Fundamental considerations in ttme and space scheduling for time-
sharing systems are reviewed. Workload components are classified as
trivial and nontrivial foreground, and background. Each has certain
resource-use and required response properties. A central issue in
scheduling ts the degree of advance knowledge available to the scheduler
about calls on system resources. This provides a theme for classifying
several algorithms.

A response figure of merit believed to be helpful in understanding
time-sharing schedulers is defined. Stmulation resulls using a very
simple workload and system model are included in the discussion.
A summary 1s given of some major issues in scheduling for ttme-
sharing and virtual systems.

Some principles of time-sharing scheduler strategies

scheduling

by H. Hellerman

A complete analysis of any data-processing system, including a
time-sharing system, must consider two fundamental questions:
(1) What functions are given the users of the system? (2) How
are the resources that are used in implementing these functions
controlled, allocated, and assigned? The word “‘functions’ includes
the number, convenience, and logical flexibility of the programming
and control languages, the amounts and types of storage, and the
provisions by which the user can modify and add to these facilities.
In the second question, the set of considerations, called scheduling,
is of primary interest in this paper, but it is not completely
independent of the supplied functions. This is so because, ag we
shall see, a central scheduling issue is the degree of advance
knowledge available on calls for resources. The degree is usually
smaller, the greater the generality of functions provided.
Scheduling is the process of assigning resources to a workload
50 as to satisfy some objective of “‘good” service. In computer
system design, the objective is not usually stated initially as a
precise mathematical function but eventually appears quite
explicitly as part of the supervisor program. It is nevertheless
conceptually useful to think of scheduling as a process of optimiz-
ing some objective function that is derived from the intended use
of the system. In this paper, interest centers on time-sharing
systems whose principal purpose is to give their users fast man-
machine interaction. However, this objective should not be met
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by excessive sacrifice of other desirable properties of data pro-
cessing systems such as good problem-execution characteristics.

This paper examines fundamental considerations in the design
of time-sharing schedulers. TFirst, some basic considerations are
outlined. Following that, certain scheduling variables and algo-
rithms are classified, and a conceptual description of a rational
design procedure is suggested. A simple, idealized model of a
workload is then described, and some performance parameters,
including an objective function, are defined. Simulation results
are given for eight scheduler algorithms for a simple, single-server
model. Finally, some important issues, results, and conclusions not
included in the model are discussed.

Some basic considerations

The economic feasibility of a time-sharing system depends on its
ability to service multiple users ‘“‘concurrently,” at least on the
scale of human reaction times. Users are served by executing
programs; some arc written by the user, others are invoked by him
but are supplied by the system. Although storage space can be
shared by several programs, usually the central processing unit
(CPU) cannot be shared, and it can service only one program at
any instant. Thus all programs must share this resource in time.
The desired concurrency cannot be ensured by sequential running
of cach program to completion before starting a new one because a
Iong-running program could then unacceptably delay all those
that follow. Most time-sharing systems therefore divide time into
slices (quanta) and rapidly switch the CPU among the pending
programs, giving each a time slice in some cyclic pattern, with due
attention to new requests. For this process to succeed, programs
must be interruptible.

Interruptibility is possible because the essential past history
of any program is characterized by a state, which may be thought of
as a string of bits that, if known at auy time, completely determines
the future logical properties of the program (together with future
inputs). In a single processor system (assumed from now on), the
state of at most one program, the active one, resides partly in
processor registers and partly in main storage at any one time;
the states of all other programs are, at that time, resident entirely
in storage. Switching consists of ‘“‘anesthetizing” the active
program by storing the processor part of its state (processor
registers) in main storage and then resetting the processor from the
previously stored state of another program.

Of the potentially large number of connected users with pending
requests for service, only a few (sometimes only one) can be held
in the relatively small, expensive main storage at one time. The
rest are kept on a slower, cheaper auxiliary storage drum or disk.
Program execution can only be done directly from main storage,
and as each program nears its next time slice, if it is not main-
storage resident, it iy exchanged (swapped) from auxiliary to main
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storage with some program currently resident. Only the area of the
replaced program modified since swap-in need be transmitted
out since a copy of the nonmodified space already exists on
auxiliary storage. Recognition of this can reduce the number
of bytes to be transmitted, thus shortening swap time. Modern
computers can switch and swap programs fast enough to satisfy
the pseudo concurrency requirement.

Users communicate with the system through devices called
terminals. Although there are many types of such devices, for our
purposes a terminal may be envisioned as a typewriter-like device
with several keys, one of which (e.g., the carrier-return) signals the
system that the user has completed sending a message to the
system. Striking this key is an example of an interaction event;
another is when the system responds, e.g., by typing a message or
unlocking the keyboard. Frequently, interaction events alternate
between a user and the system in a “‘conversation.” Such a pair
will be called simply an interaction. A tract (abbreviation for
transaction) is defined as the work done for a single user during an
interaction. The elapsed time to service a tract is called the response
time. It depends on the nature of the tract, the system, and the
activities of other users on the system. For scheduling purposes,
all tracts are assumed to be independent.

Certain properties of tracts and the state of system resources
are called scheduling variables. In the design of schedulers, these
variables must be chosen and means specified for obtaining their
values and operating on them to make decisions on resource
assignments. Examples of scheduling variables for the workload
include arrival time, explicit priority, time already expended, and
expected-completion time for each tract. Scheduling variables for
resources include busy, idle, or ready status and storage occupancy.

In addition to cconomical and effective man-machine inter-
action, conventional facilities such as language processing and
problem program execution are also important. A basic design
task is to rank the required services with respect to resources
needed and with respect to sensitivity of performance to user
satisfaction.

