
actual  movement of cars   can  be examined in terms of a spacc-time 
diagram. An inductive  network $ow algorithm  for  solving  this  prob- 
lem  u t i l i z ing  the nrtworlc  underlying  the  space-time  diagram  is  
delleloped and  illustrated  by an example.  

A computer   program  implementing  this   algori thm  is   d iscussed,  
along  with  the  context in which it might be used,  Possible  extensions 
are  also  presented. 

A network  algorithm for empty freight car allocation 
by W.  W. White and A. M. Bomberault 

Some of the earliest  applications of operations  research  techniques 
were made  in  the field of transportation.  Until  recently, however, 
little was done  within the railroad industry.  This  paper describes 
an application of network flow analysis to onc problem of that 
industry:  empty freight  car  allocation.  Other modes of transporta- 
tion may benefit from the Same analysis and  the  algorithm 
developed herein. 

The allocation  problem is that of distributing  empty freight 
cars  throughout  a  railroad  system  in  anticipation of future re- 
quirements.  This  allocation  should  be accomplished so as to min- 
imize the cost of moving the cars into position  from the locations 
where they become available. 

The movement of the  empty cars is examined in  terms of a 
space-time  diagram, which schematically  represents the various 
paths  that cars may  travel  to reach  their  proper  destination at  a 
specified time. The “esscntial structure” of the space-time  dia- 
gram is used to  construct  a  corresponding net’worlc  on which car 
movements are  int’erpreted  as flows over  arcs  from  node to  node. 

When  attention is focused on  a single car fleet (in which all 
empty cars arc assumed to be interchangeable), the allocation 
problem  can  be  mathematically defined as  a  transshipment pro- 
blem‘ represented on the network. The special structure of the 
netmork  can  be used advantageously  in  devcloping  an  inductive 
algorit’hm to solve this  transshipment problem. 
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This  paper examines in detail the development of the network 
and t,he  algorithm. ;\s an example of the implementation of the 
algorithm, a computer  program using it is discussed. The  paper 
co~lc:ludcs \\-it'h a discussion of generalizations and extensions to 
t'he  algorithm. 

The allocation problem 
€€istoric*nllg, thc  distribution of empty freight cars has been 
hnndled by dispntchrs. 1l:tilro:td ageuts, responsible for customer 
requirements,  inform the dispatchers of cars needed by  their 
customers. Empty  cws  are often  supplied to locations on the basis 
of rate of use, and  the dispat'c:her plans for the allocation of these 
cars on this  basis. If 110 untoward  events  occur,  this  allocation 
system works fairly well, based as i t  is upon the experience of the 
dispatchers. 

However,  fluctuations  in the  rate of use are not uncommon, 
and C R I ~  throw  t'his  system  out of b:dancae. If one extra car  cannot 
be obtained from the usual :weas of suppl?l, there is a dislocation 
in the  system. Clearly, if this  situation is magnified by occurring 
many tirncs for many (austomers, matters become too complex for 
thc allo(xtion  sgstcm to remaill reliably effective. Customers  are 
dissatisfied because there is often a shortage in the  number of cars 
t,hey  require, or rar utilizat<ion declines because of unnecessary 
or overly caomplicaated car tnovenlents.  Sometimes both  results 
owur. 

The agents  often  build up their ow11 safety buffers of empt>y 
c:m to draw on i f  shortages  develop.  Although this  practice can 
alleviate  customer  dissatisfaction, it decreases the  average utili- 
zntioll per ( x ,  reducing the number of cars  available to the, rail- 
road as a whole, and thus necessitates the purchase or rentnl of 
more cws.  

Clearly, a more eficient  system for the alloc~-ttion of empty 
cars \vould be hencfic.i:ll.  As a prerequisite, :L rolling stock  informa- 
tion system is necessary, for cars c:mnot  be :Lllocated effectively 
\vit,hout lmo\ring \\hat  cws :ire or will be  available,  where,  and 
at what, time. Indeed, many  railroads now have or are developing 
such a system. TIowever, the need remains  for a systematic 
method of employing this information to achieve  increased  car 
utilization and/or customer  satisfaction. 

Automated  met,hods for allocating empty freight  cars  have 
early been proposed. An e:~-l?7 attempt by Feeney' was programmed, 

allocation hut \vas unsuwessful in its  application,  apparently because of the 
methods complexity of the model and  the  requirements regarding the 

necess:u-y supporting data.  This p:trticnlar model incorporated 
inventory :mpeets as well as :dlocaation and  distribution  aspects. 

More  recently, :t simpler  linear  programming  formulation of 
the allocation  problem was developed and  implemente~l.~-~ This 
model is essentially a  multiperiod tmm~portat~ion problem, and 
is highly surcessful i l l  its  application. It was designed to minimize 
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t.he total  time  in  transit  from  supply points to  demmd points. 
However, i t  did have  more far-reaching effects. Along v-it'h de- 
creasing the frequency of car shortages (and  the ext'ent of the 
shortages), the number of cars needed to adequat,ely  supply cus- 
tomers wm also reduced, and c ~ ~ r  utilization  increased.  Indirectly, 
customers'  satisfaction  increased becausc nn adcquate  supply of 
cars  enabled them  to cease worrying  about an excess final product 
inventory. 

The success of this linear  programming model was a  spur  to 
the development and implementlation of the model presented  in 
this  paper.  The model developed here uses a network flow type of 
algorithm,  rather  than a linear  programming simplex method,  and 
is designed for a formulation that allows consideration of inter- 
mediate  stops  between  supply  and  demand  points.  Thus, in terms 
of computer  operation,  a more general  problem  can be solved faster 
with less stlorage. Furthermore,  detailed informat,ion on the routing 
of the cars is available  automatically,  whereas  further  calculations 
are required to develop this information using the earlier  approach. 

