
Described i s a n experimental system for verifying logic designs in
the decelopment of a computer before a commitmeat to produce the
computer i s made.

T h e system simulates logic activity with both known (0 , l) and unknown
(X) values . The use of the third value facilitates the generation of
tests and the detection of circuit hazards.

A three-value computer design verification system
by J. S. Jephson, R. P. McQuarrie, and R. E. Vogelsberg

The development of ne\v technologies for eomput'er const'ruction
has led to new ~ w y s of circuit design. These computer t,echnologies
"methods for the control of the electronic signal flow using
devices such :ts transistors and integrat,ed circuits-have m-
cwltuated the usefuhless of logic simulators during a m:tcshine
development q ~ ~ l c . The long procurement cycles and hardu.arc
invari:mcse :Issoc.i:Lted with these tec-hnologies make design errors
luuc*h more cost Iy thnn in past technologies. hforeover, increasing
circuit detwit,ics 2nd speeds make hnrdrvare troubleshooting
more difficult, n ~ r d variations in circuit parameters between
mac.hines mnlx: hnrdnare debugging' accurate only for the
p:wticular mwhinc: st,udicd. The use of a simulator :dleviatcs
m:tny of these problems. The simulator machine description is
easily modificd; thus :L simulator is not afferted t)y hnrd\\-nrc
procurcmcnt c~yc~lcs :rnd invnrinncc. Moreover, the simulator
operat~es indcpendcntly of circuit vari:it,ions m d can pcrforrn
worst-case analysis of timing hnzards. Since the t,cchniques used
for troublcshootiug an :wtual machine arc similar, if not, ideut,ical,
to troul>leshooting :t simul:tt,cd machine, simulation pmvidcs an
opportunity t,o devclop these techniques and to learn the com-
puter system prior to the :Ivnil:zhility of hxrdw-nre. This ability
improves the cfficGmcy of diagnosing hardnare problcnrs later
in the development cycle.

178 .mrtwm, MCQUARRIE, . \NU VOOELRHERG

In this paper, an experimental three-value simulation system
is described. It is designed for use as an engineering tool to verify
large (.i,OOO block) logic designs prior to the actual construction
of hardware. The use of this logic simulator also ensures micro-
program and logic compatibility in a microprogram-controlled
machine. In addition to the advantages of other logic simulators,
the three-vdue simulat'or possesses features that further aid
t,he design verification task. The main difference in the simulator
under discussion is that it operates with three values instead of
the usual two. Besides the binary 1 and 0 values, the simulator
uses an X value. This value represents an unknown condition
and is considered to occur during any transition from one binary
value to another. It acts as a transitory state in going between 0
and 1. The X value may also be used to represent an initially
unspecified condition, an unpredictable oscillat'ion, or a "don't-
care" condit'ion.

The use of this third value t,o represent the transition allows
the simulator t,o detect combinat'ional hazards, critical races,
and feedback oscillations in the machine design.' Such hazards
rnny occur as x result of single or multiple input changes to a
logic block and indicate that either a timing or design error may
exist in the simulated logic. In addition to detecting such errors,
t,he sinlulator uses the X value to propagate the effects of the
error through the circuitry. In most synchronous sequential
machines, t,here are a number of potent'ial circuit hazards that
do not affert the actual operation of the machine. The three-
value simulator's xbilit,y to propagatme a11 unknown condition
nllow-s the designer t'o concentrate on only those hazards that may
affect' tmhe machine operation.

In order to test a pieve of hardware, the test procedure (stim-
uli) to be applied t'o that hardware must be defined. The prob-
lem of developing a complete specification test for a general-
purpose romputer has not been solved. The problem is essentially
one of selec+ing a set of sequences of input pat'terns that will
c*ompletcly test the funrt,ion of the computer from an extremely
large numhcr of possible combinat,ions (a small processor recent'ly
simulated had a possibility of 10'""' input tests).

The t'hree-value simulator syst'em addresses the problem of
lest sperificution n t several levels. A functional microprogram
sirnulator is used to prepare most of the simulator input patterns.
This limits t'he input sequences to the set of input operations for
which the hard\v:bre art,ion has been designed and for which ex-
pec:ted responses exist.