User satisfaction depends critically on fast response to those
tracts that arise from the most common human requests. Although
there is no universal agreement as to what constitutes a complete
set of such operations, certainly they must include entry, display,
or modification of programs and data. It is fundamental and fortu-
nate for the feasibility of a time-sharing system that each such
operation usually requires only slight use of system resources so
that many such concurrent requests can be serviced fast enough
on the human time scale, even though they are processed one at a
time on the same equipment. Because of their small use of re-
sources, we shall call such requests ¢rivial and the system response
to them trivial response. A most important objective of a time-
sharing scheduler is satisfactory trivial response not only to several
concurrent trivial requests but also in the presence of heavy
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nontrivial loads. The resource most critical to trivial response
tends to be the speed of auxiliary storage holding information
necessary to service imminent pending requests.

Although ensuring fast trivial response is the first order of
business of a time-sharing scheduler, the nontrivial tract initiated
by the on-line user must also be processed with a responsiveness
consistent with the interactive environment. Nontrivial tracts
include program translation by the language processor(s) and the
running of programs. The response requirement here is not as
sharp as for trivial responses. However, a system directly servicing
people will achieve success only by adequately meeting the users’
expectations for good service—in this case, good response time.
Human expectations are complex functions of many types of
influences and change with time and experience. One principle
which appears generally applicable is that human tolerance of
response delay is (or can be made to be) roughly proportional to
the complexity of the request, say, as measured by the amount of
processing required to satisfy it. This suggests making priority-of-
service correspond inversely to declared, expected, or estimated
length-of-processing. This principle, applied to scheduling non-
trivial work initiated from the system terminals, is also consistent
with achieving fast trivial response.

Nontrivial tracts can call on all major resources provided to
the user. The nature of these in turn define the generality of the
system. All include arithmetic and program control functions
usually implemented by a CPU. For a ‘“‘dedicated” system, by
which we mean here one requiring the same language of all users
and typically restricting each to a fixed amount of main storage,
the CPU is the critical resource. In more general systems where
the user has the option of several language processors and pro-
grammed access to auxiliary storages and other devices, one of
these devices or the channel controlling it often becomes the
critical resource.

Many systems are imbedded in an environment where, in
addition to the terminal users’ trivial and nontrivial tracts, there
is another component of workload with far less demanding response
time requirements. It is natural and feasible to also process this
workload on the same equipment used for time-sharing. Back-
ground is a type of workload that has nonstringent response
characteristics. It is characterized by continual availability, say
by batching. In fact, a principal source of background is the
usual batched work of conventional systems. A prime requirement
in time-sharing, not too difficult to satisfy, i1s that background
service must not impair the foreground trivial response. Such
impairment is avoidable because the weak response requirement
permits deferment of background proeessing in favor of any new
trivial request. The insensitivity t0 response time also permits
scheduling of background during the frequent, but somewhat
unpredictable, intervals when the CPU is not servicing foreground
tracts. Note that the distinguishing feature of background work
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is its low response-time sensitivity. It is feasible for background
work (designated as such) to be initiated from a user terminal.

Another system sometimes linked with time-sharing is a virtual
storage system. It supplies each user with a logical storage whose
properties are independent of its implementation. The storage is
an automatically managed hierarachy of (at least two) device
types. Although virtual storage and time-sharing are independent
ideas with no essential connection, they have been combined in a
few announced systems (e.g., IBM TSS/360, GE-MULTICS, SDS
Sigma 7). Such systems are now at the frontier of genecrality and
present, the most difficult scheduling problems.

A classification of the workload

The workload presented to a time-sharing system is now classified
in a way that is pertinent to scheduling considerations. Each
class of tract is summarized by four descriptors applicable to
each tract of the class:

e Arrival characteristics

¢ CPU time requirements

o Auxiliary storage transmission
e Required response

y

Comparative terms such as ‘“‘fast, few,” are intended for rough

comparison among the categories. Table 1 shows the classification.

The properties of trivial tracts and their critical importance

to user satisfaction were discussed earlier and will not be treated
further here.

Note the differences between background work and foreground

work (terminal-initiated program execution). Background work
is almost always “on-hand’’ whereas terminal-initiated requests
arrive in an unpredictable pattern. Also, response times for

Table 1 Classification of components of system workload

Category of
tract

Required
processor
time

Auziliary
storage
transmission*

Required
response

Trivial

Unpredictable

Small-fixed
Predictable

Small
Predictable

Fagt**

Terminal-
initiated
Nontrivial

Unpredictable

Variable
Unpredictable

Variable
Unpredictable

Variable

Background Predictable
(assuming some

Variable
Unpredictable
Likely long

Variable
Unpredictable

*Not including swapping.
**Fast and slow response are relative to human response times.
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terminal-initiated programs, although necessarily variable over
a wide range (depending on the nature of the tract and its demands
for resources), should be better than the same tracts appearing
in the background mode. The user submitting background work
might well be given a billing advantage for his willingness to wait
longer for results and for helping to keep a constant workload
available to the system when time-sharing demand slackens. This
policy follows analogous billing practices in the telephone and
electric power industries, where rates are adjusted favorably for
service during low-activity periods.

A classification of scheduling variables

and algorithms

Some variables for cach tract that may be used to “drive” a
scheduler for a single-server model can be classified as follows:
(1) explicit priority or deadline time, (2) arrival time (A), (3) ex-
ecution time completed (), and (4) total exccution time (X).

Simple funections of these may also be used to obtain other
scheduling variables.! With € used to denote “current-time,”” some
examples are: (1) residence time (C — 4), (2) time-in-queue
((C — A) —P), (3) remaining execution time (X — P), and (4)
optimistic predicted deadline time (A4 + X). Those cascs that
include the variable X require advance knowledge of exccution
time.

