The 1IBM 2038 Array Processor discussed enhances the processing
power of SYSTEM /360 Models 44, 65, and 75 for operations on
vectors and matrices. As an integrated channel-1/0 device, the array
processor responds to standard 1/0 instructions.

Discussing the overall flow of control between the central processing
unit, main storage, and the array processor, the relationship between
the SYSTEM /360 Operating System and the array processor’s pro-
gramming support s emphasized. The twelve mathematical processing
operations embodied 1n lhe 2938 are described in terms of their
algorithms.

Several methods for measuring array processor performance are
shown together with actual timing resulls.

An auxiliary processing system for array calculations
by J. F. Ruggiero and D. A. Coryell

The value of a computer instruction operating upon multiple data
elements was recognized at least as early as 1953 when Andrew
and Kathleen Booth were designing computers in London. They
mention the capability of “addition of a series of pairs of numbers
stored consceutively” and forming, by means of branching and
indexing, “the total of a series of consecutive numbers,”” each under
control of a single instruction.' The advantage of such multiple
operations lies in the possibility of more efficient utilization of
main storage accesses by reducing the number of instructions
fetched during the operation.

The IBM 2938 Array Processor extends the concept of multi-
ple operations. The processor adds auxiliary computing power to
the Central Processing Units (CPU’s) of certain IBM SYSTEM/
360 models when these are performing operations on arrays (vec-
tors and matrices) and when calculating convolutions and cor-
relations.” This auxiliary processor is most advantageously applied
where the ratio of caleulation time to input/output (1/0) time is
relatively high, as in the convolution of two arrays.’

The operations apply particularly well to digital signal pro-
cessing and filtering. FFor example, the reduction of seismic data
may involve from two million to 20 million multiply-add calcu-
lations per output record. However, the array processor is not
restricted to a particular application area since the operations
provided are widely used mathematical tools.

RUGGIERO AND CORYELL IBM SYST J

Basic vector operations (element-by-element additions and
multiplications) are useful in many application areas. One such
example is that of making weather forccasting calculations.
Matrix multiplication and vector inner-product operations, though
less broadly applicable, are also useful in such areas as structural
stress analysis, electrical network solutions, and probability
analysis of variance. The convolution/correlation- and difference-
equation operations apply to digital signal processing, which in
turn is a useful tool in many areas since the signals being processed
may arise from many types of systems—mechanical, electrical,
or optical.

This paper discusses first the array processor as an 1/0 device
that can be attached to three models of SYSTEM /360. Similarities
and differences between the array processor and other 1/0 devices
are deseribed. Discussing the overall flow of control between the
CPU, main storage, and the array processor, the relationship
between the SYSTEM/360 Operating System (08/360) and the
Array Processor Access Method (APAM) is emphuasized.* The
twelve mathematical operations embodied in the array processor
are presented. A discussion of APAM stresses methods for coun-
current operations of the CPU and the array processor. Computa-
tion efficiency is demonstrated by tables of array processing timing
data.

The array processor

The 2938 Array Processor is an integrated chunnel-1/0 device de-
signed to enhance the performance of SYSTEM /360 Models 44,
65, and 75 by providing peripheral processing capabilities for the

system to which it is attached. The processor is connected to the
CPU as o channel, as shown in Figure 1. Communication between
the CPU and the 2038 is conducted in the normal SYSTEM /360 1/0

Figure 1 Array processor-SYSTEM/360 configuration

MAIN
STORAGE

CHANNELS
r—

MULTIPLEXOR

CENTRAL
PROCESSING (/O DEVICES

CONTROL UNITS

SELECTOR

CONTROL

2938 ARRAY PROCESSOR

NO. 2 + 1969 ARRAY PROCESSOR

Figure 2 The IBM 2938 Array Processor

-

INDEXING AND OPERAND
FETCH UNIT
(IOFy

ARITHMETIC UNIT
{ARITH)

|

§

1 STATUS

| INDICATOR
{ CIRCUITS
|

|

I

|

|

32-ELEMENT
X BUFFER

TO AND FROM
MAIN STORAGE

32-ELEMENT
Y BUFFER

manner.” Thus, the array processor responds to standard 1,0 in-
structions and uses the channel address word (CAW), channel
command word (CCW), and channel status word (CSW). When
operations are initiated by a START I/0 (SIO) instruction, the
array processor fetches input data from main storage, performs
the desired operations, and returns the results to main storage.
The processor gains access to data in main storage by sharing
cycles with the CPU and the other channels. Control flow for these
operations is governed by a CCW list in main storage.

The 2938 is designed to perform twelve array and matrix opera-
tions in addition to NO OPERATION (NOP), SENSE, and TRANSFER
IN CHANNEL (TIC).* These operations are implemented in two
independent microprogrammed units within the array processor.
Figure 2 shows these two units in greater detail. The Indexing and
Operand Fetch (IOF) unit fetches input data from main storage
and returns calculated data to main storage. Calculations are
performed in the Arithmetic (ARITH) unit. The IOF unit operates
asynchronously with the ARITH unit, and it also performs fixed-
to-floating point number conversion as required.