The use of the X value as an unkno\vn input condition can
furt'her reduce the amount of test dat,a that must be specified and
(. an greatly increase the effect,iveness of a given test. For example,
suppose the user wishes to simulate the reset of a machine.
The machine should reset regardless of t'he contents of the con-
trol register, the st,nt!us of the console switches, or the states of
thc memory elements int,ernnl t'o t'he marhine. In the three-value

DESIGN VERIFICATION SYSTEM

simulation, this test can be made by setting the control register,
all console switches except reset, and all memory elements to
X , then simulating the reset. Any networks remaining at X
represent networks that have not been reset to a known value.
Without the X value, the reset would have to be tested for every
possible combination of switch, control register, and memory
element bits. For example, in a machine with 20 console switches,
a GO-bit control register, and 500 other memory elements, this
would mean repeating the test routine 2580 times (about
separate resets) to gain the same amount of information.

Since the three-value simulator is one of zero-delay, it does
timing not take into account the signal propagation delays that are a

problems function of the circuit technology, loading, and packaging. In the
act'ual hardware, timing problems manifest themselves in two
ways :

The circuit behavior may be dependent on the relative delay
through two paths in the logic circuitry.
The cumulative delay of several layers of logic circuitry may
cause it to respond too slowly to meet the specified machine
cycle.
Due to running-time considerations, the simulator addresses

only the first of these timing problems. Because the simulator is
a zero-delay simulator, it is extremely pessimistic with respect
to relative delay. All logic paths are assumed to have the same
(zero) delay and thus a worst-case analysis of relative delay timing
problems is performed. In situations where it is determined that
a detected hazard does not exist in the actual hardware, the sim-
ulator operation may be modified by the definition of appropriate
delay blocks.

The simulator is specifically a significant event simulator.
When logic designs containing several thousand blocks are simu-
lated, the running time of the simulation can become a problem.
This problem results from the slow speed of simulation as com-
pared with the actual hardware speed. The simulator must ex-
ecute a serial sequence of program instructions a t microsecond
speeds to simulate a parallel set of hardware operations that occur
in nanoseconds. The simulator addresses bhis problem by simu-
lating only significant events. The simulation model of a logic
design consists of a number of interrelated table structures that
contain pointers representing the circuit interconnections. For
any given input, change to the logic, only a small number of blocks
will change state (i.e., there will be a limited number of signifi-
cant events). The simulator pointer structure allows the effects
of an input change to be traced through only those blocks that
change value and thus limits the amount of computation required
during a simulation t'o a minimum.

In summary, we can say that the system described here
detects logic design errors and timing hazards in large logic
designs using a reduced set of test patterns and a minimal amount
of computer t'ime.

180 JEPHSON, MCQUARRIE, AND VOGELSBERG I B M SYST J

C

During the initialization stage, the logic to be simulated must
be selected and an initialization program must be run to prepare
a rough circuit descript'ion for the simulator. Upon completion
of this stage, the machine description stage is initiated. During
machine description, the circuit description is updated to correct,
any errors det'ect'ed during the initialization, and primary input's,
outputs, and machine timings are defined.

Finally, in the simulation control stage, the circuit input
stimuli and the simulator controls are defined. In general, a func-
tional simulator is utilized to provide a microprogram trace tape
(MTT) containing input and output information, and the simu-
lator cont'rols are manually specified. At the completion of this
stage, the simulator is run and the desired out'put produced.

The three-value simulator
The simulator program carries out the simulation of the circuit
image that has been defined during the machine description stage.
The simulation control tape (SCT), which is prepared during the
simulation control stage by a program called the command gen-
erator, controls the simulator program action.

When the command generator has completed the preparation
of the SCT, the simulator program is called. The simulator reads
the circuit data into storage, and an initialize routine is then ex-
ccuted to establish various tables and initial controls. Initially
all block values are set to X (t'he unknown condition). The simu-
lator then reads t>he first information on the SCT and begins the
simulation.

