
trivial and nontrivial jorcground, and background. Each has certain
resource-use and required response properties. A central issue in
scheduling i s the degree o j advance knowledge a1)ailnble to the scheduler
about calls on system resources. This protides a theme for classifying
sezwal algorithms.

L4 response Jigure of meri t belieued to bc h c l p j d in understanding
time-sharing schedulers i s d e j n e d . S i m u l a t i o n r e s u l t s u s i n g a wry
simplc worlcloacl and system model are included in the discussion.
A summary i s g i ven of some major issues in scheduling for t ime-
sharing nnd virtual systems.

Some principles of time-sharing scheduler strategies
by H. Hellerman

A romplctc amlysis of any data-processing system, including a
time-sharing syst’em, must mnsider two fundament’al questions:
(I) What functions arc given the users of the systcm? (2) Hon-
are l,hc rcsourccs that are used in implementing these funct’ions
controlled, allocated, and assigned‘? The word “functions” includcs
the number, convenience, and logical flexibility of t’he programming
and control languages, the amounts and types of storage, and thc
provisions by which thc user can modify and add t o these facilities.
In the second question, the set of considerations, called scheduling,
is of primary intcrest in this paper, but it is not completely
indcpcndent of the supplied functions. This is so because, as 11-c

shall see, a cent’ral schcduling issue is the degree of advancc
Irnowledgc available on calls for resources. The dcgrcc is usually
smaller, thc greatcr the generality of funct’ions provided.

Scheduling is the process of :tssigning resources to a workload
scheduling so as to satisfy some objective of “good” service. In computer

system design, the objectivc is not usually stated initially as :t

precisc mathematical function but event’ually appears quite
expliritly as part of the supcrvisor program. It is nevertheless
conceptuslly useful to think of scheduling as a process of optimiz-
ing some objective function that is derivcd from the intended use
of the system. In this paper, interest centers on time-sharing
systcms whose principal purpose is to give their users fast man-
machine intcraction. Howcvcr, t,his ohjective should not bc met

by excessive sacrifice of other desirable properties of data pro-
cessing syst,ems such as good problem-execution characteristics.

This paper examines fundamental considerat’ions in the design
of time-sharing schedulers. First, some basic considerations are
outlined. Following that, certain scheduling variables and algo-
rit,hms are classified, and a conceptual description of a rational
design procedure is suggested. A simple, idealized model of a
workload is then described, and some performance parameters,
including an object’ive function, are defined. Simulation results
are given for eight scheduler algoritllms for a simple, single-server
model. Finally, some import,ant issues, result’s, and conclusions not
included in the model are discussed.

Some basic considerations
The economic fexsibilit’y of a time-sharing system depends on its
ability to service multiple users “concurrent~ly,” a t least on the
scale of human reaction times. Users are servcd by executing
programs; some are wit tcn by t’hc user, others are invoked by him
but ace supplied by the system. A1t)hough storage space can be
shared by several programs, usually the ccntral processing unit
(CPU) cannot be shared, and it’ can service only one program at
any instant,. Thus all programs must share this resource in time.
The desired concurrency cannot be ensured by sequential running
of each program to caompletion before starting a new one because a
long-running progrnm could then unacrept’ably delay all those
that follow. hZost’ time-sharing systems therefore divide time into
slices (quanta) and rapidly snit’ch the cl’u among the pending
programs, giving each a time slice in some cyclic. pattern, with due
at,tent,ion to new rcqucsts. For t’his process to succeed, programs
must be interruptible.

Interrupt,ibility is possible bccausc the essential past history
of any program is chnr:wtcrized by :i sfale, which may be thought of
as a string of hits that,, if l a ~ ~ n at any time, completely determines
the future logicd properties of the program (together with fut,ure
inputs). In a single procwsor system (:rssumed from now on), the
st,ate of at’ most’ one program, the artive one, resides partly in
processor registcrs nntl p r t l y in nmin storage at any one time;
the stat,es of all other programs are, at that time, resident entirely
in storage. S\\-itc*hing vonsists of “nllesthetixing” the active
program by storing the processor part of it’s &ate (processor
registers) in main storage :~nd then resetting the processor from the
previously stored stat,c of mother program.

Of the potentinlly 1:trge number o f conncc*ted users with pending
requests for scrviw, only :L fe\v (sometimes only one) can be held
in the relat’ively snxdl, expensive main storage at one time. The
rest, are kept on :L slower, cheaper auxiliary storage drum or disk.
Program execution can only be douc directly from main storage,
and as earl1 program ne:m its next time dire, if it is not main-
storage resident, it is exchanged (sn-apped) from :tuxiliary to main

TIME-SIIARING SCHEDULING

storage with some program currently resident. Only the area of the
replaced program modified since swap-in need be transmitted
out since a copy of the nonmodified space already exists on
auxiliary storage. Recognition of this can reduce the number
of bytes t o be transmitted, thus shortening swap time. Modern
computers (:an switch and swap programs fast enough to satisfy
t,he pseudo concurrency requirement.

Users communicate with the system through devices called
user-system terminals. Although there are many types of such devices, for our

communication purposes a terminal may be envisioned as a typewriter-like device
with several keys, one of which (e.g., the carrier-return) signals the
system t,hat the user has completed sending a message to the
system. Striking t’hk key is an example of an interaction event;
another is when the system responds, e.g., by typing a message or
unlocking the keyboard. Frequently, interaction events alternate
between a user and the system in a “conversation.” Such a pair
will be called simply an interaction. A tract (abbreviation for
transaction) is defined as the work done for a single user during an
interaction. The elapsed t’ime to service a tract is called the response
t ime. It depends on the nature of the tract, the system, and the
activities of other users on the system. For scheduling purposes,
all tract,s are assumed to be independent.

Certain properties of tracts and the state of system resources
are called scheduling variables. In the design of schedulers, these
variables must be chosen and means specified for obtaining their
values and operating on them to make decisions on resource
assignments. Examples of scheduling variables for the workload
include arrival time, explicit priority, time already expended, and
expected-completion time for each tract. Scheduling variables for
resources include busy, idle, or ready status and storage occupancy.

In addition to economical and effective man-machine inter-
action, conventional facilities such as language processing and
problem program execution are also important. A basic design
task is to rank the required services with respect to resources
needed and with respect to sensitivity of performance to user
satisfaction.

