
T h e  IBM 2938 A r r a y  Processor  discussed  enhances  the  processing 
power of SYSTEbl/3BO l l fodcls 44, 65, and 75 for operations  on 
vectors and  matrices. As a n  integrated  channel-I/O  device,  the  array 
processor  responds  to  standard  I/O  instructions. 

Discussing the  overall flow of control  between  the  central  processing 
u n i t ,   m a i n  storage,  and  the  array  processor,  the  relationship  between 
the SYSTEM/360 Operating  System  and  the  array  processor’s  pro- 
gramming  support i s  emphasized.  l’he tweloe mathematical  processing 
operations  embodied in the 2938 are  described in terms of their 
algorithms. 

Several  methods for measuring  array  processor  performance  are 
shown together with  actual  timing  results. 

An auxiliary  processing  system for array  calculations 
by J. F. Ruggiero and D. A. Coryell 

The value of :t computer  instruction  operating upon multiple data 
elements was recognized at’  least as early as 1953 when i\ndrew 
and Kat,hleen  Booth were designing comput’ers in London. They 
mention the caapabilit,y of “addition of a series of pairs of qumbers 
stored  consccutively”  and  forming,  by  means of branching  and 
indexing, “the  total of a series of consecutive numbers,” each  under 
control of a single instruction.’  The  advantage of such  multiple 
operations lies i n  the possibility of more efficient utilization of 
main storage accesses by reduciug t,he number of inst>ructions 
fetched  during  t’hc  operation. 

The IBhI 2958 Array Processor extends the concept of multi- 
ple operations.  The proressor adds  auxiliary  computing power to 
the  Central I’rocessing Units (CPU’s) of certain IBM SYSTEM/ 
SBO models when these  are performing  operations on arrays (vec- 
tors and mat’rices) and when cdculating convolutions and cor- 
re la t ion~.~  This auxiliary  proressor is most advantageously  applied 
where the rat’io of calculation time to iuput/output (I/O) time is 
relatively  high, as in the convolution of two arrays.’ 

The operat,ions apply part,iculnrly well t o  digital  signal pro- 
cessing and filtering. For example, the reduction of seismic data 
may  involve  from two million to  20 million multiply-add calcu- 
Iat>ions per output record.  However, the  array processor is not 
restricted to a  particular  npplication  area  sinre the oper‘ d t’ 1011s 

provided are widely used mathematical  tools. 

118 RUGOIERO A N D  CORYELL IBM SYST J 



Basic vector  operations (element-by-element, additions and 
multiplicat~ions) are useful in many  application  areas. h e  such 
example is that of making  weather forec:Lsting calculations. 
Matrix multiplication and vector  inner-product  operations,  though 
less broadly  applicable, are also useful in such  areas as structural 
stress  analysis,  electrical  network  solutions, and  probability 
analysis of variance.  The convolution/correlation- and difference- 
equation  operations apply to  digital signal processing, which in 
turn is a useful tool  in many itreas since t'he  signals heing processed 
may  arise  from many types of systems-~mcc.ll:llli('al, e lec t r id ,  
or optical. 

This  paper discusses first the array processor as an I/() devicse 
that can be attarhed to  t,hree models of SYsl'EJl/Xo. Similarit,ies 
and differences bctween the array processor and other I/() devices 
are described. Discussiug thc overall flow of  caontrol hetiveer1  t,he 
CPU, main storage, :md the urrny processor, the relationship 
between the SYS~'~N/ :<SO Operating  System (Os/3(io) m d  the 
Array  Processor Access Method (APAM) is cmp11:lsized.4 Thc 
twelve mathematicd operat'ions embodied i n  the arr:ty processor 
are  preserhd. discvssioll of Al'Ahl stresscs rnchhods for con- 
current  operations of the CPU and the arr:ly processor. Comput'a- 
tion efficiency is demonstrated by tables of array processing timing 
data. 

The array processor 

Figure 1 Array processor-SYSTEM/360  configuration 

CHANNELS 

MULTIPLEXOR I I 
I /O DEVICES 
CONTROL UNITS 

CONTROL 

2938 ARRAY PROCESSOR 

EO. 2 . 1969 



Figure 2 The IBM 2938 Array Processor 

TO AND FROM 
MAIN STORAGE 

INDEXING  AND  OPERAND ' I 

FETCH UNIT 
I ARITHMETIC  UNIT 

(IOF) 
(ARITH) 

! 

v l i  I 

m a m ~ e r . ~  Thus,  the  array processor responds t,o standard I/O in- 
structions  and uses the cahannel address word (CAW), channel 
command Jvord (CCW), and cahannel status word (CSW). When 
operations  are  init'iated by a STAItT 1/0 (SIO) illstruction, the 
array processor fetches input dxt'n  from  main  storage,  performs 
the desired  operations, and  returns  the results to main  storage. 
The processor gains a('ces:s to  data ill main  storage by sharing 
cycles Jvith the CPU and  the  other channels.  Control flow for these 
operations is governed by :I CCN' list' in main storage. 

The 2938 is designed to perform  twelve array  and  matrix opera- 
tions  in  addition to  NO OPERATIOS (NOP), SEKSE, and TRANSFER 
I N  CHAXNEL (TIC).' These  operations  are  implemented in two 
independcnt  microprogrammed  units  within the  array processor. 
Figure 2 shows these  two  units  in  greater  detail.  The  Indexing  and 
Operand Ii'etch (IOF) unit  fetches input  data from  main  storage 
and  returns calculated data  to main  storage.  Calwlations  are 
pcrformed in tjhe  Arithmetic  (ARITII)  unit.  The IOF unit  operates 
asynchronously wi-ith the ARITH unit',  and it also performs fixed- 
to-floating  point  number conversion as  required. 