The information on the SCT consists of a string of commands
major to be executed by the simulator. There are three major commands

:ornrnands used to control the results of the simulation and a number of
commands used to control the output of the simulation. The three
major simulation control commands are:

Clock update
Apply stimulus
Compare response
The cloclc upda te command causes the simulator to set an

internal clock to the indicated time. This time is used by the
simulator to maintain correct marhine timing relationships and
to identify simulation output.

The a p p l y stimuly,s command causes the simulator to change
the value on an indicated primary input to a new value. AS
ment,ioned previously, the simulation is of "significant events"
only. Part of the task of the command generator is to identify
those primary inputs that have changed value during a given
c.lock time and to pass only those primary network input numbers
and new values to the simulator. This implies that after the first
few sets of inputs have been applied, only a small portion of the
machine will have to be simulated for any given clock time. A
significant amount of simulation running t'ime is thus saved.

182 JEPHSON, MCQUARRIE, A N D VOGELSRERO IRJL SYST J

The compare response caommnnd causes t,he simulator to com-
pare the value ralrulat,ed for an indicated primary output with
the value provided. If a value is found that' docs not compare,
the simulator initiates a printout of the machine stat>us at the
tinze t,he comparison is made. This type of output, is usually the
prime source of debugging informat,ion obtained during a machine
simulation.

The remaining simulator commands correspond to the manual
commands and control the types of simulator output and the
t,imes during which this output should be produced. There is
also a stop simulation command that causes the simulation to
terminate at an indicated time (or after a specified number of
values are found that do not compare).

During the simulation, all logic functions have a three-value
truth table. These tables for an AND block or an 011 block are
shown in Figure 2 . The X or unknown value appears at the
output of a block if the two-value truth table of the block indicates
t,hat t,he changing of the value on t,he input' may cause the block
output to change (i.e., the input change may propagate to the
output). This use of the t,hird value allo\z.s circuit hazards that
would go undetected in a two-value simulation to be detected.
For example, (,hanging the inputs of an ANI) or an OIL gate from
0 to 1 and from 1 to 0 in the same cycle may muse a t'emporarily
erroneous output. This condition is detected and propagated
in the t'hree-value simulation but not in a tjwo-value simulation
as shown in Figure 3.

During a simulation, the simulator reads a simulation control
tape record and then executes the commands in that record.
The usual ordering of commands for one mwhine time is:

1. Clock update
2. Control commands
3 . List of apply st,iInulus commands
4. List of compare response commands

For such a sequence, t,he simulator first updates the internal
clock, then setjs a series of cont'rols based upon the control com-
mands, and finally processes the list of apply st,imulus commands.
The processing of this list is the actual logic simulation stage of
t'he operation.

For earh primary input netn-orlc specified in an apply stimulus
commm?d, tJhe simulator applies an X to the network and prop-
agates that value through the logic until no further block output
changes ran occur. 17or example, if an X being propagat'ed on
a net,worlc reaches an A N D block that has some other input set
a t 0, the propagation of the X value is t,erminated for that block.
When no further bloclt changes can occur for the given primary
input, the nest primary input specified in an apply stimulus
command is set to X , and the operation is repeated. This sequence
continues until all the primary inputs mentioned in the list have
been set to X . The propagation of X values on these networks

Figure 2 Truth tables

THREE-VALUE "AND' TRUTH TABLE

2 l"o

T- x 0 0

X I X
o x o
1 x x
x x x

THREE-VALUE "OR' TRUTH TABLE

1 2 1 0

2 'I+. T$ o x x X X

X
1 x
x x x

command
ordering

Figure 3 Combinational hazard
detection

TWO-VALUE
SIMULATION

THREE-VALUE
SIMULATION

POSSIBLE "SPIFE"

POSSIBLE "DIP' nfl 1-0 1-x-0

U U

NO. 3 . 1969 DESIGN VERIFICATION SYSTEM 183

Figure 4 latch with hazard

__L
TIME

To T I T2 T3 T4 T5 T6 T I

INITIAL RESET SET LATCH RESET CONDITION HAZARD I J x J y l x , v l x l v l x l v i x ! y l x l v ~
DATA

GATE

RESET

A

OUTPUT

Y" o x 1 -Lpi OUTPUT

" RESET

is t'he first of two passes that the simulat'or must execute in chang-
ing a set of input values and is called an X-PASS. During the
second pass, the values given for t'he primary inputs in the apply
stimulus commands are applied to the primary inputs and prop-
agated one at a time in a similar manner to that used in the X-I'ASS.
This pass is called the VALUE-PASS and (for circuits containing
no unit delays) completes the simulator action for the set of
stimuli provided.

