
Described i s  a n  experimental system for verifying  logic  designs in 
the  decelopment of a computer  before a commitmeat  to  produce  the 
computer i s  made.  

T h e  system simulates  logic  activity  with  both  known (0 , l )  and  unknown 
( X )  values .   The  use of the  third  value  facilitates  the  generation  of 
tests and  the  detection of circuit  hazards. 

A three-value  computer  design  verification system 
by J. S. Jephson, R. P. McQuarrie,  and R. E. Vogelsberg 

The development of ne\v technologies  for  eomput'er  const'ruction 
has led to  new ~ w y s  of circuit  design. These  computer t,echnologies 
"methods for the control of the electronic  signal flow using 
devices such :ts transistors and integrat,ed circuits-have m- 
cwltuated the usefuhless of logic simulators  during a m:tcshine 
development q ~ ~ l c .  The long procurement cycles and hardu.arc 
invari:mcse :Issoc.i:Lted with  these tec-hnologies make design errors 
luuc*h more cost Iy thnn in past technologies. hforeover, increasing 
circuit detwit,ics 2nd speeds make hnrdrvare troubleshooting 
more difficult, n ~ r d  variations in  circuit  parameters between 
mac.hines mnlx: hnrdnare debugging'  accurate only for the 
p:wticular mwhinc: st,udicd. The use of a simulator :dleviatcs 
m:tny of these  problems. The  simulator  machine  description is 
easily modificd; thus :L simulator is not  afferted t)y hnrd\\-nrc 
procurcmcnt c~yc~lcs :rnd invnrinncc. Moreover, the  simulator 
operat~es  indcpendcntly of circuit vari:it,ions m d  can  pcrforrn 
worst-case analysis of timing hnzards. Since the t,cchniques used 
for troublcshootiug an :wtual machine arc similar, if not, ideut,ical, 
to troul>leshooting :t simul:tt,cd machine,  simulation  pmvidcs an 
opportunity t,o devclop these  techniques and to learn the com- 
puter  system prior to  the :Ivnil:zhility of hxrdw-nre. This ability 
improves the cfficGmcy of diagnosing hardnare problcnrs later 
in the development cycle. 
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In  this  paper,  an experimental  three-value  simulation  system 
is described. It is designed for use as  an engineering  tool to verify 
large (.i,OOO block) logic designs prior to  the  actual  construction 
of hardware.  The use of this logic simulator  also  ensures micro- 
program  and logic compatibility  in  a  microprogram-controlled 
machine. In addition to  the advantages of other logic simulators, 
the  three-vdue simulat'or possesses features that  further aid 
t,he design verification task.  The main difference in  the  simulator 
under discussion is that  it  operates  with  three values  instead of 
the usual  two. Besides the binary 1 and 0 values, the simulator 
uses an X value. This value  represents an unknown  condition 
and  is considered to occur during  any  transition from  one  binary 
value to  another. It acts  as a transitory  state  in going between 0 
and 1. The X value  may also be used to represent an  initially 
unspecified condition, an unpredictable oscillat'ion, or a "don't- 
care" condit'ion. 

The use of this  third  value t,o represent the transition allows 
the simulator t,o detect combinat'ional  hazards,  critical  races, 
and feedback oscillations in  the machine design.' Such  hazards 
rnny occur as x result of single or multiple input changes to  a 
logic block and  indicate  that  either a  timing  or design error may 
exist in the simulated logic. In addition to detecting  such  errors, 
t,he  sinlulator uses the X value to propagate the effects of the 
error through  the  circuitry. In most  synchronous  sequential 
machines,  t,here are a  number of potent'ial  circuit  hazards that 
do  not  affert  the  actual  operation of the machine. The three- 
value  simulator's xbilit,y to propagatme a11 unknown condition 
nllow-s the designer t'o  concentrate on only those  hazards that  may 
affect' tmhe  machine  operation. 

In order to  test a pieve of hardware, the  test procedure (stim- 
uli) to  be  applied  t'o that hardware  must be defined. The prob- 
lem of developing a complete specification test for a  general- 
purpose romputer  has  not been solved. The problem is essentially 
one of selec+ing a  set of sequences of input  pat'terns  that will 
c*ompletcly test the funrt,ion of the computer  from  an  extremely 
large numhcr of possible combinat,ions ( a  small processor recent'ly 
simulated  had a possibility of 10'""' input  tests). 