Patterns of movement 
Empty car  movements take place bot'h in space and  in t'ime, and 
a train is the means uscd to  haul the cars. If it is known  t'hnt :L train 
will  go from,  say,  station A at'  time t A  to  station B a t  time tB  and 
then to  station C at  time t c ,  a possible movement  for some ernpt'y 
cars is along the same  routc. The time  talien to  go from B to C is 
t c  - t g .  The movement  can  be  diagrammed  as follows: let  time 
be  represented  on the horizontal axis, and consider each of the 
three locations as a  point on the vertical axis (in any order) ; the 
rout,ing is then  indicated  by  two  arrows, one corresponding to  the 
first leg of the journey  with its  tail  at  the point ( t A ,  A )  and  its 
head at  the point ( tB,  R )  and  the second arrow  corresponding to 
the second leg, wibh its head at ( L C ,  C) and  its  tail  at ( f B ,  B ) .  The 
diagram of the movement is illustrated  in  Figure 1. 

F 

I 
igure 1 Space-time diagram of empty  car  movement 
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Figure 2 Space-time diagram of three  trains and  four locations 

Every  train  that  hauls  cars gives rise to  a similar  sequence 
of arrows  corresponding to possible movements of empty cars 
from one  location to  another using that  train. If all  these  arrows 
are  drawn on the same  diagram,  then a pattern of movement 
emerges. The horizont’al  distance  from the head of any  arrow to its 
tail  indicates the  time necessary to complete the corresponding 
leg of the journey.  Figure 2 is an cxample of a pattern of physical 
movement  arising  from three diffcrent trains visibing four dif- 
ferent  locations. 

Note, however, that  in Figure 2 i t  is possible for empty cars 
to go from  location D to location C. This  trip is accomplished by 
traveling the first leg of the journey  on the  train  from D to B, 
then waiting at  B from the  time  the first train leaves until  the  time 
the next  train  arrives  and  haves,  furt>her waiting at  B until  the 
last  train  arrives,  and  then  traveling  the  last leg of the journey  on 
this  train  from B to C. We  can look at   the waiting  period  as  a 
purely  temporal  movement, so that  the journey  from D to C 
consists of four legs, with the middle legs representing  temporal 
movement.  We ca,n also include in  the diagram,  therefore, arrom 
that represent the various possible waiting  periods  (temporal 
movements).  The spa’ce-time diagram of Figure 2 is completed  by 
the addition of these  arrows,  resulting  in  Figure 3 (where lo and 
IN represent the beginning and  the  end of the  time  span  during 
which the movements take place). 

The critical  features of t’he  space-time  diagram  center  around 
arrow the relationships between the arrows. The  actual t,ime is not really 

relationships important per  se. In  fact,  the only times a t  which an  arrival  and/ 
or departure,  i.e.,  an  “event,” occurs are  those  times at  which one 
arrow joins (or leaves)  other  arrows. For example, in  Figure 3, 
the  arrival  and  departure  at location B of the  train  that goes from 
C to B to D is an event  (lvith which is associated a time).  The 
crucial  relationship  between  events is in  terms of precedence- 
what  events precede and follow a  particular event-and this pre- 



Figure 4 Network  from space-time diagram 
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relations. There  are  still  three  stops  at location B, and  the only 
possible movement of empty cars  from  location D to location C 
still  requires  a  journey of four legs, the middle  two  corresponding 
to waiting  periods at  B. 

Three principal  properties of the network  portray  the essential 
principal st'ructure of any space-time  diagram. First, if any  set of nodes re- 

properties fers t o  the same  location,  then  each  node  in  this  set is adjacent to  
some other  node in this  set;  that, is, there is a series of arrows (a 
path of arcs) that connect these nodes to  each  other  without  having 
to go through nodes outside of the  set.  This  property is also t'rue 
of sets of nodes corresponding to stops  made  by the same train; 
in  fact,  the  events could be considered as  being identified by  train 
rather  than location. 

The second property relates to  the  first:  at most,  two  arcs 
enter  each node  (arrows  point  in  t'oward  node) and  two arcs  leave 
ea,ch node  (arrows  point out).  Furthermore, of thc four  arcs  in- 
cident t,o any node, a t  most,  two arcs  (one  directed  inward, the 
other  directed outward) refer to physical  movement  via  a Drain, 
and similarly, t x o  arcs refer to  the purely  temporal  "movement" 
of waiting a t  a  locat'ion. The fact that so few arcs are incident to 
any  particular node, and  that  they  can be so well categorized, 
is computationally  advantageous. 

The  third  property is the most important. If desired,  t'he nodes 
could be numbered so that all nodes preceding any  particular node 
have  a lower number Ohan that node, and  all following nodes have 
a higher number.  Mathematically,  this  property signifies a partial 
preordering of the nodes. In terms of t,he  network, i t  signifies t'hat' 
i t  is impossible to  trace  through  any  portion of the network  in the 
direction of the arrows and  arrive a t  a  place  already  visit'ed.  Be- 
cause of this,  the  network is said to  have no directed loops or 
cycles, i.e.,  to be acyclic. Thus, if there  is a  movement (flow) of 
empty cars  through  a  portion of the network, it never returns  to 
an earlier  point, but instead  always proceeds to a later  point. 

The flow of cars over (or  through) the arcs of the network 
flow must obey  certain  rules: (1) It must come from  somewhere; 

rules (2) It must go somewhere; (3) It should  be  conserved; (4) It must 
be in  the direction of the arrows.  Obviously, the  fourth rule  must 
hold true, for otherwise empty car  movements would appear to  
go backwards in  time. 

