178

by J. 8. Jephson, R. P. McQuarrie, and R. E. Vogelsberg

The development of new technologies for computer construction
has led to new ways of circuit design. These computer technologies

—methods for the control of the electronic signal flow using
devices such as transistors and integrated circuits—have ac-
centuated the usefulness of logic simulators during a machine
development cyele. The long procurement cycles and hardware
invariance associated with these technologies make design errors
nuch more costly than in past technologies. Moreover, increasing
vircuit densitics and speeds make hardware troubleshooting
more difficult, and variations In eircuit parameters between
machines make hardware debugging' accurate only for the
particular machine studied. The use of a simulator alleviates
many of these problems. The simulator machine description is
casily modified; thus a simulator is not affected by hardware
procurcment cveles and invariance. Moreover, the simulator
operates independently of circuit variations and can perform
worst-case analysis of timing hazards. Since the techniques used
for troubleshooting an actual machine are similar, if not identical,
to troubleshooting a simulated machine, simulation provides an
opportunity to develop these techniques and to learn the com-
puter system prior to the availability of hardware. This ability
improves the cfficiency of diagnosing hardware problems later
in the development cycle.

JEPHSON, MCQUARRIE, AND VOGELSBERG IRM SYST J

In this paper, an experimental three-value simulation system
is described. It is designed for use as an engineering tool to verify
large (5,000 block) logic designs prior to the actual construction
of hardware. The use of this logic simulator also ensures micro-
program and logic compatibility in a microprogram-controlled
machine. In addition to the advantages of other logic simulators,
the three-value simulator possesses features that further aid
the design verification task. The main difference in the simulator
under discussion is that it operates with three values instead of
the usual two. Besides the binary 1 and 0 values, the simulator
uses an X value. This value represents an unknown condition
and is considered to occur during any transition from one binary
value to another. It acts as a transitory state in going between 0
and 1. The X value may also be used to represent an initially
unspecified condition, an unpredictable oscillation, or a ‘‘don’t-
care'’ condition.

The use of this third value to represent the transition allows
the simulator to detect combinational hazards, critical races,
and feedback oscillations in the machine design.* Such hazards
may occur as a result of single or multiple input changes to a
logic block and indicate that either a timing or design error may
exist in the simulated logic. In addition to detecting such errors,
the simulator uses the X value to propagate the effects of the
error through the circuitry. In most synchronous sequential
machines, there are a number of potential circuit hazards that
do not affect the actual operation of the machine. The three-
value simulator's ability to propagate an unknown condition
allows the designer to concentrate on only those hazards that may
affect the machine operation.

In order to test a piece of hardware, the test procedure (stim-
ull) to be applied to that hardware must be defined. The prob-
lem of developing a complete specification test for a general-
purpose computer has not been solved. The problem is essentially
one of selecting a set of sequences of input patterns that will
completely test the function of the computer from an extremely
large number of possible combinations (a small processor recently
simulated had a possibility of 10'*** input tests).

The three-value simulator system addresses the problem of
test specification at several levels. A functional microprogram
simulator is used to prepare most of the simulator input patterns.
This limits the input sequences to the set of input operations for
which the hardware action has been designed and for which ex-
pected respouses exist.

The use of the X value as an unknown input condition can
further reduce the amount of test data that must be specified and
can greatly increase the effectiveness of a given test. For example,
suppose the user wishes to simulate the reset of a machine.
The machine should reset regardless of the contents of the con-
trol register, the status of the console switches, or the states of
the memory elements internal to the machine. In the three-value

No. 3 - 1969 DESIGN VERIFICATION SYSTEM

the third
value

timing
problems

simulation, this test can be made by setting the control register,
all console switches except reset, and all memory elements to
X, then simulating the reset. Any networks remaining at X
represent networks that have not been reset to a known value.
Without the X value, the reset would have to be tested for every
possible combination of switch, control register, and memory
element bits. For example, in a machine with 20 console switches,
a 60-bit control register, and 500 other memory elements, this
would mean repeating the test routine 2°*° times (about 10'"°
separate resets) to gain the same amount of information.