The IOF (and  therefore  the  array processor) accept's data in the 
SYSTE~I/SGO short floating-point format  and in the half-word, 
fixed-point format.' Also, the 2938 recognizes a  nonstandard 
SYsTEM/360 fixed-point format.  This is called the sign-magnitude 
format, which consist's of fift,een bits plus a sign. The fifteen bits 
are  treated  as  an absolut,e  binary  number. The sign bit  (bit 0) 
indicates  positive  or  negative  values.  This special format is fre- 
quently  encountered in analog-to-digital or digital-to-analog con- 
version equipment.  By  having the ability to accept input  data 
in  this  format,  data conversion between  complement and sign- 
magnitude  representations  can be eliminated,  resulting  in  signif- 
icant  time savings. 

When the  array processor is performing  calculations, the 
ARITH and IOF units communicatme  by  means of two 32-element 



is essentially  a  high-speed,  floating-point,  four-stage  multiply-add 
unit  (i.e.,  a  multiply-align-add,  post-normalize unit).  The  two 32- 
element internal buffers are used to supply data  to  this high-speed 
arithmetic  unit, which has a  maximum processing rate of 200 
nanoseconds per stage.  Thus, depending  upon the operation, 
product  sums can be formed a t  a rate  up  to 5,000,000 per second. 
All arithmetic  operations  are performed using the SYSTEM/360 
short-format  floating  point  representation. 

A number of I/() devices may be  operat,ing  simultaneously 
with the 2938. Since the  array processor operates a t  higher rates 
than  other I/O devices, i t  is normally assigned a  priority lower 
than  that of the  other ch:tnnels. This  assignment  assures that 
overrunable I /O devices are  not held up or forced into  an  overrun 
condition  by the 2938. If necessary, the  array processor waits  for 
a  requested access to  main  storage,  after  the completion of in- 
ternally  overlapped processing, until  the request is granted. 

System operations 
We now discuss the execution of an application  program using 
the  Array Processor Access Method (APAM) and  the SYSTEXI/36O 
Operating  System (~S /SC,O)  or the Model 44 Programming  System 
(44~s). Figure 3 illustrates an applic*ation program  requesting 
array-processor  facilities. A call to APAM initiates the dynamic: 
construction of the necessary channel  program. APAM then de- 
termines if the  array processor is responding t o  a  previous  request. 
If the  array processor is husy, the ne\\'  request' is placed in a11 
output-restricted d e q z ~ e . ~  (The  phrase  output-restricted  deque, 
pronounced  deck, is defined as a list wherein requests  may  be  en- 
tered at  either  end,  but  may be removed only from the front of the 
list,.) If the  array processor is available, cont)rol passes to  the op- 
erating  system  control  program  via an Execute  Channel  Program 
(EXCP) request. The control  program issues a START I/O (SIO) 
instruction to  the  array processor. The normal I/() func'tiorls fol- 
low, up  to  and including the fetching of a CC\V. Each cC\v i n  a 
channel  program  can specify one of the  array  operations  that  are 
described lat,er  in  t,his  paper.  (After the SI0 instruction is issued, 
the  array processor operates  in  parallel  with the CPI!.) 

An extension to  the SYSTE?VI/360 I/() procedure is required 
to provide sufficient flexibility in  the specification of these array 
operations. The added flexibility is accomplished through  the  in- 
troduction of a new ront'rol  word, the Operand  Control  Word 
(ocw). Each ccw may  point to  a11 c)c\Fr list, which provides  de- 
tails  concerning format, size, a d  main  storage addresses of the 
arrays of data involved in a part'icular  operation. The  array op- 
erations  may involve two or three  arrays of data elements (fixed- 
point  or  floating-point numbers), resident in main  storage.  Array 



APPLICATION 
PROGRAM 

APAM ._r 

CALL ki 
CONTROL 



At the completion of the operation  designated  by a. C ~ W ,  the 
command-chaining bit  is  inspected. If the  bit is “on,” the next 
C C I ~  (which  may  spcrify a completely  different array  operation) 
is  fetched,  and  array processor operations caontinue. The CCW list, 
is exhausted when a CCW is fetched whose ( ~ o m m a ~ ~ d - ( ~ h a i l ~ i l l ~  
bit is “off.” The 2938 then signals I/O completion via an I/() in- 
terruption. 

Figure 4 illustrates a 2938 i1lt)erruption (asterisk)  orcurring 
during the execution of an applicat’ion  program.  However, in- 
terruptions  are  permitted whenever Al’AM, the cout’rol progr:m, 
the application  program,  or an  unrelated program is in  control. 
Here, the control  program passes control to  an APAhl routine  after 
saving the system  status  information. AI’ARI t’hen does some 
standard  int,erruption processing and  links  to  a user-supplied 
subprogram if the user desires control  on this  type of interruption. 
(The user may issue additional  request’s  to A1”U from  within his 
subprogram.)  Control  is  returned to APAXI, whivh restarts  the 
2938 by issuing an EXCP for the request at  the head of the request 
deque.  Control is then  returned  to  the supervisor where the con- 
trol program completes its  interruption processing and  returns 
control to  the original  point of int>crruption  in the applicat’iorl 
program. 

The formats of the CCW and (X\\’ :is n-ell as t’he  int’errclation- 
ships between these  control words arc shown in lcigure 5. (Bit 
positions 37 to  47 of the CC&’ are  unused.) Referring to  the CCW, 
the operation field (01’) specifies the particular  array  operation 
to be  performed. The OCW list  :ddress specifies the location of 
the ocw list.  The count field sperifies the length of t’he OCw list 
in bytes. Plags interpreted  by  the 29:18 are: command  chaining 
flag,  suppress  incorrect  length  indication, and  Program Con- 
trolled  Int,erruption (I’CI). 