The simulator then processes the list of compare response
propagation commands and initiates out,put operations if nec'essary. For exam-

example ple, consider the latch circuit of Figure 4. At !!', all the input
networks are a t X ; the OUTPUT and the line labeled A will also
be at X . If the latch is reset as shown at T, by sett'ing the GATE
and RESET input lines to zero, the OUTPUT and A will eventually
go to zero. The sim1:lator might propagate this change as follows:

1 . ,4pply X 011 the GATE line. Xote that during an X-PASS a
block output can change only to an X from a value. Since the
block value is already X , no further propagation is necessary.

2. Apply X ' s to the RESET line with similar results. This com-
pletes the X-PASS.

3 . Apply a zero to the GATE line. Note that during a VALUE-PASS
a block output can change only to a value from an X . Because
the ANI) block's present value is X , it can change. Thus

184 JEPHSON, MCQUARRIE, A N D VOGELSHERG I13,M SYST J

cydculate the value of the AX11 block’s new output. The value
is zero, which is difierent from X , so propagate this value to
the O I ~ block. The OR blork’s previous value is X , so it ran
change. Thus cdculate tBhe value of the ()I t hlock. The netv
011 block value is X (because t’he lon-er input is still at X) .
Because this is the same as the previous out’put, stop
propagation.

4. Apply a zero to the RESET line. This change causes the lotver
AND to go to zero followed by the OR block going to zero;
then propagation will stop at the lower ANI) block’s input
(because the block is now set to a value).

The remaining circuit changes ranging from T , to Z’, can be
verified in a similar manner.

Note that the circuit shon-n contains a hazard. At the time
labeled T,, changing the levels on both the TIATA and GATE lines
causes a “spike” to be produced. The simulator indicates this
condition by allowing the latch to be set to X (where it will stay
until another set or reset is applied).

The hazard thus indicated may or may not exist in the atrtual
hardware. The duration of the spike may not be sufficiently
long to cause the actual latch to be set, or t’here may be t’iming
 constraint,^ due t’o a delay in the logic paths that’ generate the
DATA and GATE lines that ensure t’hat no spike will be produced.
When a circuit depends on such logic: delay to operat’c correctly,
a unit delay block must be inserted in t,he model of the circuit
t,o correct the operat,ion of the simulator.

When t,he delay block is encountered during the propagation
of a signal, t’he propagnt’ion is halted at the delay block, and an
entry is made in the delay table. The propagation of the next
signal change is t’hen init’iated. This opcrat’ion is cont’inued for
both the X-PASS and the VALIJE-PASS. Thus, starting with an
X-PASS, the X ’ s on networks that are changing are propagated
as far as possible (i.e., until a block that doesn’t change st’at’e
or a delay block is reached). Then a VALUE-PASS is made during
which the values are propagated as far as possible (in the same
way as for an X-PASS). When t,hese t n o passcs are complete,
the simulator has entries in t’lle delay table corresponding to the
X’s and the values that have propagated to delay bloclrs. The
X’s are then placed on the outputs of the delay blocks and prop-
agated as fur as possible i n mother X-PASS. When this X-PASS
is completed, the values in the delay t,able are placed on t’he
outputs of thc delay blocks and propag:Lt,ed i n another VATAUE-
PASS. These xre called thc I)EJ,AYISI>-X-I’ASS and 1)ELAYED-
VALUE-PASS, respec.tively.

If a delay blorlr is encountered during a 1)ELAYED-X-PASS
and I)ELAYEI>-VAI,UE-~’ASS, the above process is repeated, and
a third set of X and VALUE pnsscs is established. Thus three delays
in series cause three J>EJJAYEI)-X passes and three DELAYED-
VAJ,UE passes to be t:dien.