Some scheduler algorithms using these variables are described
in Table 2. This listing is similar to a recent one by Coffman.” One
distinction introduced in the classification is a (@) or (I) modifier.
The former means that queue exploitation (switching to the next
task) is done ounly after the tract currently in process is com-
pleted, i.e., the scheduler belongs to the sequential category. The
(I) designation means that the scheduler can interrupt the current
tract in process for queue exploitation—it can be done at either
standard (time-slice) intervals and/or at cach new arrival. Most
time-sharing schedulers are type (/) algorithms (to be described
later).

The algorithms of Table 2 may be ambiguous in the sense that
the selection rule may result in ‘“‘ties,” i.e., more than one tract
with the same optimum value of the scheduling variable. Tie-
breaking requires use of another rule among the ties; earliest
arrival time is a common tie-breaking stratagem. However, this
may also result in ties. In some systems, ties cannot occur due to
physical restrictions on the arrival pattern. Where this is not so,
an arbitrary method of assigning a unique tag to cach tract can
serve for ultimate tie-breaking.

In Table 2 the schedulers labeled 3a, 3b and 4a, 4b comprise
pairs where the first member uses advance knowledge of execution
time (X) and the second uses the simplest observed approximations
of these, i.e., I> for X. Simulation results for most of these sched-
ulers for different workloads is given in the Appendix.
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Table 2 Classification of some queve disciplines

Scheduler name Abbreviation Basic equation Remarks

Explicit priority

First arrival, first service FAFS (or FIFO) L/A Priority depends
Last arrival, first service LAFS (or LIFO) /A on arrival time
LAFS(Q); LAFS() only.

CLK [I] is the time
Round robin RR L/CLK tract I last received
a time slice.

Shortest execution, first service | SXFS(Q)*; SXFS(I)* L/X Priority depends on
Least completed, first service LCFS(Q); LCFS(I) L/P execution time only.
Least remaining, first service LRFS(Q)*; LRFS(I)* L/(X—P) .

Earliest deadline, first service EDFS(Q)*; EDFS(I)* L/(A+X) Priority depends on
Earliest estimated deadline, EEDFS(Q); EEDFS(I) L/(A4P) both arrival and
first service execution time.

Estimated f optimizer EFMO L/P =+ (C=A)

A Arrival-time vector

X Execution-time vector

P Execution-time-completed vector

(Q) Queue is exploited only after current-in-process task is completed (nontime-sliced)
(I) Queue is exploited shortly after arrival of new task (time-sliced)

*  BExecution (future) information is required

./ Represents ‘“‘minimum-of’’

[*/ Represents “maximum-of’’

It is not necessary for a scheduler to strictly use only one of
these algorithms; a combination is readily possible. For example,
the system may well have a good estimate for the execution time
(X) of certain tracts, especially those in the “‘trivial” category
where fast service is most critical.

Advance knowledge of demands on resources is believed to be

design at the heart of scheduler design. This is also clearly indicated in the
constraints  simulation results. Such knowledge can be made available at
different times from different sources. For example, a good deal of
information can be obtained once and for all at system-design time

by limiting the possible resources available to the user. A “dedi-

cated” system that limits all users to one language and language
translator can have a simpler scheduler than one that must permit

several languages and their translators. The simpler scheduler is

possible partly because the single translator copy can be kept
permanently resident in main storage and shared. This can appre-

ciably reduce swapping time since program translators (compilets,
interpreters) often account for much of the space required to

service a user. In more general systems, sharing is still possible

among those users requiring the same translator concurrently. An
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added constraint, however, is placed on the scheduler. Specifying
and enforcing conventions on subsystems to pass scheduling
variables to the scheduler are difficult architectural and imple-
mentation problems for gencral-purpose systems.

Another illustration is the nonvirtual storage system that
restricts each user to no more than some fixed fraction of real
main storage. This constraint makes scheduling much simpler than
the case where maximum main storage demand is unknown in
advance as in virtual memory systems.

If we are given a system with a set of constraints and are
required to design a scheduler to meet some stated objective
function, how can we proceed? It would be most helpful if we could
first set down a scheduler, called a BEST scheduler, even though it
requires advance knowledge of resource demands. This would
give us a base for comparison of the performance of any practical
scheduler and also be suggestive of a good scheduler. An orderly
design procedure could then be envisioned as follows:

1. Define the objective function assuming advance knowledge of
calls on resources (e.g., X) is available.

2. Devise a BEST scheduler algorithm to optimize the objective
funetion.
Devise an algorithm for estimating the ranking of advance-
knowledge variables (X) from observed variables (e.g., P).
The estimated values are to be updated as the system runs.
Devise a scheduling algorithm that uses the estimates from
item 3 in the scheduler derived in item 2.

The main requirement on the estimation process is that it yield
a good approximation to the ranking, i.e., relative magnitudes of

the scheduling variables, not the actual values of these variables.
Although the process of scheduler design just described appears
to be a rational one, it must be considered speculative. Most pre-
sent practical schedulers are designed much less formally. A
basic characteristic of an adaptive scheduler is its automatic
monitoring and use of information on problem and resource states.
The adaptive property is not an absolute, there being many
degrees of it. Although there are no unique sufficient conditions
for a scheduler to be called completely adaptive, a necessary
property is that no operator intervention is required for scheduling.

An interesting adaptive scheduler is the one described for the
MIT-7094 CTSS system.? It used an unoverlapped swapping strategy
with 2 single user in main storage at a time. Scheduling is thereby
simplified because there is no main-storage space allocation, only
a CPU-time allocation. The basic idea of this scheduler is to give
short-run-time tracts high priority for short CPU time slices. Run
time was estimated for a starting tract from its main-storage size,
but as a tract received one or more slices, its estimated relative
length-of-run was in effect revised to correspond to the length-of-
run already observed for that tract. Thus, as a tract proved itself
longer and longer, the system automatically reduced its priority.
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However, to reduce swapping overhead, the lower priority (longer)
tracts, once selected, were given more time slices for their “shot.”
All runs were interruptible for newly arrived tracts which were
entered into their proper position in the queue. For practical
purposes, this adaptive scheduler thus treated all tracts in an
automatically managed priority continuum.