Of the  three,  the I’CI is of particular  interest.  The PC1 facility, 
as implemented on the  array processor, oflers synchronization 
capabilities not  available on stand:ml sYKIY!M/:%O models. For 
example, when a CCw is fetched, the t’CI bit is interrogated. If 
the bit  is  “on,”  array processor operation is suspended after  the 
fetching of the associatcd OCW’s, if any,  until the int’erruptjon js 
accepted  by the CPU. Thus, if array processor intcrruptions  are 
disabled, i.e.,  the  bit  in  the  system mask byte of the  Program 
Status Word (PSW) t,Elat corresponds to  the channel is set’ to zero, 
the  array processor waits  unt’il the channel is enahled before pro- 
cessing continues. This  operation  guarantees one I/O interruption 
for every PCI. Refcrring  again to  the CCW, if the I’CI bit is “off,” 
the  array processor operates in the normal  manner. 

We now refer to  t,he o C \ ~  format, also shown  in  Figure 5. The 
OCW’S arc double words that contain  t’he following four  information 
fields : 

Format field 
Address of t’he  initial  array element, t’o he fetched or stored 

NO. 2 1969 ARRAY PROCESSOR 

ccw 
format 

Figure 5 Formats of the CCW 
and OCW related to 
on  array 

ccw 

OP ~~~~~~~ FLAGS COUNT 

0 7 8 /I 31 32 3648 63 
_””” -’ 

{ Y z x L J  
FORMAT INDEX COUNT 

A12 A13  A14 

A21 A22 A23 A24 

A41 A42 A43 A44 

A31  A32  A33 

ocw 
format 

123 



Table 1 Vector  move/convert 

(VMC) 

Yi = xi 
for 
i = l t o N  
where 
N = min (CTY, CTX) 

Table 2 Vector-float-to-fixed- 

point  convert  (VFX) 

Yi = xi 
for 
i = 1 t o N  
where 
N = min (CTY, CTX) 

Table 3 Scalar  multiply (SMY) 

Y:  = Yi + xi71 
for 
i = l t o N  
where 
N = min (CTY, CTX) 

Two's-complement  index  value that permits  forward  (in- 
creasing address) or reverse  indexing of the  array address  for 
the second and  subsequent accesses 
Count of the number of elements in  the  array 

The  format field provides  control of the  format  converter 
in the Index  and Operand Fetch (IOF) unit of t'he  array processor. 
Within  this field may  be specified whether the  data is in fixed- 
point or floating-point form-and, if in fixed-point form,  whether 
signed or two's-complement  notation is used. The algebraic sign 
of the elcments  in the  array  may also be  removed or inverted while 
fetching the elements. This facility  can be considered as  an op- 
eration-modifier field. Thus,  without rewriting an  array  or chang- 
ing the  data in  main  storage, the  array processor may use the neg- 
ative,  absolute  value, or the negative of the absolute  value of 
each data element,  as well as the algebraic  value. 

A bit  in  the  format field of the OCW controls the result field. 
This  bit  may be set' "on" to indicat'e that  the previous  contents of 
the result field are  to be fctcshed and  added  to  the  results being 
generated  by the current  operation.  (This  function is called "stack- 
ing" by analogy n-it'h the signal-processing technique of averaging 
out  random fluct,uatiolls  by combining several  similar  signals.) 

Note  t,hat each array involved  in an operation is specified by 
a different OCW. Therefore, arrays  with differcnt attributes can 
be used in the same oper a t' Ion. 

Array processing operations 
Thus  far, we have discussed interactions between the CPU and 
array processor. We now explain the  array processing operations 
in t'erms of their algorithms as implemented  in the 2938. In  these 
algorithms,  t8he following conventions are used: Y represents the 
resultant  array, X is the first source array,  and [ T  is the second 
sourcc nrray. Icor each  algorithm, we give the operation  name and 
its mnemonic: reprcsentation as well as a brief description of the 
operation.  Algel~raic  statements of the algorithms are displayed 
in  table form. 

As previously discussed, the opcration field of each CCW speci- 
fies the operat'ion  desired, and  the corresponding OCW specifies 
the  attributes of that operation.  Thus,  in effect, the CCW's are 
collectively the instruction  set of the  array processor. Format 
conversion and sign-modification operations,  previously discussed, 
apply to each of the operations of the 2938 array processor, with 
only a fcw exceptions, which are noted where they  apply. Also, 
the forward or reverse  indexing of each array  and  the count field 
for eaclh array provide for some modificat~ion of the operations. 
These,  too,  are noted where they  apply. References 4 and 8 give 
detailed  information on the programming support  and  array- 
processor implementation of the operations. 

124 RUGGIERO AND CORYELL IBM SYST J 



T-cctor n z o w / c o n w r t  (YalC) is a simple relocxtion of d:lta within 
storage with some added  capability (see T:tble 1). The format 
converter  permits the rhanging of fixed-point data to  floating- 
point d:lt,a durillg  relocation.  Sign  control  permits the generation 
of c~omplement,  absolute, or complement' of absolute (all negative) 
array elements.  Independent  indexing of source and  resultant 
arrays permits  the  reversing of the sequelre of elemeuts  in an 
array or t,he writing of the  transposition of a given matrix, i.e., 
n j i  = t),  ;. The separ:lte count) fields may be uscd to  fill a resultant 
array field Ivith zeros after  the caount of 5 source array field is ex- 
hausted. h character field m:Ly be moved if it  st'arts and ends on 
suitable  boundaries. A maximum of 65,535 clements may be moved 
in a single  execution of the VJ\IC instruct'ion, a d  each element 
may  be  up to  four  bytes  lo~lg.  The  terms CTY and C T S  represent 
the counts  (numbers) of elcments  in  t,he 1' and X arrays,  and N is 
equal  to  the lesser ("mill") of the  two cmmt>s. 

