
underlie  error-control  coding for data  computing,  storage,  and 
transmission  systems.  

Emphasis   is   on  cycl ic   codes,   the   most   deeply   s tudied  and  widely  
used of the m a n y  available  codes.  Operatiom of typical   binary  shi f t  
registers  illustrate  the  encoding  and  decoding  processes. 

Strategic  considerations for applying  coding  to  computer-com- 
munication  systems  are  discussed.  Actual  applications  further 
exempli fy   the  basis  for code  selection. 

1 
i 

by D. T. Tang  and R. T. Chien 

Error rates associated  with  current  digital  systems are usually 
extremely low in  spite of the increasingly  high  speed of processing 
and transmission.  Recent  developments  in  error-correcting codes 
have  contributed  toward achieving the high  reliability  required  by 
today’s  digital  systems,  and i t  is evident that  the use of coding 
methods for error  control  has become an integral part  in  the 
design of modern  computers  and  communications  systems. 

This  paper  is  intended  as  an  introduction to  the  theory  and 
applications of error-control codes, involving both error detection 
and error  correction. The first  two parts of this  paper  are con- 
cerned with  fundamental definitions in coding and  digital  data 
channels. In  the following sections,  concepts of errors, code 
structures for error  control, and some general  properties of shift- 
register circuits are  introduced.  Methods of implementing en- 
coders and decoders as well as the functional classes of error- 
control codes are also described. The last  two  sections  deal  with cod- 
ing  strategy  and applications of error-control schemes in exist- 
ing  data-transmission and  storage  systems. 

Basic definitions 
Coding is the representation of information (signals, numbers, 
messages, etc.)  by code symbols or sequences of code symbols 
(often called code  words). The set of code words and  their  mapping, 
which determines the  set, characterize  a code. Information is said 
to be placed into code form  by encoding and  extracted  from code 
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form  by decoding. Certain codes may  have  a  larger  average code 
length  than  others. Such codes are said to contain  “redundancy,” 
which can be used to  advantage for error  control. 

The development of redundancy schemes, in  the  form of 
coding suitable  for  modern  digital  systems,  took place after the 
inspiration of Shannon’s basic theorem  in 1948.’ Among other 
things,  Shannon showed that even  in  a noisy channel,  errors in 
data transmission  can  be  reduced to  any desired level if a  certain 
minimum  percent’age of redundancy is maintained  by  means of 
proper encoding and decoding of the  data. Although  Shannon’s 
theorem does not suggest any procedure  for  constructing  such 
codes, the work of Golay: Hamming: Slepian; Prange; and 
many  others  have  contributed a whole body of new knowledge- 
coding t h e ~ r y . ~ , ~  Mathematical  structures  have been used to  
construct codes with  various types of error  control,  and  these 
structures provide  means of analysis  as well as sophisticated 
encoding and decoding procedures. 

Since encoding is no more than  the  digital  representation 
of information,  a code does not necessarily have  error-control 
capability. Source  codes, for example, are designed to represent 
information  with sequences of code symbols  in the most efficient 
way,  i.e.! using the smallest possible number of code symbols 
on the average.’ Therefore,  source codes usually  contain negligible 
redundancy  and should not be confused with  the  error-control 
channel  codes used under noisy situations.  Typically, a source 
code is first used to represent the  output of an  information source. 
Then  an error-control coding scheme is implemented to cope 
with the noisy condition in which the resulting code sequence is 
to be transmitted  or  stored. 

An important class of error-control codes is that of b2ock 
codes. A block code consists of “code  words,” which are sequences 
of code symbols of fixed length n, often  referred to  as n-tuples or n- 
vectors. In  most cases, the information  sequence to  be encoded 
contains k digits, which are encoded as  an  n-tuple code word. The 
redundancy (normalized) is (n - Ic)/n, or r / n ,  where r = n - IC. 
Such  a block code is often  denoted  as  an (n, k )  code. 

Because of their applications in  digital  data transmission, 
storage,  and processing systems, binary  codes are  by  far  the most 
important codes used. The simplicity of the binary  representation 
of information  lends itself conveniently to mathematical  treat- 
ments,  and  as a  result, we now know much  more about  binary 
codes than others.  We  deal  almost exclusively with  binary codes in 
this  paper. Although  familiarity  with basic matrix  operations is 
assumed,  other  concepts of modern  algebra are described as  they 
are used. 