The I0F (and therefore the array processor) accepts data in the
SYSTEM/360 short floating-point format and in the half-word,
fixed-point format.® Also, the 2938 recognizes a mnonstandard
SYSTEM /360 fixed-point format. This is called the sign-magnitude
format, which consists of fifteen bits plus a sign. The fifteen bits
are treated as an absolute binary number. The sign bit (bit Q)
indicates positive or negative values. This special format is fre-
quently encountered in analog-to-digital or digital-to-analog con-
version equipment. By having the ability to aceept input data
in this format, data conversion between complement and sign-
magnitude representations can be eliminated, resulting in signif-
icant time savings.

When the array processor is performing calculations, the
ARITH and TOF units communicate by means of two 32-element
internal buffers and status indicator circuits. The arithmetic unit

RUGGIERO AND CORYELL IBM SYST J

is essentially a high-speed, floating-point, four-stage multiply-add
unit (i.e., a multiply-align-add, post-normalize unit). The two 32-
element internal buffers are used to supply data to this high-speed
arithmetic unit, which has a maximum processing rate of 200
nanoseconds per stage. Thus, depending upon the operation,
product sums can be formed at a rate up to 5,000,000 per second.
All arithmetic operations are performed using the SYSTEM /360
short-format floating point representation.

A number of 1/0 devices may be operating simultaneously
with the 2038. Since the array processor operates at higher rates
than other 1/0 devices, it is normally assigned a priority lower
than that of the other channels. This assignment assures that
overrunable 1/0 devices are not held up or forced into an overrun
condition by the 2938. If necessary, the array processor waits for
a requested access to main storage, after the completion of in-
ternally overlapped processing, until the request is granted.

System operations

We now discuss the execution of an application program using
the Array Processor Access Method (APAM) and the SYSTEM /360
Operating System (08/360) or the Model 44 Programming System
(44P8). Figure 3 illustrates an application program requesting
array-processor facilities. A call to APAM initiates the dynamic
construction of the necessary channel program. APAM then de-
termines if the array processor is responding to a previous request.
If the array processor is busy, the new request is placed in an
output-restricted deque.” (The phrase output-restricted deque,
pronounced deck, is defined as a list wherein requests may be en-
tered at either end, but may be removed only from the front of the
list.) If the array processor is available, control passes to the op-
erating system control program via an Execute Channel Program
(EXCP) request. The control program issues a START 1/0 (SIO)
instruction to the array processor. The normal 1/0 functions fol-
low, up to and including the fetching of a CCW. Each CCW in a
channel program can specify one of the array operations that are
described later in this paper. (After the S8IO instruction is ssued,
the array processor operates in parallel with the CPU.)

An extension to the SYSTEM /360 1,0 procedure is required
to provide sufficient flexibility in the specification of these array
operations. The added flexibility is accomplished through the in-
troduction of a new control word, the Operand Control Word
(OCW). Each CCW may point to an OCW list, which provides de-
tails concerning format, size, and main storage addresses of the
arrays of data involved in a particular operation. The array op-
erations may involve two or three arrays of data elements (fixed-
point or floating-point numbers), resident in main storage. Array
processor operations on these arrays are concurrent with other
CPU activities.

NO. 2 - 1969 ARRAY PROCESSOR

122

Figure 3

An application program using array processor facilities

APPLICATION
PROGRAM

CONTROL
PROGRAM

]
~--—1 cow

VIA CHANNEL

| S

-

]

ADDRESS WORD

!

OCW LIST

OCW LIST

OCW LIST

1

|

Y OCW
X ocw
U ocw

X ARRAY

U ARRAY

Figure 4 Processing an array-processor interruption

APPLICATION
PROGRAM

CONTROL
PROGRAM

SUBPROGRAM

RUGGIERO AND

CORYELL

ARRAY
PROCESSOR

N\, ARRAY
PROCESSOR

IBM SYST J

At the completion of the operation designated by a CCW, the
command-chaining bit is inspected. If the bit is “‘on,” the next
cCcwW (which may specify a completely different array operation)
is fetched, and array processor operations continue. The CCW list
is exhausted when a CCW is fetched whose command-chaining
bit is “off.” The 2938 then signals 1/0 completion via an I/0 In-
terruption.

Tigure 4 illustrates a 2938 interruption (asterisk) occurring
during the execution of an application program. However, in-
terruptions are permitted whenever APAM, the control program,
the application program, or an unrelated program is in control.
Here, the control program passes control to an APAM routine after
saving the system status information. APAM then does some
standard interruption processing and links to a user-supplied
subprogram if the uscr desires control on this type of interruption.
(The user may issue additional requests to APAM from within his
subprogram.) Control is returned to APAM, which restarts the
2938 by issuing an EXCP for the request at the head of the request
deque. Control is then returned to the supervisor where the con-
trol program completes its interruption processing and returns
control to the original point of interruption in the application
program.

The formats of the CCW and OCW as well as the interrelation-
ships between these control words are shown in Iigure 5. (Bit
positions 37 to 47 of the CCW are unused.) Referring to the CCW,
the operation field (OP) specifies the particular array operation
to be performed. The OCW list address specifies the location of
the OCW list. The count field specifies the length of the OCW list
in bytes. Flags interpreted by the 2938 are: command chaining
flag, suppress incorrect length indication, and Program Con-
trolled Interruption (PCI).

