Distributing empty freight cars throughout a railroad system in
anticipation of future requirements s an allocation problem. The
actual movement of cars can be examined in terms of a space-tvme
diagram. An inductive network flow algorithm for solving this prob-
lem wutilizing the network wunderlying the space-time diagram 1s
developed and tllusirated by an example.

A computer program implementing this algorithm s discussed,
along with the context in which it might be used. Possible extensions
are also presented.

A network algorithm for empty freight car allocation
by W. W. White and A. M. Bomberault

Some of the earliest applications of operations research techniques
were made in the field of transportation. Until recently, however,
little was done within the railroad industry. This paper describes
an application of network flow analysis to onc problem of that
industry: empty freight car allocation. Other modes of transporta-
tion may benefit from the same analysis and the algorithm
developed herein.

The allocation problem is that of distributing empty freight
cars throughout a railroad system in anticipation of future re-
quirements. This allocation should be accomplished so as to min-
imize the cost of moving the cars into position from the locations
where they become available.

The movement of the empty cars is examined in terms of a
space-time diagram, which schematically represents the various
paths that cars may travel to reach their proper destination at a
specified time. The ‘‘essential structure” of the space-time dia-
gram is used to construct a corresponding network on which car
movements are interpreted as flows over arcs from node to node.

When attention is focused on a single car fleet (in which all
empty cars are assumed to be interchangeable), the allocation
problem can be mathematically defined as a transshipment pro-
blem' represented on the network. The special structure of the
network can be used advantageously in developing an inductive
algorithm to solve this transshipment problem.

NO. 2 - 1969 FREIGHT CAR ALLOCATION

early
allocation
methods

148

This paper examines in detail the development of the network
and the algorithm. As an example of the implementation of the
algorithm, a computer program using it is discussed. The paper
concludes with a discussion of generalizations and extensions to
the algorithm.

The allocation problem

Historically, the distribution of empty freight cars has been
handled by dispatehers. Railroad agents, responsible for customer
requirements, inform the dispatchers of cars needed by their
customers. Empty cars are often supplied to locations on the basis
of rate of use, and the dispatcher plans for the allocation of these
cars on this basis. If no untoward events occur, this allocation
system works fairly well, based as it is upon the experience of the
dispatchers.

However, fluctuations in the rate of use are not uncommon,
and can throw this system out of balance. If one extra car cannot
be obtained from the usual areas of supply, there is a dislocation
in the system. Clearly, if this situation is magnified by occurring
many times for many customers, matters become too complex for
the allocation system to remain reliably effective. Customers are
dissatisfied because there is often a shortage in the number of cars
they require, or car utilization declines because of unnecessary
or overly complicated car movements. Sometimes both results
oceur.

The agents often build up their own safety buffers of empty
cars to draw on if shortages develop. Although this practice can
alleviate customer dissatisfaction, it decreases the average utili-
zation per car, reducing the number of cars available to the rail-
road as a whole, and thus necessitates the purchase or rental of
more ¢ars.

Clearly, a more efficient system for the allocation of empty
cars would be beneficial. As a prerequisite, a rolling stock informa-
tion system is necessary, for cars cannot be allocated effectively
without knowing what cars are or will be available, where, and
at what time. Indeed, many railroads now have or are developing
such a system. IHowever, the need remains for a systematic
method of employing this information to achieve inereased car
utilization and/or customer satisfaction.

Automated methods for allocating empty freight cars have
been proposed. An early attempt by Feeney® was programmed,
but was unsuccessful in its application, apparently because of the
complexity of the model and the requirements regarding the
necessary supporting data. This particular model incorporated
inventory aspects as well as allocation and distribution aspects.

More recently, a simpler linear programming formulation of
the allocation problem was developed and implemented.’”® This
model is essentially a multiperiod transportation problem, and
is highly successful in its application. It was designed to minimize

WHITE AND BOMBERAULT IBM SYST J

the total time in transit from supply points to demand points.
However, it did bave more far-reaching effects. Along with de-
creasing the frequency of car shortages (and the extent of the
shortages), the number of cars needed to adequately supply cus-
tomers was also reduced, and car utilization increased. Indirectly,
customers’ satisfaction increased because an adequate supply of
cars enabled them to cease worrying about an excess final product
inventory.

The success of this linear programming model was a spur to
the development and implementation of the model presented in
this paper. The model developed here uses a network flow type of
algorithm, rather than a linear programming simplex method, and
is designed for a formulation that allows consideration of inter-
mediate stops between supply and demand points. Thus, in terms
of computer operation, a more general problem can be solved faster
with less storage. Furthermore, detailed information on the routing
of the cars is available automatically, whereas further calculations
are required to develop this information using the earlier approach.

Patterns of movement

Empty car movements take place both in space and in time, and
a train is the means used to haul the cars. If it is known that a train
will go from, say, station A at time ¢4 to station B at time ¢3 and
then to station C at time i, a possible movement for some empty
cars is along the same route. The time taken to go from B to C is
te — tg. The movement can be diagrammed as follows: let time
be represented on the horizontal axis, and consider each of the
three locations as a point on the vertical axis (in any order); the

routing is then indicated by two arrows, one corresponding to the
first leg of the journey with its tail at the point (f4, A) and its
head at the point (t5, B) and the second arrow corresponding to
the second leg, with its head at (o, C) and its tail at (¢, B). The
diagram of the movement is illustrated in Figure 1.

Figure 1 Space-time diagram of empty car movement

LOCATION ———
N .

TIME ——

FREIGHT CAR ALLOCATION

arrow
relationships

LOCATION ——i

Figure 2 Space-time diagram of three trains and four locations

R

i

|

i

|
1
ts

TIME ——

Every train that hauls cars gives rise to a similar sequence
of arrows corresponding to possible movements of empty cars
from one location to another using that train. If all these arrows
are drawn on the same diagram, then a pattern of movement
emerges. The horizontal distance from the head of any arrow to its
tail indicates the time necessary to complete the corresponding
leg of the journey. Figure 2 is an example of a pattern of physical
movement arising from three different trains visiting four dif-
ferent locations.