The t'hree-value  simulator  syst'em addresses the problem of 
lest sperificution n t  several levels. A functional  microprogram 
sirnulator is used to prepare  most of the simulator  input  patterns. 
This limits  t'he input sequences to  the set of input  operations for 
which the hard\v:bre art,ion  has been designed and for which ex- 
pec:ted responses exist. 

The use of the X value as an unkno\vn input condition  can 
furt'her  reduce the amount of test  dat,a  that  must be specified and 
( . an  greatly  increase the effect,iveness of a given test.  For example, 
suppose the user wishes to  simulate  the reset of a machine. 
The machine  should  reset regardless of t'he  contents of the con- 
trol  register, the st,nt!us of the console switches, or the  states of 
thc memory  elements  int,ernnl  t'o  t'he marhine.  In  the  three-value 
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simulation, this  test can be made  by  setting the control  register, 
all console switches except reset,  and  all  memory  elements to 
X ,  then simulating the reset. Any networks  remaining at X 
represent  networks that have  not been reset to a  known  value. 
Without  the X value, the reset would have to be tested for every 
possible combination of switch,  control  register, and memory 
element  bits.  For example, in a machine with 20 console switches, 
a GO-bit control  register, and 500 other memory elements, this 
would mean  repeating the  test  routine 2580 times  (about 
separate  resets) to gain the same  amount of information. 

Since the three-value  simulator is one of zero-delay, it does 
timing not  take  into account the signal  propagation  delays that  are a 

problems function of the circuit technology, loading, and packaging. In  the 
act'ual  hardware,  timing problems manifest  themselves  in  two 
ways : 

The circuit  behavior  may be dependent on the relative  delay 
through  two  paths  in  the logic circuitry. 
The cumulative  delay of several  layers of logic circuitry  may 
cause it  to respond too slowly to meet the specified machine 
cycle. 
Due  to  running-time considerations, the simulator addresses 

only the first of these  timing problems. Because the  simulator is 
a zero-delay simulator, it  is extremely pessimistic with  respect 
to relative  delay. All  logic paths  are assumed to have the same 
(zero) delay  and thus a worst-case analysis of relative  delay  timing 
problems is performed. In situations where it is determined that 
a  detected  hazard does not exist in  the  actual  hardware,  the sim- 
ulator  operation  may  be modified by  the definition of appropriate 
delay blocks. 

The  simulator is specifically a significant event  simulator. 
When logic designs containing  several  thousand blocks are simu- 
lated,  the running  time of the simulation  can become a  problem. 
This problem results from the slow speed of simulation as com- 
pared  with the  actual  hardware speed. The simulator  must ex- 
ecute  a  serial sequence of program  instructions a t  microsecond 
speeds to  simulate  a  parallel  set of hardware  operations that occur 
in nanoseconds. The simulator addresses bhis problem by simu- 
lating  only significant events. The simulation model of a logic 
design consists of a  number of interrelated  table  structures  that 
contain  pointers  representing the circuit  interconnections. For 
any given input, change to  the logic, only a small  number of blocks 
will change state (i.e., there will be a limited  number of signifi- 
cant  events).  The simulator  pointer structure allows the  effects 
of an  input change to be traced  through only those blocks that 
change value  and thus limits the  amount of computation  required 
during  a  simulation t'o a  minimum. 

In summary, we can say  that  the  system described here 
detects logic design errors and timing  hazards  in  large logic 
designs using a reduced set of test  patterns  and a minimal amount 
of computer t'ime. 
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During  the initialization stage,  the logic to  be  simulated  must 
be selected and  an initialization  program  must be run  to prepare 
a rough  circuit  descript'ion  for the simulator.  Upon  completion 
of this  stage,  the machine  description stage is initiated.  During 
machine  description, the circuit  description  is  updated to  correct, 
any errors  det'ect'ed  during the initialization,  and  primary  input's, 
outputs,  and machine  timings are defined. 

Finally,  in the simulation  control  stage, the circuit input 
stimuli  and  the  simulator controls are defined. In  general,  a func- 
tional  simulator is utilized to provide  a  microprogram trace  tape 
(MTT) containing input  and  output  information,  and  the simu- 
lator cont'rols are  manually specified. At  the completion of this 
stage, the simulator is run  and  the desired out'put produced. 

The three-value  simulator 
The  simulator  program carries out  the simulation of the circuit 
image that  has been defined during the machine  description  stage. 
The simulation  control tape (SCT), which is prepared  during  the 
simulation  control  stage by a  program called the command gen- 
erator, controls the simulator  program  action. 