User satisfaction depends critically on fast response to those
trivial tract’s that arise from the most common human requests. Although

response there is no universal agreement as to what constitutes a complete
set of such operations, certainly they must include entry, display,
or modification of programs and data. It is fundamental and fortu-
nate for the feasibility of a time-sharing system that each such
operation usually requires only slight use of system resources so
that many such concurrent requests can be serviced fast enough
on the human time scale, even though they are processed one a t a
time on the same equipment. Because of their small use of re-
sources, we shall call such requests trivial and the system response
to them trivial response. A most important objective of a time-
sharing scheduler is satisfactory trivial response not only to several
concurrent trivial requests but also in the presence of heavy

96 HELLERMAN IBM SYST J

nontrivial loads. The resource most critical to trivial response
tends to be the speed of auxiliary storage holding informatior1
necessary to service imminent pending requests.

Although ensuring fast trivial response is the first order of
business of a time-sharing scheduler, the nontrivial tract initiated
by the on-line user must also be processed with a responsiveness
consist,ent with t,he interactive environment. Nontrivial tracts
include program translation by the language processor(s) and the
running of programs. The response requirement here is not as
sharp as for trivial responses. However, a system directly servicing
people will achieve success only by adequately meeting the users’
expectations for good service-in this case, good response time.
Human expectations are complex functions of many types of
influences and charge with time and experience. One principle
which appears generally applicable is that human tolerance of
response delay is (or can be made to be) roughly proportional to
the complexity of the request, say, as measured by the amount of
processing required to satisfy it. This suggests making priority-of-
service correspond inversely to declared, expected, or estimated
length-of-processing. This prinriple, applied to scheduling non-
trivial work initiated from the system terminals, is also consistent
with achieving fast trivial response.

Xontrivial tracts can call on all major resources provided to
the user. The nature of these in turn define the generality of the
system. All include arithmetic and program control functions
usually implemented by a CPU. For a “dedicated” system, by
which we mean here one requiring the same language of all users
and typically restricting each to a fixed amount of main storage,
the CpU is the criticd resource. In more general systems where
the user has the option of several language processors and pro-
grammed access to auxiliary storages and other devices, one of
these devices or the channel controlling it often becomes the
critical resource.

Many systems are imbedded in an environment whcre, in
addition to the terminal users’ trivial and nontrivial tracts, there
is another component of workload with far less demanding response
time requiremenh. It is natural and feasible to also process this
workload on the same equipment used for time-sharing. Baclc-
ground is a type of workload that has nonstringent response
characteristics. It is chmwterizcd by continual availability, say
by batching. In fact, a principal source of background is the
usual bntched work of conventional sgst’ems. A prime requirement
in time-sharing, not too difficult to satisfy, is that background
service must not impair the foreground trivial response. Such
impairment is avoidable because the weak response requirement
permits deferment of background processing in fltvor of any new
trivial request. The insensitivity to response time also permits
scheduling of hackground during the frequent, but somewhat
unpredictable, intervals when the Ct’u is not servicing foreground
tracts. Note that the distinguishing feature of background work

NO. 2 ‘ 1969 TIME-SHARING SCHEDULING

is it,s low response-time sensitivity. It is feasible for background
work (designat,ed as surh) to be init’iated from a user terminal.

Another system sometimes linked with time-sharing is a virtual
storage system. It supplies each user with a logical storage whose
properties are independent’ of its implemcntation. The st’orage is
an automatically managed hierarachy of (at lcast two) device
types. Although virtual storage and time-sharing are independent
ideas with no essential connection, they have been combined i n a
few announced systems (e.g., IB31 TSS/360, GE-MULTICS, S I X
Sigma 7). Such systems arc now at the front’ier of generality and
present, the most’ difficult scheduling problems.

A classification of the workload
The workload presented to a timc-sharing system is now classified
in a way t,hat is pert’inent t’o scheduling considerations. Each
class of t’ract is summarized hy four descriptors applicable to
each tract of the class:

Arrival characteristics
CI’U time rcquirements
Auxiliary storage transmission
Required response

Comparative t’erms such as “fast’, few,” are intended for rough
comparison among the categories. Table 1 shows t,he classification.

The properties of trivial tracts and their critical importance
to user satisfaction were discussed earlier and mill not bc treated
furt’her here.

Note the differences between bacl<groul?d n-ork and foreground
work (terminal-initiated program execution). Baclcground work
is almost always “on-hand” whereas terminal-initiated requests
arrivc in an unpredictable patt’ern. Also, response times for

Table 1 Classification of components of system workload

Required Auxiliary
processor storage Required Category of

tracl drrivals time transmission* response

Trivial Unpredictable Small-fixed Small Fast**

Terminal- Unpredictable T’ariable Variable Variable
initiated Unpredictable Unpredictable
Nontrivial

Backgromnd Predictable T’ariable T’ariable Slow
(assuming some Unpredictable Unpredictable
batching) Likely long

*Not including swapping.
**Fast and slow response are relative to human response times.

98 HELLERXIAX IBhI SYST J

terminal-initiated programs, although necessarily variable over
a wide range (depending on t’he nature of t,he t rw t and its dcmnnds
for resources), should be bet’tcr than the s:mc tracts nppc:lring
in the b:Lcl<g~OUllCl mode. The uwr submittilrg bac~1;ground \vorlt
might ~vcll be given :L hilling advantage for his lvilli11gness to \\nit
longer for results and for hclping to Itcep a csollst:Int, \vorl~Ioad
avnilnble to the system \vhcn lime-shnrillg dc rnad s1:wl;ens. This
policy follon-s analogous hilling pr:wticw i n the telephone :1nd
electric po\\-er indust’ries, where rates :we :d,justed fnvorahly for
service durillg low-activity periods.

~

A classification of scheduling variables
and algorithms
Some variables for each tract that’ may be used to “drive” a
scheduler for a single-server model c:m be classified as follows:
(I) explicit priority or deadline time, (2) :Irrival time (A) , (3) ex-
ecution time completed (P) , :ud (-&) total exerution time (AX) .

Simple functions of these may :dso he used to obtain other
scheduling With C used to tlcnote “current-time,” some
examples :LIT: (1) residel~ce time (C - A) , (2) time-in-queue
((C‘ - A) - P) , (3) remaining executiou time (X - P) , and (4)
optimist,ic predicted deadline time (11 + X) . Those cmcs that
include t’he variable X require advance knon-ledge of execution
time.