Errors in digital data channels 
The transmission and  storage of digital data  have  much  in 
common. They  both accomplish the transfer of digital data from 
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Figure 1 Generalized data transmission  or storage system 
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a source to a  destination. For transmission, the source and desti- 
nation  are  mainly  separated  in space, a,nd for  storage,  they  are 
mainly  separated  in  time.  Transmitting  lunar  photographs  from 
a distant  satellite back to  earth, transferring data from one 
computer  component to  another only inches away,  and  writing 
and reading data on  magnetic tape can  all be  described  by the 
same  general process consisting of the steps shown in the block 
diagram  in  Figure 1. 

The purpose of the source  encoder is to produce the best 
digital  representation of data originating at  the information 
source.  Source encoding often  requires  redundancy  removal. 
When the information at  the source is in analog  form, the quantiza- 
tion of analog signals must also be  performed.  This part of the 
system is normally  independent of the channel  characteristics or 
noise statistics.  After the error-control encoder (or channel 
encoder)  adds the  appropriate  amount of redundancy, the modu- 
lator  then  transforms  the  digital code symbols into physical 
signals, such  as  voltage waveforms, ready  for  transmission or 
storage  via the noisy channel. On the  other  end of the channel, 
the exact  reversal of the above  procedure is performed in com- 
plementary  steps. 

Both  the  modulator  and  demodulator  must  be considered as 
parts of the digital data channel, since an error-control code can 
only  protect  against  errors corresponding to  the wrong identifica- 
tions of digital  symbols.  Modulation and demodulation  techniques 
designed to produce the fewest possible errors  are usually  analog 
in  nature. 

Although the analysis of modulation-demodulation  techniques 
are basically communications  problems, which are  not discussed 
in  this  paper, several  related facts  are mentioned  here. In  order 
to demodulate  properly, the demodulation must  be  able to  
establish the synchronization of received signals so that  the 
detection of a  digital  symbol is based  on the proper  portion of 
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the detected waveform. Any  small change in  detection  threshold 
level or sampling  delay would, strictly speaking,  result  in  a 
different digital data channel.  However, we may assume that 
the system  parameters  do  not  change  greatly  during a typical 
operating  period. All temporary effects of changes can  be  regarded 
as noise and included  in the error  statistics. In  the final analysis, 
the error  statistics of the demodulated  signals  characterize the 
digital data channel. 

Error sources 
The  distribution of error  statistics  depends  heavily  on the following error 
sources of errors: statistics 

Modulator  and  demodulator  circuit  noise is predominantly 
thermal  in origin and results  mostly  in  uncorrelated  errors. 
Physical  disturbances in terminal  components include  changing 
air  gap  and changing  surface  velocity in magnetic  surface 
recording. Errors caused by physical  disturbances  are  highly 
correlated and  tend  to cluster in  bursts. 
Physical  disturbances in transmission or storage media are 
usually sources of burst errors. 

The first  two  error sources are self-explanatory, but  there 
are  many causes of transmission and  storage  disturbances. The 
most common cause of errors  in  telephone  lines, for example, is 
switching-impulse noise. The  duration of such impulses is in  the 
order of milliseconds, resulting  in short  error  bursts. For micro- 
wave and  radio  links,  typical fading or dropouts  may  last  from 
milliseconds to seconds or even to  minutes. The resulting bursts 
thus  tend  to be  much longer than those  caused  by  switching 
impulses, and  they  are often difficult to control by codes, unless 
extremely long blocks are used. 

include loss of oxide, scratches,  dirt particles, and wrinkles. 
The effect of such  disturbances  can  accumulate  until  a tape is 
no longer usable. Many of these  defects are also common to 
magnetic  disks or drums.  These defects  typically  assume sizes up 
to  several mils, resulting  again in  short  bursts of errors.  Core 
storage  arrays usually  remain  reliable after  they  are  tested, 
although  breakage  or  other  accidental  defects  may  later cause 
independent  errors.  Generally  speaking,  burst  errors  are  much 
more likely to  be caused by physical  disturbances. Bakground 
noises do  exist, but become significant only in special cases such  as 
space  communications. 

A digital data channel is characterized  by the  error  statistics channel 
associated  with the  input  and  output  alphabets of the channel. models 
Therefore, it is often  desirable to  represent the error  statistics 
in  terms of a  certain  simple  mathematical  model.  List  all the 
conditional  probabilities of receiving the symbols  in the  output 
alphabet, for all possible transmittled  symbols  in the  input  alphabet. 