Since the three-value simulator is one of zero-delay, it does
not take into account the signal propagation delays that are a
function of the circuit technology, loading, and packaging. In the
actual hardware, timing problems manifest themselves in two
ways:

e The circuit behavior may be dependent on the relative delay
through two paths in the logic circuitry.

The cumulative delay of several layers of logic circuitry may

cause it to respond too slowly to meet the specified machine

cycle.

Due to running-time considerations, the simulator addresses
only the first of these timing problems. Because the simulator is
a zero-delay simulator, it is extremely pessimistic with respect
to relative delay. All logic paths are assumed to have the same
(zero) delay and thus a worst-case analysis of relative delay timing
problems is performed. In situations where it is determined that
a detected hazard does not exist in the actual hardware, the sim-
ulator operation may be modified by the definition of appropriate
delay blocks.

The simulator is specifically a significant event simulator.
When logic designs containing several thousand blocks are simu-
Iated, the running time of the simulation can become a problem.
This problem results from the slow speed of simulation as com-
pared with the actual hardware speed. The simulator must ex-
ecute a serial sequence of program instructions at microsecond
speeds to simulate a parallel set of hardware operations that occur
in nanoseconds. The simulator addresses this problem by simu-
lating only significant events. The simulation model of a logic
design consists of a number of interrelated table structures that
contain pointers representing the ecircuit interconnections. For
any given input change to the logic, only a small number of blocks
will change state (i.e., there will be a limited number of signifi-
cant events). The simulator pointer structure allows the effects
of an input change to be traced through only those blocks that
change value and thus limits the amount of computation required
during a simulation to a minimum.

In summary, we can say that the system described here
detects logic design errors and timing hazards in large logic
designs using a reduced set of test patterns and a minimal amount
of computer time.

JEPHSON, MCQUARRIE, AND VOGELSBERG IBM SYST J

Figure 1 The three-value simulator system

FUNCTIONAL

INITIALIZATION
MICROPROGRAM
PROGRAM SIMULATOR

MANUAL
COMMANDS
SELECTED QUTPUTS I
PRIMARY INPUTS

SCALE

CIRCUIT CHANGES

MACHINE
DESCRIPTION COMMAND
PROGRAM GENERATOR

THREE-VALUE
CIRCUIT DESCRIPTION SIMULATOR STIMULI AND CONTROL

PROGRAM

OUTPUT

CIRCUIT DESCRIPTION
NONCOMPARISON
3-LEVEL & 6-LEVEL

PRINTOUT

Simulator system

The simulator system is composed of a series of computer pro-
grams that together provide a sophisticated analytic aid for logic
design. The simulator can be used in development work as soon
as the logic of the proposed machine is described on tape (here
called the logic description tape, LDT) and the circuitry of the
machine is described on tape (the circuit description tape, CDT).
Either the entire machine logic or selected sections of the logic
can be simulated.

A simulation run can be made only after the logic to be simu-
lated, the input stimuli to be applied to that logic, and the output
information to be produced by the simulator are defined. The
preparation of a run for simulation must be done in stages with
the designers providing the control data and instructions for
each stage of the operation. Figure 1 illustrates the major stages
of the simulation setup and the general simulator data flow. The
three major stages are: (1) initialization, (2) machine description,
and (3) simulation control.

NO. 3 - 1969 DESIGN VERIFICATION SYSTEM

preparation
stages

major
commands

During the initialization stage, the logic to be simulated must
be selected and an initialization program must be run to prepare
a rough circuit description for the simulator. Upon completion
of this stage, the machine description stage is initiated. During
machine description, the circuit description is updated to correct
any errors detected during the initialization, and primary inputs,
outputs, and machine timings are defined.