Measures of scheduler performance

A simple model of a workload and a few performance measures arce
now defined largely independent of any particular scheduler. The
values for the parameters are dependent upon both the workload
and the scheduler.

The system workload model consists of tracts, each character-
ized by two numbers:

a; = arrival time for tract 4, (i.c., the time it is first considered
for running by the system). In a system with typewriter
terminals, @, occurs upon the striking of the carrier-return
key.

x, = execution time for tract 2

If the scheduler always allocates all available resources to the
workload, it may be possible to measure x; as the time to run the
tract alone on the system. This is valid on most systems measured
to date. HHowever, there is at least one exception. The QUIKTRAN-
style scheduler is not designed to optimize response to short
(nontrivial) tracts, instead it is designed to approximately equal
the response time on o given tract independent of the number of
other tracts being processed concurrently. In this case, measured
execution time on a tract running alone is much larger than z,.
Another case where run-alone time may be different from =z, is if
the selected tract has several output phases, since then various
types of output/compute overlap are possible, thus obscuring z;.

With the above precautions in mind, we may define the
following observable times:

q; = time that tract ¢ completes execution
e, = q; — a; = elapsed time for tract ¢
w, = ¢; —x;, = q; — (a; + x;) = wait or in-queue time for tract ¢

The term ¢, is a ‘“‘time-stamp’ quantity measured from some
common time origin for all ¢.

Some performance measures are:
Average elapsed time

n
Z C;

I |
6 ==
n =

Average wait time

w:%i(ei_xi)zé— ;xi (2)

i=1

HELLERMAN IBM SYST J




We also seek to define a “‘figure-of-merit’”’ which is to have the
following properties:

It should be dimensionless.

It should have a maximum value of one for some ideal scheduler
and system for all workloads.

It should increase for a “‘better’” system (unlike the average
times above).

It should be larger the more successful the system is in giving
better service to short tracts relative to long ones in a stream
containing both long and short tracts.

The last condition is only one of several possible, but is the one of
interest in the remainder of this paper.
One parameter that appears to satisfy these conditions is

-
z (e./1)

In the language of statistics, f is the ‘‘harmonic mean’ of z/e.

The case of / = 11is found where each tract runs on a “‘private”
system so that e; = a,. In other systems, a given elapsed-time
value ¢; will be weighted more detrimentally if it corresponds to a
short run (small ;) rather than a long one. The f values depend
upon the workload (z;, n), the computer and its programming
support, and the scheduler.

Normalized reciprocal average wait time would also appear to
satisfy most of these conditions, e.g., using Equation 2:

f ®3)

n

g =7 @)

Z [e: — xi)/xi]

i=1

By simple algebra, it is readily shown that ¢ is trivially related

to f as:
/
=1 (4a)

The term ‘‘response-figurc-of-merit’” hereafter refers to f
(Equation 3). It is intended to be a sensitive measure of a system’s
ability to give higher priority service to short versus long tracts.
It is therefore concerned with the relation of run times within a
stream. The f function can be used in two ways: (1) as a way of
“rating” a system and tract stream and (2) as an objective function
for a scheduler algorithm.

Consider now the problem of comparing two different systems
on the same tract stream. Measurements could be made of all
x; and all e;. The f values could be computed for each system and
then compared. It is easy to see that the f values cannot be the
sole measures of system performance. As a simple example,
suppose system A is 10 times faster than system B so that x; and
e, for A will be 10 times smaller than corresponding values for B.
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Equation 3 shows that f is identical for both systems because only
ratios appear in the expression for f. System A, however, is capable
of roughly 10 times the work as B is in the same time. We must
look to a statistic of performance other than f to find a measure
of this advantage.*

Throughput is defined for a given tract stream as the reciprocal
average time to complete all tracts in the stream, i.e., if ¢, is the
time the last tract is completed, measured from the arrival time of
the first tract, throughput is

n
qn ®)
Throughput, unlike f, is insensitive to the order in which tracts
arc executed, i.e., a system that processes long tracts before short
ones can have the same ¢ value as one that schedules short ones
early. However, in the former case, the response ‘‘felt”” by the user
(and f) would be much poorer.

Complete comparisons of the performance of two systems
require both f and ¢ for the same set of tract streams on both
systems. A scheduler designed to directly optimize f of Equation 3
would select for next-time-slice, that tract with the largest e,/x;
value, i.e., the smallest z,/(¢. — a.). This strategy is, however, not
practical since both z; and ¢; are not known in advance. Simple
estimates of these, obtainable from observations during system
operation are: p; for x; and current time (¢) for ¢,. Such a scheduler
will be called an “‘estimated figure-of-merit optimizer” and is
designated EFMO in Table 2.

i

Sequential and round-robin schedulers

Consider first the very simple situation where all tracts to be
serviced are available at the same time; service of tract ¢ requires
a total of x,; time units from a single server. If the scheduler is
sequential, i.e., it runs each tract to completion before considering
another, the elapsed time for job 7 is

C; = i X; (6)

I'rom Equations 1 and 2, average elapsed time (&) and average
wait time (@) are

=%ZZ @

n i

I'rom Equations 3 and 6, the response figure-of-merit is

f=—" ©)

5 (La/x)

The above equations may be applied to the case of nonidentical
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arrival times during all intervals when at least one tract requires
service. One common sequential scheduling rule is carliest-arrival
or first in first out (FIFO) which schedules that tract for next
service whose arrival time to the system is the smallest. The
ordering of the indices ¢ and j in the above cquations then cor-
responds to the ranking of arrival times with some tie-breaking
rule whenever two or more tracts arrive at the same time.