Note, however, that in Figure 2 it is possible for empty cars
to go from loeation D to location C. This trip is accomplished by
traveling the first leg of the journey on the train from D to B,
then waiting at B from the time the first train leaves until the time
the next train arrives and leaves, further waiting at B until the
last train arrives, and then traveling the last leg of the journey on
this train from B to C. We can look at the waiting period as a
purely temporal movement, so that the journey from D to C
consists of four legs, with the middle legs representing temporal
movement, We can also include in the diagram, therefore, arrows
that represent the various possible waiting periods (temporal
movements). The space-time diagram of Figure 2 is completed by
the addition of these arrows, resulting in Figure 3 (where ¢, and
{x represent the beginning and the end of the time span during
which the movements take place).

The critical features of the space-time diagram center around
the relationships between the arrows. The actual time is not really
important per se. In fact, the only times at which an arrival and/
or departure, i.e., an ‘‘event,” occurs are those times at which one
arrow joins (or leaves) other arrows. For example, in Figure 3,
the arrival and departure at location B of the train that goes from
C to B to D is an event (with which is associated a time). The
crucial relationship between events is in terms of precedence—
what events precede and follow a particular event—and this pre-
cedence is indicated by the arrows of the space-time diagram. The

WHITE AND BOMBERAULT IBM SYST J

Figure 3 Space-time diagram including temporal movements

T
|
)
|
|

—

"7
|
|
|
|
|
|
|

LOCATION ~——=
o]

. \—

T
|
i
I
|
|
|
I
|
{
T
i
|
!
|
i
|
|
)
I
Il
[
i
[
i
I
|
t7

|
I

I

]

i

|

|

I

|

I

|

|

|

!

L

[

I

i

|

|
i
t8

TIME—»

length of time between events is not highly important since it is
always possible to record the events and their times. As before,
the arrows represent the possible empty car movements that
occur. An event can be represented on the diagram by a node.
Thus each arrow connects two nodes.

It is not necessary to identify each node directly with a loca-
tion and a time. The essential structure is still kept if each node is
assigned a number. The location and time corresponding to any
particular node number can then be recorded on a separate list.
If it is understood that the series of nodes identified with the same
location includes in the first node whatever waiting may have
occurred at the location prior to the first connection, and includes
in the last node whatever waiting may occur after the last con-
nection, it is sufficient to consider a network with numbered nodes,
plus some additional information, when examining possible cmpty
car movements within a give time span. The possible movements
correspond to flows over the various arrows of the network. A
network containing the essential structure of the space-time dia-
gram in Figure 3 appears in Figure 4, together with a list giving
the correspondence between node numbers and locations and
times.

There may be less complicated ways of drawing the network
than Figure 4 indicates. However, IFigure 4 emphasizes the point
that the only erucial properties of the network are the precedence

Figure 4 Network from space-time diagram

X a NODE NUMBER | L 2 3 4 5 6 7 8 9
50O 6 LOCATION ! D A B D C B o3 A B

TIME | t, t t t. t §, 1, 1, t

NO. 2 - 1969 FREIGHT CAR ALLOCATION

principal
properties

relations. There are still three stops at location B, and the only
possible movement of empty cars from location D to location C
still requires a journey of four legs, the middle two corresponding
to waiting periods at B.

Three prineipal properties of the network portray the essential
structure of any space-time diagram. First, if any sct of nodes re-
fers to the same location, then each node in this set is adjacent to
some other node in this set; that is, there is a series of arrows (a
path of arcs) that connect these nodes to each other without having
to go through nodes outside of the set. This property is also true
of sets of nodes corresponding to stops made by the same train;
in fact, the events could be considered as being identified by train
rather than location.

The second property relates to the first: at most, two arcs
enter each node (arrows point in toward node) and two arcs leave
each node (arrows point out). Furthermore, of the four arcs in-
cident to any node, at most, two arcs (one directed inward, the
other directed outward) refer to physical movement via a train,
and similarly, two arcs refer to the purely temporal ‘“‘movement”
of waiting at a location. The fact that so few arcs are incident to
any particular node, and that they can be so well categorized,
is computationally advantageous.

The third property is the most important. If desired, the nodes
could be numbered so that all nodes preceding any particular node
have a lower number than that node, and all following nodes have
a higher number. Mathematically, this property signifies a partial
preordering of the nodes. In terms of the network, it signifies that
it is impossible to trace through any portion of the network in the
direction of the arrows and arrive at a place already visited. Be-
cause of this, the network is said to have no directed loops or
cycles, i.e., to be acyclic. Thus, if there is a movement (flow) of
empty cars through a portion of the network, it never returns to
an earlier point, but instead always proceeds to a later point.

The flow of cars over (or through) the arcs of the network
must obey certain rules: (1) It must come from somewhere;
(2) It must go somewhere; (3) It should be conserved; (4) It must
be in the direction of the arrows. Obviously, the fourth rule must
hold true, for otherwise empty car movements would appear to
go backwards in time.

The first rule is also apparent. The cars must get into the system
somehow: either a given car is available at the beginning, or else
it is made available part of the way through. In the first case, for
each location at which there are cars available, a number indicat-
ing the quantity can be associated with the first node for that
location (each first node has no incoming temporal arcs). This
quantity can then flow out from that node to other places in the
network. Similarly, in the second case, if some cars are made avail-
able at a particular location part of the way through (say, because
a customer releases some empty cars or because a shipment of
empty cars arrives from another service area), they can be con-

WHITE AND BOMBERAULT IBM SYST J

sidered as available in the network at the first node for that loca-
tion after they are released. This holds truc because the cars
cannot go until the time of the first train connection after their
release; a node is defined in the network by such a connection.
Thus, for every node at which cars have been made available from
exogenous sources, a number indicating the net quantity of
available cars can be associated with the node. These cars are
then eligible to move from this node to other, later nodes in the
network.