The first rule is also apparent.  The cars must) get into  the  system 
somehow:  either  a given car is available at   the beginning, or else 
i t  is made  available part of the way through.  In  t'he first case, for 
each  location a t  which there  are cars  available,  a  number  indicat- 
ing the  quantity  can be  associated with the first  node  for that 
location  (each  first node has  no  incoming  temporal arcs).  This 
quantity can then flow out  from  that node to  other places in the 
nebwork. Similarly, in the second case, if some  cars are  made avail- 
able a t  a  particular location part of the way through  (say, because 
a customer releases some empty cars or because a shipment of 



sidered as available  in the network at  the first node for that loca- 
tion  after  they  are released. This holds true because the ( w s  
cannot go unt,il the  time of the first) train connection after  t'hcir 
release; a node is defined in the net\vorf  by  such a connection. 
Thus, for every node at which cars  have been m:dc available  from 
exogenous sources, a number  indirating  the  net  quant'ity o f  
av:tilable cars C : L ~  be associat,cd with the node. These ( ' u s  are 
then eligible to  move from this node to ot'her,  later nodes in the 
network. 

Similarly, the second rule holds true for cars to  get, out of the 
system:  either a car is required at  some location part of the way 
through, or else it is not used at  the end of the  time  span. In t'he 
first case, empty cars, needed at a part'ivulnr  locatmion due to  cus- 
tomer requirements, cxn be considered as being required at  the 
nearest  node for t'hat location preceding the  time when they  are 
actually  required.  This holds true because the cnrs must be at' t,his 
location by  the  time of t'he last traiu connection and before t'he 
specified time  (any  later connection would miss t'his  requirement) ; 
such a connection defines a node in the nctn-ork. Thus, for every 
node at  which cars are  required, a  number  indicating the  net 
quantit,y of required c : m  cnn be associ:Lted with t'hc node. The re- 
quired quant'ity should  be moved to  this node from  other, earlier 
nodes of the network. In the second case, all cars made av:tilable 
but  not required are left over at  the end of t'he  time  span.  These 
cars can be associated with the last node of each of the various 
locations, since they  have  not been required at  earlier nodes (where 
each last node  has no outgoing  temporal  arcs). The  quant'ity is 
just  the  number of available cars not  in use at  the  end:  the  total 
number of such  cars c a n  be  determined,  but  the  number  at  any 
one of the final nodes is an unlmown qunntitjy,  since  this  depends 
upon how the cars were hauled  around the network. 

The  third rule of flow is the principle of "col~servation of flow'' : 
for any node, the  amount in must  equal the  amount out. In simple 
terms, the rule states  that  at a given time  t'lle  number of cars ar- 
riving at  a  location plus t,he  number  made  available  there  must 
equal t,he  number of cars leaving (including possible left'over cars, 
some of which might then go to a  maintenance  facility) plus the 
number  required there. 

Consider a specific fleet of empty cars, and suppose that these 
cars are homogeneous in  nature, t'h:rt  is t o  say,  any one car  can be 
used instead of any  other car.  Suppose there is a system  using 
these  cars and t,hat we have  constructed a network  from a space- 
time  diagram  describing  their  movement  during a given time 
span. Suppose also t'hat  numbers  have been assigned to  the nodes 
of the network  indicating the quantity of available or required 
cars at each node, so that, rules of flo~v 1 and 2 arc satisfied. Then 
any flow through the netn-ork that satisfies the rules of flow 3 and 
4 corresponds to a possible movement  through  t'he  system  th:tt 
satisfies the requirements of cars at the various locat'ions at speci- 



the difficulty- is not, so much in  constructing or obtaining  such a 
movement,  but  in choosing betn-ccn possible movements. This 
difficault'y is the  heart of t'he empt'y freight car allocation  problem. 

In the following section, the st'nt'ement of the problem is for- 
mulated. An algorithm is then presented to  solve this problem. 

An algorithm for the  allocation problem 
hssumc  t'here is a network  rorrcsponding to  a  space-time  diagram 
of the movement of empty  cars.  Let  the nodes of the network be 
numbered consecutively from 1 to  n for a total of n nodes, so that 
we can discuss node i or node j (where, of course, 1 5 i _< n, 
1 5 j 5 n). The arcs,  t'hen,  can  be  rcferred t'o as arc ( i ,  j). Each 
arc is either  physical (a train connects bwo stations) or temporal 
(each  waiting period at a station is between  two  consecutive train 
connections). 

Assume further t,hat t'he  quantit'ies of available and required 
wrs are known, and  let s ,  be the number of cars  available at node 
i. Let d j  be the number of cms  rcquircd u t  node j. Without loss of 
generality, we ( . a n  lct b ,  = s ,  - d,  for each node i. Tlxn b ,  is the 
net  number of cars  available a t  node i, and if b ,  < 0, then t'his is 
to be interpreted as n demand of - b,  cars a t  node i .  

Kow, let t,he un1;no~v-n car  movements  (variables t'o be deter- 
mined by the algorithm) be represented by x ' s ,  so we can refer 
to 2 ,  as the number of cars that flow from  node i to node j over 
arc (i, j) assuming t'h:tt arc (i, j) exists. There  is one such  variable 
for  each arc in t'he network. The problem of const'ructing or ob- 
taining car movement's is to find a  consistent set of values  for the 
x's so that  the flow rules are satisfied.  However,  something more 
is  necess:wy t'o be  able t,o choose bet.il-ecn possible consistent 
movements. 

Consider then, the assignment of a  nonnegative cost c , ~  to 
each  physiral arc (i, j). Let  this cost be on a per unit hauled basis 
between  node i and node j. It might  be  in  dollars, and could rcp- 
rcsent the cost per car to  haul a car over the particular leg of a 
route corresponding to  arc (i, j). Then, we can  speak of trying  to 
find that set of values for the x's which minimizes the  total cost,, 
i.c., to  find those  car  movements t'hat  satisfy  the flow rules and 
give a total cost no greater  t,hsn  any ot'her possible car  movement. 
In terms of the dollar  cost, n-e seek the least expensive car move- 
ments;  in  terms of distnnce  cost, we seek car movements  requiring 
t'he leust total cnr-miles. This criterion has the following property: 
if it is 1100 necessary to  move a car  from one station to  unot'her to  
fulfill requirements,  this car is not  moved. For simplicsit'y, we can 
take c Z j  on each temporal  arc (i, j )  t'o be zero, so that it costs 
nothing to store  ext,ra  cars  (nonzero  st'orage costs require a more 
general  ulgorilhm th:~n  the one  presented here). 