When the command  generator  has  completed the preparation 
of the SCT, the simulator  program is called. The simulator  reads 
the circuit data  into  storage,  and  an initialize  routine is then ex- 
ccuted to  establish  various  tables and  initial controls. Initially 
all block values are  set  to X (t'he  unknown  condition). The simu- 
lator  then  reads  t>he first  information  on the SCT and begins the 
simulation. 

The  information on the SCT consists of a string of commands 
major to be executed by  the simulator.  There  are  three  major commands 

:ornrnands used to  control the results of the simulation and a  number of 
commands used to  control the  output of the simulation.  The  three 
major  simulation  control  commands  are: 

Clock update 
Apply  stimulus 
Compare response 
The cloclc upda te  command causes the simulator to  set  an 

internal clock to  the indicated  time.  This  time is used by  the 
simulator  to  maintain correct  marhine  timing  relationships and 
to  identify  simulation output. 

The a p p l y  stimuly,s command causes the simulator to change 
the value on an indicated  primary  input  to a new value. AS 
ment,ioned previously, the simulation is of "significant events" 
only. Part of the  task of the command  generator is to identify 
those primary  inputs  that  have changed  value  during  a given 
c.lock time  and  to pass  only  those primary  network  input  numbers 
and new values to  the simulator.  This implies that  after  the  first 
few sets of inputs  have been applied, only a  small  portion of the 
machine will have  to be  simulated for any given clock time. A 
significant amount of simulation  running  t'ime is thus  saved. 
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The compare  response caommnnd causes t,he  simulator to  com- 
pare the value  ralrulat,ed  for  an  indicated  primary  output  with 
the value  provided. If a value  is  found  that' docs not compare, 
the simulator  initiates  a  printout of the machine stat>us  at  the 
tinze t,he comparison is made. This  type of output,  is  usually the 
prime  source of debugging  informat,ion  obtained  during  a  machine 
simulation. 

The remaining  simulator  commands  correspond to  the manual 
commands and  control  the  types of simulator  output  and  the 
t,imes during which this  output should be produced. There is 
also a stop simulation  command that causes the simulation to  
terminate  at  an  indicated  time (or  after  a specified number of 
values are found that do not  compare). 

During  the  simulation, all logic functions  have  a  three-value 
truth table.  These  tables for an AND block or an 011 block are 
shown in Figure 2 .  The X or  unknown  value  appears at   the 
output of a block if the two-value truth  table of the block indicates 
t,hat  t,he changing of the value on t,he input'  may cause the block 
output  to change (i.e.,  the  input change may  propagate to  the 
output).  This use of the t,hird  value allo\z.s circuit  hazards that 
would go undetected  in  a  two-value  simulation to  be  detected. 
For example, (,hanging the  inputs of an ANI) or an OIL gate  from 
0 to  1 and from 1 to 0 in the same cycle may  muse  a  t'emporarily 
erroneous output.  This condition is detected  and  propagated 
in the t'hree-value  simulation but  not  in a tjwo-value simulation 
as shown  in  Figure 3.  

During a  simulation, the simulator  reads a simulation  control 
tape record and  then executes the commands  in that record. 
The  usual ordering of commands for one mwhine  time  is: 

1. Clock update 
2. Control  commands 
3 .  List of apply  st,iInulus  commands 
4. List of compare response commands 

For  such a  sequence,  t,he  simulator first updates  the  internal 
clock, then setjs a series of cont'rols  based  upon the control com- 
mands,  and finally processes the list of apply  st,imulus  commands. 
The processing of this list is the  actual logic simulation  stage of 
t'he operation. 

For  earh  primary  input netn-orlc specified in  an  apply  stimulus 
commm?d, tJhe simulator  applies  an X to  the network and  prop- 
agates that value through  the logic until no further block output 
changes ran occur. 17or example, if an X being propagat'ed on 
a net,worlc reaches an A N D  block that has some other  input  set 
a t  0, the propagation of the X value is t,erminated  for that block. 
When no further bloclt changes can occur for the given primary 
input,  the  nest  primary  input specified in  an  apply  stimulus 
command is set to X ,  and  the  operation is repeated.  This sequence 
continues until  all  the  primary  inputs mentioned in  the list have 
been set to  X .  The propagation of X values on these  networks 

Figure 2 Truth  tables 
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Figure 4 latch  with  hazard 
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is t'he  first of two passes that  the simulat'or  must  execute  in chang- 
ing a set of input values and is called an X-PASS. During  the 
second pass, the values given for t'he  primary  inputs  in  the  apply 
stimulus  commands are applied to  the  primary  inputs  and prop- 
agated one at  a  time  in a similar  manner to that used in  the X-I'ASS. 
This  pass is called the VALUE-PASS and (for  circuits  containing 
no unit delays) completes the simulator  action  for the  set of 
stimuli  provided. 