Similarly, the second rule holds true for cars to get out of the
system: either a car is required at some location part of the way
through, or else it is not used at the end of the time span. In the
first case, empty cars, needed at a particular location due to cus-
tomer requirements, can be considered as being required at the
nearest node for that location preceding the time when they are
actually required. This holds true because the cars must be at this
location by the time of the last train connection and before the
specified time (any later connection would miss this requirement);
such a connection defines a node in the network. Thus, for every
node at which cars are required, a number indicating the net
quantity of required cars can be associated with the node. The re-
quired quantity should be moved to this node from other, earlier
nodes of the network. In the second case, all cars made available
but not required are left over at the end of the time span. These
cars can be associated with the last node of each of the various
locations, since they have not been required at earlier nodes (where
each last node has no outgoing temporal ares). The quantity is
just the number of available cars not in use at the end: the total
number of such cars ean be determined, but the number at any
one of the final nodes is an unknown quantity, since this depends
upon how the cars were hauled around the network.

The third rule of flow is the principle of ‘‘conservation of flow’:
for any node, the amount ¢n must equal the amount out. In simple
terms, the rule states that at a given time the number of cars ar-
riving at a location plus the number made available there must
equal the number of cars leaving (including possible leftover cars,
some of which might then go to & maintenance facility) plus the
number required there.

Consider a specifie fleet of empty cars, and suppose that these
cars are homogeneous in nature, that is to say, any one car can be
used instead of any other car. Suppose there is a system using
these cars and that we have constructed a network from a space-
time diagram describing their movement during a given time
span. Suppose also that numbers have been assigned to the nodes
of the network indicating the quantity of available or required
cars at each node, so that rules of flow 1 and 2 are satisfied. Then
any flow through the network that satisfies the rules of flow 3 and
4 corresponds to a possible movement through the system that
satisfies the requirements of cars at the various locations at speci-
fied times. Usually, therc are many such possible movements, and

NO. 2 - 1969 FREIGHT CAR ALLOCATION

problem
statement

154

the difficulty is not so much in constructing or obtaining such a
movement, but in choosing between possible movements. This
difficulty is the heart of the empty freight car allocation problem.

In the following section, the statement of the problem is for-
mulated. An algorithm is then presented to solve this problem.

An algorithm for the allocation problem

Assume there is a network corresponding to a space-time diagram
of the movement of empty cars. Let the nodes of the network be
numbered consecutively from 1 to n for a total of n nodes, so that
we can discuss node 7 or node j (where, of course, 1 < ¢ < n,
1 < j < n). The ares, then, can be rcferred to as arc (2, 7). Each
arc is cither physical (a train connects two stations) or temporal
(each waiting period at a station is between two consecutive train
connections).

Assume further that the quantities of available and required
ars are known, and let s; be the number of cars available at node
1. Let d; be the number of cars required at node j. Without loss of
gencrality, we can let b, = s, — d, for each node 7. Then b, is the
net number of cars available at node 7, and if b, < 0, then this is
to be interpreted as a demand of — b; cars at node <.

Now, let the unknown car movements (variables to be deter-
mined by the algorithm) be represented by 2's, so we can refer
to z,; as the number of cars that flow from node 7 to node j over
arc (7,) assuming that are (4, §) exists. There is one such variable
for each are in the network. The problem of constructing or ob-
taining car movements is to find a consistent set of values for the
2's so that the flow rules are satisfied. However, something more
is necessary to be able to choose between possible consistent
movements.

Consider then, the assighment of a nonnegative cost c¢;; to
each physical are (7, j). Let this cost be on a per unit hauled basis
between node ¢ and node j. It might be in dollars, and could rep-
resent the cost per car to haul a car over the particular leg of a
route corresponding to are (¢, 7). Then, we can speak of trying to
find that set of values for the 2’s which minimizes the total cost,
1.c., to find those car movements that satisfy the flow rules and
give a total cost no greater than any other possible car movement.
In terms of the dollar cost, we scek the least expensive car move-
ments; in terms of distance cost, we seek car movements requiring
the least total car-miles. This criterion has the following property:
if it is not necessary to move a car from one station to another to
fulfill requirements, this car is not moved. For simplicity, we can
take ¢,; on each temporal arc (7, j) to be zero, so that it costs
nothing to store extra cars (nonzero storage costs require a more
general algorithm than the one presented here).

Now, we are able to write down formally the problem of empty
freight car allocation. The problem is to find values for the vari-
ables z,; which satisfy all of the following relations:

WHITE AND BOMBERAULT IBM SYST J

Z,. Z,- Ci; T;; 18 a minimum,
Z,- Tif — Zk ;< b; for each node ¢ identified with the last
stop at a station,

Zf T — Zk Z; = b, for each node ¢ identified with a stop
other than the last at a station, and

z;; > 0 and integral for each arc (z, j).

These relations, of course, apply to the problem as defined,
that is, any term with an z,; in it only appears if arc (¢, j) occurs
in the underlying network. The first relation expresses the require-
ment that total cost should be minimized, where ¢;; > 0 if (7, 7)
is a physical arc and ¢,;; = 0 if (¢, j) 1s a temporal arc. The second
and third relations express the principle of conservation of flow
with the requirement that unassigned leftover cars must end up
at the last stop at a station. IFor example, relation 3 states that, for
every node except the last one, the net number of cars leaving a
node (the number out minus the number in) must equal the net
number of ears available at that node from external sources. Re-
lation 2 states almost the same thing for terminal nodes, except the
difference between the two sides of the relation represents the
number of unused cars ending up at that node. Of course, when
the sums in relations 2 and 3 are written out fully, there are, at
most, two z's in each relation with a positive coefficient and two
preceded by a minus sign. This follows from one of the basic prop-
erties of the underlying network mentioned earlier: there are at
most four arcs incident to each node—two directed into the node,
and two directed out. Qutward arcs at a node are associated with
a positive coefficient for the corresponding variable.