Kow, we are able to write  down  formally the problem of empt'g 
problem freight  car allocsntioa. The problem is to  find values for the vari- 



1. x i  X I  c i i  x i i  is a  minimum, 

2 .  ci x i i  - xk zki  5 bi  for each node iidentified with the last 
stop  at a station, 

3. xi z i i  - zk i  = b ,  for each node i identified w-it'h a stop 
other  than  the  last a t  a station,  and 

4. x i ,  2 0 and  integral for each  arc (i, j ) .  

These  relations, of course,  apply to t,hc  problem as defined, 
that is,  any  term  with  an .x t i  in it only appe:m if arc (i, j )  occurs 
in the underlying  network. The first  relation expresses the require- 
ment that  total cost should be minimized, where c i j  > 0 i f  (i, j )  
is a  physical  arc and c i ,  = 0 if (i, j) is a  temporal  arc. The second 
and  third relations express the principle of conservatioll of flon- 
with the requirement that unassigned leftover  cars must  end  up 
at, t,he  last stop  at a station.  For example,  relation 3 states  that, for 
every  node except the last  one, the net, number of cars  leaving  a 
node (the  number out' minus the numher  in)  must  equal  the  net 
number of cars  available at   that  nodc  from  external sour(w. Re- 
lation 2 states almost the same  t'hing for terminal  nodes, except the 
difference between the two sides of the relation  represents the 
number of unused  cars  ending up  at  that node. Of course, when 
the sums  in relations 2 and 3 are  written  out fully, there  are, at, 
most,  two x's in each  relation with a positive coefficient and two 
preceded by a  minus sign. This follows from one of the basic prop- 
erties of the underlying  network  ment'ioned  earlier: there  are  at 
most  four  arcs  incident to each node-two directed  int'o the node, 
and  two directed out. Out'ward  arcs a t  a  node are associated wit'h 
a  positive coefficient for the corresponding  variable. 

The  fourth  relation expresses the remaining rule: flo\v must' 
proceed in  the direction  indicated by  the arrow.  Otherwise, we 
would have negative  cars,  a  physical  impossibility. There is the 
added  requirement that x Z j  be integral-answers given i n  terms 
of fractions of cars would be of little use. 

The problem  as it  has been formulated is :L linear  programming 
problem and can be solved using linear  programming  teeh- 
n i q u ~ s . ' ~ ~  Howcver, this pn,rticular  problem falls into a  subclass of 
linear  programs  known  as  transshipment  problems, and can  be 
solved using general minimum cost-feasible flow network  tech- 
niques.6.8 The algorithm developed later is a special purpose cost- 
flow network  algorithm designed to  take advant,age of t'he  prop- 
erties of t,he  network that underlies  t'his  problem. How-ever, 
considerable use is made of the  fact  that this problem is a netmworl< 
flow type,  and  the properties that hold true for network flow 
problems must also hold true here. In particular,  there  is one 
important  property: if  the supply data, t'he t) , 's, are whole numbers, 
there is never  a need to worry  about  fractional  solutions,  for 
answers are given in  terms of integral  numbers of cars. 

The algorithm uses an  inductive  method of solut'ion. Instead 
of examining  t8he whole network, we solve only a part of the  net- 
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call a  solution that satisfies all the rest'rictions 1 to 4 an optimal 
solution, a solution lvhich satisfies 2 to 4 a fcasiblc solution, and 
n solution for which at  least one constraint of the rclatious 2 to 4 
is not sat,isfied an irlfeasible solution, then it follon-s from the pro- 
cedure that  the following two  properties  hold: 

An optimal  solution  for the problem  corresponding to some 
subnetwork  is  femible  for the problems  associated  with  all 
earlier  constructed  subnetworks. 
If no feasible solution can be found  for the problem corre- 
sponding t,o some subnetwork,  then  there  are no feasible solu- 
tions  for  the problems associated  with all later  subnetworla 

These  properties are used as follows: assume we have  an  opti- 
mal  solution for a given subnet\vork. h new network is then con- 
structed  as described previously. The current  solution  may or 
may  not be feasible for the new problem- if it is, t,hcn it can be 
altered  very simply to become an optimal  solution to  the new 
problem. If the current  solution is infeasible in  t'his new problem, 
i t  is because the added  rest'rict'ion, and only this  restriction, is 
violated. The algorithm then  attempts  to  satisfy  t'he violated  re- 
striction in a sequence of steps,  during  t'his  time  maintaining the 
other  relations at' minimum  cost. If t'hc  restriction  cannot  be 
satisfied,  t'here is no  solution to  the problem, and we go 110 furt'her. 
Otherwise, an  optimal solution for this  current problem is achieved, 
and we can  continue to  iterate.  Iteration continues until &her 
the problem is shown to he  infeasible, or else an optimal  solution 
to  the problem  as a whole has been obtained. 