I.'cctor-Jloat-to-Ji.cctl-point c o n w t  (VE'S), changes :I source  float- 
ing-point array to  a rcsu1t:ult fixed-point array  (Table 2). Bec:wse 
the set of possible  floating-point  numbers is greater  than the set 
of possible fixed-point numbers,  the (:onversion also illvolves 
scaling. The c8h:rr:wteristic. of each floating-point source  element 
is caompared to  a maximum-value  elcment. The fract'ion  portion 
of the source  element is shifted  right  until the charactcrist,ic of 
the sourw element cc1u:ds thc maximum-value  clement'. A scalar 
multiply is then performed on the  adjusted source elemellt. 

Scalar multiply ( S h l ~ )  causes each  element of t'he X source 
array to  be multiplied  hy a single element' furnished in thc L' source 
array (Table 3). The result:rntl product  element,  may he added  to 
the  contents of the Y array. 

T'ector element-by-clcmcnt s w n  (VES) performs  t'he  addition of 
corresponding  elements in enrh of the t \vo source :Lrrnys and places 
the sums in a result array (Table 4). A control bit i n  the  OC\v for- 
mat field for the I' array  permits :t single L' element to be added to  
each clement  in the X array. 

Vector  e le~ncnt -b~-c lcmcrz t  m u l t i p l y  ( F r E ~ 1 )  performs the multi- 
plicsation of corresponding  elements in each of the two source arrays 
and places the  products  in a result  array (Table 5). Option:dly, 
the resultant  produrt  elements may be  added to  the  contents of 
the Y array. 

Sum of wctor  elemcrlts (8vk;) performs (see T:Lble 0 )  the sum- 
mation of  a11 elements of a  source array and stores the sum ( a  
single resultant  clement) in a specified location.  Optionally, the 
resultant element  can be  added to  the  contents of tl storage loca- 
tion  to  produce LL new resultant  element. 

Sum of squares (SSQj is similar to  S\'E except that  each element 
is multiplied b y  itself :md the squares of the elements arc  summed 
(Table 7).  The sign of each element may be  applied to  each of the 
products, or a positive  value may be t:Lken by  sett'ing the abso- 

Table 4 Vector  element-by-ele- 

ment sum (VES) 

Yi = ui + xi 
for 
i = 1 to iv 
where 
N = mill (CTY,  CTX) 

Toble 5 Vector element-by-ele- 

ment  multiply  (VEM) 

17: = Y i  + uixi 
for 
i = 1 t o N  
where 
N = mill (CTY, CTX, CTU) 

Table 6 Sum of vector elements 

W E )  

Y' = Y + xi 
where 
N = CTX 

Table 7 Sum of squares (SSQ) 



Table 8 Vector  inner  product 

(VIP) 

Y' = Y + zy=, ( U i X i )  
where 
N = min (CTX, CTU) 

Table 9 Signed, squared array 

(SSA) 

Y:  = Yi + XilXi( 
for 
i = 1 to AT 
where 
N = min (CTY, CTX) 

Table 10 Partial  matrix  multiply 

(P") 

Y: = Yi +zy=1 (XjU(;-l)n+i) 
for 
i = l t o N  
where 
n = CTY 
N = CTX 

Table 1 1  Convolving  multiply 

(CVM) 

Y: = Yi + uixi+j-l 
where 
i = I t o m  
and 
m = CTY 
N = CTU 

Table 12 Convolving  addition 

(CVA) 

Y: = yi +zyxl IXi+i-1 + U;l 
for 
i = l t o m  
where 
m = CTY 
and 
N = mill (CTX, CTU) 

126 

eration  produces  a single-element result that may  (optionally)  be 
added to  the contents of a  storage locat'ion to produce  a new re- 
sultant element. 

Vector  inner  product (VIP) is the formation of a single result 
from two  input  arrays, namely, the  sum of products of the ele- 
ments of the two  input  arrays  (Table 8). Mathematically, the 
operation corresponds to  the premult,iplication of a column vector 
by a row vector. The  resultant  sum  may  either be  stored  or  added 
to  the contents of a  storage  location. 

Signed, squared array (SSA) performs the operation of squaring 
each  element of the  input  array  and  storing  the  resultant  array, 
retaining the signs of the original  source array elements if desired 
(Table  9).  Optionally,  instead of restoring the  resultant elements, 
hhey may be  added to  the corresponding  element  locations in 
storage to form new resultant elements. 

Partial  matrix  multiply (I'h2~1) is an expansion of VIP, wherein 
elements of a (resultant row)  vector are calculated which are pro- 
duck of element,s of a row vector  premultiplying a source matrix 
(whose elements  are  arranged  according to  the FORTRAN con- 
vention for matrix  storagc).  The corrcsponding  algebraic state- 
ment is shown in  Tablc 10. The  resultant row vector  may  be  stored 
or added to a row vector  in  storage. 

Convolving  multiply (CVM) performs the  partial correlation of 
two source arrays,  starting  with  the one-for-one alignment of the 
first  element  in  each array  (Table 11). By specifying the high 
address of eibher array as the  starting  address  and using a nega- 
t'ive  index  value, the user may effect a  convolution of thc  two 
arrays.  The  resultant convolution  element's  may  be  st'ored or, 
optionally,  added to an  array  in  storage. 

Convolving  addition (CVA) operates  similarly to CVM except 
that  the sum of sums is calculated  instead of the  sum of products 
(Tablc 12). The ending  conditions  correspond  to  those  for Cvnf, 
taking  into account the difference in  identity elements  for  addi- 
t'ion and multiplication. 