The fourth relation expresses the remaining rule: flow must
proceed in the direction indicated by the arrow. Otherwise, we
would have negative cars, a physical impossibility. There is the
added requirement that z,; be integral—answers given in terms
of fractions of cars would be of little use.

The problem as it has been formulated is a linear programming
problem and can be solved using linear programming tech-
niques.®” However, this particular problem falls into a subclass of
linear programs known as transshipment problems, and can be
solved using general minimum cost-feasible flow network tech-
niques.”® The algorithm developed later is a special purpose cost-
flow network algorithm designed to take advantage of the prop-
erties of the network that underlies this problem. However,
considerable use is made of the fact that this problem is a network
flow type, and the properties that hold true for network flow
problems must also hold true here. In particular, there is one
important property: if the supply data, the b,’s, are whole numbers,
there is never a need to worry about fractional solutions, for
answers are given in terms of integral numbers of cars.

The algorithm uses an inductive method of solution. Instead
of examining the whole network, we solve only a part of the net-

NO. 2 - 1969 FREIGHT CAR ALLOCATION

a linear
program

method of
solution

155

node
designation

subnetwork
properties

work at any one time (except at the end). Once a subnetwork is
solved, we go on to another subnetwork. This second subnetwork
is constructed by taking the first node and adding one more to it,
and also including any arcs that connect this added node to the
first subnetwork. The added node has all of its immediate pre-
decessors already included in the subnetwork. The nodes immedi-
ately preceding a given node are at the tails of the ares heading
into the given node, so any flow that comes to the given node must
come via its predecessors.

This progression from subnetwork to subnetwork can always
be done by virtue of the acyclic property of the network. As
mentioned earlier, the nodes could be numbered in such a fashion
that all nodes preceding a given node have a lower number
than that node, and all nodes following the given node have a
higher number. We can thus partially preorder the nodes and pro-
ceed as follows: start with the node with the lowest number and
consider that as the first subnetwork. To get the second subnet-
work, add the second node plus any ares that connect it to the
earlier node. This process continues until all nodes have been added
and the network is complete. 1t is not necessary to actually have
the nodes numbered in this way as long as the rules of precedence
arc observed, but this serves to show that the inductive procedure
is valid.

At any stage of the algorithm, the nodes that are in the sub-
network currently being examined are called marked nodes. The
rest of the nodes are called unmarked nodes. Those unmarked nodes
that are eligible to be added to the subnetwork to obtain the next
subnetwork are markable nodes. Thus, even though a markable
node is presently unmarked, all of its predecessor nodes must be
marked. If, for example, the nodes are numbered in ‘‘order,” then
the unmarked node with the lowest number is always markable.

Given a subnetwork, then, we construct the next subnetwork
by selecting any markable node, marking it (and including all
arcs between this node and its predecessors), and considering this
larger subnetwork of marked nodes and their ares. For any sub-
network, the relations 1 through 4 must hold, just as if this were
a complete problem in itself. The only difference in the relations
proceeding from subnetwork to subnetwork is that adding a node
might change a type 2 relation to a type 3 relation, and that
another tvpe 2 relation is added to the set of relations. The first
change occurs if the added node replaces an already present node
as the last node for a station, the replaced node becoming an
intermediate node.

Thus, a sequence of subnetworks is created, each having an
associated subproblem of the whole problem. Each subnetwork
contains all earlier subnetworks and is contained in all later sub-
networks. Similarly, the succeeding subproblems are progress-
ively more restrictive, since an additional restriction on move-
ment is added, and a restriction present in earlier subproblems
may have been strengthened (from a type 2 to a type 3). If we

WHITE AND BOMBERAULT IBM SYST J

call a solution that satisfies all the restrictions 1 to 4 an optimal
solution, o solution which satisfies 2 to 4 a feasible solution, and
a solution for which at least one constraint of the relations 2 to 4
is not satisfied an infeasible solution, then it follows from the pro-
cedure that the following two properties hold:

e An optimal solution for the problem corresponding to some
subnetwork is feasible for the problems associated with all
earlier constructed subnetworks.

If no feasible solution can be found for the problem corre-
sponding to some subnetwork, then there are no feasible solu-
tions for the problems associated with all later subnetworks.

These properties are used as follows: assume we have an opti-
mal solution for a given subnetwork. A new network is then con-
structed as described previously. The current solution may or
may not be feasible for the new problem— if it is, then it can be
altered very simply to become an optimal solution to the new
problem. If the current solution is infeasible in this new problem,
it is because the added restriction, and only this restriction, is
violated. The algorithm then attempts to satisfy the violated re-
striction in a sequence of steps, during this time maintaining the
other relations at minimum cost. If the restriction cannot be
satisfied, there is no solution to the problem, and we go no further.
Otherwise, an optimal solution for this current problem is achieved,
and we can continue to iterate. Iteration continues until either
the problem is shown to be infeasible, or else an optimal solution
to the problem as a whole has been obtained.

Thus it remains for us to examine how the algorithm solves a
specified subnetwork. Given a subnetwork, the algorithm dis-
tinguishes some of the ares of the subnetwork. If we can go from
one node of the subnetwork to another node of the subnetwork
traveling only over distinguished ares, irrespective of the direction
of these ares, then this set of distinguished ares is characterized
by only one such path. If the term “link” is used to refer to an
arc without regard to its orientation (direction), then there are no
loops in the subnetwork consisting solely of distinguished links.
When all the undistinguished links are deleted from the subnet-
work, what remains is called a forest. This forest may consist of
many disjointed, separate pieces called trees. For each tree, every
node is connected to every other node in the same tree by distin-
guished links with a unique connecting path. Thus, if there are
I nodes in a particular tree, there are k—1 links in the tree. In
each tree, one particular node is chosen to be the source or root
of that tree. Note that a tree need not have any links; it could just
consist of a single node, its root. It is also true, by the definition
of the forest and trees, that every node belongs to some tree. The
forest itself might consist of a single tree, or there might be as
many trees as there are nodes in the subproblem.