Another sequential scheduler of great theoretical interest
assigns next service to that tract whose execution time (x;) is
the smallest. The scheduler then must be capable of ranking x;
and ordering the tracts so that their execution times, now called
2, is a permutation of the original x with the rule
2! < xfyy for all < (10)
For the case of identical arrival times, the algorithm may be
shown to maximize the response figure-of-merit f and is therefore
called BEST. Tt could be modified to accommodate staggered
arrivals by reranking the x% whenever new arrivals occur, and if
necessary preempting the tract that is in service with the one
holding the best rank. A fundamental problem remains however;
the BEST algorithm requires advance knowledge of execution
times that are often not available. Despite this difficulty, BEST
is suggestive of practical schedulers and can also serve as a base
for comparison of all schedulers.

Sequential schedulers suffer from the defect that since execu-
tion is not interruptible, and cxecution times arc not in general
known in advance, long-run tracts may delay service to short
ones resulting in a poor { and, hence, by our criterion, poor service.
The round-robin scheduler prevents this by allocating one time-
slice successively to each pending tract, eycling back to the first
after the last has received its slice. This process may be described
in another way: record the time ecach slice is given to each tract;
select for next service that tract with lowest such recorded value.
A recording of zero for new arrivals gives them high priority for
their first slice. This policy is consistent with good service to
trivial requests since they are frequently serviced in one time
slice (or less).

Neglecting new arrivals, we may set down an approximate
analytic relation for the elapsed time of tract ¢ for a round-robin
scheduler if we assume that the round-robin cyele is in the order of
shortest tract first (the best case). Although this appears to be a
drastic assumption, round-robin schedulers are relatively insensi-
tive to the order of the next slice. With this assumption, elapsed
time is

o= -l = D+ X al ay

Substituting Equation 11 into Equation 1 gives the average
clapsed time as

n

C(E(-D) CT)rEEs e

=1
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The right-most term can be identified with Equation 7 and,
hence, gives the best average elapsed time for a sequential sched-
uler. The remaining terms on the left result in a nonnegative value.
Equation 12 thus shows mathematically that the round-robin
scheduler gives an average elapsed time that is never better than
that of the BEST sequential scheduler (and is in most cases worse).
An intuitive reason for this result is as follows: to complete 7
tracts, the BEST sequential scheduler worked only on the ¢ tracts,
but the round robin did the same and also gave some time to all
others. Note that these properties follow only from the sequencing
properties of the schedulers and are not due to “overhead,” i.e.,
use of resources for system control. Overhead, however, tends to
reinforce the above characteristics.

To illustrate the comparison of sequential and round-robin
scheduler strategies, a simple set of examples was constructed, and
the performance parameters computed as shown in Table 3. Each
example consists of a specified stream, all tracts available at the
same time (all a; = 0), and each is characterized by a run time
when run alone (z;). The time to run each stream is about equal
to that to run any other. Average user wait time and the figure-
of-merit f is given for each stream for the FIFO sequential, round-
robin, and BEST sequential algorithms.

For more on simulation results, see the Appendix.

Resource states as scheduling variables

Emphasis thus far has been on those scheduling variables that
characterize the tracts. We turn now to the influence of resource
states on scheduling. The principal factors of this type are:
CPU utilization, main storage occupancy, and auxiliary storage
access state.

As a first simple example, consider a user’s program request
for data typeout. In many systems, CPU scheduling for this user
is suspended until the output is completed although allocation of
time slices continues for other users. In other words, there is
overlap of output typing and computation between users but not
for the same user. However, some systems (e.g., APL’) also overlap
a user’s output with his computation. Nontrivial response can
thereby be improved appreciably for applications that alternate
computation and typeout. These include many formula evaluation
and simulation applications as well as program traces valuable in
on-line debugging. Such programs can often appear to the user
to run at nearly output typing speed.

A time-sharing system serving only terminal (foreground)
users and near the limit of acceptable performance may typically
show an appreciable fraction of CPU idle time. However, this
inactivity is distributed over short unpredictable intervals. If an
attempt is made to fill this time by admitting more foreground
users, there is little probability that their unpredictable demands
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will match the periods of idleness, and there is considerable danger
that critical response times will become unaceeptable. The idle
capacity can, however, be used without this hazard if it is applied
to the background class of workload.

The scheduling of background involves several, often con-
flicting, factors. As was previously stated, work on background
must not degrade trivial response, and this condition can be
satisfied. If background is to be scheduled during short unpredict-
able CPU idle periods, it should be resident in main storage where
it is always immediately accessible.” Such residence is essential if
the CPU is always to be scheduled during swapping of foreground
tracts. Another argument for permanent background residence is
that such jobs are usually permitted access to input/output devices
that can involve long noninterruptible transmissions requiring
appreciable main storage space for their duration. Although the
eyele-stealing organization of most modern systems’ permits these
to proceed concurrcntly with CPU activity, the main storage
allocation must be maintained, and this area is not available for
swapping during these times. Incidentally, this unavailability can
also arise from foreground jobs if they are permitted unrestricted
access to certain input/output devices. In either case, such activity
need not inhibit swapping of foreground users provided that
distinet space is used for both functions and that they do not
conflict on some other facility such as a common channel or disk
access mechanism. The design issue should now be clear: best
concurrency, and, hence, time performance, requires a permanent
arca of main storage for background, but this denies both back-
ground and foreground users the maximum possible fraction of
main storage space.

In contrast to the space allocation problem, assignment of
CPU time to background work is a somewhat less complex problem.
Trirst call on CPU time slices should be to any pending trivial tracts
and the first time slice of new foreground requests. Beyond this,
in the event of a queue of nontrivial foreground tracts, the propor-
tion of time slices given to these and to background is largely a
matter of throughput and gross priority considerations. It is
probably best determined by cach installation according to its
particular objectives.