In  storage  media, such as  magnetic  tapes,  surface  defects storage 
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If these  probabilities are  independent of the locations of symbols, 
then we have a model completely  characterizing  a  digital 
memoryless channel.’ In  such  a  channel,  probabilities of erroneous 
symbols received are  independent of the neighboring transmitted 
or received sequences of symbols. 

When  most  errors tend  to  cluster,  the channel is no longer a 
memoryless one. A memoryless model can at  best  be considered 
as  an  approximation of the real  channel. If the clustering of 
errors is independent of the  transmitted symbols,  a Markov 
model is the  appropriate one.  Such  a model consists of states 
identified  by one or more preceding symbols  from the “error 
sequence” (the difference between the  transmitted  and received 
sequences). 

When  error  bursts  are  not necessarily solid, or when bursts 
themselves tend  to cluster,  such  as in a  fading  channel,  one must 
either go to  Markov models of higher  orders  or use a  different 
model, such  as  one  in which the probability  distribution of the 
number of digits  between  errors is described by  a  certain  simple 
function.’ 

Mathematical  structures in coding 
Some basic concepts of code structure  and  requirements of error- 
control arc now discussed. We choose a  subset  from the  set of 
all  n-tuples to form  a code set.  This code set  has some error-control 
capability, since the receiver can  detect the occurrence of an 
error when tjhe received n-tuple is not  in  the chosen code set. 
For  errors  to be corrected, we must also have  a decoding procedure 
that determines the supposedly transmitted code word when an 
unacceptable  n-tuple is received. This  can be  done  by a table 
lookup  procedure at   the receiving end. 

A mathematical  treatment of the encoding-decoding process 
is needed to (1) select a set of n-tuple code xords  with a specified 
error-control  capability, and (2) build  a structure so that  the 
code set  can  be decoded systematically  without  table lookup 
(which is clearly  impractical for large code sets).  Such  structures 
yield properties of code sets  that facilitate  analysis  and simpli- 
fication of the encoding-decoding procedure. 

It is desirable to  divide  a code word into  an  information  part 
and a redundant checking part. A code with  this  feature is a 
separable code. In  the case of the linear separable codes, each of the 
check symbols is a  certain  linear  combination of the information 
symbols. For example,  a  binary  information  4-tuple, (il, i,, i,, i4) 
can  be coded as  a  binary  7-tuple  with  three  binary check symbols 
(cl,  cz, c3). Here,  a  7-tuple code word may  take  the general  form 
(il, i2,  i3, i4, cl, cz, c 3 ) ,  with 

where additions  are  binary operat’ions.10 The relationship  can 
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be  conveniently  illustrated  by an example expressed in  matrix  form 
as shown  in Equation 1. A code word vector  results when a binary 
information  4-tuple  operates  on the code generator  matrix. The 
configuration of the generator matrix  is  obtained  from coefficients 
of the corresponding  simultaneous  equations, which depend  upon 
the  nature of the code selected. 

p 0 0 0 1 0 1  1 
[i12223241 

. . .  
0 0 1 0 1 1 0  

0 1 0 0 1 1 1  
= [VI, v 2 ,  * * *  , v,] 

L o o 0 1 0 1 1 1  

An equivalent  way to  characterize  a  linear code is to  specify 
a  set of simultaneous  parity equations that  must  be satisfied by 
the code symbols. Using the example in  Equation 1, the following 
three  equations  must be satisfied by  all the code words that  take 
the form (vl, v 2 ,  * , v7): 
01 + 0 2  + v 3  + v 5  = 0 

0 2  + 8 3  + 8 4  + 210 = 0 

01 4- v 2  + v4 + v7 = 0 

Again, this  set of linear  simultaneous  equations  can  be con- 
veniently  written  in matrix  form  as follows: 

1 1 1  

1 1 0  

[vl, 212, * . *  , v,] 0 1 1 = 0 IcI 
In  general,  a  k-tuple  information part can  be coded into  an 

n-tuple code word according to  the equation 

iG = v 

where the  matrix i is 1 by k, G is k by  n,  and v is 1 by  n.  The 
matrix G is called the generator matrix of the code. Alternatively, 
the  parity  equations  may be written  in  the  form 

vHT = 0 

where v i s  1 by n, HT is  n  by r( = n  - IC), and 0 is 1 by r. HT is the 
transpose of H, which is called the parity-check matrix of the code. 
For some basic structural  features of linear codes, see Appendix A. 

the n-tuple to  be coefficients of a  polynomial of degree n - 1 cyclic codes 
One  way to represent an  n-tuple is to consider the symbols of polynomial 
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or less. Specifically, an  n-tuple (al ,  az,  . . , a,) gives rise to  a 
polynomial  representation ~ . ~ x * - l  + a2xn-2 + . . + a,. 

