
trivial   and  nontrivial   jorcground,  and  background.  Each  has  certain 
resource-use  and  required  response  properties. A central  issue in 
scheduling i s  the  degree o j  advance  knowledge  a1)ailnble  to the scheduler 
about  calls  on  system  resources.   This  protides a theme for classifying 
sezwal  algorithms. 

L4 response Jigure of meri t  belieued to bc h c l p j d  in understanding 
time-sharing  schedulers i s   d e j n e d .   S i m u l a t i o n   r e s u l t s   u s i n g  a wry 
simplc worlcloacl and system  model are included in the  discussion. 
A summary   i s   g i ven  of some major  issues  in scheduling for t ime- 
sharing  nnd  virtual  systems. 

Some principles of time-sharing  scheduler  strategies 
by H. Hellerman 

A romplctc  amlysis of any data-processing  system,  including a 
time-sharing  syst’em,  must  mnsider two fundament’al  questions: 
( I )  What  functions  arc given the users of the  systcm? (2) Hon- 
are l,hc rcsourccs that  are used in  implementing  these  funct’ions 
controlled,  allocated, and assigned‘? The word “functions”  includcs 
the number, convenience, and logical flexibility of t’he  programming 
and control  languages, the  amounts  and  types of storage,  and  thc 
provisions by which thc user can modify and  add t o  these  facilities. 
In the second question, the  set of considerations, called scheduling, 
is of primary  intcrest  in  this paper, but  it is not completely 
indcpcndent of the supplied  functions. This is so because, as 11-c 

shall see, a cent’ral schcduling issue is the degree of advancc 
Irnowledgc available on calls for resources. The dcgrcc is usually 
smaller, thc greatcr the generality of funct’ions  provided. 

Scheduling is the process of :tssigning resources to a workload 
scheduling so as to satisfy some objective of “good” service. In computer 

system design, the objectivc is not  usually stated  initially  as :t 

precisc mathematical  function  but event’ually  appears quite 
expliritly as part of the supcrvisor  program. It is nevertheless 
conceptuslly useful to  think of scheduling as a process of optimiz- 
ing some objective  function that is derivcd  from the intended use 
of the  system. In this paper, interest  centers on time-sharing 
systcms whose principal  purpose is to give their users  fast  man- 
machine  intcraction.  Howcvcr,  t,his  ohjective should not bc  met 



by excessive sacrifice of other  desirable  properties of data pro- 
cessing syst,ems  such as good problem-execution characteristics. 

This  paper examines fundamental considerat’ions  in the design 
of time-sharing  schedulers. First, some basic considerations are 
outlined. Following that, certain  scheduling  variables and algo- 
rit,hms are classified, and a conceptual  description of a rational 
design procedure is suggested. A simple, idealized model of a 
workload is then described, and some performance  parameters, 
including an object’ive  function, are defined. Simulation  results 
are given for eight scheduler  algoritllms for a simple, single-server 
model. Finally, some import,ant issues, result’s, and conclusions not 
included in  the model are discussed. 

Some basic considerations 
The economic fexsibilit’y of a time-sharing  system  depends on its 
ability to service multiple users “concurrent~ly,” a t  least  on the 
scale of human reaction  times. Users are servcd  by  executing 
programs; some are wit tcn by t’hc  user,  others are invoked by him 
but ace supplied by the system. A1t)hough storage  space can be 
shared  by several  programs,  usually the ccntral processing unit 
(CPU) cannot be shared,  and it’ can service only one program at  
any instant,.  Thus all programs  must  share this resource in  time. 
The desired concurrency cannot be ensured by  sequential  running 
of each  program to caompletion before starting a new one because a 
long-running  progrnm could then  unacrept’ably delay all those 
that follow. hZost’ time-sharing  systems  therefore  divide time  into 
slices (quanta)  and  rapidly  snit’ch  the cl’u among  the pending 
programs, giving each a time slice in some cyclic. pattern,  with  due 
at,tent,ion to new rcqucsts. For t’his process to  succeed, programs 
must be interruptible. 

Interrupt,ibility is possible bccausc the essential  past  history 
of any program is chnr:wtcrized by :i sfale,  which may  be  thought of 
as a string of hits that,, if l a ~ ~ n  at  any  time, completely  determines 
the  future  logicd properties of the program  (together  with  fut,ure 
inputs). In a single procwsor system (:rssumed from now on),  the 
st,ate of at’ most’ one program, the  artive one, resides partly  in 
processor registcrs nntl p r t l y  in nmin storage at  any one time; 
the stat,es of all  other  programs are, at that  time, resident  entirely 
in storage. S\\-itc*hing vonsists of “nllesthetixing” the active 
program by storing the processor part of it’s &ate (processor 
registers)  in main storage :~nd  then  resetting  the processor from the 
previously  stored stat,c of mother program. 

Of the potentinlly 1:trge number o f  conncc*ted users with  pending 
requests  for  scrviw, only :L fe\v (sometimes only one) can be held 
in the relat’ively snxdl, expensive main  storage at  one time.  The 
rest, are kept on :L slower,  cheaper  auxiliary  storage drum or disk. 
Program execution can only be douc  directly  from  main  storage, 
and as earl1 program ne:m its next time dire, if it is not  main- 
storage  resident, it is exchanged (sn-apped)  from :tuxiliary to  main 
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storage  with some program  currently  resident.  Only the  area of the 
replaced  program modified since swap-in need be transmitted 
out since a copy of the nonmodified space  already exists on 
auxiliary  storage.  Recognition of this can  reduce the number 
of bytes t o  be transmitted,  thus  shortening  swap  time.  Modern 
computers (:an switch and swap  programs  fast enough to  satisfy 
t,he pseudo concurrency  requirement. 

Users  communicate  with the system  through devices called 
user-system terminals. Although  there  are  many  types of such  devices, for our 

communication purposes  a  terminal  may  be envisioned as  a  typewriter-like  device 
with  several  keys, one of which (e.g., the carrier-return)  signals the 
system  t,hat  the user has  completed  sending  a message to  the 
system.  Striking  t’hk  key is an example of an interaction  event; 
another is when the system  responds,  e.g.,  by typing a message or 
unlocking the keyboard.  Frequently,  interaction  events  alternate 
between  a user and  the  system  in a  “conversation.”  Such  a  pair 
will be called simply an interaction. A tract (abbreviation  for 
transaction) is defined as the work done  for  a single user during an 
interaction.  The elapsed t’ime to service  a tract is called the response 
t ime.  It depends on the  nature of the  tract,  the  system,  and  the 
activities of other users on the system. For scheduling  purposes, 
all  tract,s  are  assumed  to  be  independent. 