Of the three, the PCI is of particular interest. The PCI facility,
as implemented on the array processor, offers synchronization
capabilities not available on standard SYSTEM /360 models. Tfor
example, when a CCW is fetched, the PCI bit is interrogated. If
the bit is “on,” array processor operation is suspended after the
fetching of the associated OCW’s, if any, until the interruption is
accepted by the CPU. Thus, if array processor interruptions are
disabled, i.e., the bit in the system mask byte of the Program
Status Word (PSW) that corresponds to the channel is set to zero,
the array processor waits until the channel is enabled before pro-
cessing continues. This operation guarantees one 1/0 interruption
for every PCI. Referring again to the CCW, if the PCI bit is “‘off,”
the array processor operates in the normal manner.

We now refer to the OCW format, also shown in Figure 5. The
OCW'’s are double words that contain the following four information
fields:

o Format field
e Address of the initial array clement to be fetched or stored

NO. 2 - 1969 ARRAY PROCESSOR

CCw
format

Figure 5

Formats of the CCW
and OCW related to

an arra

Yy

OCW LIST
ADDRESS

FLAGS

32 36

ADDRESS

INDEX

COUNT

4
/

3132 ‘\ 4748 T

|
[
!
|
|
i
!
|
|
|
1
|
i
|
|
4

63

Table 1 Vector move/convert
(VMC)

Y. = X;

for

i=1t0 N

where

N = min (CTY, CTX)

Table 2 Vector-floot-to-fixed-
point convert (VFX)

Y: = X;

for

1t =1t N

where

N = min (CTY, CTX)

Table 3 Scalar multiply (SMY)

for

i=1toN

where

N = min (CTY, CTX)

Two's-complement index value that permits forward (in-
creasing address) or reverse indexing of the array address for
the second and subsequent accesses

Count of the number of elements in the array

The format field provides conirol of the format converter
in the Index and Operand Fetch (IOF) unit of the array processor.
Within this field may be specified whether the data is in fixed-
point or floating-point form—and, if in fixed-point form, whether
signed or two's-complement notation is used. The algebraic sign
of the elements in the array may also be removed or inverted while
fetching the elements. This facility can be considered as an op-
eration-modifier field. Thus, without rewriting an array or chang-
ing the data in main storage, the array processor may use the neg-
ative, absolute value, or the negative of the absolute value of
each data element, as well as the algebraic value.

A bit in the format field of the OCW controls the result field.
This bit may be set “on” to indicate that the previous contents of
the result field are to be fetched and added to the results being
generated by the current operation. (This function is called ‘‘stack-
ing”’ by analogy with the signal-processing technique of averaging
out random fluctuations by combining several similar signals.)

Note that each array involved in an operation is specified by
a different OCW. Therefore, arrays with different attributes can
be used in the same operation.

Array processing operations

Thus far, we have discussed interactions between the CPU and
array processor. We now explain the array processing operations
in terms of their algorithms as implemented in the 2938. In these
algorithms, the following conventions are used: Y represents the
resultant array, X is the first source array, and {7 is the second
source array. For each algorithm, we give the operation name and
its mnemonic representation as well as a brief description of the
operation. Algebralc statements of the algorithms are displayed
in table form.

As previously discussed, the operation field of each CCW speci-
fies the operation desired, and the corresponding OCW specifies
the attributes of that operation. Thus, in effect, the CCW’'s are
collectively the instruction set of the array processor. Format
conversion and sign-modification operations, previously discussed,
apply to each of the operations of the 2938 array processor, with
only a few exceptions, which are noted where they apply. Also,
the forward or reverse indexing of each array and the count field
for each array provide for some modification of the operations.
These, too, are noted where they apply. References 4 and 8 give
detailed information on the programming support and array-
processor implementation of the operations.

RUGGIERO AND CORYELL IBM SYST J

Vector move/convert (VMC) is a simple relocation of data within
storage with some added capability (see Table 1). The format
converter permits the changing of fixed-point data to floating-
point data during relocation. Sign control permits the generation
of complement, absolute, or complement of absolute (all negative)
array clements. Independent indexing of source and resultant
arrays permits the reversing of the sequence of elements in an
array or the writing of the transposition of a given matrix, i.e.,
a;; = b;;. The separate count fields may be used to {ill a resultant
array field with zeros after the count of a source array field is ex-
hausted. A character field may be moved if it starts and ends on
suitable boundaries. A maximum of 65,535 clements may be moved
in a single exccution of the VMC instruction, and each element
may be up to four bytes long. The terms CTY and CTX represent
the counts (numbers) of elements in the ¥ and X arrays, and N is
equal to the lesser (“‘min”’) of the two counts.

Vector-float-to-fixed-point convert (VFX), changes a source float-
ing-point array to a resultant fixed-point array (Table 2). Because
the sct of possible floating-point numbers is greater than the set
of possible fixed-point numbers, the conversion also involves
scaling. The characteristic of each flonting-point source element
i1s compared to a maximum-valuc element. The fraction portion
of the source clement is shifted right until the characteristic of
the source element cquals the maximum-value clement. A scalar
multiply is then performed on the adjusted source clement.