Finally, in the simulation control stage, the circuit input
stimuli and the simulator controls are defined. In general, a func-
tional simulator is utilized to provide a microprogram trace tape
(MTT) containing input and output information, and the simu-
lator controls are manually specified. At the completion of this
stage, the simulator is run and the desired output produced.

The three-value simulator

The simulator program carries out the simulation of the circuit
image that has been defined during the machine description stage.
The simulation control tape (SCT), which is prepared during the
simulation control stage by a program called the command gen-
erator, controls the simulator program action.

When the command generator has completed the preparation
of the 8CT, the simulator program is called. The simulator reads
the circuit data into storage, and an initialize routine is then ex-
ccuted to establish various tables and initial controls. Initially
all block values are set to X (the unknown condition). The simu-
lator then reads the first information on the SCT and begins the
simulation.

The information on the SCT consists of a string of commands
to be exccuted by the simulator. There are three major commands
used to control the results of the simulation and a number of
commands used to control the output of the simulation. The three
major simulation control commands are:

¢ Clock update
e Apply stimulus
¢ Compare response

The clock update command causes the simulator to set an
internal clock to the indicated time. This time is used by the
simulator to maintain correct machine timing relationships and
to identify simulation output.

The apply stimulus command causes the simulator to change
the value on an indicated primary input to a new value. As
mentioned previously, the simulation is of ‘“significant events”
only. Part of the task of the command generator is to identify
those primary inputs that have changed value during a given
¢lock time and to pass only those primary network input numbers
and new values to the simulator. This implies that after the first
few sets of inputs have been applied, only a small portion of the
machine will have to be simulated for any given clock time. A
significant amount of simulation running time is thus saved.

JEPHSON, MCQUARRIE, AND VOGELSBERG IBM SYST J

The compare response command causes the simulator to com- Figure 2 Truth tables
pare the value calculated for an indicated primary output with
the value provided. If a value is found that docs not compare,
the simulator initiates a printout of the machine status at the
time the comparison is made. This type of output is usually the
prime source of debugging information obtained during a machine
simulation.

The remaining simulator commands correspond to the manual
commands and control the types of simulator output and the
times during which this output should be produced. There is
also a stop simulation command that causes the simulation to
terminate at an indicated time (or after a specified number of
values are found that do not compare). .

During the simulation, all logic functions have a three-value
truth table. These tables for an AND block or an OR block are
shown in Figure 2. The X or unknown value appears at the
output of a block if the two-value truth table of the block indicates
that the changing of the value on the input may cause the block
output to change (i.e., the input change may propagate to the
output). This use of the third value allows circuit hazards that
would go undetected in a two-value simulation to be detected.
TFor example, changing the inputs of an AND or an OR gate from
0 to 1 and from 1 to 0 in the same cycle may cause a temporarily
erroneous output. This condition is detected and propagated
in the three-value simulation but not in a two-value simulation
as shown in Figure 3.

During a simulation, the simulator reads a simulation control command
tape record and then executes the commands in that record. ordering
The usual ordering of commands for one machine time is:

THREE-VALUE “AND” TRUTH TABLE
1 2

KHEXOX=mOO
KX XO=O=O
XX XOoOmOO0O |0

THREE-VALUE ““OR" TRUTH TABLE
1 2

KM MO~ OO
HMX-HOX-O~NO
K XX O | O

1. Clock update

2. Control commands

3. List of apply stimulus commands

4. List of compare response commands

Tor such a sequence, the simulator first updates the internal Figure 3 Combinational hazard

clock, then sets a series of controls based upon the control com- detection

mands, and finally processes the list of apply stimulus commands. TWOVALUE THREE.VALUE
The processing of this list is the actual logic simulation stage of SIMULATION P:SZT::ET'Z:'KE
the operation. ox1
For each primary input network specified in an apply stimulus
command, the simulator applies an X to the network and prop-
agates that value through the logic until no further block output
changes can occur. For example, if an X being propagated on POSSIBLE “DIP"
a network reaches an AND block that has some other input set \
at 0, the propagation of the X value is terminated for that block. ESSN
When no further block changes can occur for the given primary
input, the next primary input specified in an apply stimulus
command is set to X, and the operation is repeated. This sequence
continues until all the primary inputs mentioned in the list have
been set to X. The propagation of X values on these networks