specified subnetwork.  Given  a  subnetwork, the algorithm dis- specified 
tinguishps some of the arcs of the subnetwork. If we can go from subnetworks 
one node of the  subnetwork t,o  anothcr node of the subnetwork 
traveling 0111~ over  distinguished  arcs,  irrespective of the direction 
of t'hese arc's, then  this  set of distinguished  arcs is characterized 
by  only one surh path. If thc  term "linl<" is used to refer to an 
arc  without'  regard to  its orientation  (direction),  then  there  are no 
loops in the subnetwork  consisting solely of distinguished  links. 
When  all the undistinguished  links are deleted  from the subnet- 
work, what remains is called a forest. This  forest may consist of 
many  disjointcd,  separate picres called trees. For each tree, every 
node is connechtcd to every  other  node  in the same  tree  by  distin- 
guished links Ivith a  unique connect'ing pnt'h. Thus, if there  are 
X: nodes in a particular  tree,  there  are k-1 linlts in  the  tree.  In 
each tree, one particular  node is vhosen to be the source or root 
of that  tree.  Note  that  a  tree need not  have  any  links;  it could just 
consist of a single node, its root. It is also t'rue, by the definition 
of the forest, and trees, t'hat  every node belongs to some tree. The 
forest) itself might consist of :t single tree, or there might  be  as 
many  trees as there  are nodes in the subproblem. 

hI:~ny trees are possible i n  any one subproblem, that is, there 

Thus  it remains for us to examine how the algorithm solves a solution of 



algorithm progresses, the forest  may  be reformed many  times 
for any given subproblem according to explicit rules. However, 
there is one general  principlc: the only nodes allowed to be con- 
sidered  as  roots are those nodes that’ correspond to  the last  node 
at  a station in the given subnetwork. Since each  tree  must  have 
exactly one root, only as m ~ n y  trees can be i n  the forest as there 
are  siations.  Note  that  the only nodes allowed to be  roots are 
those nodes :tllowed to have  extra or leftover  cars. 

The forest, with  its  trees is important for thc  algorithm, be- 
cause flow is only permitted  over  distinguished  links.  Furthermore, 
at  any stage  in the solution,  each node (of the current’  subnetwork) 
having  extra cars is :L source node for some tree.  In linear pro- 
gramming terms, a “slack”  variable is associated  with  each source 
node (the slack variable  represents the number of empty cars a t  
that,  node).  The s1ac.k variables  togethcr  with the variablcs of the 
distinguished  arcs  constitute  a  “basis” for the problem  connected 
with the subnet.i\ork  under  consideration. 

Associated with e:rch node i in  the  subnetwork is a  dual vari- 
potentials able or potential n,, which, as discussed later, represents the mar- 

ginal cost of gctt’ing a11 additional  car to node i from the source  in 
the t,ree of node i ,  assuming there is a car t’hat can  be sent.  The 
potential for the source node of ewh  trec is defined to be equal to 
zero. For each tree,  the  potentials of all othcr nodes in the  tree 
can he c*alcul:Lted by using the following rulc: 

If node i and node j both belong to  the same tree,  and 
arc (i, j ) ,  which has cost c i , ,  is distinguished, then, if either 
n; or n, is already  determined, the other  potential can be 
determined  by using the relation n, + cf j  = H I .  

The fact that potel1ti:rls can :~lways be  calculated  in  such a 
fashion results from t,he definitiou of trces. Since the potential 
of each source node is zcro and  the cost,s are :dl llonnegative (with 
the costs on the temporal or waiting  arcs  identically  zero), by 
using t,he  relntion just established, \\.e can show that  the potential 
of every node must  be  nonnegat~ivc for minimum cost solution. 

Previously we sa\\- that  there  are  many ways to form the trees 
additional for any given subproblem,  and that  the algorithm only allows 
restriction certain  nodcs, t’hosc corresponding to  the last node a t  a  station, 

t’o be sources. Now, another rest’riction is added: for any  two 
nodes i and j of the net’n-ork that’  are connected by an arcs (i, j), 
t’he potentids  must  satisfy n, + c,, 2 IT,. 

It] is not obvious that,  the  inequality is satisfied.  However, 
such  inequalit,ies  together  with the zero restrict’ions on the source 
potentials  constitute the restrictions of the  “dual” linear  program, 
which must be satisfied by :my opt’imal  solution to  the problem. 
During the application of thc algorithm,  arcs  are  distinguished 
(and  are  made undistinguishcd)  in  such a fashion t,hat these 
restrictions arc a l w a ~ ~  satisfied for the subproblem at hand 



The  potentials  have a  very  real  interpretation as marginal 
costs. For  any node i, ni represents the cost of getting one addi- 
tional  car to node i by  reducing the number of available  cars by 
one at  the source in the  tree of node i, and  adjusting  the flow of 
cars  over the distinguished  arcs  between node i and  its source. 
If all distinguished  arcs  in this  path  are oriented  from the source 
toward  node i, getting one car from the source to node i amounts 
to  sending one car a t  a cost II,. However, the  adjustment of flow 
may occur in  a  negative way by  not sending  a  car that was assigned 
earlier to a  particular  arc.  For example,  suppose  some  cars (flow) 
are going to  be  sent  from  node i to  its neighboring  node j over the 
distinguished  arc (i, j). One additional  car is obt>ained a t  i and 
the number of cars  available at j is reduced by one merely by 
holding at  i a car t’hat was supposed to  go from i to j. The situa- 
tion  can  be  thought of as  sending  from  node j to node i a flow 
of one car,  but by traversing the arc in thc wrong direction,  this 
car  “cancels out” a  car  sent  in  ?he  correct  direct’ion. n’eedless 
to  say,  this only makes sense if there is a t  least one car t’hat 
can  be canceled on cach  arc  concerned. But, if it is assumed t,hat 
there  are  such cars, then  the cost of obtaining one additional  car 
a t  node i by  “sending” it from the source  in the  tree of node i is 
just ni. This cost is obtained  by  totaling  the costs along the  path 
from the source to node i, adding  a cost for each  arc  over which the 
flow has been increased  by one unit,  and  subtracting a cost for 
each arc over which the flow has been reduced. In  fact,  the poten- 
tials were defined recursively in t’his  way. 

It was noted that  the potential of every node must be non- 
negative. In  other  words, using the cost struct’ure assumed pre- 
viously,  sending  additional  cars to  any node is always  a non- 
negative  cost. Thus,  to get’ an  extra car to a  node, it costs a t  least 
as  much  as  not sending it  at all.  Hence, if all  requirements were 
satisfied by using the current  availabilities,  t,here would be no 
incentive to send extra cars to  any  station, unless there were a less 
costly way of sending them. 