Some scheduler algorithms using t’hese v:wiat)les are described
in Table 2. This listing is similar to a recent one by C~f l ‘man.~ One
distinction introducd in the classification is a (Q) or (I) modifier.
The former menns thxt queue exploitation (skritching to the next
task) is done only after t’he tract currently in process is com-
pleted, i.e., the scheduler belongs to the sequential category. The
(I) designation rnc:Lns that the srheduler ran intcrrupt the current
tract in procws for queue exp1oit:~tion”it c:tn bc done at eil.her
standard (time-slice) iut’ervals and/or at e : ~ h new arrival. Most
time-sharing schcdulers are type (I) algorithms (to be dcsrrihed
later).

the seIect,ion rule may result in “ties,” i.c., more than one tract
with the same optimum value of the scheduling variable. Tie-
brewking rcquires use of :mother rulc among the ties; earliest
arrival time is a rommon tic-breaking stratagem. Ho\vcver, this
may also result in t,ies. In some systems, ties cannot occur due to
physical restrictions on the arrival pattern. Where this is not so,
an arbitrary mcthod of ztssigning :L u ~ ~ i q u c t a g t’o earh tract, can
serve for ultimate tie-breaking.

In Table 2 the srhedulcrs labeled 3u, 311 and 4:~, 4h comprise
pairs where t,he first, memher uses advanre knowledge of execdon
time (X) and the serond uses the simplest observed approximations
of these, i.e., f’ for X . Simulnt~ion results for most of these svhed-

The algorithms of Table 2 may be ambiguous in the sense t,hnt tie-breaking

Table 2 Classification of some aueue discitdiner

__
0

l a
l b

2

-
3a
3b
3c

4a
4b

-

-
5

Scheduler name Abbreviation Basic equation

Explicit priority

First arrival, first service FAFS (or FIFO) L/A
Last arrival, first service LAFS (or LIFO) T/A

LAFS(Q); LAFS(1)

Round robin I RR
L/CLK

Shortest execution, first service SXFS(Q)*; SXFS(I)* L/X
Least completed, first service LCFS(&); LCFS(1) L/P
Least remaining, first service LRFS(&)*; LRFS(I)* L/(X -P)

Earliest deadline, first service EDFS(Q)*; EDFS(I)* L/(A+X)
Earliest estimated deadline, EEDFS(&); EEDFS(1) L/(A+P)
first service

Estimated f optimizer EFMO L/P + (C-A)

Remarks

Priority depends
on arrival time
only.

CLK [I] is the time
tract I last received
a time slice.

Priority depends on
execution time only.

Priority depends on
both arrival and
execution time.

A Arrival-time vector
X Execution-time vector
P Execution-time-completed vector
(Q) Queue is exploited only after current-in-process task is completed (nontime-sliced)
(I) Queue is exploited shortly after arrival of new task (time-sliced)
* Execution (future) information is required
L/ Represents “minimum-of”
r/ Represents “maximum-of”

It is not necessary for a scheduler to strictly use only one of
these algorithms; a combination is readily possible. For example,
the system may well have a good estimate for the execution time
(X) of certain tracts, especially those in the “trivial” category
where fast service is most critical.

Advance knowledge of demands on resources is believed to be
design at the heart of scheduler design. This is also clearly indicated in the

constraints simulation results. Such lmowledgc can bc made available at
different times from different sources. For example, a good deal of
information can be obtained once and for all at system-design time
by limiting the possible resources available to the user. A “dedi-
cated” system that limits all users to one language and language
translator can have a simpler scheduler than one that must permit
several languages and their translators. The simpler scheduler is
possible partly because the single translator copy can be kept
permanently resident in main st’orage and shared. This can appre-
ciably reduce swapping time since program translators (compilers,
interpreters) often account for much of the space required to
service a user. In more general systems, sharing is still possible
among those users requiring the same translator concurrently. An

100 HELLERMAN IRM SYST J

added constraint, however, is placed on the scheduler. Specifying
and enforcing convent,ions on subsystems to pass scheduling
variables to the scheduler are difficult arc~hitecturnl and imple-
mentation problems for general-purpose systems.

Another illust,rntion is the nonvirt,u:tl storage system that
restricts each user to no more than some fixed frnction of real
main storage. This ronstraint makes scheduling much simpler than
the case where maximum main storage demand is unknown in
advance as in virtual memory systems.

If we are given a system with a set of constraint's and are scheduler
required to design :L scheduler to meet some stated objective design
function, how can we proceed? It would be most helpful if we could procedure
first set down a scheduler, called :L BEST scheduler, even though it
requires advance lmonledge of resource demands. This would
give us a base for comparison of the performance of any practical
scheduler and also be suggestive of a good scheduler. An orderly
design procedure could then be envisioned as follows:

1. Define the object,ive function assuming advance knowledge of
calls on resources (e.g., X) is available.

2. Devise :t BI{;S'~ scheduler algorithm to optimize t'he object,ive
function.

3. Devise an algorit,hm for estimating t'he ranking of advance-
knowledge variables (X) from observed variables (eg., 1').
The estimat,cd values are to be updated as the system runs.

4. Devise a scheduling algorithm that uses t'he estimates from
item 3 in the scheduler derived in item 2 .

The main requirement on the estimation process is that it yield
a good approximation to the ranking, i.e., re1at)ive magnitudes of
the scheduling variables, not the actual values of these variables.
Although the process of scheduler design just desrribed appears
to be a rational one, it must be considered speculative. h4ost pre-
sent practical schedulcrs arc designed much less formally. A
basic charact,eristic of an adaptive scheduler is its automatic
monitoring and use of informat,ion on problem and resource states.
The adaptive property is not an absolute, there being many
degrees of it. Although there are no unique sufficient conditions
for a scheduler to be called completely adapt'ive, a necessary
property is that no operator intervent,ion is required for scheduling.

An interest,ing adaptive scheduler is the one described for the
MIT-7094 CTSS ~ y s t ~ e m . ~ It used an unovcrlapped swapping strategy
with a single user in main storage at a time. Scheduling is thereby
simplified because there is no main-storage space allocation, only
a CPU-time allocation. The basic idea of this scheduler is to give
short-run-time tracts high priority for short Cpu time slices. Run
time was estimated for a start,ing tract from its main-st,oragc size,
but as a tract received one or more slices, its estimated relat'ive
length-of-run was in effect revised to correspond to the lcngth-of-
run already observed for that tract. Thus, as a tract proved itself
longer and longer, the system automatically reduced its priority.

NO. 2 . 1969 TIME-SHARIKG SCHEDULING 101

However, to reduce swapping overhead, the lower priorit'y (longer)
tracts, once selected, were given more time slices for their "shot."
All runs were interrupt'ible for newly arrived t'racts n.hich n-ere
entered int,o their proper position in the queue. I;or practic:d
purposes, t'his :daptive scaheduler thus t>reated all tr:wts in an
automaticdly managed priority continuum.

Measures of scheduler performance
A simple model of a \\-orkload and a few performance measures arc
now defined largely independent of :my particular scheduler. The
values for the parameters are dependent upon bot'h the workload
and the scheduler.