Certain  properties of tracts  and  the  state of system resources 
are called scheduling  variables. In  the design of schedulers,  these 
variables  must be chosen and means specified for obtaining  their 
values and  operating on them  to make decisions on resource 
assignments.  Examples of scheduling  variables for the workload 
include arrival  time, explicit priority,  time  already expended, and 
expected-completion  time for each  tract. Scheduling  variables  for 
resources include  busy,  idle,  or  ready status  and  storage occupancy. 

In  addition to  economical and effective man-machine inter- 
action,  conventional  facilities  such  as  language processing and 
problem  program  execution are also important. A basic design 
task is to  rank  the required services with  respect to  resources 
needed and  with respect to  sensitivity of performance to user 
satisfaction. 

User  satisfaction  depends  critically  on  fast response to those 
trivial tract’s  that arise  from the most common human  requests.  Although 

response there is no  universal  agreement  as to  what constitutes a complete 
set of such  operations,  certainly  they  must  include  entry,  display, 
or modification of programs and  data. It is fundamental  and  fortu- 
nate for the feasibility of a  time-sharing  system that each  such 
operation  usually  requires  only  slight use of system resources so 
that  many such  concurrent  requests  can  be  serviced  fast  enough 
on the  human  time scale,  even though  they  are processed one a t  a 
time  on  the  same  equipment. Because of their  small use of re- 
sources, we shall call such  requests trivial and  the  system response 
to  them trivial  response. A most important  objective of a  time- 
sharing  scheduler is satisfactory  trivial response not only to  several 
concurrent  trivial  requests  but also in the presence of heavy 
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nontrivial  loads. The resource most  critical to  trivial response 
tends  to be the speed of auxiliary  storage  holding informatior1 
necessary to service imminent  pending  requests. 

Although  ensuring  fast trivial response is the first  order of 
business of a  time-sharing  scheduler, the nontrivial tract  initiated 
by  the on-line user must also be processed with  a responsiveness 
consist,ent  with  t,he interactive  environment.  Nontrivial  tracts 
include  program translation  by  the language  processor(s) and  the 
running of programs. The response requirement  here  is  not  as 
sharp  as  for  trivial responses. However,  a  system  directly  servicing 
people will achieve success only by  adequately meeting the users’ 
expectations  for good service-in this case, good response time. 
Human expectations are complex functions of many  types of 
influences and  charge  with  time  and experience.  One  principle 
which appears generally applicable  is that  human tolerance of 
response delay is (or can be  made  to be) roughly  proportional to 
the complexity of the request,  say,  as measured by  the  amount of 
processing required to  satisfy it.  This suggests making  priority-of- 
service  correspond  inversely to declared,  expected,  or  estimated 
length-of-processing. This  prinriple, applied to scheduling  non- 
trivial work  initiated  from the system  terminals, is also consistent 
with achieving  fast trivial response. 

Xontrivial  tracts  can call on all major resources provided to 
the user. The  nature of these  in  turn define the generality of the 
system. All include arithmetic  and  program control  functions 
usually  implemented  by a CPU. For a  “dedicated”  system,  by 
which we mean  here  one  requiring the same  language of all  users 
and  typically  restricting  each to a fixed amount of main  storage, 
the CpU is the  criticd resource. In  more general  systems where 
the user has  the  option of several  language processors and pro- 
grammed access to auxiliary  storages and  other devices, one of 
these devices or the channel  controlling it often becomes the 
critical resource. 

Many  systems  are imbedded  in an  environment whcre,  in 
addition to  the terminal  users’  trivial  and  nontrivial  tracts,  there 
is  another component of workload with  far less demanding response 
time  requiremenh. It is natural  and feasible to  also process this 
workload on the same  equipment used for time-sharing. Baclc- 
ground is a type of workload that has  nonstringent response 
characteristics. It is chmwterizcd by continual  availability,  say 
by  batching. In  fact, a  principal  source of background is the 
usual  bntched work of conventional  sgst’ems. A prime  requirement 
in  time-sharing,  not  too difficult to satisfy, is that background 
service must not impair the foreground trivial response. Such 
impairment  is avoidable because the weak response requirement 
permits  deferment of background processing in fltvor of any new 
trivial  request.  The  insensitivity  to response time also permits 
scheduling of hackground  during the  frequent,  but  somewhat 
unpredictable,  intervals when the Ct’u is not servicing  foreground 
tracts.  Note  that  the distinguishing  feature of background work 
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is it,s low response-time  sensitivity. It is feasible for  background 
work (designat,ed  as surh) to  be init’iated  from a user terminal. 

Another  system sometimes linked  with  time-sharing is a virtual 
storage  system. It supplies each user with a logical storage whose 
properties are independent’ of its implemcntation.  The st’orage is 
an automatically  managed  hierarachy of (at lcast two) device 
types.  Although virtual  storage  and  time-sharing  are  independent 
ideas with no  essential  connection, they  have been combined i n  a 
few announced  systems  (e.g., IB31 TSS/360, GE-MULTICS, S I X  
Sigma 7). Such  systems  arc now at  the front’ier of generality and 
present, the most’ difficult scheduling problems. 

A classification of the workload 
The workload presented to a timc-sharing  system is now classified 
in a way t,hat is pert’inent t’o scheduling  considerations. Each 
class of t’ract is summarized hy four descriptors  applicable to 
each tract of the class: 

Arrival  characteristics 
CI’U time  rcquirements 
Auxiliary  storage  transmission 
Required response 

Comparative  t’erms  such  as  “fast’,  few,”  are  intended  for  rough 
comparison among the categories. Table 1 shows t,he classification. 

The properties of trivial  tracts  and  their critical  importance 
to user satisfaction were discussed earlier and mill not bc treated 
furt’her  here. 

Note  the differences between bacl<groul?d n-ork and foreground 
work (terminal-initiated  program  execution). Baclcground work 
is  almost  always “on-hand” whereas terminal-initiated  requests 
arrivc  in  an unpredictable patt’ern. Also, response times  for 

Table 1 Classification of components of system workload 

Required  Auxiliary 
processor  storage  Required Category of 

tracl drrivals  time  transmission*  response 

Trivial Unpredictable Small-fixed Small Fast** 

Terminal-  Unpredictable T’ariable Variable Variable 
initiated  Unpredictable  Unpredictable 
Nontrivial 

Backgromnd Predictable T’ariable T’ariable Slow 
(assuming some Unpredictable  Unpredictable 
batching) Likely long 

*Not including swapping. 
**Fast and slow response are relative to human response times. 

98 HELLERXIAX IBhI  SYST J 



terminal-initiated  programs,  although necessarily variable over 
a wide range (depending on t’he nature of t,he t rw t  and  its dcmnnds 
for resources),  should be bet’tcr  than the s:mc tracts nppc:lring 
in the b:Lcl<g~OUllCl mode. The uwr submittilrg bac~1;ground \vorlt 
might ~vcll be given :L hilling advantage for his lvilli11gness to \\nit 
longer for results and for hclping to  Itcep a csollst:Int, \vorl~Ioad 
avnilnble to  the system \vhcn lime-shnrillg dc rnad  s1:wl;ens. This 
policy follon-s analogous hilling pr:wticw i n  the telephone :1nd 
electric po\\-er indust’ries, where rates :we :d,justed fnvorahly  for 
service durillg  low-activity  periods. 