The reservation of a fixed arca of main storage for use by
background is one important factor of main storage allocation.
There are other space scheduling options open to designers that
can also have profound effeets on system function and performance.
Several methods of main storage management are shown in
Trigure 1.

A system with only one foreground user’s area in main storage
can make all available main storage space accessible to each user.
Such a system cannot overlap swap time of one foreground tract
with the CPU time of another since overlap requires that an
appreciable part of available main storage be allocated to receive
or send the transmitted information. Thus the desirable time
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efficiency of overlapped swapping is dichotomous with the benefits
of largest possible user storage size.

If it is decided to partition main storage into several user
areas, o replaccment problem may now arise: if the tract selected
for next service is not main-storage resident, how should one of
the tracts currently resident be selected for swap-out to make
room for the incoming tract. One simple, intuitively appealing
strategy will be called the Principle of Complementary Replace-
ment. It is based on the idea that if a scheduling rule R is used
to make the best choice of tract to receive the next time slice,
this rule can also be applied to find the tract that is the worst
choice. This ‘“‘complementary’” rule, called R’, is applied to only
those tracts currently resident in main storage, and the tract
found by R° is the one sclected to be replaced. This principle
appears to be applicable to several scheduling algorithms and
makes replacement a simple variant of the serviee selection
scheduling algorithm.

The choice of the tract to reccive the next time slice can be done
according to various criteria as described earlier in this paper. It
can also include the effects of transmission (swapping) delays, e.g.,
by giving some priority weight to those tracts currently in main
storage or closest to the current access position on the auxiliary
storage device.

Paging systems

The critical role of main storage allocation has prompted funda-
mental studies of program needs for this resource. These studies
have shown that the space viewed by a programmer in writing a

program, called the address space, is often far larger than the space
referenced in any one run of the program. In addition to over-
estimation due to oversight or desire to accommodate a range of
data volumes, it is due to such unpredictable cffects as large
areas of program or data space that are not reached in a particular
run because their reference is dependent on computed values that
are not encountered. Xven considering only space referenced at

Figure 1 Three methods of main storage management

BACKGROUND BACKGROUND

BACKGROUND FOREGROUND 1
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FOREGROUND FOREGROUND FOREGROUND 2

FOREGROUND 3

TERMINAL TERMINAL TERMINAL
BUFFER AREAS BUFFER AREAS BUFFER AREAS

SYSTEM SYSTEM SYSTEM
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ALL-SWAP RESIDENT BACKGROUND RESIDENT BACKGROUND
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FOREGROUND SWAP FOREGROUND SWAP
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least once, most programs show a high “locality of reference,” i.e.,
the tendency to dwell for appreciable time periods in a few small
areas of total address space. The areas are not generally contiguous
with each other. The extent of these properties depends on the
nature of the job and the style in which it is programmed. Yet they
seem sufficiently common to encourage design of systems based on
them. Such a system usually partitions both address and main
storage space into fixed blocks called pages.

A page is the unit of storage allocation used by the system but
is hidden from the user. Since pages resident in main storage
belonging to a given program at any instant may represent any
part of address space, a hardware mapping device is provided to
translate each program address (referencing address space) to a
main storage address. This organization permits main storage to be
treated as a pool of pages for allocation purposes, thus reducing the
wasteful effects of contiguity constraints and, even more import-
antly, permitting the system to respond to actual program needs
rather than worst-case estimates. In such a system there is little
logical reason to restrict the user to an address space smaller than
the main storage physical space; the address space is therefore
often larger, hence the term ‘‘virtual storage” applied to the
address space. The potential advantages of the paged allocation
method include: better storage management based on actual
demands, programmer convenience in having a large virtual store
and, since address space and physical space are now logically
separated, compatibility of programs across main storage sizes.

If we confine our attention for the moment to a single program
whose address space is larger than main storage, it may well
happen that after the main store is filled with pages, one of these
executes a reference to a page not currently resident. The system
must now use a replacement rule to decide which page to transmit
to auxiliary storage (drum/disk) to make room for the new request.
Although this process has some similarity to swapping, virtual
storage page scheduling is a more complex problem since the
system has little advance information of page requests, and the
volume of page status information can be quite large. Excessive
replacement means heavy paging and accompanying transmission
delays. A number of replacement algorithms have been studied.®
They scem to show a surprising lack of consistent favor to any one
replacement rule assuming the same rule must be used over a set
of programs.

Experimental study of several programs, each running alone
(nonmultiprogrammed) on a virtual storage system, reveals the

following phenomenon:**°

Most, programs may be characterized by a ‘‘threshold” size
of physical storage, in general different for different programs
which, if not available, tends to result in a paging ‘‘explosion,”
i.e., a very sharp increase in paging activity and resultant drop
in performance compared to the case where above-threshold
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size is available. Put another way, if the running of a program
is attempted in less than its threshold space, the program
generates very frequent page demands as it attempts to expand
to threshold size.

TFor example, the following numbers are not atypical: a 20
percent decrease in main storage size below the threshold size
resulted in a factor of 10 degradation in run time of a certain pro-
gram compared to when threshold size was available. The extent
of this phenomenon, of course, depends on the particular program
being run. The program in turn depends in part on programming
style. There is some evidence that if the programmer (including
the systems programmer) observes a few simple guidelines, he can
considerably soften the paging explosion problem.’™ As an ex-
ample, he should organize his program for good ‘‘locality-of-
reference’” by keeping successively executed storage references in
as few areas of address space as possible.

The threshold phenomenon of the virtual storage type of
system has a number of implications to scheduler design. To help
understand these, it is well to state a general principle—classes
of functions supplied to users should be carefully ranked with
regard to required response sensitivity, and the scheduler should
ensure that no matter what the load in & given category, it must
have minimal effcet on response times in all more sensitive cate-
gories. We shall call this prineciple, which has already appeared
throughout this paper, the ‘“performance-protection policy.”