The  simulator  then processes the list of compare response 
propagation commands and  initiates  out,put  operations if nec'essary. For exam- 

example ple, consider the  latch circuit of Figure 4. At !!', all the  input 
networks  are a t  X ;  the OUTPUT and  the line  labeled A will also 
be at  X .  If the  latch is reset as shown at  T,  by sett'ing the GATE 
and RESET input lines to zero, the OUTPUT and A will eventually 
go to zero. The sim1:lator might  propagate  this  change  as follows: 

1 .  ,4pply X 011 the GATE line. Xote  that  during  an X-PASS a 
block output  can change  only to  an X from  a  value.  Since the 
block value is already X ,  no further  propagation is necessary. 

2. Apply X ' s  to  the RESET line with  similar  results. This com- 
pletes the X-PASS. 

3 .  Apply  a zero to  the GATE line. Note  that  during a VALUE-PASS 
a block output can change  only to a  value from an X .  Because 
the ANI) block's present  value is X ,  it can change. Thus 
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cydculate the  value of the AX11 block’s new output.  The value 
is zero, which is difierent  from X ,  so propagate  this  value to 
the O I ~  block. The OR blork’s previous  value is X ,  so it  ran 
change. Thus  cdculate  tBhe  value of the ()I t  hlock. The netv 
011 block value  is X (because  t’he lon-er input is still at X ) .  
Because this is the same as the previous out’put, stop 
propagation. 

4. Apply  a zero to  the RESET line. This change causes the lotver 
AND to  go to zero followed by  the OR block going to zero; 
then  propagation will stop  at  the lower ANI) block’s input 
(because the block is now set  to a  value). 

The remaining  circuit changes ranging from T ,  to Z’, can  be 
verified  in  a  similar  manner. 

Note  that  the circuit shon-n contains a hazard. At the  time 
labeled T,, changing the levels on both  the TIATA and GATE lines 
causes a  “spike” to be  produced. The simulator  indicates  this 
condition  by allowing the latch  to be set to  X (where it will stay 
until  another  set or reset  is  applied). 

The  hazard  thus  indicated  may or may not exist in the atrtual 
hardware. The  duration of the spike may  not be sufficiently 
long to  cause the  actual  latch  to be set, or t’here  may  be  t’iming 
 constraint,^ due  t’o  a  delay  in the logic paths  that’  generate  the 
DATA and GATE lines that ensure  t’hat no spike will be produced. 
When  a  circuit  depends  on  such logic: delay to operat’c  correctly, 
a unit delay block must be  inserted  in  t,he model of the circuit 
t,o correct the operat,ion of the  simulator. 

When t,he delay block is encountered  during the propagation 
of a signal,  t’he  propagnt’ion is halted  at  the delay  block, and  an 
entry  is made  in the delay table.  The  propagation of the next 
signal  change is t’hen  init’iated.  This  opcrat’ion is cont’inued for 
both  the X-PASS and  the VALIJE-PASS. Thus,  starting  with  an 
X-PASS, the X ’ s  on networks that  are changing are  propagated 
as far  as possible (i.e.,  until a block that doesn’t  change  st’at’e 
or a  delay block is reached).  Then a VALUE-PASS is made during 
which the values are  propagated as far as possible (in the same 
way as  for  an X-PASS). When t,hese t n o  passcs are complete, 
the simulator  has  entries in t’lle delay  table corresponding to  the 
X’s  and  the values that have  propagated to delay bloclrs. The 
X’s  are  then placed on the  outputs of the delay blocks and  prop- 
agated  as fur as possible i n  mother X-PASS. When this X-PASS 
is completed, the values  in the delay  t,able  are placed on t’he 
outputs of thc  delay blocks and propag:Lt,ed i n  another VATAUE- 
PASS. These xre called thc I)EJ,AYISI>-X-I’ASS and 1)ELAYED- 
VALUE-PASS, respec.tively. 