Many trees are possible in any one subproblem, that is, there
arc many possible ways to select the distinguished links. As the

No. 2 - 1969 FREIGHT CAR ALLOCATION

solution of
specified
subnetworks

potentials

additional
restriction

algorithm progresses, the forest may be reformed many times
for any given subproblem according to explicit rules. However,
there is one general principle: the only nodes allowed to be con-
sidered as roots are those nodes that correspond to the last node
at a station in the given subnetwork. Since each tree must have
exactly one root, only as many trees can be in the forest as there
are stations. Note that the only nodes allowed to be roots are
those nodes allowed to have extra or leftover cars.

The forest with its trees is important for the algorithm, be-
cause flow is only permitted over distinguished links. Furthermore,
at any stage in the solution, each node (of the current subnetwork)
having extra cars is a source node for some tree. In linear pro-
gramming terms, a ‘‘slack’ variable is associated with each source
node (the slack variable represents the number of empty cars at
that node). The slack variables together with the variables of the
distinguished arcs constitute a “‘basis’ for the problem connected
with the subnetwork under consideration.

Associated with each node 7 in the subnetwork is a dual vari-
able or potential II,, which, as discussed later, represents the mar-
ginal cost of getting an additional car to node ¢ from the source in
the tree of node 7, assuming there is a car that ean be sent. The
potential for the source node of each tree is defined to be equal to
zero. For cach tree, the potentials of all other nodes in the tree
can bhe calculated by using the following rule:

If node 7 and node j both belong to the same tree, and
arc (7,), which has cost ¢,;, is distinguished, then, if either
II, or 11, is already determined, the other potential can be
determined by using the relation II, + ¢; = II,.

The fact that potentials can always be ecalculated in such a
fashion results from the definition of trces. Since the potential
of each source node is zero and the costs are all nonnegative (with
the costs on the temporal or waiting arcs identically zero), by
using the relation just established, we can show that the potential
of every node must be nonnegative for & minimum cost solution.

Previously we saw that there are many ways to form the trees
for any given subproblem, and that the algorithm only allows
certain nodes, those corresponding to the last node at a station,
to be sources. Now, another restriction is added: for any two
nodes ¢ and j of the network that are connected by an are (7, j),
the potentials must satisfy I, + ¢; > II;.

It is not obvious that the inequality is satisfied. However,
such inequalities together with the zero restrictions on the source
potentials constitute the restrictions of the ‘“‘dual” linear program,
which must be satisfied by any optimal solution to the problem.
During the application of the algorithm, arcs are distinguished
{and are made undistinguished) in such a fashion that these
restrictions are always satisfied for the subproblem at hand
(in linear programming terms, the solutions are dual-feasible).

WHITE AND BOMBERAULT IBM SYST J

The potentials have a very real interpretation as marginal
costs. For any node 1, 11, represents the cost of getting one addi-
tional car to node ¢ by reducing the number of available cars by
one at the source in the tree of node 7, and adjusting the flow of
cars over the distinguished arcs between node ¢ and its source.
If all distinguished arcs in this path are oriented from the source
toward node 7, getting one car from the source to node ¢ amounts
to sending one car at a cost II,. However, the adjustment of flow
may occur in a negative way by not sending a car that was assigned
earlier to a particular arc. For example, suppose some cars (flow)
are going to be sent from node 7 to its neighboring node j over the
distinguished arc (z, j). One additional car is obtained at ¢ and
the number of cars available at j is reduced by one merely by
holding at 7 a car that was supposed to go from 7 to j. The situa-
tion can be thought of as sending from node j to node 7 a flow
of one car, but by traversing the arc in the wrong direction, this
car ‘‘cancels out’” a car sent in *he correct direction. Needless
to say, this only makes sense if there is at least one car that
can be canceled on cach arc concerned. But, if it is assumed that
there are such cars, then the cost of obtaining one additional car
at node ¢ by ‘‘sending’’ it from the source in the tree of node 7 is
just II,. This cost is obtained by totaling the costs along the path
from the source to node ¢, adding a cost for each arc over which the
flow has been increased by one unit, and subtracting a cost for
each arc over which the flow has been reduced. In fact, the poten-
tials were defined recursively in this way.

It was noted that the potential of every node must be non-
negative. In other words, using the cost structure assumed pre-
viously, sending additional cars to any node is always a non-
negative cost. Thus, to get an extra car to a node, it costs at least
as much as not sending it at all. Hence, if all requirements were
satisfied by using the current availabilities, there would be no
incentive to send extra cars to any station, unless there were a less
costly way of sending them.

The latter situation, however, does not occur. Suppose, for
example, that node ¢ and node j were connected by an undistin-
guished arc (7, §). The marginal cost of supplying cars to node ¢
is TI; and to node j is II;. Consider the possibility of supplying
these cars to 7 by sending them to ¢ and then to j via arc (4, j)
rather than to j directly via distinguished links. Here, the cost
per car of supplying them is just IT; + c¢,;;, which is the cost of
sending them to ¢ and traversing arc (¢, j). Now, if this cost were
less than II; (the cost of sending cars directly to j) there would
be an incentive to reroute some cars. But this can never be the
case, since the restriction was posed that, for all ares (7, j), the
potentials must satisfy

I0; + c.; 2 1,
We can easily extend this reasoning to conclude that it always

costs at least as much to send a car as not to send it, and, if the

No. 2 - 1969 FREIGHT CAR ALLOCATION

extra car
cost

algorithm
operation

computation
of algorithm

car must be sent, one way of doing it at least cost is to send the car
to the node from the source in the node’s tree via the distinguished
links of the tree.