In the application of this principle to paged virtual systems
in a time-sharing environment, a primary requirement is that no
matter what set of thresholds may be present, trivial response
times (the most sensitive ecategory) must not be significantly
impaired. A sccond application of the performance-protection
policy may be applied to another serious problem: the program(s)
with a sharp threshold whose threshold main storage size is larger
than the machine’s main storage. Such a program will inevitably
run slowly, but the policy says that it must not be permitted to
appreciably slow the running of smaller programs. More commonly,
the system will have several requests pending, each with threshold
size smaller than total main storage, but with their aggregate
larger than main storage. The pool of physical pages must be
allocated to the page demands of contending programs in such a
way that minimum time is spent unproductively by programs
attempting exccution when less than their threshold main storage
size is available to them. The major problem here is to prevent
programs from crowding each other in main storage with resulting
page-demand explosion.

R. W. O’Neil devised a rather simple but effective method
called load-leveling to prevent page explosion due to competition
between programs.'” The idea is to observe the conjunction of two
events easily monitored by the supervisor program: heavy paging
and low CPU utilization. When these occur together, the supervisor
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reduces the multiprogramming level by temporarily removing one
of the programs from main storage contention, freeing its space
for use by the other programs. This scheme gave very substantial
improvement over a similar system on the same workload operat-
ing without the load leveler.

Concluding remarks

Scheduling depends on the demands for resources generated by the
tracts and on the state of the resources, especially the space
occupancy of the storages. Scheduling is simpler and can more
nearly optimize response time and use of resources if a high degree
of advance knowledge of calls on the resources is available. The
amount of such advance knowledge tends to vary inversely with
the generality of the functions provided. Limiting the user to a
single language and fixed main storage size, while functionally
restrictive, gives the scheduler much advance knowledge on calls
on resources. It is relatively casy to achieve high scheduling
efficiency in such a system.

The performance of a general system has often been poorer
than a single-language (“‘dedicated’) system, assuming the com-
parison is made on equivalent equipment with a workload both can
execute. At this state of the art, it is not clear what part of this
difference, especially on trivial and short nontrivial tracts, is
inherently tied to system generality and what part is due to the
fact that we presently know far more about the design of dedicated
systems than about genecral time-sharing systems. Recognizing
the reasons why it is difficult to achieve high performance in a
very general system is not the same as believing that this perform-
ance penalty is inherent in the system’s generality and that simple
workloads must necessarily be treated poorly by such a system.
In the opinion of this author, when design technology matures,
a general-purpose system should not show significantly poorer
performance on simple workloads than less general systems.

Appendix: Some simulation experiments

A simulator program has been written in the APL/360 language
to simulate a simple workload model on a single-server system
model for several schedulers. The workload model assumes each
tract to be characterized by two numbers a; and z; (arrival and ex-
ecution times) as described in the section on measures of scheduler
performance. The system model permits a maximum of MXM
tracts to be main-storage resident concurrently and has a one-way
swap time of ST time units. The time unit throughout the simulator
is the time slice. The simulator is capable of evaluating the effects
on response times and figure-of-merit of: (1) various orderings of
the tract stream, (2) arrival and execution-time differences, (3)
eight scheduler algorithms, (4) swap time, (5) maximum number of
users permitted in main storage concurrently, and (6) overlap or
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nonoverlapped swap option. Each scheduling rule is used to
determine which tract is to receive the next time slice. If this
tract is in main storage, it is serviced. If not, and there is space
in main storage, it is entered. In this case, if overlap is specified
by the user, during the input operation a resident tract is serviced.
If the tract selected is not in main storage, and there is no space
in main storage, the complement replacement rule (see text) is
used to decide which tract is to be swapped out. If overlap has been
specified, during such a swap-out a resident tract will be serviced.

Although eight specific scheduler algorithms are supplied,
others may easily be added.

In the simulations cited here, arrival and execution times for
the tracts are specified explicitly, but random selections using a
distribution function to generate the A and X vectors could be
added to the simulator. All of the scheduler algorithms of Table 2
except LIFO are included in the program.

Table 4 shows the statistics obtained for one artificial tract
stream with eight scheduler algorithms and systems that can
accommodate 1 and 2 users in main storage concurrently. One set
of statisties is for zero swap time, whereas the others are for a
system with one-way swap time cqual to the time slice.

Tables 5A and 5B show simulation results using execution-
time data of a stream of 15 real FORTRAN execution jobs. In this
experiment, the effect of different orderings of the tracts (even
though they all arrive at the same time) was investigated. Although
15! = 1.31 X 10 orderings are possible, only three—the given
one, the best, and the worst, were simulated.

Some conclusions from the simulation results are as follows:

. Under zero swap-time conditions, the best f value of 0.508 was
achieved by the advance-knowledge schedulers SXFS and
LRFS. The best of the more practical class was LCFS followed
closely by RR (0.298 and 0.290).

. With nonzero swap time, and only a single tract permitted in
main storage, the f values for LCFS and RR dropped to 0.067.
This improved slightly (to 0.075) if two tracts were permitted
in main storage concurrently. By also permitting overlapped
swapping, LCFS and RR figure-of-merit rose to 0.137 and 0.109,
respectively. In this experiment, overlapped swapping im-
proved { by almost a factor of two, but this still was about
three times poorer than a zero swap-time system.

. Throughput was affected more by overlap than was the
meagure of performance. The zero swap-time throughput was
0.214 for all schedulers. With swap time of one and no
overlap, RR dropped to 0.08 while FIFO dropped only to 0.15.
However, with overlapped swapping, the time-slice schedulers
improved appreciably (e.g., RR throughput rose to 0.200).