~ 

A classification of scheduling variables 
and algorithms 
Some variables for each tract  that’  may be used to  “drive” a 
scheduler for a single-server model c:m be classified as follows: 
(I) explicit priority or deadline time, (2) :Irrival time ( A ) ,  (3) ex- 
ecution time completed ( P ) ,  :ud (-&) total exerution time (AX) .  

Simple  functions of these may :dso he used to  obtain  other 
scheduling With C used to tlcnote “current-time,” some 
examples :LIT: (1) residel~ce  time (C - A ) ,  (2) time-in-queue 
((C‘ - A )  - P ) ,  (3)  remaining executiou time ( X  - P ) ,  and (4) 
optimist,ic  predicted  deadline time (11 + X ) .  Those cmcs that 
include  t’he  variable X require advance knon-ledge of execution 
time. 

Some scheduler  algorithms using t’hese v:wiat)les are described 
in  Table 2. This listing is similar to  a recent one by C~f l ‘man.~  One 
distinction introducd in the classification is a (Q) or ( I )  modifier. 
The former menns thxt queue exploitation (skritching to  the next 
task) is done only after t’he tract currently in process is com- 
pleted,  i.e., the scheduler belongs to  the sequential category. The 
( I )  designation rnc:Lns that  the srheduler ran intcrrupt  the current 
tract in procws for  queue  exp1oit:~tion”it c:tn bc done at eil.her 
standard (time-slice)  iut’ervals and/or  at e : ~ h  new arrival.  Most 
time-sharing  schcdulers are type ( I )  algorithms (to be dcsrrihed 
later). 

the seIect,ion rule may result in “ties,” i.c., more than one tract 
with the same optimum  value of the scheduling  variable.  Tie- 
brewking rcquires use of :mother rulc  among the  ties; earliest 
arrival  time is a rommon  tic-breaking  stratagem. Ho\vcver, this 
may also result  in t,ies. In some systems,  ties  cannot occur due to  
physical  restrictions on the arrival  pattern. Where this is not so, 
an  arbitrary  mcthod of ztssigning :L u ~ ~ i q u c   t a g  t’o earh tract, can 
serve  for  ultimate  tie-breaking. 

In  Table 2 the srhedulcrs  labeled 3u, 311 and 4:~,  4h comprise 
pairs where t,he first, memher uses advanre knowledge of execdon  
time ( X )  and the serond uses the simplest observed approximations 
of these,  i.e., f’ for X .  Simulnt~ion  results for most of these svhed- 

The algorithms of Table 2 may be ambiguous  in the sense t,hnt tie-breaking 



Table 2 Classification of  some aueue discitdiner 

__ 
0 

l a  
l b  

2 

- 
3a 
3b 
3c 

4a 
4b 

- 

- 
5 

Scheduler name  Abbreviation Basic equation 

Explicit priority 

First arrival,  first service FAFS (or FIFO) L/A 
Last arrival, first service LAFS (or LIFO) T/A 

LAFS(Q); LAFS(1) 

Round robin I RR 
L/CLK 

Shortest execution, first service SXFS(Q)*;  SXFS(I)* L/X 
Least completed, first  service LCFS(&); LCFS(1) L/P 
Least remaining, first service LRFS(&)*;  LRFS(I)* L/(X -P) 

Earliest deadline, first  service EDFS(Q)*; EDFS(I)* L/(A+X) 
Earliest  estimated deadline, EEDFS(&); EEDFS(1) L/(A+P) 
first service 

Estimated f optimizer EFMO L/P + (C-A) 

Remarks 

Priority depends 
on arrival  time 
only. 

CLK [I] is the  time 
tract I last received 
a time slice. 

Priority depends  on 
execution time only. 

Priority depends on 
both  arrival  and 
execution time. 

A Arrival-time vector 
X Execution-time  vector 
P Execution-time-completed vector 
(Q) Queue is exploited only after current-in-process task is completed (nontime-sliced) 
( I )  Queue is exploited shortly  after  arrival of new task (time-sliced) 
* Execution (future) information is required 
L/ Represents “minimum-of” 
r/ Represents “maximum-of” 

It is not necessary for  a  scheduler to  strictly use only one of 
these  algorithms; a  combination is readily possible. For example, 
the system  may well have  a good estimate for the execution  time 
( X )  of certain  tracts, especially those  in  the  “trivial” category 
where fast service is most  critical. 

Advance knowledge of demands on resources is believed to  be 
design at  the  heart of scheduler  design. This is also clearly indicated  in the 

constraints simulation  results.  Such lmowledgc can bc made  available at 
different  times  from different sources. For example,  a good deal of 
information  can be obtained once and for all  at system-design time 
by  limiting the possible resources available to  the user. A “dedi- 
cated”  system that limits  all users to one  language and language 
translator can have a  simpler  scheduler than one that must permit 
several  languages and  their  translators.  The simpler  scheduler is 
possible partly because the single translator copy can be kept 
permanently  resident  in main st’orage and  shared.  This can  appre- 
ciably reduce swapping time since program  translators (compilers, 
interpreters) often  account  for  much of the space  required to 
service  a  user. In  more  general  systems,  sharing is still possible 
among  those users requiring the same translator  concurrently. An 
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added  constraint,  however, is placed on the scheduler. Specifying 
and enforcing convent,ions  on  subsystems to pass  scheduling 
variables to  the scheduler are difficult arc~hitecturnl  and imple- 
mentation  problems for general-purpose  systems. 

Another  illust,rntion is the nonvirt,u:tl storage  system that 
restricts  each user to no more than some fixed frnction of real 
main  storage.  This  ronstraint makes  scheduling  much  simpler than 
the case where maximum  main  storage  demand is unknown  in 
advance  as  in  virtual memory  systems. 

If we are given a  system  with  a set of constraint's  and  are scheduler 
required to  design :L scheduler to  meet some stated  objective design 
function, how can we proceed? It would be most  helpful if we could procedure 
first  set down a  scheduler, called :L BEST scheduler,  even though  it 
requires  advance  lmonledge of resource demands.  This would 
give us a  base for comparison of the performance of any  practical 
scheduler and also be  suggestive of a good scheduler. An orderly 
design procedure could then be envisioned as follows: 

1. Define the object,ive  function  assuming  advance knowledge of 
calls on resources (e.g., X )  is available. 

2. Devise :t BI{;S'~ scheduler  algorithm to optimize  t'he  object,ive 
function. 

3. Devise an algorit,hm for estimating  t'he  ranking of advance- 
knowledge variables ( X )  from  observed  variables (eg., 1'). 
The estimat,cd  values  are to be updated  as  the  system  runs. 