Thus, the algorithm works in the following fashion. Assume
that we have solved the problem with a given number of marked
nodes and are about to perform the inductive step. We have an
optimal solution for this last problem, with flows, potentials, trees,
and sources, with flows from sources to nodes only occurring on
arcs of the trees, and with a marginal cost of each such flow given
by the potential of the node. Now, suppose that the new node
added to the problem has a requirement associated with it, such
that the current solution is infeasible in the new problem. Thus, it
is necessary to send flow to this added node from a neighboring
tree (a tree which, with the distinguishing of one more are, would
conneet to the added node). The are giving the least inecrease in
marginal cost is chosen to be the are over which flow will be sent.
It 1s distinguished, and as much flow as possible is sent, up to the
required amount. If the required amount can be sent, the optimal
solution has becn obtained. If not, cither there was not enough
flow at the source node, or else some link restricted the flow (which
can happen if the actual flow in an are is reduced to zero because
it was canccled by flow in the opposite direction). In the latter
case, make the restricting link undistinguished. In both cases,
the node with the requirement is connected by a set of distinguished
arcs to a tree that, in essence, has no source. The tree itself must
then be connected to some neighboring tree to supply more flow
to the given node. The link that makes this connection is chosen
from the set of possible connecting links by the least cost rule,
and the procedure is iterated.

This procedure will terminate either with the filling of the
requirement, or else by showing that the requirement cannot be
filled and, hence, that this subproblem as well as the problem as
a whole is infeasible. That the algorithm does work, and does so
in a finite number of steps, can be shown from the basic principles
previously described when some rules for resolving choices are in-
cluded. The detailed statement of the algorithm that follows con-
tains the complete rules by which the algorithm can be proved.
However, the proof follows trivially from one presented by Ford
and Fulkerson® if we note that this algorithm is just the ‘“‘out-of-
kilter” algorithm when a particular ordering of the nodes is used,
when all costs are nonnegative and some are identically zero, and
when solutions are basic and are kept that way (see, for example,
Johnson® on this last point).

The algorithm as now presented is for hand computation,
to aid in an understanding of the basic steps. For machine computa-
tion, many details can be incorporated to increase efficiency. They
are not included at this point to avoid unnecessary complexity.
However, some of these details are discussed later. The terminology
used in the statement of the algorithm has already been introduced.
As is readily seen, each time Step 1 is performed, an inductive step

WHITE AND BOMBERAULT IBM SYST J

is taken, and Step 3 is the routine that fills the requirements at
least cost. The algorithm is as follows:

Step 0: Initially, assume that all nodes without entering arcs
are markable. All nodes are presently unmarked.

Step 1: Let n, be some unmarked markable node. If no such
node exists, stop here; an optimal solution to the whole problem
has been found. Otherwise, set I1,, = 0 and mark node n,. If node
1, is the first stop at some station, then go to Step 2. Otherwise,
let 1, be the node that was formerly the last stop at a station and
has now been replaced by node n,. If node n, is not a source, then
go to Step 2. Otherwise distinguish arc (n,, n,) and carry the extra
flow at node n, forward over this arc to node ng, regard n, as no
longer a source, and continue.

Step 2: If there is no requircment to be filled at node n,, con-
sider node n, to be a source and return to Step 1. Otherwise, con-
tinue.

Step 3: Let node n, be in the same tree as node n,, and let node
ns; be marked, but not in ny's tree. For each such pair (ny, n,) such
that arc (n;, n.) exists, find the incrcase in marginal cost, V(ns,
n,), by the formula

I/Y(nS; n2) = Hﬂg + Cnanz - an

Let V equal the smallest V' (¢, §) obtained, so that V is the minimal
increase in marginal cost. If V cannot be found because no V (7, 7)
exists (i.e., no such arc (ns, ny) exists in the network), then stop
here; the problem is infeasible. Otherwise, increase II; for cach
node ¢ in n,'s tree by the value V. Let the arc which gave the
value V be arc (ns, n,) (if more than onc arc gives this value,
choose arbitrarily among them), and distinguish this arc. The
tree including node n, has now been joined to another tree having
a source. Now, send flow from the source in this enlarged tree
over distinguished ares to node n, until either

(a) the requirement at node n, is filled, or
(b) the requirement at node n, is not filled, but no more flow
can be sent.

In condition (a), return to Step 1. Otherwise, condition (b)
happens if either (1) the flow over some arc in the path from the
source to node 7, has been reduced to zero (by ‘“‘canceling’’), or
(2) Case 1 did not occur, but the extra flow at the source in the
tree has been exhausted (the requirement at node n, was larger
than the surplus at the source).

In Case 2, do not regard the source as a source any longer and
return to Step 3. Otherwise, take the distinguished arc on which
flow has been reduced to zero (if there is more than one such are,
choose arbitrarily among them), and make this arc undistin-
guished. The tree that includes node n, has now been broken into
two trees, with n, in one tree and the source in the other. Return
to the beginning of Step 3.

NoO. 2 - 1969 FREIGHT CAR ALLOCATION

example

Figure 5 Sarﬁple problem network

To illustrate this algorithm, a small eleven-node sample prob-
lem is used. This problem has three trains and four stations. For
expository purposes, we adopt the convention that all nodes drawn
on the same horizontal line refer to the same station. The nodes
are numbered from one to eleven, the number for each node ap-
pearing within the node on the diagram. The availabilities at
each node arc given by the number appearing next to the node

WHITE AND BOMBERAULT IBM SYST J

Figure 7 Network after cycle 6

(where a negative number signifies a requirement for that many
cars). The cost associated with cach are of the network appears
as an underscored number next to the are. The sample problem is
shown in Figure 5.

During the course of the algorithm, potentials are assigned
to the nodes. These potentials appear as underscored numbers,
one next to each node. Since each marked node has a potential,
unmarked nodes can be recognized as having no underscored
number next to them. In addition, the amount of flow sent over
any given arc appears as a number, not underscored, next to
the arc. Distinguished arcs are represented by double lines as
opposed to single lines, and source nodes have an extra circle
around the node number. We progress with the sample problem
as follows:

Cycle 0: TInitially, nodes 1 and 4 are markable.