The  latter  situation, however, does not occur.  Suppose,  for 
example, that node i and node j were connected  by an  undistin- 
guished arc (i, j). The marginal cost of supplying  cars to  node i 
is ni and  to node j is n,. Consider the possibility of supplying 
these  cars to  j by  sending them  to i and  then  to j via arc (i, j) 
rather  than  to j directly  via  distinguished  links.  Here, the cost 
per  car of supplying them is just IT, + c , ; ,  which is the cost of 
sending them  to i and  traversing  arc (i, j). Now, if this cost were 
less than II i  (the cost of sending  cars  directly to  j) there would 
be an  incentive to  reroute  some  cars.  But  this  can  never  be the 
case, since the restriction was posed that,, for  all  arcs (i, j), the 
pot,entials must  satisfy 

I I i  + c , ;  2 ni 
We can easily extend  this reasoning to conclude that  it  always 

costs a t  least  as  much to send tl car  as  not  to send it, and, if the 
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car must be sent, one \vay of doing it  at least cost is to send the car 
to  the node from  the source in the node's tree  via the distinguished 
links of the  tree. 

Thus,  the algorithm works in the following fashion. Assume 
algorithm that we have solved the problem  with  a given number of marked 
operation nodes and  are  about  to perform the inductive  step. We have  an 

opt'imal  solution for  this  last problem,  with flows, potentials,  trees, 
and sources, with flows from sources to  nodes only  occurring  on 
arcs of t8he  trees,  and  with a marginal cost of each  such flow given 
by the potential of the node. KOTV, suppose that  the new node 
:Ldded to  the problem  has  a  requirement  associated with  it,  such 
that  the current' solut'ion is infeasible in the new problem. Thus,  it 
is necessary to send flow to t'his  added  node  from  a  neighboring 
tree  (a  tree which,  with the distinguishing of one more arc, would 
connect' to  the added  node). The arc giving the least  increase  in 
m:qinal cost is chosen to be the  arc over which flow will be sent'. 
It is distinguished, and as murh flow as possible is sent,  up to  the 
required amount. If the required amount can  be sent,  the  optimal 
solution  has been obtained. If not,  either  there was not enough 
flow at  the source  node, or else some link  restricted the flow (which 
( ~ ~ 1 1  happen if t'he  actual flow in  an  arc is reduced  t'o zero because 
i t  was canceled by flow in the opposite  direction). In the  latter 
rase,  makc the restricting  link  undistinguished. In  both cases, 
the node  with the requirement is connected  by  a  set of distinguished 
:mas to a tree  that, in essence, has no source. The  tree itself must 
t,hcn be  connected to some  neighboring tree  to  supply more flow 
to the given node.  The  link  that  malm  this connection is chosen 
from  t'hc set' of possible connecting  links  by the least cost rule, 
:and the procedure is it'erated. 

This  prorcdure will t'erminate  either  with the filling of the 
requirement, or else by showing that  the requirement  cannot  be 
filled and, hence, that  this subproblem as well as the problem  as 
a whole is infeasible. That  the algorithm does work, and does so 
in  a  finite  number of steps,  can  be shown from the basic principles 
previously described when some rules for resolving choices are  in- 
cluded. The detailed statement of the algorithm that follows  con- 
t,ains the complete rules by which the algorithm  can  be  proved. 
However,  t'he proof  follows trivially  from one presented  by Ford 
and Fulkcrson' if we note that  this  algorithm is just  the "out-of- 
kilter"  algorithm when a  particular  ordering of the nodes is used, 
when all costs arc nonnegative and some are  identically zero, and 
when solutions  arc basic and  are  kept  that way (see, for example, 
Johnson!' 011 this  last  point). 

The algorithm  as now presented is for hand  computation, 
computation to aid in an underst,anding of the basic steps. For machine  computa- 
of algorithm tion,  many  details  can be incorporated to increase efficiency. They 

are  not included at  this point to avoid unnecessary  complexity. 
I-Io\~cver, some of t,hese details  are discussed later.  The terminology 
used in  the  statement of t'he  algorithm  has  already been introduced. 
A s  is readily  seen,  each  time Step 1 is performed, an  inductive  step 
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is taken,  and  Step 3 is the routine that fills the requirements a t  
least  cost. The algorithm is as follows: 

Step 0: Initially,  assume that all nodes without  entering  arcs 
are  markable. All nodes are prescnt,ly unmar1;ed. 

Step 1: Let n,, be some unmarked  markable  node. If no  such 
node exists, stop  here;  an opt'imal  solution to  the whole problem 
has been found.  Otherwise,  set n,, = 0 and  nm-k node no. If node 
no is the first stop at  some st'ation, t'hcn go to  Step 2 .  Otherwise, 
let n, be  t,he nodc that was formerly the last  stop  at a station  and 
has now been replaced by node no. If nodc n, is not a source, then 
go to  Step 2. Otherwise  distinguish arc (n, ,  n , )  and  carry  the  extra 
flow at  node n, forward  over this  arc  to node no, regard n, as no 
longer a  source, and  continue. 

S t e p  2: If there is no requirement to be filled at  node n,,, con- 
sider  node no to be a source and  return t'o Step 1. Ot'herwisc, con- 
tinue. 

Step 3: Let node n, be in the same tree as node n,, and  let node 
n3 be marked,  but  not  in n,,'s tree.  For each such  pair (n,, n,) such 
that arc (n3, n,) exists, find the increase in marginal  cost, V(n3,  
n,), by  the formula. 