Scalar multiply (SMY) causes each element of the X source
array to be multiplied by & single element furnished in the U source
array (Table 3). The resultant product element, may be added to
the contents of the Y array.

Vector element-by-element sum (VES) performs the addition of
corresponding elements in each of the two source arrays and places
the sums in a result array (Table 4). A control bit in the OCW for-
mat ficld for the U array permits a single U element to be added to
each element in the X array.

Vector element-by-clement multiply (VEM) performs the multi-
plication of corresponding elements in each of the two source arrays
and places the products in a result array (Table 5). Optionally,
the resultant product clements may be added to the contents of
the Y array.

Sum of vector elements (SVL) performs (see Table 6) the sum-
mation of all clements of a source array and stores the sum (a
single resultant clement) in a specified location. Optionally, the
resultant element can be added to the contents of a storage loca-
tion to produce a new resultant element.

Sum of squares (83Q) is similar to SVE except that each element
is multiplied by itself and the squares of the elements arc summed
(Table 7). The sign of each element may be applied to each of the
products, or a positive value may be taken by setting the abso-
lute-value control bit in the X format field of the OCW. This op-

No. 2 * 1969 ARRAY PROCESSOR

Table 4 Vector element-by-ele-
ment sum (VES)

Y: =U: + X;

for

7=1to N

where

N = min (CTY, CTX)

Table 5 Vector element-by-ele-
ment multiply (VEM)

Y =Y, + U X;

for

i=1to N

where

N = min (CTY, CTX, CTU)

Table 6 Sum of vector elements
(SVE)

Y=Y+, X,
where
N = CTX

Table 7 Sum of squares (S5Q)

Y =Y + 2;-21 XX
where
N = CTX

Table 8 Vector inner product
(VIP)

Y =Y 42V, (U:X)
where
N = min (CTX, CTU)

Table 9 Signed, squared array
(SSA)

Yi=Y; + XX

for

i=1to N

where

N = min (CTY, CTX)

Table 10 Partial matrix multiply
(PMM)

Vi=Y: +2{ (XiUonid)
for

i=1t0 N

where

n = CTY

N = CTX

Table 11 Convolving multiply

(CYM)

Y=Y +3Y, Ui Xy,
where

7=1tom

and

m = CTY

N =CTU

Table 12 Convolving addition
(CVA)

V=Y. 4271 X0 + Ul
for

t=1tom

where

m = CTY

and

N = min (CTX, CTU)

eration produces a single-element result that may (optionally) be
added to the contents of a storage location to produce a new re-
sultant element.

Vector inner product (VIP) is the formation of a single result
from two input arrays, namely, the sum of products of the ele-
ments of the two input arrays (Table 8). Mathematically, the
operation corresponds to the premultiplication of a column vector
by a row vector. The resultant sum may either be stored or added
to the contents of a storage location.

Signed, squared array (8SA) performs the operation of squaring
each element of the input array and storing the resultant array,
retaining the signs of the original source array elements if desired
(Table 9). Optionally, instead of restoring the resultant elements,
they may be added to the corresponding element locations in
storage to form new resultant elements.

Partial matriz multeply (PMM) is an expansion of VIP, wherein
elements of a (resultant row) vector are calculated which arc pro-
ducts of elements of a row vector premultiplying a source matrix
(whose elements are arranged according to the FORTRAN con-
vention for matrix storage). The corresponding algebraic state-
ment is shown in Table 10. The resultant row vector may be stored
or added to a row vector in storage.

Convolving multiply (CVM) performs the partial correlation of
two source arrays, starting with the one-for-one alignment of the
first element in each array (Table 11). By specifying the high
address of either array as the starting address and using a nega-
tive index value, the user may effect a convolution of the two
arrays. The resultant convolution elements may be stored or,
optionally, added to an array in storage.

Convolving addition (CVA) operates similarly to CVM except
that the sum of sums is calculated instead of the sum of products
(Table 12). The ending conditions correspond to those for CVM,
taking into account the difference in identity elements for addi-
tion and multiplication.

High-value readout is an operation that is normally command-
chained to a previously given control operation. Upon completion
of an array operation, the sign, characteristic, and high-order hexa-
decimal digit of the result element having the highest value is
retained in the array processor. This value may be retrieved by
the high-value readout operation and may then be used as the
maximum-value element for a VFX instruction.

Sense is the standard error sensing operation for all 1/0 de-
vices; differences in function are related to the inherent differ-
ences in the 1/0 devices themselves. The array processor uses two
status bytes for error sensing. Of special interest are the floating-
point overflow and the halt-1/0 indicator bits. Floating-point
overflow is indicated when a result having a maximum magnitude
representable in floating-point notation is returned to main stor-
age. A floating-point overflow is also indicated during a VFX if
the input floating-point element is greater than the maximum-

RUGGIERO AND CORYELL IBM SYST J

value element. The halt-1/0 indicator is set when an array-pro-
cessing operation is terminated by a HALT 1/0 instruction,

Programming support

The Array Processor Access Method (APAM) provides the normal
programming functions of an access method in an interpretive
mode. APAM also has some special 1/0-handling features such as
concurrently accommodating queued- and EXCP-levels of access
to the 2938. The access method is usable with both FORTRAN
and assembler-language programs.