High-value  readout is an  operztion  that is normally  command- 
chained to a  previously given control  operation.  Upon  completion 
of an  array  operation,  the sign,  characteristic,  and  high-order hexa- 
decimal  digit of the result  element  having the highest  value is 
retained  in the  array processor. This  value  may  be  retrieved  by 
the high-value readout  operation  and  may  then  be used as the 
maximum-value  element  for a VFX instruction. 

Sense is the  standard error  sensing  operation  for  all I /O de- 
vices; differences in  function are  related  to  the  inherent  differ- 
ences in the I/o devices themselves. The  array processor uses two 
status  bytes for  error  sensing. Of special interest  are  the floating- 
point overflow and  the  halt-I/o  indicator  bits. Floating-point 
overflow is indicated when a  result  having  a  maximum  magnitude 
representable  in  floating-point  notation is returned to  main  stor- 
age. A floating-point overflow is also indicated  during a VFX if 
the  input floating-point  element is greater than t'he  maximum- 

HUGGIERO AND COHYELL IBM SYST J 



value  element. The halt-I/O indicator is set when an array-pro- 
cessing operation  is  terminated by a HALT I /O  inst,ruction. 

Programming support 
The  Array Processor Access Method (APAM) provides t’he  normal 
programming  functions of an access method  in an interpretive 
mode. APAM also has some special I/O-handling features  such as 
concurrently  accommodating  queued-  and EXCP-levels of access 
to  the 2938. The access method is usable with  both FOItTRAN 
and assembler-language programs. 

The overlapping of CPU operations  and array processing is an 
I /O capability  not  normally  available t o  FORTRAN  programmer^.^ 
Normally, when a FORTRAN application  program issues a re- 
quest for I /O  service,  t’he  program does not receive control until 
the I/o operation  is  completed. Thus,  the program  must  wait’, 
even if there is some interim processing that can be done while the 
data transfer associated with  the I/() request is taking place. 
APAM, however, allows operations  either  in  this  normal  manner 
or  in  an overlapped manner. To overlap CPU and  array processor 
operations, the application  program  may  request that control be 
returned  immediately  via one of t’he  parameters associated with 
the CALL statement  to APAM. The user program  may then pcrform 
additional processing. The overlapping  procedure is the recom- 
mended one since it is one may to force the concurrent  operation 
of the  array processor and  the CPU. While operations  overlap, 
additional  requests  may also be issued to APAM by the applic‘ d t’ 1011 

program. 
Although  control  operations  are  normally used for device sct’up 

and error recovery, the  array processor’s major  functions  arc  im- 
plemented in  the form of control  operations.  Due t o  the great 
variety of channel programs possible, it would be very costly to 
have  all channel programs  prebuilt at compilation time, cspecially 
when there is  a possibility that many of them would never be ex- 
ecuted.  Channel  programs  may also be data dependent as they  are 
in  certain  data-reduction  applications.  Thus,  an  interpretive I/() 
capability at execution time, which facilitates APAM’S “build  only” 
option,  enables the application  program to request APAhl to con- 
struct a channel program a t  execution time.  With  this option, the 
application  program  may  have a channel  program  built  and  saved 
as well as  built  and  executed. The user may  then use an EXCP-level 
of interface  with APAM and pass the channel  program  as a pn- 
rameter.  This  capability offers a means of eliminating unnecessary 
channel program  construction for repetitive  operations. The high- 
value  readout command is supported in the interprct,ive mode, 
whereby the user may  request the saving of the maximum ex- 
ponent  after  any  matrix  operation. 

When the 2938 is attached  to a SYSTlCM/360 Model 44, the 
user interface consists of the Model 44 version of APAM and the 

NO. 2 . 1969 AltltAY PROCESSOR 



Table 13 An example channel 

program 

Main-storage 
Location  Operation 

A PM M 
B VES 
C NOP 
D VMC 
E TIC A 

128 

Model 44 Programming  System (44k’S). When  t’he 2938 is attached 
to SYSTEhl/360 Models 65 or 75, the user interface consists of 
APAM and OS/360. 

The user specifies array processor operat’ions  t’o APAM by means 
of FORTRAN CALL statements.  At  both  the basic and queued 
levels, APARi construct’s the necessary channel  programs  and re- 
quest’s the control  program to  initiate 2038 operations. The ap- 
plicat’ion program  may wait  for  completion of the operation or 
may  request that control  be returned immediately (so as to per- 
form  additional processing concurrently  wit’h the  array processor) 
as previously discussed. At  the EXCl’ level, APART has the ability 
to execute  a  user-built  channel  program. If this program is made 
up  completely or in part of available APAM options, the user 
may  have APAM’S “build-only  opt’ion”  construct and  save  t,he 
channel  program. By means of this  option, channel  programs of 
varying  length  are  dynamically  created  and  saved a t  execution 
time. 

APARi provides :t synchronous user exit whenever the cont,rol 
program  detects  a  Program Controlled Interruption (PCI) from 
the  array processor. The user may synchronize the 2938 with the 
rest of the syst’em  by use of the PC1 facility  in the following man- 
ner.  At  any  time  prior  to issuing a  request that causes a CCW 
(with its PCI bit  set)  to be  executed, the application  program  may 
issue a special request to APAM. Such  a  request specifies the  entry 
point of an applicaatJion subprogram.  Any PCI encountercd  thcre- 
after causes the subprogram to  be  entered.  Upon exit  from the 
subprogram, the application  program may  request  a HALT 1/0 
instruction to be issued to  the 2038. 