4. Devise  a  scheduling  algorithm that uses t'he  estimates  from 
item 3 in  the scheduler  derived in  item 2 .  

The main  requirement on the estimation process is that  it yield 
a good approximation to  the ranking, i.e., re1at)ive magnitudes of 
the scheduling  variables,  not the  actual values of these  variables. 
Although the process of scheduler design just  desrribed  appears 
to be  a  rational  one, it must  be considered speculative. h4ost pre- 
sent  practical schedulcrs  arc designed much less formally. A 
basic charact,eristic of an adaptive scheduler is its  automatic 
monitoring and use of informat,ion on problem and resource states. 
The  adaptive  property is not  an  absolute,  there being many 
degrees of it. Although there  are no unique sufficient conditions 
for a  scheduler to  be called completely adapt'ive,  a  necessary 
property  is that no  operator  intervent,ion is required for scheduling. 

An interest,ing adaptive scheduler is the one  described for the 
MIT-7094 CTSS ~ y s t ~ e m . ~  It used an unovcrlapped  swapping strategy 
with a single user in  main  storage at  a  time. Scheduling  is thereby 
simplified because there is no main-storage  space  allocation,  only 
a CPU-time allocation. The basic idea of this scheduler is to give 
short-run-time  tracts high  priority for short Cpu time slices. Run 
time was estimated for a start,ing  tract from its main-st,oragc size, 
but  as  a  tract received one or more slices, its estimated  relat'ive 
length-of-run was in effect revised to  correspond to  the lcngth-of- 
run  already observed for that  tract.  Thus, as a tract proved itself 
longer and longer, the system  automatically  reduced its priority. 
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However, to reduce  swapping  overhead, the lower priorit'y  (longer) 
tracts, once selected, were given more time slices for their  "shot." 
All runs were interrupt'ible for newly arrived  t'racts n.hich n-ere 
entered  int,o  their proper position in the queue. I;or practic:d 
purposes,  t'his :daptive scaheduler thus  t>reated all tr:wts in an 
automaticdly managed  priority  continuum. 

Measures of scheduler  performance 
A simple model of a \\-orkload and a few performance  measures arc 
now defined largely  independent of :my particular  scheduler. The 
values for the parameters are dependent  upon  bot'h the workload 
and  the scheduler. 

The  system workload model consists of tr:tct,s, each  character- 
ized by two  numbers: 

a ,  = arrival  time for t,rwt i ,  (i.e., the time i t  is first considered 
for running by t,he  system). In a  system  with  t)ypewritcr 
terminals, a ,  occurs upon the  striking of t'hc  carrier-return 
key. 

IC, = execution  time for tract' i 

If the scheduler all\-ays allocates  all  available resources to  the 
worltload, it may be possible to  measure xi as the  time  to  run  the 
tract alone on the  system. This is valid on most  systems  measured 
to  date. However, there is at, least one exception. The QUIKTRAY- 
st'yle scheduler is not designed t,o opt,imize response to  short 
(nontrivial)  tr:wts,  instead  it' is designed to approximately  equal 
the response time on :L given tract  iudepe~ldent of the number of 
other  tracts being processed concurrently. In  this case,  measured 
execution time on a tract running  alone is much  larger than x i .  
Another case where run-alone time  may be different from x, is if 
the selected tract  has several output phases, since then  various 
types of output/caompute overlap  are possible, thus obscuring x,. 

With  the above  precautions in mind, we may define the 
following observable  times : 

q c  = time  that  tract' i completes execution 
e,  = (I; - ai = elapsed time for tract i 
w i  = e, - xi = g i  - (a ,  + IC;) = wait or in-queue time for tract i 

1 he term (I; is :I "time-stamp"  quantit,y measured  from some 
common time origin for all i. 

Average elapsed time 

r ,  

Some performance  measures are : 

I Average  wait  time 



We also seek to define a “figure-of-merit” whicsh is to  have  the 
folloning  properties: 

It should be dimensionless. 
It should  have  a  maximum  value of one for some ideal scheduler 
and system for all workloads. 
It should  increase for a “bett,cr”  system  (unlike  t’he  average 
t,imes above). 
It should be larger the more successful the system is in giving 
better service to  short  tracts relat,ive to long ones in :L stream 
containing both long and short, tr:tc:t’s. 

The  last condition is only one o f  several possible, but is the one of 
interest  in the remainder of this  paper. 

One  pnrameter that appears to  satisfy  these  ronditions is 

n 

(ei/xi) 
f =  (3) 

2 = 1  

In  the language of stat,istics, f is the “harmonic mem” of x/e.  
The Case of / = 1 is foulld where earh tract runs 011 :L “private” 

system so t,hat e ;  = x % .  In other  systems,  a given elapsed-time 
value e ,  nil1 be weighted more detrimentally i f  it’ corresponds to a 
short  run (small x L )  rather  than a long one. The f values  depend 
upon t,he worltlond ( x ; ,  n ) ,  t,he computer and  its programming 
support,  and  the scshcduler. 

Kormalized reriprocd average  wait t,ime would also appear to 
satisfy  most of these  conditions, e.g., using Equntion 2 :  

g = 7””- 
n 

C [(ei - zi)/xiI 
i=l  

By simple  algebra, i t  is re:adily shown that 9 is trivially  related 
to  f as: 

f 
1 - f  

9 = -  (44  

The  term “response-figurc-of-merit” hemtfter refers to f 
(E:qu:Ltion 3 ) .  I t  is intended to be :L sensit’ive me:Lsurc  of a system’s 
ability to  give higher priorit,y service to  short versus long tracts. 
It is therefore c~onc~erned with the relation of run t’imes within a 
st>ream. The f function ( 2 x 1  be used in  two mays: (1) as a way of 
“rating” a system  and  tract  stream and (2) as an objective  function 
for a scheduler  algorithm. 

Consider now the problem of c8omp:uing two  different  systems 
on the same tract  stream. A4e:tsurements could be  made of all 
5 ;  and all e ; .  The f values could be computed for each  system  and 
then compared. It, is easy to see that  the f values cannot be the 
sole measures of system performallce. X s  :L simple example, 
suppose  system A is 10 times  faster  than system B so that x i  and 
e ,  for A will be 10 times  smaller than corresponding  values for B. 
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Equation 3 shows that f is identical for both  systems because only 
ratios  appear  in the expression for f .  System A,  however, is capable 
of roughly 10 times the work as R is in  the same time. We must 
look to a statistic of performance  other than f to find a  measure 
of this ad van tag^.^ 

Throughput is defined for  a  given tract  stream  as  the reciprocal 
throughput average  time  to complete  all tracts  in  the  stream,  i.e., if q n  is the 

time  the  last  tract is completed,  measured  from the  arrival  time of 
the first  t’ract’,  t’hroughput is 

n t = -  
9 n  

(5)  

Throughput, unlike f ,  is insensitive to  the order in which tracts 
are executed, i.e., a  system that processes long tracts before short 
ones can  have  the same t value as one that schedules short ones 
early.  However,  in the former case, the response “felt”  by  the user 
(and f )  would be  much  poorer. 