Cycle 1: Of the markable nodes, mark node 1 first by setting
its potential equal to zero. Going directly to Step 2, mark node 1
as a source (since it has a surplus of ten cars) and return to Step 1.
This cycle has been completed, and the network appears as in
Figure 6.

Cycles 2-6: We can readily ascertain that if nodes 2 through 6
are successively chosen to be n,, the steps of the algorithm give
us three different trees, the first with nodes 1, 2, and 3, the second
with nodes 5 and 6, and the third with node 4. The source for
each tree is node 3, 6, and 4, respectively. Thus, at the end of
cycle 6, the status of the network appears as in Figure 7.

Cycle 7: From the markable nodes 7 and 10, choose node 7 to
be n,. Here, it takes three attempts to fill the demand of node 7.

NO. 2 - 1969 FREIGHT CAR ALLOCATION

Figure 8 Network after cycle 7

The first flow comes from node 6 via arc (5, 7). When node 6 is
exhausted, the next least cost flow is from node 3 via arc (2, 7).
Finally, flow must be sent from node 4 to satisfy the demand at
node 7. As shown in Figure 8, the final network of cycle 7 consists
of a single tree with node 4 as its source, and with potentials
and flows as indicated.

WHITE AND BOMBERAULT IBM SYST J

Figure 10 Optimal solution to sample problem

Cycle 8: Of the markable nodes 8, 9, and 10, choose node 8 to
be n,. It takes two attempts to fill the demand of node 8. The
least cost route is via arc (3, 8). However, sending one unit of
flow along this route reduces the flow over are (2, 7) to zero, so
that the tree separates. The remaining demand can then be satis-
fied at least cost by using arc (7, 8), and a single tree results, still
with node 4 as its source. Cycle 8 is therefore terminated, and
the optimal solution to the eight-node subproblem is given in
Figure 9.

Cycles 9, 10, 11: Proceeding, choose nodes 9, 10, 11 successively
to be node n,. At the end of cycle 11, all nodes have been marked,
and the algorithm terminates with an optimal solution to the
sample problem. This solution, pictured in Figure 10, consists
of a single tree with its source at node 11, The car movements
necessary to satisfy the original requirements from what is avail-
able can be read from the figure. IFor example, the train that
goes from node 4 to 5 to 7 to 8 picks up sixteen cars at node 4,
picks up two more at node 5, sets off eleven cars at node 7 and
hauls the remaining seven cars to node 8.

Implementation of the algorithm

The algorithm has been incorporated into a computer program,”
which is written in PL/I. Input is in terms of stations, train sched-
ules, costs, and requirements and availabilities. Output is in
terms of the car movements at the stations and on the various
trains necessary to achieve the optimal allocation of empty cars.
The input and output were chosen to be in this form so that

NoO. 2 * 1969 FREIGHT CAR ALLOCATION

bit
assignment

railroad operating personnel might be closer to the context in
which the program is used.

The program is organized into two main parts. The first part
is basically a data processing procedure to match and cross-refer-
ence input information. The second part, described later, performs
the steps of the algorithm and presents the results as output.

The first part internally creates the network to which the
algorithm is applied (in essentially the same way as was described
earlier): each train stop is taken to be a node and the times of
the stops given by the train schedules are used at each station
to create the precedence relations between the nodes at the station.
Precedence relations between nodes for each train are, of course,
automatically given by the order of the stops made by the train.
Costs are assigned directly to the arcs, where the identically
zero costs of storing empty cars (assumed here) are implicitly,
rather than explicitly, kept. The allocation of computer memory
capacity is dynamie, and considerable use is made of the capa-
bility of PL/T in this regard, including the use of push-down stacks.

The only involved calculation in this first portion of the pro-
gram deals with the computation of requirements and avail-
abilities at nodes, since these may actually occur between nodes
and, as explained in the section on patterns of movement, must
be converted to occur at the nodes. It is done in a straightforward
manner, essentially by ‘‘netting out’” the requirements (and/or
availabilities) that occur between each pair of adjacent nodes
at each station.

Within the algorithm itself, considerable advantage is taken
of the special properties of the underlying network. The induction
of the algorithm is, of course, founded on the acyclic nature of
the network. However, the fact that, at most, four (and at least
two) ares are incident to each node is also invaluable, for this
means that data can be kept in a node-oriented fashion, i.e., for
each node a list of four numbers giving the adjacent nodes can
be kept, and if there are not four adjacent nodes, the corresponding
numbers in the list can be given a value of zero, since the position
in the list determines whether the node precedes or follows the
other nodes at the same station or on the same train.

Similarly, a set of four bits can be kept for each node to tell
whether the corresponding arcs are distinguished or not. Data
may also be kept as to the supply at each node, the potential at
each node, the amount of flow leaving to go to the next station
node (the amounts of flow entering the node are given by the
amounts leaving the preceding nodes), and the explicit cost of
leaving the node (by waiting at the station the cost of leaving
the node is implicitly zero, and the costs of entering the node are
given by the costs of leaving the preceding nodes). Since it is
necessary to know whether each node is marked or not, one bit
is used for this purpose, and another bit can be used to determine
whether a given node is in a tree that is currently under investi-
gation or is in some other tree.

WHITE AND BOMBERAULT IBM SYST J

During the course of the algorithm, flow must be sent out
from the sources of the trees. Thus, if the number of the node in
the same tree, which is one step closer to the source of that tree
than the given node, is kept at each node, the path that the flow
must take to get from the source node to some node in the same
tree can be found by tracing backward from the node to the
source. (This tracing procedure must actually be performed twice:
once to evaluate how much flow can be sent, and again to change
the level of flow to the new value.) Note, however, that since
four nodes, at most, are adjacent to each given node, a two-bit
pointer at each node is sufficient to indicate which of the adjacent
nodes is the next node closer to the source.