The system workload model consists of tr:tct,s, each character-
ized by two numbers:

a , = arrival time for t,rwt i , (i.e., the time i t is first considered
for running by t,he system). In a system with t)ypewritcr
terminals, a , occurs upon the striking of t'hc carrier-return
key.

IC, = execution time for tract' i

If the scheduler all\-ays allocates all available resources to the
worltload, it may be possible to measure xi as the time to run the
tract alone on the system. This is valid on most systems measured
to date. However, there is at, least one exception. The QUIKTRAY-
st'yle scheduler is not designed t,o opt,imize response to short
(nontrivial) tr:wts, instead it' is designed to approximately equal
the response time on :L given tract iudepe~ldent of the number of
other tracts being processed concurrently. In this case, measured
execution time on a tract running alone is much larger than x i .
Another case where run-alone time may be different from x, is if
the selected tract has several output phases, since then various
types of output/caompute overlap are possible, thus obscuring x,.

With the above precautions in mind, we may define the
following observable times :

q c = time that tract' i completes execution
e, = (I; - ai = elapsed time for tract i
w i = e, - xi = g i - (a , + IC;) = wait or in-queue time for tract i

1 he term (I; is :I "time-stamp" quantit,y measured from some
common time origin for all i.

Average elapsed time

r ,

Some performance measures are :

I Average wait time

We also seek to define a “figure-of-merit” whicsh is to have the
folloning properties:

It should be dimensionless.
It should have a maximum value of one for some ideal scheduler
and system for all workloads.
It should increase for a “bett,cr” system (unlike t’he average
t,imes above).
It should be larger the more successful the system is in giving
better service to short tracts relat,ive to long ones in :L stream
containing both long and short, tr:tc:t’s.

The last condition is only one o f several possible, but is the one of
interest in the remainder of this paper.

One pnrameter that appears to satisfy these ronditions is

n

(ei/xi)
f = (3)

2 = 1

In the language of stat,istics, f is the “harmonic mem” of x/e.
The Case of / = 1 is foulld where earh tract runs 011 :L “private”

system so t,hat e ; = x % . In other systems, a given elapsed-time
value e , nil1 be weighted more detrimentally i f it’ corresponds to a
short run (small x L) rather than a long one. The f values depend
upon t,he worltlond (x ; , n) , t,he computer and its programming
support, and the scshcduler.

Kormalized reriprocd average wait t,ime would also appear to
satisfy most of these conditions, e.g., using Equntion 2 :

g = 7””-
n

C [(ei - zi)/xiI
i=l

By simple algebra, i t is re:adily shown that 9 is trivially related
to f as:

f
1 - f

9 = - (44

The term “response-figurc-of-merit” hemtfter refers to f
(E:qu:Ltion 3) . I t is intended to be :L sensit’ive me:Lsurc of a system’s
ability to give higher priorit,y service to short versus long tracts.
It is therefore c~onc~erned with the relation of run t’imes within a
st>ream. The f function (2 x 1 be used in two mays: (1) as a way of
“rating” a system and tract stream and (2) as an objective function
for a scheduler algorithm.

Consider now the problem of c8omp:uing two different systems
on the same tract stream. A4e:tsurements could be made of all
5 ; and all e ; . The f values could be computed for each system and
then compared. It, is easy to see that the f values cannot be the
sole measures of system performallce. X s :L simple example,
suppose system A is 10 times faster than system B so that x i and
e , for A will be 10 times smaller than corresponding values for B.

NO. 2 ’ 1969 TIME-SHARING SCHEDULING

Equation 3 shows that f is identical for both systems because only
ratios appear in the expression for f . System A, however, is capable
of roughly 10 times the work as R is in the same time. We must
look to a statistic of performance other than f to find a measure
of this ad van tag^.^

Throughput is defined for a given tract stream as the reciprocal
throughput average time to complete all tracts in the stream, i.e., if q n is the

time the last tract is completed, measured from the arrival time of
the first t’ract’, t’hroughput is

n t = -
9 n

(5)

Throughput, unlike f , is insensitive to the order in which tracts
are executed, i.e., a system that processes long tracts before short
ones can have the same t value as one that schedules short ones
early. However, in the former case, the response “felt” by the user
(and f) would be much poorer.

Complete comparisons of the performance of two systems
require both f and t for the same set of tract streams on both
systems. A schedulcr designed to directly optimize f of Equation 3
n-ould select’ for next-time-slice, that tract with the largest e i / x i
value, i.e., the smallest .c , /(q% - a i) . This strategy is, however, not
practical since both x i and g i are not ltnomn in advance. Simple
estimates of these, obtainable from observations during system
operation are: p i for x i and current time (c) for qi. Such a scheduler
will be called an “estimated figure-of-merit optimizer” and is
designated EFI\IO in Table 2 .

Sequential and round-robin schedulers
sequential Consider first the vcry simple situation where all tracts to be
scheduler serviced arc available at the same time; service of tract i requires

a total of xi time units from a single server. If the scheduler is
sequential, i.e., it runs each tract to completion before considering
another, t’he elapsed time for job i is

From Equations 1 and 2 , average elapsed time (a) and average
wait t’ime (a) are

E’rom Equations 3 and 6, the response figure-of-merit is

n,

The :hove cquntions may be applied to t’he case of nonidentical

104 IIWLLERMAN IBM SYST J

arrival times during all intervals n.hen at least one tract requires
service. One common sequential scheduling rule is e:wliest-arrival
or first in first out (FIFO) nhich schedules that tract for next
service whose arrival time t o the system is the smallest. The
ordering of the indices i and j in the above equations then cor-
responds to the ranking of arrival times with some tie-breaking
rule whenever t,wo or more tracts arrive at the same time.

Rnot,her sequential scheduler of great theoretical interest
assigns next service to that tract whose execution time (x%) is
the smallest. The scheduler then must be capable of ranking x i
and ordering the tracts so that their execution times, now called
IC', is a permutation of the original x with t'he rule
2; 5 for all i (10)
For the case of identical arrival times, the algorithm may be
shown to maximize the response figure-of-merit f and is therefore
called B>:ST. It could be modified to accommodate staggered
arrivals by reranking the x: whenever new arrivals occur, and if
necessary preempting the tract that' is in service with the one
holding the best rank. A fundament'al problem remains however;
the REST algorithm requires advaucse knowledge of execution
times that are often not available. Despite this difficulty, BEST
is suggestive of practical schedulcrs and can also serve as a base
for comparison of all schedulers.