Complete comparisons of the performance of two systems 
require both f and t for  the same set of tract  streams on both 
systems. A schedulcr designed to directly  optimize f of Equation 3 
n-ould select’ for next-time-slice, that  tract with the largest e i / x i  
value,  i.e., the smallest .c , /(q% - a i ) .  This  strategy is, however, not 
practical since both x i  and g i  are not ltnomn in  advance.  Simple 
estimates of these,  obtainable  from  observations  during  system 
operation  are: p i  for x i  and  current  time ( c )  for qi. Such  a  scheduler 
will be called an  “estimated figure-of-merit optimizer”  and is 
designated EFI\IO in  Table 2 .  

Sequential  and  round-robin schedulers 
sequential Consider first the vcry  simple situation where all tracts  to be 
scheduler serviced arc available at  the same time; service of tract i requires 

a total of xi  time  units from  a single server. If the scheduler is 
sequential, i.e.,  it  runs each tract  to completion before considering 
another, t’he elapsed time for job i is 

From  Equations 1 and 2 ,  average elapsed time (a) and average 
wait t’ime (a) are 

E’rom Equations 3 and 6, the response figure-of-merit is 

n, 

The :hove cquntions  may  be  applied to t’he case of nonidentical 
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arrival times  during  all  intervals n.hen at  least one tract requires 
service.  One common sequential scheduling rule is e:wliest-arrival 
or first  in  first  out (FIFO) nhich schedules that  tract for next 
service whose arrival  time t o  the system is the smallest. The 
ordering of the indices i and j in the above  equations  then cor- 
responds to  the ranking of arrival  times  with some tie-breaking 
rule whenever t,wo or more tracts  arrive at  the same  time. 

Rnot,her  sequential  scheduler of great  theoretical  interest 
assigns next service to  that  tract whose execution time (x%) is 
the smallest. The scheduler then  must be capable of ranking x i  
and ordering the  tracts so that  their execution times, now called 
IC', is a permutation of the original x with  t'he  rule 
2; 5 for all i (10) 
For the case of identical  arrival  times,  the  algorithm  may be 
shown to maximize the response figure-of-merit f and is therefore 
called B>:ST. It could be modified to accommodate  staggered 
arrivals  by  reranking the x: whenever new arrivals  occur,  and if 
necessary preempting the  tract  that' is in service  with the one 
holding the best rank. A fundament'al  problem  remains  however; 
the REST algorithm  requires advaucse knowledge of execution 
times that  are often not available.  Despite  this  difficulty, BEST 
is  suggestive of practical  schedulcrs and can also serve  as  a  base 
for comparison of all  schedulers. 

Sequential  schedulers suffcr from the defect that since execu- 
tion is not  interruptible, and execution  times arc  not  in general 
known in  advance,  long-run  tracts  may delay  service to  short 
ones resulting in a poor f and, hence,  by  our  criterion, poor service. 
The round-robin scheduler  prevents this  by allocating one time- 
slice successively to  each pending tract, cycling back to  the first 
after  the  last  has received its slice. This process may  be  described 
in  another  way: record the time  each slice is given to each tract; 
select for next  service that  tract xvith lowest such recorded value. 
A recording of zero for new arrivals gives t)hem  high  priority  for 
their first slice. This policy is consistent xvit'h good service to 
trivial  requests since t'hey  are frequent'ly  serviced  in one time 
slice (or less). 

Neglecting new arrivals, we may  set down an approximate 
analytic  relation  for the elapsed time of t,ract i for a round-robin 
scheduler if  we assume that  the round-robin cycle is in the order of 
shortest tract first (the best  case).  Although this  appears to  be  a 
drastic  assumpt,ion,  round-robin  schedulers are  relatively insensi- 
tive to  the order of the next slice. With  this  assumption, elapsed 
time is 

e l  = (n - ~ ) ( I c :  - 1) + x: (1 1) 

Substituting  Equation 11 into  Equation 1 gives the average 

i 

k = l  

elapsed time  as 
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The right-most term can be identified  with Equation 7 and, 
hence, gives the best average elapsed time for a sequential  sched- 
uler. The remaining  t'erms on the  left result  in a no11neg:~tive value. 
Equation 12 thus shows mathematicdly  that  the round-robin 
scheduler gives :in average elapsed time that is never better  than 
that of the REST sequential  scheduler  (and is in most cases worse). 
A n  int,uitivc re:lson for t'his result' is as follows: to  complete i 
tracts, the nl~s?' sequential scaheduler \vorlced only on the i tracts, 
but, the round robin did the sanle and also gave some time  to all 
others.  Note  that, these propert'ies follow only from the sequencing 
properties of t,he svhedulers and are not due t'o "overhead,"  i.e., 
use of resources for system control. Overhead, hou-ever, t'ends to  
reinforce the nbove c.l1:rrnc.teristic.s. 

To il1ustr:rte the c2omp:Lrison  of sequential and round-robin 
scheduler  strategies, a simple set of examples was constructed,  and 
the performance  pararnet~ers  cmnputed as shown in Table X. Each 
example consists of :L specified stream, all tracts available at  the 
samc time  (all a, = 0), :~nd each is characterized  by a run time 
when run alone ( r , ) .  The  time t'o  run e:wh stream is about  equal 
to  that to  run an;).' other. hverage user wait time and t,he figure- 
of-mcrit) f is givcu for each strennl for t,he FIFO sequential,  round- 
robin, :~nd  BEST sequeilt'ial algorit'hms. 

For more on simulation  results, see the iippendix. 

Resource states as scheduling variables 
Emphasis  thus  far  has hccn OJI those scheduli~g variables that 
characterize the trac%s. We turn nmv to  t,he influencLe of resourre 
states on srheduling. The prinripnl  factors of t,his type :&re: 
CITT utilimtioq, maiu storage  ocx~upancy, and auxiliary storage 
access stat,e. 

As a first simple example,  ronsider a user's  program  request 
for data  typeout. T u  many  systems, CPIT sc~heduling  for this user 
is suspended until  the  output is completed although :dloc*:Ltion  of 
time slices continues for othcr users. In other n-ords, there is 
overlap of output t'lrping : u l d  (.omputation between users hut not 
for t,he same user.  IIotvever, some syst,ems (e.g., APL") dso  overlap 
:I user's output u-ith his comput'ation.  n'ontrivisl response (.an 
thereby  be  improved  apprerinbly for applications that  alternate 
computat,ion and t'ypeout.  These  include  many  formula  evaluation 
and simulnt~ion  applirntions :LS ]vel1 as program t r ace  valuable in 
on-line debugging. Suvh programs (mi oft'cn appear to the user 
to run at nearly output,  typing speed. 