An example showing the use of PC1 exit using HALT 1/0 is 
shown in  Table 13. Assume that  the applicat’ion  program is per- 
forming an  iterative  operation,  and  the  application  program gives 
APAhl t’hc  entry  point  to  a PC1 subprogram. APAM causes the 
channel  program shown in  Table  13 to  be initiated.  The  appli- 
cation  program  may  either  wait  or  continue processing. 

Operation of the channel  program,  shown  in  Table  13,  is as 
follows. The CCW a t  location A initiates  an  operation  such  as 
partial  matrix  multiply (PS%&/~), which is command  chained to a 
vector  element-by-element sum (VES) operation. The VES com- 
putes the difference between the  input  and  output  vectors of the 
previous  operation. The \rES is command chained to  the h’0 OP- 
ERATION (NOP) a t  location C.  The CCW for NOP is command 
chained to  a  vector  move/convert  operation (VMC), which moves 
the  output of the 1%&% operation to  the location of t’he input vec- 
tor.  The VRIC is command  chained through  a TRANSFER I N  
CHANNEL command  (TIC) to  the PMM at location A in  main 
storage. 

This channel  program loop is iterated  until  a HALT 1/0 in- 
struction is issued by the CPU. The C C W s  at  locations  C and D 
have  their PC1 bits  set,  and  the PCI subprogram is first  entered 
when the CCw at  C is fetched  from  main  storage. A system  mask 

RUGGIERO AND CORYELL IBM SYST J 



bit is set 1.0 prevent  any  other  interrupts, and prorcssing con- 
tinues. 

The CC\\i at’ 11 is then fetcahcd. Because the I’CI bit’ is set, and 
and bccsnuse 2038 interrupts  are disabled, array ~)ro(~cssor opcr:~- 
tions are t,emporarily  suspended. While operations are suspended, 
the result of the lrIj:S operation is checked to deternlinc whether 
that result is within  established  limits. If n-it’hin  limits, the P(:I 
subprogram  terminatcx by requesti1l.g a HALT I/(), w1zic.h APAh1 
issues to the array processor. If not within  limits,  t,hc I’CI sub- 
program  exits  wit,hout  requesting a HAI,’L’ I/O from the Ct’U. 

The 29038 is 1 1 0 ~  reenahled, the 1’cx from the vn2C is “fielded,” 
and array proressing  operations cont i~~ue.   In  parallel v-ith this 
processing, the I’CI subprogram ignores the intcrrupt,ions and 
waits for the ncxt  intcrruptioll from the Pcr in the ccw at C. 
Processing  cont~inues  until  t’he  result is within the required  limits. 
This  channel  program may be performed c*oncurrentIy \\-ith  other 
CPU operations. 

Another  facility offered hy Al’hbl is that, of dynamic: exits for 
the purpose of interruption  andysis. Wit,h this  feature,  the user 
may specify the  entry point, of an  interrupt’ion  subprogram  and a 
code for the t>ypes of interruptions  t’llat will cause the intcrruption- 
analysis  subprogram to be entered. The uscr 1my spccify any 
conlbinat~ion of the following :IS the interruption codes: normxl- 
conzplction, fixed-point overflow, float’ing-point overflow, termina- 
tion by a HAT;1‘ 1/0 instruct’ion, or termination  due to a  perma- 
nent  equipment  malfunction.  For  example, if the 99,999th opcra- 
t,ion fails, the application  program is not  abort’ed. It may receive 
control on a unit’ check from  t’he 2938 and  co~ltinuc processing. 
T h e  application  program  may  also, of course, use the 99,998 suc- 
cessful operations  and  exit. 

There are several  other not:Lble features of AI’ARI. Users may 
change the interruption code and/or the subprogram that is t o  
receive cont’rol any nunlbcr of t’imes during  execution of the  ap- 
plication  program. Also, requests  may be issued to  APAM by a 
user’s subprogram. By use of an output-rest,rivtcd  dcque, APAM 
places such  requests  ahe:d of any request’s  currently  in  queue. 
Control ret,urns  to  the original point of interruption when the 
subprogranl processing is completed. lcrom his main  application 
program, thc user may also issue priorit’y  requests  to the array 
processor. This facility allows such  requests to  be placed  ahead of 
all requests already in queue for the 2938. 

While  running  under OS/:360, A P A X  a11ows the 2938 to be  shared 
between regions in a multiprogramming  environment’. AI’AM can 
operate  under the X V T ,  LIFT-I, and PCP versions of OS/360. The 
OS/360 versions of APAM also have :L dynami(b  synt’ax checking 
facilit’y that may be optionally  invoked.  When  requested, APAM 
can perform error  cherlting of uscr par:unet,er lists  prior t o  dynam- 
ically building  t’he  requested  channel  program. If an error is dis- 
covered in  a c:dling scquenre, the user is ~lot~ified by :LU appropri- 





Timing methods and  results 
The  same ~ o ~ t ' r r t ~ x  programs  were run 011 t'he  three  different 
models of SYSI'EI\I/:%O that support' the 2938 :I~I':LJ, processor. 
Timing  results of these  operat'ions  are show11 in Tables 14 to  16. 
Table 14 contains the resulls  obtained when t'he 2038 is attarhed 
to  :L SYSTJC!V/:$60 &lode1 44, Table 15 cont:tins (.omp:Lrublc re- 
sults for a  Model 65, and Table 16 has the  results for  a 122odel 75. 