Sequential schedulers suffcr from the defect that since execu-
tion is not interruptible, and execution times arc not in general
known in advance, long-run tracts may delay service to short
ones resulting in a poor f and, hence, by our criterion, poor service.
The round-robin scheduler prevents this by allocating one time-
slice successively to each pending tract, cycling back to the first
after the last has received its slice. This process may be described
in another way: record the time each slice is given to each tract;
select for next service that tract xvith lowest such recorded value.
A recording of zero for new arrivals gives t)hem high priority for
their first slice. This policy is consistent xvit'h good service to
trivial requests since t'hey are frequent'ly serviced in one time
slice (or less).

Neglecting new arrivals, we may set down an approximate
analytic relation for the elapsed time of t,ract i for a round-robin
scheduler if we assume that the round-robin cycle is in the order of
shortest tract first (the best case). Although this appears to be a
drastic assumpt,ion, round-robin schedulers are relatively insensi-
tive to the order of the next slice. With this assumption, elapsed
time is

e l = (n - ~) (I c : - 1) + x: (1 1)

Substituting Equation 11 into Equation 1 gives the average

i

k = l

elapsed time as

NO. 2 ' 1969 TIME-SHARING SCHEDULING

The right-most term can be identified with Equation 7 and,
hence, gives the best average elapsed time for a sequential sched-
uler. The remaining t'erms on the left result in a no11neg:~tive value.
Equation 12 thus shows mathematicdly that the round-robin
scheduler gives :in average elapsed time that is never better than
that of the REST sequential scheduler (and is in most cases worse).
A n int,uitivc re:lson for t'his result' is as follows: to complete i
tracts, the nl~s?' sequential scaheduler \vorlced only on the i tracts,
but, the round robin did the sanle and also gave some time to all
others. Note that, these propert'ies follow only from the sequencing
properties of t,he svhedulers and are not due t'o "overhead," i.e.,
use of resources for system control. Overhead, hou-ever, t'ends to
reinforce the nbove c.l1:rrnc.teristic.s.

To il1ustr:rte the c2omp:Lrison of sequential and round-robin
scheduler strategies, a simple set of examples was constructed, and
the performance pararnet~ers cmnputed as shown in Table X. Each
example consists of :L specified stream, all tracts available at the
samc time (all a, = 0), :~nd each is characterized by a run time
when run alone (r ,) . The time t'o run e:wh stream is about equal
to that to run an;).' other. hverage user wait time and t,he figure-
of-mcrit) f is givcu for each strennl for t,he FIFO sequential, round-
robin, :~nd BEST sequeilt'ial algorit'hms.

For more on simulation results, see the iippendix.

Resource states as scheduling variables
Emphasis thus far has hccn OJI those scheduli~g variables that
characterize the trac%s. We turn nmv to t,he influencLe of resourre
states on srheduling. The prinripnl factors of t,his type :&re:
CITT utilimtioq, maiu storage ocx~upancy, and auxiliary storage
access stat,e.

As a first simple example, ronsider a user's program request
for data typeout. T u many systems, CPIT sc~heduling for this user
is suspended until the output is completed although :dloc*:Ltion of
time slices continues for othcr users. In other n-ords, there is
overlap of output t'lrping : u l d (.omputation between users hut not
for t,he same user. IIotvever, some syst,ems (e.g., APL") dso overlap
:I user's output u-ith his comput'ation. n'ontrivisl response (.an
thereby be improved apprerinbly for applications that alternate
computat,ion and t'ypeout. These include many formula evaluation
and simulnt~ion applirntions :LS]vel1 as program t r ace valuable in
on-line debugging. Suvh programs (mi oft'cn appear to the user
to run at nearly output, typing speed.

A time-sh:Lring system serving only terminal (foreground)
users and near the limit of acmptable performance may typically
show : t n nppreciable fract'ion of CI'U idle time. However, this
inactivity is distributed over short unpredic%able intervals. If an
attempt is made t'o fill this time by admitting more foreground
users, there is little probability that their unpredictable demands

> ~ w c o c C C o C c

> o o c c o o o o o o
C3 N N 0 1 N N, 3, c'! ~ ~ ~ C c o c C C C c 1

,

c c o o c c c c o o o . ,

" i

efficiency of overlapped swapping is dichotomous with the benefits
of largest possible user storage size.

If it is decided to partition maill storage into scveral user
areas, a replacenlent' problem may now arise: if the t'rnct, selcrt,ed
for next service is not main-st>orage resident', how should o~ lc of
the tracts currently resident be sclectcd for s\\-;ip-out to rnxkc
room for the incoming t'ract. One simplc, int'uitively appxling
strategy will be called the Principle of Complementary Replace-
ment. It is based on the idca that if a sc*heduling rule l? is used
to make the best choice of tract to receive the next, time slice,
this rule can also be applied t'o find the t'ract, that is the worst
choice. This "complementary" rule, called R', is applied to only
those t,racts currently resident in mail1 st'orage, atld thc tract
found by Rc is the one sclect'ed to be replamd. This principle
appears to be applicable to several scheduling algorithms and
makes replacement a simple variant, of the service selection
scheduling algorithm.

The choice of the tract t o receive the ncxt time slice (:an be done
according to various criteria as described earlier in this paper. It
can also include the effects of t'ransmission (styapping) delays, e.g.,
by giving some priority weight to t,llose tracts currently in main
st,orage or closest to the current access position on the auxiliary
storage device.

Paging systems
The critical role of main storage allocation has prompted funda-
mental studies of program needs for t>his resourre. These studies
have shown that the space viewed by a progrnmmcr i n \vrit'ing a
program, called the address space, is often far larger than the space
referenced in ally onc run of the program. In addition to over-
estimation due t'o oversight or desire t,o accommodate n range of
data volumes, it is due to such uupredic:t:hle cffects as 1 : q e
areas of program or data space that arc not reached in :L pnrt>icul:w
run because their refcrence is dependent on computed values th:Lt
are not encountered. Even considering only space referenred at

Figure 1 Three methods of main storage management

A

BACKGROUND
OR

FOREGROUND

BUFFER AREAS
TERMINAL

RESIDENCE
SYSTEM

ALL-SWAP

B

I BACKGROUND

FOREGROUND

BUFFER AREAS
TERMINAL

RESIDENCE
SYSTEM

C

FOREGROUND 1

TERMINAL

1 RESIDENCE
SYSTEM

RESIDENT BACKGROUND
NON OVERLAPPED
FOREGROUND SWAP

OVERLAPPED
RESIDENT BACKGROUND

FOREGROUND SWAP

NO. 2 . 1969 TIME-SHARING SCHEDULING

least once, most programs show a high “locality of reference,” i.e.,
the tendency to dwell for apprcciable time periods in a few small
areas of total address space. The areas are not generally contiguous
with each other. The extent of these properties depends on the
nature of the job and the style in which i t is programmed. Yet they
seem sufficiently common to encourage design of systems based on
them. Such a system usually partitions both address and main
storage space into fixed blocks called pages.