When the addition and multiplication are  both defined on 
the symbols used as the coefficients of polynomials, t,he  addition 
and multiplication of polynomials  can  be  carried out  in  the 
ordinary  manner. The addition of two polynomials of degree 
n - 1 or less does not differ from the addition of corresponding 
n-tuples. The product of two polynomials a(x )  and b(x )  of degree 
n - 1 or less can  be defined as  another polynomial  c(x), also of 
degree n - 1 or less, which is the residue of the usual  product 
when divided by xn + 1. This  operation is written  in the form 

a(x)b(x)  = c(x)  modulo (x" + I) 

We use the symbol = in  this  paper  to mean "is congruent to." 
Any  binary  polynomial g(x)  must divide xn + 1 for  some posi- 

tive  integer  n.  The  set of all polynomials that  are distinct  multiples 
of g(x)  modulo xn + 1 constitutes  a cyclic (polynomial) code in 
the sense that if a(.) and b(x)  are code polynomials then a(x )  + 
b(x )  is  also  a code polynomial. 

Furthermore,  any cyclic (end-around)  shift of a code word is 
also  a code word, since a cyclic shift of a code word is equivalent to 
the multiplication of xi by  the code polynomial modulo (x" + 1)) 
resulting  in another polynomial in  the code set.  The polynomial 
g(x )  is called the generator polynomial of the code, and such  a 
polynomial uniquely  characterizes  a cyclic code. The polynomial 
h(z) = (x" + l)/g(x) is called the recursive polynomial of the same 
code. 

If the degree of g(x)  is T ,  then  there  are 2k distinct  multiples of 
g(x )  of degree n - 1 or less, where IC = n - r is also the degree of 
h(x). Some basic structural  features of polynomial codes are 
included in Appendix B. 

I 

General  requirements for encoding and decoding 
Thus  far we have discussed the generation of linear  separable 
and cyclic codes and  have  appended some basic structural fea- 
tures of these codes. Now, we briefly discuss certain  general 
requirements of linear  and cyclic codes. It was stated  that  the 
encoding procedure consists of essentially the selection of an 
n-tuple code word, given any  number of information symbols. 
At  the same time,  the decoding procedure  essentially consists 
of determining  what  these  information symbols  should  be, when 
receiving any  n-tuple.  Without  any code structure, decoding 
can  only be  done  by  table  lookup. 

When  linear codes are used,  however, the correctable  error 
error patterns become  separable  from the code words and  can  thus 

syndromes be identified  independently of the code words transmitted. 
To show  this,  let v be  a  code  word, and H be  a  parity-check 
matrix. If the error is e (an  n-tuple),  then  the received n-tuple 
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is v’ = v + e.  If we, calculate the syndrome, defined as 

S = v’HT = (v + e)HT = vHT + eHT = eHT 
we see that it is an  r-tuple  independent of the code word v. The 
syndrome S contains  all the information  regarding the error 
that  has been added to  the code word during the transmission. 
For a  deterministic  correction scheme, each  syndrome  must  be 
identified with  a  unique  error  n-tuple. Since the zero syndrome 
always  means “no error,” a nonzero syndrome is necessary for 
the detection of any  error  n-tuple. 

The following observation  can now be made  for a binary 
code. Since the syndromes are r-tuples, there  are 2’ distinct  forms. 
Clearly, we cannot expect8 the code to correct  more than 2’ distinct 
errors (including no error).  Furthermore, if two  errors  result  in 
the same  syndrome, a t  most one of them  can  be corrected. A con- 
dition  for  a  set of errors t o  be  correctable is for any  two  errors 
e, and e, from the  set  to satisfy 

elHT - e2HT = (el - eJHT Z 0 
In  terms of polynomials, the condition becomes 

e,(x) - e,(x) $ 0 modulo  g(x) 

where el(x) and e,(x) are  any  two correctable  error polynomials. 
In  particular, if an  error  takes  the  same  form  as a code word, 
then it cannot  be distinguished  from zero error. 