If a delay blorlr is encountered  during a 1)ELAYED-X-PASS 
and I)ELAYEI>-VAI,UE-~’ASS, the  above process is repeated,  and 
a third  set of X and VALUE pnsscs is established. Thus  three  delays 
in series cause three J>EJJAYEI)-X passes and  three DELAYED- 
VAJ,UE passes to  be t:dien. 
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Figure 5 latch without hazard 
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ltcturning to  the  latch of the example, consider the circuit 
as shown in Yigure 5 .  A unit  delay  has been added to  the circuit 
i l l  the GATT line to correct  conditions  resulting from the pre- 
viously detec+cd h:tz:mi. The simulat,or  operation  shown  t'hen 
results. Kotice the sequencae of events at time TCi. The change 
in the DATA line is propagated  immediately  as  before;  however, 
thc c*hange in the (;ATE line is delayed  unt'il the second set of 
X and VALUE pnsses by the  unit delay.  Because  these  transitions 
1l:tve been separated  in  time as seen  by the simulator, the spike 
is no longer produced, and the new circuit cont'ains  no  timing 
1l:lxnrd. 

The :&lition of the delay block has doubled the number of 
Imses that the simulnt~or must  make t o  simulate  this circuit. 
The :ddition of :I delay tJo a larger circuit will not necessarily 
tlouhle t'he  number of simulator  passes,  but, it will increase the 
number.  Care should be exercised in the placement of unit delays 
to  avoid exccssivcly increasing the length of t'he  simulator  running 
time. 

It is also possible to construtat' a circuit, using logic bloclrs and 
unit  delays, that  osdlates indefinitely. To guard  against  such a 
situation, the simulator,  after a c~loc~l~ update,  counts  the  number 
of times it) passes through a delay level (a delay level is defined as 
:L I)I';LAYE;I>-S and a l)EI,AYEI)-VAI,UE pass). If this count 
cweeds a specified number, the simul%t>ion  is t'erminated, and 
:Ipproprinte output is produced. 



Four  types of printouts are avail:lble t o  aid i n  :m:dyzing the 
logic that' has been simulated: 

Printout when values do not r o m p r e  
Three-level printout 
Six-level printout 
Circuit descript,ion printout, 

The  printout for values t'h:Lt' do not compare is initiated by 
the simulator whenever a differenre  between an expected  result 
(as defined on the RITT) and  the result  determined by the simu- 
lator occurs. This printout,  lists the values of the  respol~sc fncil- 
it,ies, the values of thc stimulus  facilities, and thc hloc4l; values 
of t'he remaining  net\\-orks  in  tjhc logic :it the  time  that  t'lx values 
are found not to compare. Knoning the macalrine time,  the opera- 
tion to be  performed, and  the  status of all t'he  inputs to  the 
circuit, the user can look at  the  outputs :Lnd determine  whet'her 
or  not t,he functions were performed cwrecstly. To isolate the 
error, Ihe block values ran be analyzed to determine the  status of 
every  netu-ork in the machine.  Wit,h  these v:dues, he can  t'race 
thc c-ircwit back  from the failing output'  to  the poilit \\here the 
trouble can be found. 

The three-level and six-level printouts :we selected by the 
user when he desires detailed Imowledge of the sequence of the 
changes in all network v:tlucs during some phase of the  mwhine 
operation.  These  printout,s  list all t'he netjworl; values of the 
simulated  machine for t'he  times specified. If the three-level 
printout is sclerted, the possible netn-ork  values are 1 ,  0, and X .  
The six-level printout is a moditic~stion of the three-level printout 
and is designed t o  simplify troubleshooting. I'or this  output, 
the  characters +, -, :md = are wed  to indic*:Lte block values 
of 1, 0, and X that,  have  not changed  sinrc t'he last  output'.  The 
values 1, 0, and X :\re used only for thoae b1oc.ks thiht have been 
act'ive  since the last output. 

The circuit  description list,ing provides  detailed block data 
as it is defined in the simulator. This data c a n  be used to check 
the circuit i n  t,he simulator ag:tinst the m:ac.hil~e  logic.. 

During  normal  operations, the printout showing information 
about values that do not  rompare provides the major  debugging 
:Lid. However, the three-level :utd six-level printouts a l l o \ ~  the 
user to observe every  marhine  operation : d  every  hlork  change 
in  whatever  detail is desired. hdditio1l:ll output, can he prepared 
on tape (an  output  tape, or UT) in a formilt that may be processed 
by other programs to simplify the analytic* procedure.  Several 
surh programs :\re prcselltly being (.onsidered. 

Summary comment 
The three-v:tlue simu1:Ltor has been used on both  rentral pro- 
cwsing units and input/output controllers wit'h mi(-roprogram 
c-ontrol :uld hnrd\\-arc volltrol. Four major systems lmve been 
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