A page is the unit of storage allocation used by the system but
pages is hidden from the user. Since pages resident in main storage

belonging t’o a given program at a,ny instant may represent any
part of a>ddress space, a hardware mapping device is provided to
translate each program address (referencing address space) to a
main storage address. This organization permits main storage tjo be
treated as a pool of pages for allocation purposes, thus reducing the
wasteful effects of contiguity constraints and, even more import-
antly, permitting the system to respond to actual program needs
rather than worst-case estimates. In such a system there is little
logical reason to restrict the user to an address space smaller than
the main storage physical space; thc address space is therefore
often larger, hence the term “virt’ual storage” applied to the
address space. The potential advantages of the paged allocation
met’hod include: better storage management based on actual
demands, programmer convenience in having a large virtual store
and, since address space and physical space are now logically
separated, compatibility of programs across main storage sizes.

If we confine our attention for the moment to a single program
whose address space is larger than main storage, it may well
happen that after the main store is filled with pages, one of these
executes a reference to a page not currently resident. The system
must now use a replacement rule to decide which page to transmit
to auxiliary storage (drum/disk) to make room for the new request.
Although this process has some similarity to swapping, virtual
storage page scheduling is a more complex problem since thc
system has little advance information of pagc requests, and the
volume of page status information can be quite large. Excessive
replacement means heavy paging and accompanying transmission
delays. A number of rcplacement algorithms have been studied.’
They seem to show a surprising lack of consistent favor to any one
replacement rule assuming t’he same rule must be used over a set
of programs.

Experimental study of several programs, each running alone
threshold (nonmultiprogrammed) on a virt,ual storage system, reveals the

phenomenon following phenomenon ? , lo

Most programs may be characterized by a “threshold” size
of physical storage, in general different for different programs
which, if not available, t’ends t’o result in a paging “explosion,”
i.e., a very sharp increase in paging activity and resultant drop
in performance compared to the case where above-threshold

size is available. Put :Inother way, if the runuing of a program
is attempted in less t'han its threshold space, the program
generates very frequent page demands as it at'tempts to expand
to t,hreshold size.

For example, the following numbers are not atypical: a 20
percent decrease in main storage size below the threshold size
resulted in a factor of 10 degradatioll in run time of a certain pro-
gram compared to ~vhen threshold size ~va,s :Lv:Lilablc. The extcllt,
of this phenomenon, of rourse, depends 011 the particular program
being run. The program in t'urll depcnds in part, on programming
st,yle. There is some widellre {.hat if the programmer (i~lcall~ding
the systems programmer) observes a few simple guidelines, he c a n
considerablJ7 soften the paging explosiotl problerll.'.l" As an ex-
ample, he should organize his program for good "loc:~lity-of-
referencse" by keeping successively exevut'ed storage referellres in
as few areas of :iddress s p a c ~ x :LS possible.

The threshold phenomenoll of the virtu:tl storage t>ype of
system has a numher of implicxtions t o scheduler design. To help
understand t'hcse, i t is dl to state :I gener:d princ~iple~c.lasses
of functions supplied to users should be (~ . c f ~ l l y r:mlred with
regard to rcquired respomse sellsitivity, :md the srl-~cduler should
ensure that no matter \\.hat, the load i n :L given cat,egory, i t must'
have minimal effcrt on response times in :dl more sensitive (sate-
gories. We shall ('a11 t'his princsiplc, \\-hicbh has a1re:~d.v :Lppeared
throughout this paper, the "ptrform:\nc.e-protectioll policy."

In t,he application of this prilwiple to p:~getl virtual syst'ems
in a t,ime-shnring ellvironment, a primal-y requirement is that no
matter what set, o f t,hresholds rn:Ly be present, t,rivi:tl response
times (the moat semitive cxtegory) must not, be signific:ant,ly
impaired. A scrond nppliwt'ioll of the I)crforn~ance-protertioll
policy may he applied to mother serious problem: the progr:~n(s)
with a sharp threshold whose threshold main storage size is larger
than the nnchine's main storage. Sur11 a program \vi11 inevitably
run s l o ~ l y , but the policy says t,h:it it, must' not be permitted to
apprecaiahly slow the running of smaller progrnms. More caommonly,
the system \vi11 have sevcr:d requests pendillg, earh with threshold
size snuller than tot':d main storagt, but with their aggregate
larger than main storage. The pool of physical pages must' he
allorated to t,he page demands of contending programs in such :L
way that minimum time is spent, unproductively by progrnms
attempting excc~~tion \\-hen less than their threshold m a i n storage
size is :tvail:Lblc to them. The major problem here is to prevent
programs from crowling e:wh other ill main storage with resulting
page-demand explosion.

R. W. O'Nril devised a rather simple but effective method
c d e d load-leding to prevent page explosion due to (:ompetlition
between progrnnm" The idea is to observe the cmjulwtion of two
events easily monitored by the supervisor program: heavy paging
and low CPI; ut,ilizntion. When t,hese owur t,ogether, t'he supervisor

NO. 2 ' 1969 TIME-SHARING SCHEDULING

reduces the multiprogramming level by temporarily removing one
of the programs from main storage contention, freeing its space
for use by the other programs. This scheme gave very substantial
improvement over a similar system on the same workload operat-
ing without the load leveler.

Concluding remarks
Scheduling depends on the demands for resources generat,ed by the
tracts and 011 the state of the resources, especidly the space
o c ~ ~ p a n c ~ y of tjhe storages. Scheduling is simpler and can more
rlearly optimize response time and use of resources if a high degree
of advance kno\vledge of c:alls 011 the resources is :Lvail:tble. The
amount of such advwnce lmowledge t'ends to vary inversely with
t'he gcner:tlit)y of the functions provided. Limiting the user to a
single language :md fixed main storage size, while furlctiorlally
restrictive, gives the scheduler much advancse knowledge on calls
011 resourres. It' is rehtively ensy to achieve high scheduling
efic4cncy in such a syst'em.

The performance of :L gc1ler:d systcm has often been poorer
t'han :t single-lmguage ("dedic*ated") system, assuming t'he com-
parison is made 011 equivalent equipment with a workload both can
execut'e. At' this state of the art', i t is not clear what part, of this
difference, especially on t,rivial and short nontrivial tracts, is
inherentl?/ t'ied to system generality and what part is due to the
fact' that we presently know far more about the design of dedicated
systems than about generd timc-sharing systems. Recognizing
the reasons why i t is difficult to achieve high performance in a
very general system is not the same as believing that this perform-
ance penalty is inherent in the system's generality and that simple
workloads must necessarily be treated poorly by such a system.
In the opinion of this author, when design technology matures,
a general-purpose system should not show significantly poorer
performance on simple workloads than less general systems.