. Even with zero swap time, the ordering of tracts within the
same stream can make a substantial difference in the f (and
hence, response) as seen in Tables 3 and 5.
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Table 4 Simulator results for eight schedulers on four configurations using one tract stream

Reciprocal average
Figure-of-merit f elapsed time

ST =1; MXM =2 MXM =1 ST =1; MXM =2

»n
=]

Scheduler OVLAP | NOVLAP | ST =0 | ST =1 | OVLAP | NOVLAP

Earliest arrival (FIFO)
Round robin (RR)
Least completed (LCFS)
Earliest estimated deadline (EEDFS)
Shortest execution (SXFS)*
Least remaining (LRFS)*
Earliest deadline (EDFS)*
Estimated f optimizer (EFMO)

0.047
0.109
0.137
0.086
0.183
0.181
0.124
0.139

.038 0.026 0.022
.075 0.038 0.019
077 . 0.048 0.020
053 . 0.035 0.019
179 0.048 0.043
179 0.049 0.043
123 0.042 0.038
075 0.049 0.019

COCOOoOO OO
COQOOoOoOOOC
OO0 OO

[ 3 BE=CY- UV SR

Throughput Number of half swaps

ST =1; MXM =2 |MXM=1 ST =1; MXM =2

Scheduler ST =0 OVLAP NOVLAP OVLAP NOVLAP

Earliest arrival (FIFO) 0.214
Round robin (RR) 0.214
Least completed (LCFS) 0.214
Earliest estimated deadline (EEDFS) 0.214
Shortest execution (SXFR)* 0.214
Least remaining (LRFS)* 0.214
Earliest deadline (EDFS)* 0.214
Estimated f optimizer (EFMO) 0.214

0.182
0.200
0.200
0.200

0.200

0.207
146 0.200
080 0

150
100
103
111
150
150
150
100

[=NeloiiwieeNeNe)
COCOO0O0O0O0Q

W =IO RWN =

* Denotes scheduler that uses advance knowledge of execution time
MXM Maximum number of tracts in main storage

ST Half (one-way) swap time in units of time-slice

OVLAP Overlapped swapping

NOVLAP No overlapped swapping

TRACT [ARRIVAL TIMES:
STREAM
USED EXECUTION TIMES:

Table 5A  Gross simulation results using data of 15 FORTRAN tracts: Three orderings of the same tract stream

Average elapsed time Average wait time Figure-of-merit f
Scheduler G B G B

Sequential (FIFO) 453 166 0.013 . 0.354
Round robin 328 0.112 . 0.130
Least completed ; 325 . 0.130
Shortest execution . . 0.354
Least remaining L3 . 0.354

* Scheduler codes are as defined in Table 2

114 HELLERMAN IBM SYST J




Table 5B  Gross simulation results using data of 15 FORTRAN tracts: Three orderings of the same tract stream
GIVEN A)O 0}0’0 0000}00}0)0
ORDERING i

(Q) X ‘ 240 ‘ 106 ’ 39 ! 3 10| 4 138 ' 42 l 200

WORST i 0 0 0 { 0 0
ORDERING
(W) } 240 | 200 | 138 | 137 [ 106

BEST ] 0 0
ORDERING _
B) ] 1 3 4 : 138 ‘ 200

Figure 2 Detailed simulator output for three schedulers

SIMULATE
ENTER 1 TO PRINT GROSS STATISTICS ORNLY, O TO PRINT FULL STATISTICS
a:

i
ENTER SCHFPULER CODF LIST; 0 WILL DISPLAY CCDES AED WAMFS
0:
125
ENTER 0 TO USE EYISTINC ARRIVAI, EXECUTE, AND SYSTFM PARAMETFRS, ERTFR 1 TO CHANGE PARAMETERS
a:
1
ENTEP THE PAPAMETFRS MYM ST AXD V DEFIFER AS FOLLOWS ON 1 LINE
MYM= MAX. FO. TRACTS JX MAIN STORF; ST= ONF WAY SWAP TIME; V= 1 OR 0 (OVFRLAP OR KO CVERLAP)
211
ENTER ARRIVAL AND EXECUTF TIMES FOR FACH TRACT OF 1 LIKE; ENTER 0 0 T0 TFRMINATE
ARRIVAL EXYECUTE
[
11
11
11
35
31
8K
00
SCHEDULER (ODE =1: FIRST-IN, FIRST 0UT (FIFO}
ARRIVAL ,EXECUTE(ALONF) ,COMPLETINN ,ELAFSEN ARD WATT TIMFS PEF

1 1 a
101 5

1
1
8 11 12 13
7 10 11 16
6 9 10 1%
SCHEDYLER CODE =2: ROUND-ROBIN (RF)
ARRIVAL ,EXFCUTE(ALONE) ,COMPLETION ,FLAPSED AND WAIT TIMES PER

1 3 3
1 5 1
10 18 1n
9 15 11
u 2 5 8 10 10
SCHEDULER CODE =5: SHORTEST FYECUTION TIME (SXFPS)
ARRIVAL ,EXECUTE(ALONF) ,COMPLETION ,ELAPSED AND WAIT TIMES PER

1 1

1 1

7 10

3 9

MAX, HO, TPACTS I¥ MAIN STORE=2 ORE HALF SWAP TIMF(UNITS OF TIME SLICE) = 1 CVLAP=1

SCHED CODF FIG. OF MERIT 1#AVE. RLAPSED THRUPUT NO. HALF SWAFPS AVE, WAIT

1 0.121 0.0882 0.3 12
2 0.1775 0.1132 0.3333 12
0.1154 0.3333 12
8.

5 0.1829
CPU TIME(SFC.) FOR SIMULATION IS: = 38.93333333

The preceding conclusions are drawn from only a few of all
possible workload cases. Other cases may be investigated with the
simulator. I'igure 2 shows the output from a typical simulator
session. The simulator prompts the user to specify the needed
parameters. He can also specify print options: gross statistics only
or full statistics.
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