1-X-0

NoO. 3 - 1969 DESIGN VERIFICATION SYSTEM

propagation
example

Figure 4 Latch with hazard

TIME
_—

TO 1 2 3 4 TS

INITIAL RESET SET LATCH RESET CONDITION HAZARD

leV X‘V X’V XlVXVXV

’
o U] -

OUTPUT

-

is the first of two passes that the simulator must execute in chang-
ing a set of input values and is called an X-PASS. During the
second pass, the values given for the primary inputs in the apply
stimulus commands are applied to the primary inputs and prop-
agated one at a time in a similar manner to that used in the X-PASS.
This pass is called the VALUE-PASS and (for circuits containing
no unit delays) completes the simulator action for the set of
stimuli provided.

The simulator then processes the list of compare response
commands and initiates output operations if necessary. For exam-
ple, consider the latch circuit of Figure 4. At 7', all the input
networks are at X; the OUTPUT and the line labeled A will also
be at X. If the latch is reset as shown at T, by setting the GATE
and RESET input lines to gero, the OUTPUT and A will eventually
go to zero. The simulator might propagate this change as follows:

1. Apply X on the GATE line. Note that during an X-PASS a
block output can change only to an X from a value. Since the
block value is already X, no further propagation is necessary.

Apply X's to the RESET line with similar results. This com-
pletes the X-PASS.

Apply a zero to the GATE line. Note that during a VALUE-PASS
a block output can change only to a value from an X. Because
the AND block’s present value is X, it can change. Thus

JEPHSON, MCQUARRIE, AND VOGELSBERG IBM SYST J

calculate the value of the AND block’s new output. The value
is zero, which is different from X, so propagate this value to
the OR block. The OR block’s previous value is X, so it can
change. Thus calculate the value of the OR block. The new
OR block value is X (because the lower input is still at X).
Because this is the same as the previous output, stop
propagation.

Apply a zero to the RESET line. This change causes the lower
AND to go to zero followed by the OR block going to zero;
then propagation will stop at the lower AND block’s input
(because the block is now set to a value).

The remaining circuit changes ranging from T, to T; can be
verified in a similar manner.

Note that the circuit shown contains a hazard. At the time
labeled T, changing the levels on both the DATA and GATE lines
causes a ‘‘spike” to be produced. The simulator indicates this
condition by allowing the latch to be set to X (where it will stay
until another set or reset is applied).

The hazard thus indicated may or may not cxist in the actual
hardware. The duration of the spike may not be sufficiently
long to cause the actual latch to be set, or there may be timing
constraints due to a delay in the logic paths that generate the
DATA and GATE lines that ensure that no spike will be produced.
When a circuit depends on such logic delay to operate correctly,
a unit delay block must be inserted in the model of the circuit
to correct the operation of the simulator.

When the delay block is encountered during the propagation
of a signal, the propagation is halted at the delay block, and an
entry is made in the delay table. The propagation of the next
signal change is then initiated. This operation is continued for
both the X-PASS and the VALUE-PASS. Thus, starting with an
X-PASS, the X's on networks that are changing are propagated
as far as possible (i.e., until a block that doesn’t change state
or a delay block is reached). Then a VALUE-PASS is made during
which the values are propagated as far as possible (in the same
way as for an X-PASS). When these two passes are complete,
the simulator has entries in the delay table corresponding to the
X's and the values that have propagated to delay blocks. The
X’s are then placed on the outputs of the delay blocks and prop-
agated as far as possible in another X-PASS. When this X-PASS
is completed, the valucs in the delay table are placed on the
outputs of the delay blocks and propagated in another VALUE-
PASS. These are called the DELAYED-X-PASS and DELAYED-
VALUE-PASS, respectively.