A time-sh:Lring system  serving only terminal  (foreground) 
users and near the limit of acmptable performance may typically 
show : t n  nppreciable fract'ion of CI'U idle time. However, this 
inactivity is distributed  over short unpredic%able intervals. If an 
attempt is made  t'o fill this  time  by  admitting more foreground 
users, there is little  probability  that  their  unpredictable  demands 
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efficiency of overlapped  swapping is dichotomous  with the benefits 
of largest possible user storage size. 

If it is decided to  partition maill storage into scveral user 
areas, a replacenlent' problem may now arise: if the t'rnct, selcrt,ed 
for  next service is not  main-st>orage  resident', how should o~ lc  of 
the  tracts  currently resident be sclectcd for s\\-;ip-out to  rnxkc 
room for the incoming t'ract. One simplc, int'uitively appxling 
strategy will be called the Principle of Complementary  Replace- 
ment. It is  based on the idca that if a sc*heduling rule l? is used 
to  make the best choice of tract  to receive the next, time slice, 
this rule  can also be applied t'o find the t'ract, that is the worst 
choice. This "complementary"  rule, called R', is applied to  only 
those t,racts  currently resident  in mail1 st'orage, atld thc  tract 
found  by Rc is the one sclect'ed to  be replamd.  This principle 
appears to  be  applicable to  several scheduling  algorithms and 
makes  replacement a simple  variant, of the service selection 
scheduling  algorithm. 

The choice of the  tract t o  receive the ncxt time slice (:an be done 
according to various  criteria as described earlier  in  this  paper. It 
can also include the effects of t'ransmission (styapping)  delays, e.g., 
by giving some priority weight to t,llose tracts  currently  in main 
st,orage or closest to  the current access position on the auxiliary 
storage  device. 

Paging systems 
The critical role of main  storage  allocation  has  prompted  funda- 
mental  studies of program needs for t>his  resourre.  These  studies 
have  shown that  the space viewed by a progrnmmcr i n  \vrit'ing a 
program, called the address  space, is often far larger than  the space 
referenced in ally onc run of the program. In addition to over- 
estimation  due t'o oversight or desire t,o accommodate n range of 
data volumes, it is due to  such uupredic:t:hle cffects as 1 : q e  
areas of program or data space that  arc  not reached in :L pnrt>icul:w 
run because their refcrence is dependent on computed  values th:Lt 
are  not  encountered.  Even considering only space  referenred at  

Figure 1 Three  methods of main storage management 
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least once, most  programs show a  high  “locality of reference,”  i.e., 
the tendency to dwell for  apprcciable time periods  in  a few small 
areas of total address  space. The areas are  not generally  contiguous 
with  each  other. The extent of these  properties  depends on the 
nature of the job and  the  style  in which i t  is  programmed. Yet  they 
seem sufficiently common to encourage  design of systems  based on 
them. Such  a  system  usually  partitions both address and main 
storage  space  into fixed blocks called pages. 

A page is the  unit of storage  allocation used by the system but 
pages is hidden  from the user. Since pages resident in  main  storage 

belonging t’o  a given program at  a,ny instant  may represent any 
part of a>ddress space,  a  hardware  mapping  device is provided to 
translate  each  program address  (referencing  address space) to  a 
main  storage  address.  This  organization  permits  main  storage tjo be 
treated  as a pool of pages for allocation  purposes, thus reducing the 
wasteful effects of contiguity  constraints  and, even  more  import- 
antly,  permitting  the  system to respond to  actual  program needs 
rather  than worst-case estimates. In  such a system  there is little 
logical reason to restrict the user to  an address  space  smaller than 
the main  storage  physical  space; thc address  space is therefore 
often  larger,  hence the  term  “virt’ual  storage” applied to  the 
address  space. The potential  advantages of the paged  allocation 
met’hod  include:  better  storage  management based on actual 
demands,  programmer convenience in  having  a  large  virtual  store 
and, since address  space  and physical  space are now logically 
separated,  compatibility of programs  across  main  storage sizes. 

If we confine our  attention for the moment to a single program 
whose address  space is larger than main  storage, it  may well 
happen that after the main  store  is filled with  pages,  one of these 
executes a reference to a page not  currently  resident.  The  system 
must now use a  replacement  rule to decide which page to  transmit 
to  auxiliary  storage (drum/disk)  to  make room for the new request. 
Although this process has some similarity to swapping, virtual 
storage page scheduling is a  more complex problem since thc 
system  has  little  advance  information of pagc  requests, and  the 
volume of page  status  information  can  be  quite  large. Excessive 
replacement  means  heavy paging and accompanying  transmission 
delays. A number of rcplacement  algorithms  have been studied.’ 
They seem to show a  surprising  lack of consistent  favor to  any one 
replacement  rule  assuming  t’he  same  rule must be used over  a set 
of programs. 

Experimental  study of several  programs,  each  running alone 
threshold (nonmultiprogrammed)  on  a  virt,ual  storage  system,  reveals the 

phenomenon following phenomenon ? , lo  

Most  programs  may be  characterized by a “threshold” size 
of physical  storage,  in  general  different for different programs 
which, if not available,  t’ends  t’o  result in a paging  “explosion,” 
i.e.,  a  very  sharp increase in paging activity  and  resultant  drop 
in  performance  compared to  the case where above-threshold 



size is available. Put  :Inother way, if the runuing of a program 
is attempted  in less t'han  its  threshold  space,  the  program 
generates very frequent page demands as it  at'tempts  to expand 
to  t,hreshold  size. 

For example, the following numbers  are  not  atypical: a 20 
percent  decrease in  main  storage size below the threshold size 
resulted in a factor of 10 degradatioll in run time of a certain pro- 
gram  compared to  ~vhen threshold size ~va,s :Lv:Lilablc. The extcllt, 
of this  phenomenon, of rourse, depends 011 the  particular  program 
being run. The program  in  t'urll  depcnds  in  part, on programming 
st,yle. There is some widellre  {.hat if the programmer  (i~lcall~ding 
the systems  programmer)  observes a few simple  guidelines, he c a n  
considerablJ7 soften the paging explosiotl problerll.'.l" As an ex- 
ample, he should  organize his program  for good "loc:~lity-of- 
referencse" by keeping  successively exevut'ed storage referellres in 
as few areas of :iddress s p a c ~ x  :LS possible. 

The threshold phenomenoll of the virtu:tl storage  t>ype  of 
system  has a numher of implicxtions t o  scheduler  design. To help 
understand t'hcse, i t  is  dl to state :I gener:d princ~iple~c.lasses 
of functions supplied to  users should be ( ~ . c f ~ l l y  r:mlred with 
regard to rcquired respomse sellsitivity,  :md the  srl-~cduler  should 
ensure that no matter \\.hat, the load i n  :L given cat,egory, i t  must' 
have  minimal effcrt on response times in :dl more  sensitive (sate- 
gories. We shall ('a11 t'his princsiplc, \\-hicbh has a1re:~d.v  :Lppeared 
throughout  this paper, the "ptrform:\nc.e-protectioll  policy." 