Hence, a total of eight bits can be kept for each node, and the
bit-handling capabilities of PL/I are used advantageously in the
program. The use of these bits within the program creates some
bookkeeping difficulties within Step 3 of the algorithm, but these
can be treated directly. For example, since trees are joined and
sometimes separated, a routine must be added to update the tree
status bits of the involved nodes whenever this happens. Further-
more, the source direction bits may also be changed on these
occasions, and a routine must be used to accomplish this purpose.
Both of these routines are straightforward: in the present pro-
gram, the tree status routine essentially uses a push-down stack,
and the other routine uses a backward tracing method from node n,
to the node at which n,’s tree was joined or separated.

Although the program can be used for long-range planning of
expected car movements, it seems likely that the main use is
in planning short-range car movements in a multiperiod con-
text. Other approaches™ ' may be of greater use in long-range car
fleet utilization, The program might be run once per time period,
where the length of the time period depends on the frequency of
ear movements and on the accuracy of the predicted volume. The
time span represented by the problem could equal or slightly ex-
ceed the number of time periods needed to haul a single car across
the system under consideration. The program, then, could be run
once every time period for all trains that have at least part of
their schedule within the time span. However, only the results for
the first time period during the span are actually used, since the
next time the program is run, more accurate information 1s
available regarding the requirements and availabilities of the later
time periods. This approach has the effect of “smoothing” the
discontinuity between time periods because some cars, though
not required within the first time period, may be repositioned in
anticipation of what the later time periods may require.

Extensions to the algorithm

Although developed for railroad applications, the space-time
diagram and the corresponding network are common to many
areas and modes of transportation. For some industries, only

No. 2 1969 FREIGHT CAR ALLOCATION

program
use

the terminology need be changed to make everything mentioned
apply. Empty barge-line operations are a good example. In some
cases, minor modifications of the algorithm, or reinterpretation
of the formulation, can also result in wider applications.

The algorithm is operational in its present form, but many
extensions can be made at all levels of detail. One small modifica-
tion is the addition of upper and lower bounds on the number
of cars hauled over each leg of the train schedules. The inclusion
of these in the algorithm is straightforward (in fact, bounds are
included in the program™) and the necessary changes can be
deduced from the appropriate specialization of the ‘‘out-of-kilter”
method given in Ford and Fulkerson.® Putting bounds on the
number of cars at a station, however, is a more difficult problem,
and requires a more gencral algorithm.

A routine can also be built into the algorithm for handling
shortages that may occur. It might be as simple as deferring a
shortage to a later time (the program does have this capability:*
there is an option that, if the situation is infeasible at a given
node, as much as possible is supplied to that node, and the remain-
ing shortages are transferred to the next node at the same station,
so that the requirement might be satisfied as soon as possible). Or
a more sophisticated method of choosing between shortages at
various loeations can be devised, should they occur. In this way,
priority requirements can be implemented by solving the problem
once for each priority, updating the requirements each time.

The algorithm is designed to handle a single homogeneous
c¢lass of car; however, there are times when certain cars are parti-
ally interchangeable, for example, when a car of a certain class
can be “regraded’” to haul, say, two different types of products.
“Regrading” of cars can be incorporated in the model by rep-
licating the network once for each car grade. These networks are
then connected together by ares that represent downgrading and
upgrading, i.e., the arcs connect nodes of different grades at the
same location. Upgrading arcs need only be present at locations at
which there are upgrading facilities. In this fashion, high-grade
type cars can be converted into lower grade cars, and low-grade
type cars can be converted into higher grade cars by routing them
through the upgrading facility.

The use of the algorithm and the program can be extended by
tying it in to various systems capabilities, such as teleprocessing,
where some data could be automatically entered using detection
devices, and other data could be entered from railroad yard or
customer locations. Similarly, output could be sent back to the
concerned parties. By decreasing the number of surplus cars
existing on most railroads today and increasing car utilization,
such a system earns its own way by releasing capital investment
for other purposes.

WHITE AND BOMBERAULT IBM SYST J

CITED REFERENCES

1

2.

. A. Orden, “The transshipment problem,” Management Scicnee 2, No. 3,
276-285 (April 1956). :

G. Feeney, Controlling the Distribution of Empty Freight Cars, Tenth
National Meeting, Operations Research Society of America (1957).

3. C. D. Leddon and E. Wrathall, Scheduling Empty Freight Car Fleets

. E. Wrathall, “Empty freight car scheduling and extensions,

on the Lowisville and Nashville Railroad, Second International Symposium
on the Use of Cybernetics on the Railways, Montreal, Canada (October
1-6, 1967).

' Trans-
portation: A Service, J. 8. Coutinho, (Editor) New York Academy of

Science, New York, New York (1968).

. Scheduling Empty Freight Cars on the Louisville and Nashville Railroad,

Application Manual E20-0283, International Business Machines Corpora-
tion, Data Processing Division, White Plains, New York.

. G. B. Dantzig, Linear Programming and Extensions, Princeton University

Press, Princeton, New Jersey (1963).

. An Introduction to Linear Programming, Application Manual E20-8171,

International Business Machines Corporation, Data Processing Division,
White Plains, New York.

. L. R. Ford and D. R. Fulkerson, Flows I'n Networks, Princeton University
Press, Princeton, New Jersey (1962).

. E. Johnson, “Networks and basic solutions,” Operalions Research 14,
No. 4, 619-623 (July-August 1966).

. W. W. White, A Program for Empty Freight Car Allocation, IBM Con-
tributed Program Library, 360D.29.4.002, International Business
Machines Corporation, Program Information Department, Hawthorne,
New York (January 1968).

. B. Avi-Itzhak, B. A. Benn, and B. A. Powell, “Car pool systems in
railroad transportation: mathematical models”, Management Science 13,
No. 9, 694-711 (May 1967).

. A. R. D. Norman and M. J. Dowling, Railroad Car Invenlory: Empty
Woodrack Cars on the Louisville and Nashville, IBM New York Scientific
Center Technical Report 320-2926, New York, New York (January 1968).

FREIGHT CAR ALLOCATION

169