If a delay block is encountered during a DELAYED-X-PASS
and DELAYED-VALUE-PASS, the above process is repeated, and
a third set of X and VALUE passcs is established. Thus three delays
in series cause three DELAYED-X passes and three DELAYED-
VALUE passes to be taken.

NO. 3 - 1969 DESIGN VERIFICATION SYSTEM

hazard
indication

186

Figure 5 Latch without hazard

Ty Ts Te

LATCH ReseT | Shom” HAZARD

DELAY ‘ lDELAY ‘ DELAY (.DELAY
xlvlixlvixtvlix|vixlvixivixly

4

e e

. . .

OUTPUT
—
UNIT DELAY

Returning to the lateh of the example, consider the circuit
as shown in Figure 5. A unit delay has been added to the circuit
in the GATE line to correct conditions resulting from the pre-
viously detected hazard. The simulator operation shown then
results. Notice the sequence of events at time 7. The change
in the DATA line is propagated immediately as before; however,
the change in the GATE line is delayed until the second set of
X and VALUE passes by the unit delay. Because these transitions
have been separated in time as seen by the simulator, the spike
is no longer produced, and the new circuit contains no timing
hazard.

The addition of the delay block has doubled the number of
passes that the simulator must make to simulate this circuit.
The addition of a delay to a larger circuit will not necessarily
double the number of simulator passes, but it will increase the
number. Care should be exercised in the placement of unit delays
to avoid excessively increasing the length of the simulator running
time.

It is also possible to construct a cireuit, using logic blocks and
unit delays, that oscillates indefinitely. To guard against such a
situation, the simulator, after a clock update, counts the number
of times it passes through a delay level (a delay level is defined as
a DELAYED-X and a DELAYED-VALUE pass). If this count
exceeds a specified number, the simulation is terminated, and
appropriate output is produced.

JEPHSON, MCQUARRIE, AND VOGELSBERG IBM SYST J

Tour types of printouts are available to aid in analyzing the
logic that has been simulated:

Printout when values do not compare
Three-level printout

Six-level printout

Cireuit description printout

The printout for values that do not compare is initiated by
the simulator whenever o difference between an expected result
(as defined on the MTT) and the result determined by the simu-
lIator oceurs. This printout lists the values of the response facil-
ities, the values of the stimulus facilities, and the block values
of the remaining networks in the logic at the time that the values
are found not to compare. Knowing the machine time, the opera-
tion to be performed, and the status of all the inputs to the
circuit, the user can look at the outputs and determine whether
or not the functions were performed correctly. To isolate the
error, the block values can be analyzed to determine the status of
every network in the machine. With these values, he can trace
the circuit back from the failing output to the point where the
trouble can be found.

The three-level and six-level printouts are selccted by the
user when he desires detailed knowledge of the sequence of the
changes in all network values during some phase of the machine
operation. These printouts list all the network values of the
simulated machine for the times specified. If the three-level
printout is selected, the possible network values are 1, 0, and X.
The six-level printout is a modification of the three-level printout
and is designed to simplify troubleshooting. For this output,
the characters +, —, and = are used to indicate block values
of 1, 0, and X that have not changed since the last output. The
values 1, 0, and X are used only for those blocks that have been
active since the last output.

The circuit description listing provides detailed block data
as it is defined in the simulator. This data can be used to check
the circuit in the simulator against the machine logie.

During normal operations, the printout showing information
about values that do not compare provides the major debugging
aid. However, the three-level and six-level printouts allow the
user to observe every machine operation and every block change
in whatever detail is desired. Additional output can be prepared
on tape (an output tape, or OT) in a format that may be processed
by other programs to simplify the analytic procedure. Several
such programs are presently being considered.

Summary comment

The three-value simulator has been used on both central pro-
cessing units and input/output controllers with microprogram
control and hardware control. Four major systems have been

No. 3 - 1969 DESIGN VERIFICATION SYSTEM

printouts