In t,he application of this prilwiple to p:~getl virtual syst'ems 
in a t,ime-shnring  ellvironment, a primal-y requirement is that  no 
matter  what set, o f  t,hresholds rn:Ly be present, t,rivi:tl  response 
times (the moat semitive cxtegory) must not,  be signific:ant,ly 
impaired. A scrond  nppliwt'ioll of the I)crforn~ance-protertioll 
policy may he applied to  mother  serious problem:  the  progr:~n(s) 
with a sharp threshold whose threshold  main  storage size is larger 
than  the  nnchine's main  storage. Sur11 a program \vi11 inevitably 
run s l o ~ l y ,  but the policy says t,h:it it, must' not be permitted to  
apprecaiahly slow the running of smaller progrnms. More caommonly, 
the  system \vi11 have sevcr:d requests  pendillg, earh with  threshold 
size snuller  than tot':d main storagt, but  with  their aggregate 
larger than main  storage. The pool of physical  pages  must' he 
allorated  to t,he page  demands of contending  programs  in  such :L 
way that minimum  time is spent,  unproductively by progrnms 
attempting  excc~~tion \\-hen less than  their  threshold m a i n  storage 
size is :tvail:Lblc to them.  The major problem  here is to  prevent 
programs  from  crowling e:wh other ill main storage  with  resulting 
page-demand  explosion. 

R. W. O'Nril devised a rather simple but effective method 
c d e d  load-leding to  prevent page explosion due to (:ompetlition 
between  progrnnm" The idea is to observe the  cmjulwtion of two 
events easily  monitored by the supervisor  program:  heavy  paging 
and low CPI; ut,ilizntion.  When  t,hese owur t,ogether,  t'he  supervisor 

NO. 2 ' 1969 TIME-SHARING  SCHEDULING 



reduces the multiprogramming level by  temporarily  removing  one 
of the programs from main  storage  contention, freeing its space 
for use by  the  other  programs.  This scheme  gave  very substantial 
improvement  over a similar  system on the same workload operat- 
ing without the load leveler. 

Concluding  remarks 
Scheduling  depends on the demands for resources generat,ed by the 
tracts and 011 the state of the resources, especidly  the space 
o c ~ ~ p a n c ~ y  of tjhe  storages. Scheduling is simpler and can more 
rlearly optimize response time  and use of resources if a high degree 
of advance kno\vledge of  c:alls 011 the resources is :Lvail:tble. The 
amount of such advwnce lmowledge t'ends to  vary inversely  with 
t'he gcner:tlit)y of the functions  provided.  Limiting the user to a 
single language :md fixed main  storage  size, while furlctiorlally 
restrictive, gives the scheduler much advancse knowledge on calls 
011 resourres. It' is rehtively ensy to achieve high scheduling 
efic4cncy in such a syst'em. 

The performance of :L gc1ler:d systcm has often been poorer 
t'han :t single-lmguage ("dedic*ated") system,  assuming  t'he com- 
parison is made 011 equivalent  equipment  with a workload both can 
execut'e. At' this  state of the art', i t  is not clear what  part, of this 
difference, especially on t,rivial and  short  nontrivial  tracts, is 
inherentl?/ t'ied to  system generality and  what  part is due  to  the 
fact' that we presently know far more about the design of dedicated 
systems than about  generd timc-sharing  systems. Recognizing 
the reasons why i t  is difficult to achieve high performance  in a 
very general system is not the same as believing that  this perform- 
ance  penalty is inherent in  the system's  generality and that simple 
workloads must necessarily be treated poorly by such a system. 
In the opinion of this  author, when design technology  matures, 
a general-purpose  system  should not show significantly  poorer 
performance  on  simple workloads than less general systems. 

Appendix: Some simulation  experiments 
A simulat'or  program has been written in the APL/360 language 
to sinndxte :L simple n-orkload model on a single-server system 
model for several  schedulers. The workload model assumes each 
tract t o  be caharacterized by two  numbers ai  and z, (arrival  and ex- 
ecution  times) as described in the sec%ion on measures of scheduler 
performmlce. The system model permits a maximum of hlXM 
trncts  to be main-storage resident, concurrently and has a one-way 
s\mp time of ST time  units.  The t'ime unit  throughout the simulator 
is the t'ime slice. The simulat'or is capable of evaluating the efl'ect's 
on response times and figure-of-merit of: (1) various  orderings of 
the t'ravt stream, ( 2 )  arrival :tnd execution-time differences, ( 3 )  
eight' scheduler  algorithms, ( 3 )  swap  time, (5) maximum  number of 
users permit,ted in main  storage  concurrently, and (6) overlap or 
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nonoverlapped  swap opt,ion. Each scheduling  rule is used to 
determine which tract is to receive the next  time slice. If this 
tract is in  main  storage, it is serviced. If not,  and  there is space 
in main  storage, it is entered. In  this case, if overlap is specified 
by the user,  during the  input  operation a  resident tract is serviced. 
If the  tract selected is not  in main  storage, and t,here is no space 
in  main  storage,  t,he  complement  replacement  rule (see text) is 
used to  decide which tract is to be  swapped out. If overlap has been 
specified, during  such  a swap-out a  resident tract will  be serviced. 

Although  eight specific scheduler  algorithms are supplicd, 
others  may easily be  added. 

the  tracts  are specified explicitly, but  random selections using a 
distribution  function to generate the A and X vectors could be 
added to  the simulator. All of the scheduler  algorithms of Table 2 
except LIFO are  included  in the program. 

Table 4 shows the  statistics  obtained for one artificial tract 
stream  with eight  scheduler  algorithms and systems that can 
accommodate 1 and 2 users in main  storage  concurrently. One set 
of statistics is for zero swap  time, whereas the others  are for a 
system  with one-way swap time  equal  to  t'he  time slice. 

Tables 5h and  5B show simulation  results using execution- 
time data of a stream of 15 real FORTRAN execution jobs. In  this 
experiment, the effect of different orderings of the  tracts (even 
though  they all  arrive at  the same time) was investigated.  Although 
15! = 1.31 x 10l2 orderings are possible, only three-the given 
one, the best,  and the worst, were simulated. 

Some conclusions from  t8he  simulat<ion  results are  as follows: 

1. Under zero swap-time condit'ions, the best f value of 0.508 was 
achieved by the  adval~ce-kno~-ledgc sehedulers SXFS and 
LRFS. The best of the more practical class was LCFS followed 
closely by R.R (0.298 and 0.290). 