V(n3, n,) = a ,  + c,c,n, - K ,  

Let V equal the smallest T'(i ,  j )  obtained, so that V is the minimal 
increase in  marginal  cost. If V channot be  found because no T7(i, j) 
exists  (i.e.,  no  such  arc (n3, n,) exist's i n  the  network),  then  stop 
here; the problem is infeasible. Othernise, increase 11; for each 
node i in no's tree by the value I!'. Let t'he arc which gave t)he 
value V be arc (n3, n,) (if more than one arc gives this  value, 
choose arbitrarily  among them),  and distinguish this  arc.  The 
tree  including  node no has now been joined to  another  tree  having 
a  source. Nom, send flow from the sourcae in  this enlarged tree 
over  distinguished  arcs to node n, until  either 

(a) the requirement a t  node no is filled, or 
(b)  the requirement a t  node n,, is not filled, but no more flow 

can  be sent. 

In  condition (a), return to  Step 1. Otherwise,  condition (b) 
happens if either (1) the flow over some arc  in the  path from  the 
source to node no has been redured to zero (by "canceling"), or 
(2 )  Case 1 did  not  occur,  but  the  extra flow at  the source in the 
tree  has been exhausted (the requirement a t  node 7b0 was larger 
than  the  surplus  at  the  source). 
In  Case 2, do  not  regard the source :is n source any longer and 
return  to  Step 3. Otherwise, take  the distinguished  arc on which 
flow has been reduced to zero  (if t'here is more than one such arc, 
choose arbitrarily among t'hem),  and  make  this  arc undistin- 
guished. The tree that includes node no has now been broken into 









I Figure 10 Optimal solution to somple problem 

7 0  1. 0 

Q O  Q. 3 

Cycle 8: Of the markable nodes 8, 9, and 10, choose node 8 to 
be no. It takes  two  attempts  to fill the demand of node 8. The 
least cost route  is  via  arc (3, 8). However,  sending one unit of 
flow along this  route reduces the flow over arc (2, 7 )  to zero, so 
that  the  tree separates. The remaining  demand  can then be satis- 
fied a t  least cost by using arc (7, 8), and a single tree  results,  still 
with  node 4 as its source. Cycle 8 is therefore terminated,  and 
the optimal  solution to  the eight-node  subproblem is given in 
Figure 9. 

Cycles 9, 10, 11: Proceeding, choose nodes 9, 10, 11 successively 
to  be node no. At the end of cycle 11 , :dl nodes have been marked, 
and  the  algorithm  terminates  with  an  optimal solution to  the 
sample  problem. This solution,  pictured in  Figure 10, consist's 
of a single tree  with its source a t  node 11. The car  movements 
necessary to satisfy the original  requirements  from  what is avail- 
able  can  be  read  from the figure. For example, the  train  that 
goes from node 4 to 5 to 7 to 8 picks up  sixteen  cars a t  node 4, 
picks up  two more at  node 5, sets ofY eleven cars a t  node 7 and 
hauls the remaining seven cars to node 8. 

Implementation of the  algorithm 
The algorithm  has been incorporated  into a  computer  program,1o 
which is written  in PL/I. Input is in  terms of stations,  train sched- 
ules, costs, and  requirements  and availabilities. Output is in 
terms of the car movements at  the  stations  and on t'he  various 
trains necessary to arhicve the optimal  allocation of empty  cars. 
The  input  and  output were chosen to he in  this form so that 
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railroad  operating  personnel  might  be closer to  the context in 
which the program  is  used. 

The program is organized into  two main part's.  The first part 
is basically a data processing procedure to  match  and cross-refer- 
ence input  information.  The second part, described later, performs 
the steps of the algorithm  and presents the result's as  output. 

The first part  internally creates the network to which the 
algorithm is applied (in essentially the  same way as was described 
earlier):  each  train  stop  is  taken  to  be a  node and the t,imes of 
the stops given by  the  train schedules are used a t  each  station 
to  create the precedence  relations  between the nodes at  the st'ation. 
Precedence  relations  between nodes for  each  train  are, of course, 
automat'ically given by  the order of the stops  made  by the  train. 
Costs  are assigned directly to  the arcs, where the identically 
zero costs of storing  empty cars  (assumed  here)  are  implicitly, 
rather  than explicitly, kept.  The allocation of computer  memory 
capacity is dynamic,  and considerable use is made of the capa- 
bility of PL/I in  this  regard, including the use of push-down stacks. 

The only  involved  calculation in  this first  portion of the pro- 
gram  deals with  the  computation of requirements  and avail- 
abilities a t  nodes,  since  these may  actually occur between nodes 
and, as  explained in  the section  on patterns of movement,  must 
be  converted to occur at  the nodes. It is done  in  a  straightforward 
manner,  essentially  by "netting  out"  the  requirements  (and/or 
availabilities) that occur between  each pair of adjacent nodes 
a t  each station. 

Within  the  algorithm itself, considerable advantage is taken 
of the special properties of the underlying  network. The induction 
of t'he  algorithm  is, of course, founded  on the acyclic nature of 
the network.  However, the fact that,  at most,  four  (and a t  least 
two)  arcs  are  incident  to  each node is also invaluable,  for  this 
means that  data can  be  kept  in a  node-oriented  fashion, i.e., for 
each  node  a  list of four  numbers giving the  adjacent nodes can 
be kept,  and if there  are  not four adjacent nodes, the corresponding 
numbers  in the list  can be given a value of zero, since the position 
in  the list  determines  whether the node precedes or follows the 
other nodes at  the same station or on the same train. 