NO. 3 . 1969 1)RSIGN VERIFICATION SYSTEM

Figure 5 latch without hazard

DATA

GATE

RESET

0

3ia- o x 1 OUTPUT
UNIT DELAY

ltcturning to the latch of the example, consider the circuit
as shown in Yigure 5 . A unit delay has been added to the circuit
i l l the GATT line to correct conditions resulting from the pre-
viously detec+cd h:tz:mi. The simulat,or operation shown t'hen
results. Kotice the sequencae of events at time TCi. The change
in the DATA line is propagated immediately as before; however,
thc c*hange in the (;ATE line is delayed unt'il the second set of
X and VALUE pnsses by the unit delay. Because these transitions
1l:tve been separated in time as seen by the simulator, the spike
is no longer produced, and the new circuit cont'ains no timing
1l:lxnrd.

The :&lition of the delay block has doubled the number of
Imses that the simulnt~or must make t o simulate this circuit.
The :ddition of :I delay tJo a larger circuit will not necessarily
tlouhle t'he number of simulator passes, but, it will increase the
number. Care should be exercised in the placement of unit delays
to avoid exccssivcly increasing the length of t'he simulator running
time.

It is also possible to construtat' a circuit, using logic bloclrs and
unit delays, that osdlates indefinitely. To guard against such a
situation, the simulator, after a c~loc~l~ update, counts the number
of times it) passes through a delay level (a delay level is defined as
:L I)I';LAYE;I>-S and a l)EI,AYEI)-VAI,UE pass). If this count
cweeds a specified number, the simul%t>ion is t'erminated, and
:Ipproprinte output is produced.

Four types of printouts are avail:lble t o aid i n :m:dyzing the
logic that' has been simulated:

Printout when values do not r o m p r e
Three-level printout
Six-level printout
Circuit descript,ion printout,

The printout for values t'h:Lt' do not compare is initiated by
the simulator whenever a differenre between an expected result
(as defined on the RITT) and the result determined by the simu-
lator occurs. This printout, lists the values of the respol~sc fncil-
it,ies, the values of thc stimulus facilities, and thc hloc4l; values
of t'he remaining net\\-orks in tjhc logic :it the time that t'lx values
are found not to compare. Knoning the macalrine time, the opera-
tion to be performed, and the status of all t'he inputs to the
circuit, the user can look at the outputs :Lnd determine whet'her
or not t,he functions were performed cwrecstly. To isolate the
error, Ihe block values ran be analyzed to determine the status of
every netu-ork in the machine. Wit,h these v:dues, he can t'race
thc c-ircwit back from the failing output' to the poilit \\here the
trouble can be found.

The three-level and six-level printouts :we selected by the
user when he desires detailed Imowledge of the sequence of the
changes in all network v:tlucs during some phase of the mwhine
operation. These printout,s list all t'he netjworl; values of the
simulated machine for t'he times specified. If the three-level
printout is sclerted, the possible netn-ork values are 1 , 0, and X .
The six-level printout is a moditic~stion of the three-level printout
and is designed t o simplify troubleshooting. I'or this output,
the characters +, -, :md = are wed to indic*:Lte block values
of 1, 0, and X that, have not changed sinrc t'he last output'. The
values 1, 0, and X :\re used only for thoae b1oc.ks thiht have been
act'ive since the last output.

The circuit description list,ing provides detailed block data
as it is defined in the simulator. This data c a n be used to check
the circuit i n t,he simulator ag:tinst the m:ac.hil~e logic..

During normal operations, the printout showing information
about values that do not rompare provides the major debugging
:Lid. However, the three-level :utd six-level printouts a l l o \ ~ the
user to observe every marhine operation : d every hlork change
in whatever detail is desired. hdditio1l:ll output, can he prepared
on tape (an output tape, or UT) in a formilt that may be processed
by other programs to simplify the analytic* procedure. Several
surh programs :\re prcselltly being (.onsidered.

Summary comment
The three-v:tlue simu1:Ltor has been used on both rentral pro-
cwsing units and input/output controllers wit'h mi(-roprogram
c-ontrol :uld hnrd\\-arc volltrol. Four major systems lmve been

i)t:sI(;X V E R I I ? I (~ ~ \ T I O N SYSTEM