The overlapping of CPU operations and array processing is an
1/0 capability not normally available to FORTRAN programmers.’
Normally, when a FORTRAN application program issues a re-
quest for 1/0 service, the program does not receive control until
the I/0 operation is completed. Thus, the program must wait,
even if there is some interim processing that can be done while the
data transfer associated with the I/0 request is taking place.
APAM, however, allows operations either in this normal manner
or in an overlapped manner. To overlap CPU and array processor
operations, the application program may request that control be
returned immediately via one of the parameters associated with
the CALL statement to APAM. The user program may then perform
additional processing. The overlapping procedure is the recom-
mended one since it is one way to force the concurrent operation
of the array processor and the CPU. While operations overlap,
additional requests may also be issued to APAM by the application
program.

Although control operations are normally used for device setup
and error recovery, the array processor’s major functions arc im-
plemented in the form of control operations. Due to the great
variety of channel programs possible, it would be very costly to
have all channel programs prebuilt at compilation time, especially
when there is a possibility that many of them would never be ex-
ecuted. Channel programs may also be data dependent as they are
in certain data-reduction applications. Thus, an interpretive 1/0
capability at execution time, which facilitates APAM’s “build only”
option, enables the application program to request APAM to con-
struct a channel program at execution time. With this option, the
application program may have a channel program built and saved
as well as built and executed. The user may then use an EXCP-level
of interface with APAM and pass the channel program as a pa-
rameter. This capability offers a means of eliminating unnecessary
channel program construction for repetitive operations. The high-
value readout command is supported in the interpretive mode,
whereby the user may request the saving of the maximum ex-
ponent after any matrix operation.

When the 2938 is attached to a SYSTIM/360 Model 44, the
user interface consists of the Model 44 version of APAM and the

NO. 2 - 1969 ARRAY PROCESSOR

1/0
overlapping

interpretive
capability

APAM
capabilities

127

Model 44 Programming Svstem (44P8). When the 2938 is attached
to SYSTEM/360 Models 65 or 75, the user interface consists of
APAM and 08/360.

The user specifies array processor operations to APAM by means
of FORTRAN CALL statements. At both the basic and queued
levels, APAM constructs the necessary channel programs and re-
quests the control program to initiate 2938 operations. The ap-
plication program may wait for completion of the operation or
may request that control be returned immediately (so as to per-
form additional processing concurrently with the array processor)
as previously discussed. At the EXCP level, APAM has the ability
to execute a user-built channel program. If this program is made
up completely or in part of available APAM options, the user
may have APAM’s ‘“build-only option”’ construct and save the
channel program. By means of this option, channel programs of
varying length are dynamically created and saved at execution
time.

APAM provides a synchronous user exit whenever the control
program detects a Program Controlled Interruption (PCI) from
the array processor. The user may synchronize the 2938 with the
rest of the system by use of the PCI facility in the following man-
ner. At any time prior to issuing a request that causes a CCW
(with its PCI bit sct) to be executed, the application program may
issue a special request to APAM. Such a request specifies the entry
point of an application subprogram. Any PCI encountercd there-
after causes the subprogram to be entered. Upon exit from the
PMM subprogram, the application program may request a HALT I1/0
VES instruction to be issued to the 2938.

NOP An example showing the use of PCI exit using HALT I/0 is

Table 13 An example channel
program

Main-storage
Location Operation

VMC shown in Table 13. Assume that the application program is per-

TIC A forming an iterative operation, and the application program gives

APAM the entry point to a PCI subprogram. APAM causes the
channel program shown in Table 13 to be initiated. The appli-
cation program may either wait or continue processing.

Operation of the channel program, shown in Table 13, is as
follows. The CCW at location A initiates an operation such as
partial matrix multiply (PMM), which is command chained to a
vector element-by-element sum (VES) operation. The VES com-
putes the difference between the input and output vectors of the
previous operation. The VES is command chained to the NO OP-
ERATION (NOP) at loeation C. The CCW for NOP is command
chained to a vector move/convert operation (VMC), which moves
the output of the PMM operation to the location of the input vec-
tor. The VMC is command chained through a TRANSFER IN
CHANNEL command (TIC) to the PMM at location A in main
storage.

This channel program loop is iterated until a HALT 1/0 in-
struction is issued by the CPU. The CCW's at locations C and D
have their PCI bits set, and the PCI subprogram is first entered
when the CCW at C is fetched from main storage. A system mask

RUGGIERO AND CORYELL IBM SYST J

bit i1s sct to prevent any other interrupts, and processing con-
tinues.

The CCW at D is then fetched. Because the PCT bit is set and
and beeause 2038 interrupts are disabled, array processor operi-
tions arc temporarily suspended. While opcrations are suspended,
the result of the VES operation is checked to determine whether
that result is within established limits. If within limits, the PCI
subprogram terminates by requesting a HALT 1/0, which APAM
issues to the array processor. If not within limits, the PCI sub-
program exits without requesting a HALT I/0 from the CPU.