The operations  t,hnt \\.ere timed  are  sho~vn i l l  T:Lblc 17. Note 
that  the first parameter in the parameter list that' is p:wetl to  
APAM (shown in t,he right c-olumlt of the table) is :t foul,-c,l.1:lr:lc.ter 
mnemonic represelhttioll of the desired ol)er:ltioll-~sl1o~~ll by 
three  alphabetic csharacters plus : L I ~  :lstcrisk. h h l r i s  multiply 
was performed  by comm:md chaining  p:lrtial matrix  multiplies 
(PMAI"). In  all ('xses, the out,put'  array (Ir) \v:w p r o d u c ~ d  i l l  flont- 
ing-point format. The input :mays ( X , (  -) were in floatillg-point, 
format,  except for the SITE* run (lloted hy  thc asterisk ill thc tahles) 
which contains 1500 fixed-poillt h:~lfn-ortl  illput X elemetlts. 'l'hc 
nunlber of times a palticsular operatio11 is performctl is ilrtlicxtctl i l l  

the  iteration colunnls o f  Tables 14 through 1 0 .  
We now discuss the four methods of o t h i ~ l i n g  SAIY" timing 

data. By the first method,  the SAlY* oper:atioll  is pcrformetl rom- 
pletelg  in the C l T ,  using FOleTIIA?; IV wit,hout the  array pro- 
cessor. The subroutine used to  perform :I sc.al:tr multiply of a 2000 
element X :Lrr:Ly 500 times by :t flo:tt,i~~g-poi~~t IT sca1:tr is shon.11 

in  Table 18. The  resultant'  data is placed int,o the I' : L ~ ~ : L J . .  Lkk''t'IA1 
is a subprogram  that  prints the elapsed lime bctwcell cxlls to  
APTIhI on the F(I1CYItAX out'put  data  set. 

Using the second method of collecbt'ing S R ~ Y *  timing  data, 
APARI constructs  the cahxnnel program and initiates :L number of 
array-processor  operations equal to the iteration count. The pro- 
gram i n  Table 19 is :~n ex:m~plc of :1 builtl-exec.ute-n-:rit loop for 
n scalar  mult'iply. 

The following p:mmetcr  list  (from T:~ble 19) is the l o ~ g  form 
of t.he parameter  list  that' AI'AAI is to  build  for exerntion. AI'A1LI 

Table 17 Array processor operations  timed 

Sum of Vector Elements SVE* 1-ector Element  Rldtiply VERI* 
Scalar Multiply ShZY* Convolving Rhlltiply CVM* 
Vector Move/Convert \"C* Srlm of Squares SSQ* 
Vector Inner Product  VIP* Matrix  Multiply 

Table 19 FORTRAN IV program  for scalar  multiply using the array processor 

Call APTIM 

3 Call APAM ('SMY*,' 1, Y, 2000, 4, 0, X, 2000, 4, 0, U) 
Call APTIM 

DO 3 I = 1,500 

NO. 2 ' 1969 ARRAY PRO('1CSSOR 

four 
timing 
methods 

Table 18 FORTRAN IV program 

far scalar multiply  in 

the CPU 
~ 

Call APTIM 
Do 2 I = 1,500 
n o  2 K = 1,2000 
2 Y (K) = X (K)*U 
Call APTIR4 

131 



Table 20 FORTRAN IV  program 
for scalar  multiply 
with the array pro- 
cessor using prebuilt 
CCW'S 

Call APTIM 
Call APAM('EXC*',l, CCWS) 
Call APTIM 

timing 
results 

132 



can  handle  other  interrupts. When  operating  in an OS/360 multi- 
programming  environment, the CPU can process other  applira- 
tion  programs. It may  still  be  profitable to perform an operation 
on  the 2038 even if t’hat  operation could be done in the same or 
shorter  time by the CI’U alone, because this frees t,he CPU t’o do 
other work. 

Table 21 summarizes  timing  results that were obtained  for 
the  matrix-multiply  operation on a SYSTEM/360 Model G5 using 
FORTRAN I V  with the H-level compiler and CPU processing (col- 
umn a), together  with  timing  results for APARX and nn array  pro- 
cessor (Column 3). The  table shows system-performance-im- 
provement  ratios  (Column 4) of FORTRAX IV with APAM and  an 
array processor to  FORTRAN IV with Cl’U processing for matrices 
of varying  numbers of elements  (Column I ) .  Timings of FORTRAN 
IV performance in seconds, with  and  without AI’AR.1, are shown in 
Columns 2 and 3. The FORTRAN IV matrix-mult’iply  program is 
given in  Table 22. 

Performing  a  full  matrix  multiply on thc 2938 requires re- 
petitive  partial-matrix  multiplies. Earh execution of a I”R>I pro- 
duces one rox in the resultant  matrix.  Therefore, to  mult’iply  two 

Table 21 SYSTEMI360 model 65 performance  comparison  for  matrix  multiplication 

FORTRAN IT’ i l r ray  Performance 
Matrix  processing  processor  imprmement 

size  (seconds)  (seconds) ratio 

100 60.85 1.26 48 
92 47.56 0.94 50 
84  36.22 0.74 48 
76 26.84 0.57 47 
68 19.26 0.41 46 
60 13.23 0.28 47 
52 8.62 0.19 45 
44 5.24 0.12 43 
36 2.86 0.07 40 

Table 22 FORTRAN IV matrix-multiply  program 

Call APTIM 
Do 100 I = 1, N 
Do 200 J = 1, N 
A(I, J) = 0 
Do 300 K = 1, N 
A(1, J) = B(I, K)*C(K, J)  + A(1, J) 

300 Continue 
200 Continue 
100 Continue 

Call APTIM 

S O .  2 . 1960 ARRAY PROCESSOR 133 



50 by 50 matriccs,  it, is necessar)- to  do 50 P3IhI's. The column of 
APARI-timing results nxs obtained  by using the EXCP interface 
mith AfiZRI. chain of l"M CCJY's is executed. In  the case of an 
80 by  80  matrix,  t'he list consists of 80 C C W s  command  chained 
together.  Thus,  with one 810 t'he full matrix  multiply is accom- 
plished. 