Similarly,  a  set' of four bits can be  kept for  each  node to t'ell 
bit whether the corresponding  arcs are distinguished  or not.  Data 

assignment may also be kept as to  the supply a t  each  node, the  potential  at 
each  node, the  amount of flow leaving to go to the next  station 
node (the  amounts of flow entering the node are given  by the 
amounts leaving the preceding  nodes), and  the explicit  cost of 
leaving the node (by wait'ing at  the  station  the cost of leaving 
the node  is  implicitly zero, and  t,he cost's of entering the node are 
given by  the costs of leaving the preceding  nodes). Since it is 
necessary t'o  know  whether  each  node is marked  or  not, one bit 
is used for this purpose, and  another  bit can  be used to  determine 



During  the course of the algorithm, f l o ~  must, be sent  out 
from the sources of t'he  trees.  Thus, if the number of the node in 
the same  t'ree, which is one step closer t o  t'he source of that  tree 
than  the given node, is kept a t  each  node, the  path  t'hat  t'he flow 
must  take  to get from the source  node to some  node  in the same 
tree  can  be  found  by  tracing  backward from the node to  the 
source. (This  tracing procedure must  actually be  performed twiw: 
once to  evaluate how  much flow can be  sent,  and again to  change 
the level of flow to  the new value.)  Note, however, that since 
four  nodes, a t  most,  are  adjacent  to each given node,  a  two-bit 
pointer a t  each  node  is sufficient to indicate which of the  adjacent 
nodes is the next  node closer to  the source. 

Hence,  a  total of eight  bits  can be kept for  each  node, and  the 
bit-handling  capabilities of PL/I are used advantageously  in the 
program. The use of these  bits  within  the  program creat'es  some 
bookkeeping difficulties within  Step 3 of the algorithm,  but  these 
can  be  treated  directly.  For example, since trees  are joined and 
sometimes  separat'ed, a routine  must  be  added  to  update  the  tree 
status  bits of the involved nodes whenever this  happens.  Further- 
more, the source  direction bits  may also be  changed on these 
occasions, and a  routine  must be used to accomplish this purpose. 
Both of these  routines are  straightforward: i n  t'he  present pro- 
gram, the  tree  status  routine essentially uses a push-down stack, 
and  the  other  routine uses a baclward  tracing  method from node no 
to  the node a t  which no's tree was joined or separat,ed. 

Although  the  program can be used for  long-range  planning of 
expected  car  movements, it seems likely that  the main use is 
in planning  short-range car movements in a multiperiod con- 
text.  Other  may be of greater use in long-range car 
fleet utilization. The program  might  be  run once per time period, 
where the length of t.he time period  depends on the frequency of 
car  movements  and on the accuracy of the  predicted volume. The 
time  span  represented  by the problem could equal or slightly ex- 
ceed the number of time periods needed to  haul a single car across 
the system  under  consideration. The program,  then, could be run 
once every  time period for all trains  that  have  at least part of 
their schedule within the t'ime span. However,  only the results  for 
the first time period during the span  are  actually  used, since the 
next  time  the  program is run, more  accurate  information is 
available  regarding the requirements and availabilities of t'he  lat'er 
time  periods.  This  approach has  the effect of "smoothing" the 
discontinuity between time periods because some  cars, though 
not  required  within the first  time  period,  may  be  repositioned i n  
anticipation of what  the  later  time periods may require. 

Extensions to the algorithm 
Although developed for  railroad applic*ations, the space-time 
diagram  and  the corresponding  net,u-ork arc common to nmny 
areas and modes of transportation.  For some industries, only 
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the terminology need be changed to make  everything  mentioned 
apply.  Empty barge-line operations  are a good example. In  some 
cases, minor modifications of the algorithm, or reinterpretation 
of the formulat'ion,  can also result  in wider applications. 

The algorithm is operational  in its present  form, but  many 
extensions can  be  made  a,t  all levels of detail. One small modifica- 
tion is the addition of upper  and lower bounds on the number 
of cars  hauled over each leg of the  train schedules. The inclusion 
of these  in  the  algorithm is straightforward  (in  fact,  bounds  arc 
included  in the program'") and  the necessary changes can  be 
deduced  from the  appropriate specialization of the "out-of-kilter" 
method given in  Ford  and Fulkerson.8 Putting bounds  on the 
number of cars at :L station, however, is a more difficult problem, 
and requires  a more gencral algorithm. 

A routine  can also be  built  into  the  algorithm for  handling 
shortages that may  occur. It might  be  as  simple as deferring  a 
shortage to a later  time  (the program does have  this capability:'" 
there is an option that, if the  situation is infeasible a t  a given 
node, as much LLS possible is supplied to  that node, and  the remain- 
ing  shortages are  transferred to  the next  node at  the same  station, 
so that  the requirement  might be satisfied as soon as possible). Or 
a more sophisticated  method of choosing between  shortages a t  
various  locations  can be devised,  should they occur. In  this way, 
priorit'y  requirements  can  be  implemented  by solving the problem 
once for each priority,  updating the requirements  each time. 

The algorithm is designed to handle  a single homogeneous 
class of car; however, there  are times when certain  cars are parti- 
ally  interchangeable,  for  example, when a  car of a  certain class 
can be  "regraded" to haul,  say,  two different types of products. 
"Regrading" of cars can be  incorporated  in the model by rep- 
licating  the network once for each  car  grade.  These  networks  arc 
then connected  together by arcs that represent  downgrading and 
upgrading,  i.e., the ares connect nodes of different  grades at  the 
same  location.  Upgrading  arcs need only  be  present a t  locations a t  
which there  are upgrading facilities. In  this fashion,  high-grade 
t>ype  cars  can  be  converted  into lower grade  cars, and low-grade 
t'ype  cars (:an be converted into higher  grade  cars  by  routing them 
through the upgrading  facility. 

The use of the algorithm  and  the  program can  be  extended by 
tying  it,  in to various  systems  capabilities,  such as teleprocessing, 
where some data could be  automatically  entered using detection 
devices, and  other d a h  could be entered  from  railroad  yard or 
rollst'omer locat,ions. Similarly, output could be  sent  back to  the 
concerned parties.  By  decreasing the number of surplus  cars 
cxisting on most  railroads today  and increasing  car  utilization, 
such a system  earns  its own way by releasing capital  investment 
for  othcr  purposes. 
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