The 2038 is now reenabled, the PCI from the VMC is ‘‘fielded,”
and array processing operations continue. In parallel with this
processing, the PCI subprogram ignores the interruptions and
waits for the next interruption from the PCI in the CCW at C.
Processing continues until the result is within the required limits.
This channel program may be performed concurrently with other
CPU operations.

Another facility offered by APAM is that of dynamic exits for
the purpose of interruption analysis. With this feature, the user
may specify the entry point of an interruption subprogram and a
code for the types of interruptions that will cause the interruption-
analysis subprogram to be entered. The user may specify any
combination of the following as the interruption codes: normal-
completion, fixed-point overflow, floating-point overflow, termina-
tion by a HALT I/0 instruction, or termination due to a perma-
nent equipment malfunction. I'or example, if the 99,999th opera-
tion fails, the application program is not aborted. It may receive
control on a unit check from the 2938 and continue processing.
The application program may also, of course, use the 99,998 suc-
cessful operations and exit.

There are several other notable features of APAM. Users may
change the interruption code and/or the subprogram that is to
recelve control any number of times during execution of the ap-
plication program. Also, requests may be issued to APAM by a
user’s subprogram. By use of an output-restricted deque, APAM
places such requests ahead of any requests currently in queue.
Control returns to the original point of interruption when the
subprogram processing is completed. I'rom his main application
program, the user may also issue priority requests to the array
processor. This facility allows such requests to be placed ahead of
all requests already in queuc for the 2938.

While running under 08/360, APAM allows the 2938 to be shared
between regions in a multiprogramming environment. APAM can
operate under the MVT, MFT-I, and PCP versions of 08/360. The
08/360 versions of APAM also have a dynamic syntax checking
facility that may be optionally invoked. When requested, APAM
can perform error checking of user parameter lists prior to dynam-
ically building the requested channel program. If an error is dis-
covered in a calling sequence, the user is notified by an appropri-
ate message prior to the termination of the application program.

No. 2 - 1969 ARRAY PROCESSOR

Table 14 SYSTEM/360 Model 44 operation timing

Methods (1ime in seconds)

Operalion 1 2 3 Iterations
SVE 67.68 5.160 1000
SVE b 23.264 1192 500
SVE 7.248 .808 500
SMY 44.272 .088 500
VMC 14.992 .160 500
VIP 50.688 912 500
VvIP 38.544 128 500
VIP 11.472 804 500
VEM 16.800 784 500
CVM 712 50
CVvM .048 500
88Q .064 472 500
Matrix multiply .88 . 1

Table 15 SYSTEM/360 Model 65 operation timing

Methods (lime in seconds)

Operation X U 2 3 Iteralions
SVE 2000 .50 4.14 1000
SVE 1500* .25 .81 .80 500
SVE 500 .43 .18 500
SMY 2000 1 .88 500
VMC 500 .95 .61 500
VIP 2000 2000 5.22 .34 500
VIp 1500 1500 .05 .67 . . 500
vIP 500 500 .86 .52 500
VEM 500 500 .64 .81 500
CVM 500 250 .43 50
CVM 500 250 .62 500
S8Q 100 1.13 .06 500
Matrix multiply 60.85 .26 1

Table 16 SYSTEM/360 Model 75 operation timing

Methods (time in seconds)

Operation Y X U 2 3 Iterations
SVE 1 2000
SVE 1 *1500
SVE 1 500
SMY 2000 1
VMC 500 500
VIP 1 2000 2000
VIP 1500 1500 .
VIpP 1 500 500 .34 500
VEM 500 500 .67 500
CVM 500 250 . 50
CVM 500 250 .46 500
S8Q 100 .86 500
Matrix multiply . . 1

.63 . 500

500
36 . 500
43 500
.25 500
500

— et NG OO = QO =

-~1

fo]

RUGGIERO AND CORYELL IBM SYST J

Timing methods and results

The same FORTRAN programs were run on the three different
models of SYSTEM /360 that support the 2938 array processor.
Timing results of these operations are shown in Tables 14 to 16.
Table 14 contains the results obtained when the 2938 is attached
to o SYSTEM/360 Model 44, Table 15 contains comparable re-
sults for a Model 65, and Table 16 has the results for a Model 75.

The operations that were timed are shown in Table 17. Note
that the first parameter in the parameter list that is passed to
APAM (shown in the right column of the table) is o four-character
mnemonic representation of the desired operation—shown by
three alphabetic characters plus an asterisk. Matrix multiply
was performed by command chaining partial matrix multiplies
(PMM™), In all cases, the output array (Y) was produced in float-
ing-point format. The input arrays (X,{7) were in floating-point
format except for the SVE* run (noted by the asterisk in the tubles)
which contains 1500 fixed-point halfword input X elements. The
number of times a particular operation is performed is indicated in
the iteration columns of Tables 14 through 16.

We now discuss the four methods of obtaining SMY* timing
data. By the first method, the SMY* operation is performed com-
pletely in the CPU, using FORTRAN IV without the array pro-
cessor. The subroutine used to perform a scalar multiply of a 2000
element X array 500 times by a floating-point U scalar is shown
in Table 18. The resultant data is placed into the ¥ array. APTIM
is a subprogram that prints the clapsed time between calls to
APTIM on the FORTRAN output data set.