2 .  With nonzero swap  time,  and only a single tract  permitted  in 
main  storagc, the f values for LCFS and ItR dropped to 0.067. 
This improved  slightly (to 0.075) if two  tracts were permitted 
in main  storage  concurrently.  By also permit'ting  overlapped 
swapping, LCFS and RR figure-of-merit rose to  0.137 and 0.109, 
respectively. In  this experiment',  overlapped  swapping  im- 
proved f by almost  a  factor of two, but  this  still was about 
three  times poorer than a zero swap-time  system. 

3. Throughput was affected more by  overlap than was t'he f 
measure of performance. The zero swap-time throughput was 
0.214 for  all  schedulers. With swap time of one :md no 
overlap, RIt droppcd to  0.08 while FIFO droppcd only to 0.15. 
However,  with  overlapped  swapping, the time-slice schcdulers 
improved  appreciably (e.g., Rlt t'hroughput rose to 0.200). 

4. Even  with zero swap  time,  the ordering of tracts \vit'hin the 
same  stream can  make  a  substantial dift'crenrc in the f (and 
hence, response) as seen in  Tables 3 and 5. 

~ In  the simulations  cited  here,  arrival and execution  times  for 
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Table 4 Simulator results for  eight schedulers on four  configurations using one  tract  stream 

Reciprocal average 
elapsed time Figure-of-merit f 

1- 
ST = 1 ;  MXM = 2 

~ _ _ _ _  
MXM = 1 3T = 1; MXM = 2 MXM = 1 

ST = O  ST = 1  
_____ 

-___ 
0.032 0.023 
0.055 0.016 
0.057 0.017 
0.041 0.014 
0.086 0.041 
0 086 0.041 
0.075 0.037 
0.054 0 016 

~ 

ST = 1 -1 " -~ 
NOVLAP 

0.022 
0.019 
0.020 
0.019 
0.043 
0 043 
0.038 
0 019 

" 

ST = 0 OVLAP Code Scheduler NOVLAP 

0.038 
0.075 
0 077 
0.053 

0 179 
0 179 

0 075 
0.123 

OVLAP 

0 026 
0 038 
0.048 
0 .03.5 
0.048 
0.049 
0.042 
0.049 

0.056 
0.290 
0.298 
0.118 
0.508 
0.508 
0.356 
0.254 

0.039 
0.067 
0.070 
0.038 
0.182 
0,162 
0.115 
0 067 

0.047 
0.100 
0.137 
0.086 
0.183 
0.181 
0.124 
0.139 

1 Earliest  arrival  (FIFO) 
2 Round  robin (RR) 
3 Least completed (LCFS) 
4 Earliest  estimated  deadline  (EEDFS) 
5 Shortest execution (SXFS)* 
6 Least  remaining (LRFS)* 
7 Earliest  deadline  (EDFS)* 
8 Estimated f optimizer  (EFMO) 

Number  of  half swaps Throughput 

I " 

1 
" 

" 

MXAI = 1 ST = 1: MXM = 2 ST = 1; MXM = 2 

OVLAP NOVLAP 

0.182 0 150 

0.200 
0 200 0.100 

0.103 
0.200 0 111 
0 200 0 150 
0 207 0 150 
0 200 
0 200 

0 150 
0.100 

___" 

MXM = 1 

ST = 1 

94 
24 

80 

26 
82 

26 
26 
94 

" 

-i- Scheduler 

Earliest  arrival (FIFO) 
Round  robin (RR) 
Least completed (LCFS) 
Earliest  estimated  deadline  (EEDFS) 
Shortest execution (SXFS)* 
Least  remaining  (LRFS)* 
Earliest  deadline  (EDFS)* 
Estimated f optimizer  (EFMO) 

ST = 0 

0 314 
0.214 
0.214 
0 214 

0.214 
0.214 

0.214 
0 214 

ST = 1 

0.150 
0.080 
0.088 
0 087 
0 146 
0.146 
0.146 
0 080 

NOVLAP 

24 
64 
60 
52 
24 

24 
24 

64 

" 

OVL'4P 

24 
40 
31 
38 
24 
24 
24 
32 

- I -  

* Denotes Scheduler that uses advance knowledee of execution time 
MXM Maximum  number of tracts  in main storage 
ST Half (one-way) swap  time  in  units of time-slice 
OVLAP Overlapped swapping 
NOVLAP No overlapped swapping 

Table 5A Gross simulation results using data  of 15 FORTRAN tracts: Three  orderings of the  same  tract  stream 

I I I 
Average elapsc 

Scheduler 
t ime Aut 

B G 

232 453 
391 328 
391 328 

. - - - - - - - - - 
232 166 
232 166 

Figure-of-merit f 
G W B 

0.013 0.006 0.354 
0.112 0.103 0.130 
0.111 0.103 0.130 

0.354 0.354 0.354 
0.354 0.354 0.354 

""""""" """ 

Ige wait  time 
W B 

762 166 
332 325 
332 325 

~ _ _  

- - - - - - - - - - 
166 166 
166 166 

-I- Sequential (FIFO) 
Round robin 
Least completed 

Shortest execution 
Least remaining 

"" """"_ 

520 
395 
395 

232 
232 

" " _  

829 
398 
398 

""" 

232 
232 

I I I 

* Scheduler codes are as defined in Table 2 
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Table 5B Gross simulation results using data  of 15 FORTRAN  tracts: Three orderings of the same  tract  stream 

0 
" 

106 

0 

200 

0 

~ 

3 

- 
0 

"_ 
39 

0 

138 

0 

3 

"_ 

" 

- 

I 
-1- - 

Figure 2 Detailed  simulator  output  for  three schedulers 

l o  
50 I I06 

0: 
1 1  

3 5  
n: 
n: 

4 2 5 R 1 0 1" 
9 3 E 1 1 5 1 1  

S C H F D U L E R  CODP = 5 :  S P O R T F S T  F I I ~ U T Z O l V  T I F F  I S X P S )  
ARRIVAi.EXFCUTFlALOf/F~.CO~PLETION.BLAPSFP -41'0 W A I T  T I I ' F S  PEP ? P A C ? :  

1 0 . 1 2 1  0 . 0 8 8 2  0 . 3  9 
2 0 . 1 7 7 5  0.1132 0 . 3 3 3 3  1 2  

1 2  

5 0.1829 O.ll5LI 0 . 3 3 3 3   1 2  6 . 3 3 3 3  
5 . 5  

CPU T I M F I S F C . )  F O R  SIVULPTION IS: : 3 8 . 9 3 1 3 3 3 3 3  

The preceding concslusions are drawn from  only a few of a11 
possible worlcload cxses. Other cases may be illvestigut,ed with the 
sirnulator. 1:igurc 2 show the  output from :L typical simulnt,or 
session. The simuhtor  prompts  the user t'o  specify the needed 
parameters. H e  c:m also sperify print options: gross statistics  only 
or  full  st'ntistics. 

/ 0 / 0 l  
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