The last column gives a comparison of t'he FORTRAN IV- 
CPU time  versus the APA?vI-urray-processor times.  Performance 
improvement  rat'ios  are shown for the range of matrix-size  values 
measured. As a rule, the performance  improvement increases as 
thc size of the matrices  increases.  Two  exceptions may be noted 
in  Tablc 21. The improvement'  factor decreases between matrix 
multiplies  involving 92 and 100 square  matrices.  Another  de- 
crease in  thc  performanre  ratio is shown when going from  two 
60-by-60-element matrices to  two 68-by-68-element matrices. 
This is just'ified Ivhen one remembers the interface  between the 
IOF and ARITH sect'ions of t'he 29.18 are  two 32 element buffers. 
The opt'imum  performance is obtained  in  a PMhI when the size 
of the  matrix is somc multiple of 32. Any variation will cause the 
32-elemcnt buffers to  hc partially used at  certain  times,  thus 
slight,ly  reducing t'lle effectiveness of the 2 ~ 3 8 .  As anticipated, an 
opcrntion  such as mat'rix  multiply is best  performed on the array 
procwsor in most' cases. 

Concluding remarks 
The 113hI 2938 Array  Procwsor  together  with its access method 
(APAM) increascs the processing power of SYSTERI/360 Models 44, 
G5, and 75 for  operations  on  vectors and  matrices.  The auxiliary 
processing cnpilbilities discusscd have  proved especially useful in 
such  arcas as scismic cxploration,  vibration  analysis,  turbulence 
research, and imngc enhanc*cmcllt. Because of t'he  modular design 
of the present access method,  it is possible to  write  signal proc- 
essing subroutines that can  perform  certain common operations 
useful in  these applications. 

As anot'her  extension, specialized instructions  can  be  incor- 
porated  into  the nrrny processor. One such  instruction  performs 
t'he  fast  Fourier t ra~lsf~rrn, '"  which is an  algorithm for computing 
the discrete lTourier t'ransfornl for arrays of complex data. A 
specialized inst'ruction is available for the scanning of arrays for 
their  maximum data elements. iinother special instruction  pro- 
duces the  solut~io~~ of difference equations of up  to  the  fourth 
ordcr by  n single pass of t,he d:tt:L. Higher-order or multiple-root 
cquations may hc solved by  repeated passes of the  data. 

Thc adv:ult:lgc of implemcniing  special-purpose  operations by 
means of spechl equipment, rather  than  with  the  standard in- 
st'ruction  set is clearly shown by thc timing  results. Furthermore, 
the additiollnl CI'U avni1:~biIity for concurrent  operat,ions  makes it 
profitable l.o hxvc  t'hc Z):B perform  operat'ions that could be per- 
formcti  \\-ithin thc same  timc by thc CI'U. In a  multiprogramming 

134 RU(:C:IERO . ~ x n  CORYELL m h r  SYST .r 



environment,  remote  special-purpose processing becomes even 
more advantageous, especially if the remote processor can  be 
shared by more than one  application  program.  Such an environ- 
ment exists when running OS/360 (MVT or RIFT) with more than 
one program using the  array processor. 

CITED  REFERENCES  AND  FOOTNOTES 
1. A. I). Booth and K. H. V. Boot>h, Automatic  Digital  Calculators, Butter- 

worths,  Washington (1953). 
2. A convolution of two vectors is a series of mu1tiplicat)ions of corresponding 

elements of the vectors, followed by  the summation of these  products 
to  produce  one  element of a resultant vector. The next resultant vector 
element  is produced by shifting the two vectors by one  element  (relative 
to each other)  and repeating the procedure. Mathematically, a con- 
volution and a correlation are similar operations  except that in  a con- 
volution the elements of one vector are  taken in reverse order. 

3. For operations that  have relatively short execution times other methods 
have been used. One  approach  for this  type of operation has been t,o add 
inst,ructions to  the vocabulary of a CPU. Whenever one of the new opera- 
t,ions is to be performed, the corresponding new instructions are issued. 
Upon completion of the operation, the CPU proceeds to the next  instruction 
in  the usual  manner. As execution time increases, this approach becomes 
less advantageous. 

4. Array Processor Access Method for I B M  2958 Model 2 with  ZBM SYS- 
TEMISGO  Model 66 or Z B M   S Y S T E M I S 6 0  Model 75. This  Type I11 
program and documentation, 360D 03.4.020, can be obtained  through IBM 
Branch Offices. Array Processes Access Method for IBM  SYSTEM/JGO 
Model 44, may be similarly obtained by ordering 360D 03.4.019. 

5. A. Padegs, “The  st,ructure of SYSTEM/360,  Part IV-Channel design 
considerations, I B M  Systems  Journal 3, Nos. 2 and 3,  165-180 (1964). 

6. G. A. Blaauw and F. P. Brooks, Jr., “The  structure of SYSTEM/36O, 
Part I-Outline of the logical structure,” I B M  Systems  Journal 3, Nos. 2 
and 3, 119-135 (1964). 

7. I). E. Knuth, The  Art of Computer  Programming,  Volume Z ,  Fundamental 
AZgorithms, 234-235, Addison-Wesley Publishing  Company,  Reading, 
Massachusetts (1968). 

8. I B M   S Y S T E M / 3 6 0  Custom  Equipment  Description: 2938 Array Processor. 
This publication, A24-3519, can be obtained  t,hrough IBM  Branch Offices. 

9. R. A. Sebastian and T. J. Horrigan, “Why  discriminate  against the 
FORTRAN programmers?” Software Age 2, No. 3, 8-12 (April 1968). 

10. J. Cooley and J. W. Tukey, “An algorithm  for the machine  calculation 
of complex Fourier series,” Mathematics of Computation 19, No. 90, 297- 
301 (April 1965). 