Using the second method of collecting SMY* timing data,
APAM constructs the channe! program and initiates o number of

array-processor operations equal to the iteration count. The pro-
gram in Table 19 is an example of o build-execute-wait loop for
a scalar multiply.

The following parameter list (from Table 19) is the long form
of the parameter list that APAM is to build for execution. APAM

Table 17 Array processor operations timed

Sum of Vector Elements SVI* Vector Element Multiply = VEM*
Scalar Multiply SMY* Convolving Multiply CVM*
Vector Move/Convert VMC* Sum of Squares SSQ*
Vector Inner Product VIP* Matrix Multiply

Table 19 FORTRAN IV progrom for scalar multiply using the array processor

Call APTIM

Do31 = 1,500

3 Call APAM (‘SMY*’ 1, Y, 2000, 4, 0, X, 2000, 4, 0, U)
Call APTIM

ARRAY PROCESSOR

four
timing
methods

Table 18 FORTRAN 1V program
for scalar multiply in
the CPU

Call APTIM

Do 21 = 1,500

Do 2 K = 1,2000
2Y (K) = X (K)*U
Call APTIM

Table 20 FORTRAN IV program
for scalar multiply
with the array pro-
cessor using prebuilt

CCW's

Call APTIM
Call APAM(‘EXC¥,1, CCWS)
Call APTIM

timing
results

does not return control until the 2938 has completed the operation.
The parameters passed to APAM are interpreted as follows:

SMY* Scalar multiply operation code
1 Execute in FIFO order and wait for completion
Y Location of the resultant Y data array
2000 Number of elements in the resultant array
IFour bytes between consecutive elements in the
output array
Resultant array has floating-point format
Location of the input X array
Number of elements in the input X array
Four bytes between consecutive X elements
X array is in floating-point format
Location of the input U scalar array in floating-
point format by a default condition

The third method of timing the operation is to execute a pre-
built chain of CCW’s as shown by the FORTRAN channel program
in Table 20. The channel program is to be executed and control
is not to be returned until the 2938 completes the operation. The
APAM parameter list for the third method is interpreted as fol-
lows:

EXC* Specification of a prebuilt channel program
1 Iixecute in FIFO order and wait for completion
CCWS Location of the channel program to be executed

A fourth way in which the timing of the operation was meas-
ured makes use of a user PCI exit. The channel program consists
of only two CCW’s rather than 500. The first CCW contains a PCI
and is command chained to a TIC. The second CCW (the TIC)
transfers control back to the first CCW. Each time the PCI is ac-
cepted by the CPU, the user PCI exit is taken. When the desired
number PCI's are received, a HALT I/0 instruction is issued to the
2938. The FORTRAN program for the fourth method is the same
as is shown for the third method in Table 20. The difference be-
tween the third and fourth methods is that the CCW’s point to
different channel programs.

Inspection of the data in Tables 14 to 16 shows that perfor-
mance improvement is a function of the number of calculations
performed. The larger the arrays and the more complex the
operation, the greater the improvement. Also, as expected, the
percentage increase in performance when the 2938 is attached to a
SYSTEM/360 Model 44 is greater than the percentage increase in
performance when the 2938 is attached to a more powerful system.
The maximum improvement obtained was on the CVM operation
in the SYSTEM /360 Model 44. Timing shows that the array pro-
cessor path is 250 times as fast as the FORTRAN loop in the CPU.

In addition to the improvement in elapsed time, the CPU is
available to do other work. In the case of the Model 44, the CPU
can perform additional processing of the application program or

RUGGIERO AND CORYELL IBM SYST J

can handle other interrupts. When operating in an 08/360 multi-
programming environment, the CPU can process other applica-
tion programs. It may still be profitable to perform an operation
on the 2938 even if that operation could be done in the same or
shorter time by the CPU alone, because this frees the CPU to do
other work.

Table 21 summarizes timing results that werc obtained for
the matrix-multiply operation on a SYSTEM/360 Model 65 using
FORTRAN 1V with the H-level compiler and CPU processing (Col-
umn 2), together with timing results for APAM and an array pro-
cessor (Column 3). The table shows system-performance-im-
provement ratios (Column 4) of FORTRAN IV with APAM and an
array processor to FORTRAN IV with CPU processing for matrices
of varying numbers of elements (Column 1). Timings of FORTRAN
IV performance in seconds, with and without APAM, are shown in
Columns 2 and 3. The FORTRAN IV matrix-multiply program is
given in Table 22.

Performing a full matrix multiply on the 2938 requires re-
petitive partial-matrix multiplies. Each execution of a PMM pro-
duces one row in the resultant matrix. Therefore, to multiply two

Table 21 SYSTEM/360 model 65 performance comparison for matrix multiplication

FORTRAN 1V Array Performance
Matrix processing processor improvement
size (seconds) (seconds) ratio

100 60.85 1.26 48
92 47.56 0.94 50
84 36.22 0.74 48
76 26.84 0.57 47
68 19.26 0.41 46
60 13.23 0.28 47
52 8.62 0.19 45
44 5.24 0.12 43
36 2.86 0.07 40

Table 22 FORTRAN IV matrix-multiply program

Call APTIM
Do100T =1, N
Do200J =, N
AL J) =0
Do300K =1, N

A J) = B, K)*C(K, J) + A, J)
Continue

Continue

Continue

Call APTIM

NO. 2 - 1969 ARRAY PROCESSOR

133

50 by 50 matrices, it is necessary to do 50 PMM’s. The column of
APAM-timing results was obtained by using the EXCP interface
with APAM. A chain of PMMN CCW’s is executed. In the case of an
80 by 80 matrix, the list consists of 80 CCW’s command chained
together. Thus, with one SIO the full matrix multiply is accom-
plished.