Appendix: Some simulation experiments
A simulat'or program has been written in the APL/360 language
to sinndxte :L simple n-orkload model on a single-server system
model for several schedulers. The workload model assumes each
tract t o be caharacterized by two numbers ai and z, (arrival and ex-
ecution times) as described in the sec%ion on measures of scheduler
performmlce. The system model permits a maximum of hlXM
trncts to be main-storage resident, concurrently and has a one-way
s\mp time of ST time units. The t'ime unit throughout the simulator
is the t'ime slice. The simulat'or is capable of evaluating the efl'ect's
on response times and figure-of-merit of: (1) various orderings of
the t'ravt stream, (2) arrival :tnd execution-time differences, (3)
eight' scheduler algorithms, (3) swap time, (5) maximum number of
users permit,ted in main storage concurrently, and (6) overlap or

112 HELLERMAN IBM SI'ST J

nonoverlapped swap opt,ion. Each scheduling rule is used to
determine which tract is to receive the next time slice. If this
tract is in main storage, it is serviced. If not, and there is space
in main storage, it is entered. In this case, if overlap is specified
by the user, during the input operation a resident tract is serviced.
If the tract selected is not in main storage, and t,here is no space
in main storage, t,he complement replacement rule (see text) is
used to decide which tract is to be swapped out. If overlap has been
specified, during such a swap-out a resident tract will be serviced.

Although eight specific scheduler algorithms are supplicd,
others may easily be added.

the tracts are specified explicitly, but random selections using a
distribution function to generate the A and X vectors could be
added to the simulator. All of the scheduler algorithms of Table 2
except LIFO are included in the program.

Table 4 shows the statistics obtained for one artificial tract
stream with eight scheduler algorithms and systems that can
accommodate 1 and 2 users in main storage concurrently. One set
of statistics is for zero swap time, whereas the others are for a
system with one-way swap time equal to t'he time slice.

Tables 5h and 5B show simulation results using execution-
time data of a stream of 15 real FORTRAN execution jobs. In this
experiment, the effect of different orderings of the tracts (even
though they all arrive at the same time) was investigated. Although
15! = 1.31 x 10l2 orderings are possible, only three-the given
one, the best, and the worst, were simulated.

Some conclusions from t8he simulat<ion results are as follows:

1. Under zero swap-time condit'ions, the best f value of 0.508 was
achieved by the adval~ce-kno~-ledgc sehedulers SXFS and
LRFS. The best of the more practical class was LCFS followed
closely by R.R (0.298 and 0.290).

2 . With nonzero swap time, and only a single tract permitted in
main storagc, the f values for LCFS and ItR dropped to 0.067.
This improved slightly (to 0.075) if two tracts were permitted
in main storage concurrently. By also permit'ting overlapped
swapping, LCFS and RR figure-of-merit rose to 0.137 and 0.109,
respectively. In this experiment', overlapped swapping im-
proved f by almost a factor of two, but this still was about
three times poorer than a zero swap-time system.

3. Throughput was affected more by overlap than was t'he f
measure of performance. The zero swap-time throughput was
0.214 for all schedulers. With swap time of one :md no
overlap, RIt droppcd to 0.08 while FIFO droppcd only to 0.15.
However, with overlapped swapping, the time-slice schcdulers
improved appreciably (e.g., Rlt t'hroughput rose to 0.200).

4. Even with zero swap time, the ordering of tracts \vit'hin the
same stream can make a substantial dift'crenrc in the f (and
hence, response) as seen in Tables 3 and 5.

~ In the simulations cited here, arrival and execution times for

NO. 2 . 1969 TIME-SIIARING SCHEDULING 113

Table 4 Simulator results for eight schedulers on four configurations using one tract stream

Reciprocal average
elapsed time Figure-of-merit f

1-
ST = 1 ; MXM = 2

~ _ _ _ _
MXM = 1 3T = 1; MXM = 2 MXM = 1

ST = O ST = 1

-___
0.032 0.023
0.055 0.016
0.057 0.017
0.041 0.014
0.086 0.041
0 086 0.041
0.075 0.037
0.054 0 016

~

ST = 1 -1 " -~
NOVLAP

0.022
0.019
0.020
0.019
0.043
0 043
0.038
0 019

"

ST = 0 OVLAP Code Scheduler NOVLAP

0.038
0.075
0 077
0.053

0 179
0 179

0 075
0.123

OVLAP

0 026
0 038
0.048
0 .03.5
0.048
0.049
0.042
0.049

0.056
0.290
0.298
0.118
0.508
0.508
0.356
0.254

0.039
0.067
0.070
0.038
0.182
0,162
0.115
0 067

0.047
0.100
0.137
0.086
0.183
0.181
0.124
0.139

1 Earliest arrival (FIFO)
2 Round robin (RR)
3 Least completed (LCFS)
4 Earliest estimated deadline (EEDFS)
5 Shortest execution (SXFS)*
6 Least remaining (LRFS)*
7 Earliest deadline (EDFS)*
8 Estimated f optimizer (EFMO)

Number of half swaps Throughput

I "

1
"

"

MXAI = 1 ST = 1: MXM = 2 ST = 1; MXM = 2

OVLAP NOVLAP

0.182 0 150

0.200
0 200 0.100

0.103
0.200 0 111
0 200 0 150
0 207 0 150
0 200
0 200

0 150
0.100

___"

MXM = 1

ST = 1

94
24

80

26
82

26
26
94

"

-i- Scheduler

Earliest arrival (FIFO)
Round robin (RR)
Least completed (LCFS)
Earliest estimated deadline (EEDFS)
Shortest execution (SXFS)*
Least remaining (LRFS)*
Earliest deadline (EDFS)*
Estimated f optimizer (EFMO)

ST = 0

0 314
0.214
0.214
0 214

0.214
0.214

0.214
0 214

ST = 1

0.150
0.080
0.088
0 087
0 146
0.146
0.146
0 080

NOVLAP

24
64
60
52
24

24
24

64

"

OVL'4P

24
40
31
38
24
24
24
32

- I -

* Denotes Scheduler that uses advance knowledee of execution time
MXM Maximum number of tracts in main storage
ST Half (one-way) swap time in units of time-slice
OVLAP Overlapped swapping
NOVLAP No overlapped swapping

Table 5A Gross simulation results using data of 15 FORTRAN tracts: Three orderings of the same tract stream