The last column gives a comparison of the FORTRAN IV-
CPU time versus the APAM-array-processor times. Performance
improvement ratios are shown for the range of matrix-size values
measured. As a rule, the performance improvement increases as
the size of the matrices increases. Two exceptions may be noted
in Table 21. The improvement factor decreases between matrix
multiplies involving 92 and 100 square matrices. Another de-
crease in the performance ratio is shown when going from two
60-by-60-element matrices to two 68-by-68-element matrices.
This is justified when one remembers the interface between the
IOF and ARITH sections of the 2938 are two 32 element buffers.
The optimum performance is obtained in a PMM when the size
of the matrix is some multiple of 32. Any variation will cause the
32-clement buffers to be partially used at certain times, thus
slightly reducing the effectiveness of the 2938. As anticipated, an
operation such as matrix multiply is best performed on the array
processor in most cases.

Concluding remarks

The IBM 2938 Array Processor together with its access method
(APAM) increases the processing power of SYSTEM /360 Models 44,
65, and 75 for operations on vectors and matrices. The auxiliary

processing capabilities discussed have proved especially useful in
such arcas as scismic exploration, vibration analysis, turbulence
research, and image enhancement. Beeause of the modular design
of the present access method, it is possible to write signal proc-
essing subroutines that can perform certain common operations
useful in these applications.

As another extension, specialized instructions can be incor-
porated into the array processor. One such instruction performs
the fast Fourier transform,™ which is an algorithm for computing
the discrete IFourier transform for arrays of complex data. A
specialized instruection is available for the scanning of arrays for
their maximum data clements. Another special instruction pro-
duces the solution of difference equations of up to the fourth
order by a single pass of the data. Higher-order or multiple-root
cquations may be solved by repeated passes of the data.

The advantage of implementing special-purpose operations by
means of special equipment rather than with the standard in-
struction set is clearly shown by the timing results. Furthermore,
the additional CPU availability for concurrent operations makes it
profitable to have the 2938 perform operations that could be per-
formed within the same time by the ¢PU. In a multiprogramming

RUGGIERO AND CORYELL IBM SYST J

environment, remote special-purpose processing becomes even
more advantageous, especially if the remote processor can be
shared by more than one application program. Such an environ-
ment exists when running 08/360 (MVT or MFT) with more than
one program using the array processor.

CITED REFERENCES AND FOOTNOTES

1

2.

. A. D. Booth and K. H. V. Booth, Automatic Digital Calculators, Butter-
worths, Washington (1953).

A convolution of two vectors is a series of multiplications of corresponding
elements of the vectors, followed by the summation of these products
to produce one element of a resultant vector. The next resultant vector
element is produced by shifting the two vectors by one element (relative
to each other) and repeating the procedure. Mathematically, a con-
volution and a correlation are similar operations except that in a con-
volution the elements of one vector are taken in reverse order.

. For operations that have relatively short execution times other methods

have been used. One approach for this type of operation has been to add
instructions to the vocabulary of a cPU. Whenever one of the new opera-
tions is to be performed, the corresponding new instructions are issued.
Upon completion of the operation, the cPU proceeds to the next instruction
in the usual manner. As execution time increases, this approach becomes
less advantageous.

. Array Processor Access Method for IBM 2938 Model 2 with IBM SYS-
TEM /360 Model 65 or IBM SYSTEM /360 Model 75. This Type III
program and documentation, 360D 03.4.020, can be obtained through IBM
Branch Offices. Array Processes Access Method for IBM SYSTEM /360
Model 44, may be similarly obtained by ordering 360D 03.4.019.

. A. Padegs, “The structure of SYSTEM/360, Part IV-Channel design
considerations, IBM Systems Journal 3, Nos. 2 and 3, 165-180 (1964).
G. A. Blaauw and F. P. Brooks, Jr., “The structure of SYSTEM/360,
Part I—Outline of the logical structure,” IBM Systems Journal 3, Nos. 2
and 3, 119-135 (1964).

. D. E. Knuth, The Art of Computer Programming, Volume I, Fundamental

Algorithms, 234-235, Addison-Wesley Publishing Company, Reading,
Massachusetts (1968).

. IBM SYSTEM /360 Custom Equipment Description: 2938 Array Processor.
This publication, A24-3519, can be obtained through IBM Branch Offices.

. R. A. Sebastian and T. J. Horrigan, “Why discriminate against the
FORTRAN programmers?”’ Software Age 2, No. 3, 812 (April 1968).

. J. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series,’”” Mathematics of Computaiion 19, No. 90, 297—
301 (April 1965).

NO. 2 - 1969 ARRAY PROCESSOR

135