I I I
Average elapsc

Scheduler
t ime Aut

B G

232 453
391 328
391 328

. - - - - - - - - -
232 166
232 166

Figure-of-merit f
G W B

0.013 0.006 0.354
0.112 0.103 0.130
0.111 0.103 0.130

0.354 0.354 0.354
0.354 0.354 0.354

""""""" """

Ige wait time
W B

762 166
332 325
332 325

~ _ _

- - - - - - - - - -
166 166
166 166

-I- Sequential (FIFO)
Round robin
Least completed

Shortest execution
Least remaining

"" """"_

520
395
395

232
232

" " _

829
398
398

"""

232
232

I I I

* Scheduler codes are as defined in Table 2

114 IIELLERXIAN

Table 5B Gross simulation results using data of 15 FORTRAN tracts: Three orderings of the same tract stream

0
"

106

0

200

0

~

3

-
0

"_
39

0

138

0

3

"_

"

-

I
-1- -

Figure 2 Detailed simulator output for three schedulers

l o
50 I I06

0:
1 1

3 5
n:
n:

4 2 5 R 1 0 1"
9 3 E 1 1 5 1 1

S C H F D U L E R CODP = 5 : S P O R T F S T F I I ~ U T Z O l V T I F F I S X P S)
ARRIVAi.EXFCUTFlALOf/F~.CO~PLETION.BLAPSFP -41'0 W A I T T I I ' F S PEP ? P A C ? :

1 0 . 1 2 1 0 . 0 8 8 2 0 . 3 9
2 0 . 1 7 7 5 0.1132 0 . 3 3 3 3 1 2

1 2

5 0.1829 O.ll5LI 0 . 3 3 3 3 1 2 6 . 3 3 3 3
5 . 5

CPU T I M F I S F C .) F O R SIVULPTION IS: : 3 8 . 9 3 1 3 3 3 3 3

The preceding concslusions are drawn from only a few of a11
possible worlcload cxses. Other cases may be illvestigut,ed with the
sirnulator. 1:igurc 2 show the output from :L typical simulnt,or
session. The simuhtor prompts the user t'o specify the needed
parameters. H e c:m also sperify print options: gross statistics only
or full st'ntistics.

/ 0 / 0 l

115

ACKNOWLEDGMENT

Many of the ideas in t’his paper w r e sharpened by discussions
with 13. .J. Smith, ,Jr.

CITED REFERENCES AND FOOTNOTE

1. R. W. Conway, W. L. Maxwell, L. W. Miller, Theory of Scheduling,
Addisorl-Wesley Publishing Company, Reading, Rlassachrlsetts (1967).

2. E. 0. Coffman a11d L. Kleinrock, “Computer scheduling methods and
their coLlllterrncaslll.es,” A P Z P S Conference Proceedings, Spring Joint
Conqnter Conference 32, 11-21 (1968).

3. P. A. Crismnn (Editor), The Compatible Time-sharing System, (2nd
Edition) NIT Press, Cambridge, hlassachwetts (1965).

4. Y. lton has sllggested that by defining zi as the exemttion time alone of a
common “base” system, f defined by Eqrmtion 3 can then inchtde some
throughput effects.

5 . L. R l . Breed and R. IT. Lathwell, AI‘L/360, IBM Contributed Program
Library, 3601~-03.3.007, International Business Machines Corporation,
Program Informatioll Ijepnrtment, Hawthorne, New York (1968).

G . hl. Tsujigado, “~Il~lt,iprogrsmmi~lg, swapping and program residence
priority in the FACOhl 230-60,” A P Z P S Conference Proceedings, Spring
Joint Computer Conference 32, 22:J-228 (1968).

7. IT. Hellennan, Digital Computer System Principles, McGraw-IIill Book
Company, New York, 124-125 (1967).

X. L. A. Relady, “A study of replacetnent algorithms for a virtual storage
compllter,” ZBAI Syste~ns Journal 5, No. 2, 78-101 (1966).

9. 13. Brawn arld F. GImtavson, “Program behavior in a paging environ-
ment,” AAFZPS Conference Proceedings, Fall Joint Computer Conference 33,
1019-1032 (1968).

10. E. G. Cofflnan and L. C. Varian, “Further experimental data on the
bchavior of programs in a paging environment,” Communications of the

11. R . W. O’Neil, “Experience using a time-shared multiprogramming
system with dynamic address relocation hardware,” A F I P S Conference
Proceedings, Spring Joint Computer Conference 30, 611-621 (1967).

A C M 11, No. 7, 471-474 (Jl~ly 1968).

GENERAL REFERENCES

1. G. E. Bryan, “JOSS: 20,000 hours a t a console, a statistical sltmmary,”
A F I P S Conference Proceedings, Fall Joint Computer Conference 31,

2. E. F. Codd, “Alultiprogram schedlding,” Communications of the ACM 3,
No. 6, 347-350 (Jrme 1960) arld 3, No. 7, 413-418 (July 1960).

3. G. TI. Fine, C. W. Jackson, and P. V. RlcIsaac, “Dynamic program
behavior under paging,” Proceedings of the 21st hrational Conference of

4. L). N. Freeman and R. It. Pearson, “Efficiency vs responsiveness in a
multiple services compllter facility,” Proceedings of the ddrd National
Conjerence oj” the ACdl P-68, 25-3413 (1‘368).

5 . D. H. Gibson, “Considerations in block-oriented systems design,” A F l P S
Conjerence Proceedings, Spring Joini Computer Conference 30, 75-80 (1967).

6. L. Kleinrock, “A conservation law for a wide class of qlleuing disciplines,”
Naval Research Logistics Quarkrly 12, No. 2, 181-192 (June 1965).

7. B. W. Lampson, “A scheduling philosophy for multiprocessing systems,”
Communications of the ACM 11, No. 5 , 347-360 (May 1968).

769-777 (1067).

the ACdl P-66, 223-228 (1966).

116 HELLERRIAN InRI SYST J

S. N. R . Nielsen, “An approach to the simula1,ion of a time-sharing syst,em,”
A FIPS Conference Procccdings, Fall Joint Computer Conference 31,

9. A. L. Scherr, A n Analysis of TinwSharecl Computer Systems, MIT Press,
Cambridge, Rlassachusetts (1967).

10, J. L. Smith, “An a~lalysis of time-sharing compllter sysl ems using Markov
models,” AFIPS Conference Proceeclings, Spring Joint Computer Con-
ference 28, 87-95 (1966).

11. D. F. Stevells, “011 overcoming high-priority paralysis in multiprogram-
ming systems: a case history,” Commtmications of the ACM 11, No. 8,
539-541 (August 1968).

419-428 (1967).

NO. 2 . 1969 TIME-SHARIKG SCHEDULING 117