For a cyclic code, the syndrome of an error e(.) usually 
means the residue of e(x) modulo g ( x ) ,  the generator  polynomial. 
However,  depending  on the specific decoding procedure chosen, 
the syndrome  may  take  other forms such as  the residue of x‘e(x) 
modulo g (x). 

It should be noted that  the performance of a decoding scheme 
depends on the characteristics .of the information  source  and 
the channel,  as well as that of the code used.  Generally  speaking, 
if  we want  to minimize the decoding  error with a specific code, 
the conditional maximum likelihood decision scheme  should  be 
used, With  this scheme,  a code word v i  is selected as  the decoded 
message upon receiving v’, such that  the conditional  probability 
P(vi I v’) is maximum  for  all vi .  In  evduating these  conditional 
probabilities, accurate source statistics  must  be used. This in- 
troduces  an  immediate difficulty since such  detailed  source 
statistics  are usually  not,  available. Furthermore,  the calculation 
of P(vi I v’) for all vi is  impractical  for  most cases. 

An alternative  method of decoding is to use the maximum 
likelihood decision rule, which selects  a code word vi, upon  re- 
ceiving v’, such that  the conditional  probability P(v’ I vi) is 
maximum  for  all possible code words. The calculation of condi- 
tional  probabilities P(v’ 1 vi) no longer depends on the source 
statistics.  This rule is equivalent to  the conditional  maximum 
likelihood decision rule when all source symbols are equally 
likely. For  linear codes, this decoding method  requires that, 
among  all  error  n-tuples  resulting  in the syndrome  calculated, the 
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one with  the highest  probability of occurrence  should  be taken 
as  the error that occurred. Note  that  the error  can  be  identified 
independently of the code transmitted. 

We  may consider all possible n-tuples to  be points  in an 
minimum n-dimensional  space, and define a distance function D(x,  y) be- 
distance tween two  points (n-tuples) x and y to  be  the  number of places 

decoding where the  two  n-tuples differ. (In  binary cases, this is usually 
called the  “Hamming  distance.”)  We  may  then use the following 
minimum distance decoding  scheme:  upon receiving v’, select  a 
code word vi that minimizes D(v’ ,  v i )  among  all code words. 
Minimum  distance  decoding is equivalent to  that  obtained  by 
using the maximum likelihood decision rule,  provided that  the 
errors are  independent.  This  geometrical  interpretation of the 
coding and decoding  procedure is often very useful. 

The distance  function  previously defined has  the following 
“triangular”  property: for any  three  points x, y, and z, then 
D(x, y) + D(y, z) 2 D(x, z). From  this  property, one  can show 
that, if for  a given code the minimum  distance  between  any 
pair of code words is Dm, then  this code is  capable of correcting t 
errors  and simultaneously  det’ecting  d  errors (d > t) as long as 
d + t < Dm. On the  other  hand, if t-error correction  is  desired, 
then D ,  2 2t + 1. 

Linear switching circuits and  shift registers 
A properly designed electronic  linear  switching  circuit  is  capable 
of storing  and  manipulating a given digital message sequence 
algebraically, and hence  can be used for encoding or decoding 
purposes. The basic elements of a linear  switching  circuit are: 
delay  units,  adders,  and multipliers. In  binary cases, no  multi- 
pliers are necessary because the multiplication of 1 implies  a 
direct  connection, and  the  multiplication of 0 implies no con- 
nection. A switching  circuit  with  modulo 2 adders  and delay 
units  (or registers) is referred to as  a  shift-register  circuit. 

The relationships  between input  and  output sequences of a 
linear  switching  circuit  depends  upon the connections  among the 
basic  elements  previously described. With respect to  a  pair of 
input/output  points,  the  behavior of such a circuit  can be de- 
scribed by  its  unit response. This response is the  output sequence 
caused by  an  input sequence wherein the first  symbol is 1, and 
all the following symbols are 0. (The  initial  contents of all  delay 
units  must he 0.) 

We  may  denote a sequence s = (sl, sz, a )  in  terms of its 
polynomials transform,” which is a power series in the delay  operator D 

in delay s (D)  = s1 + sZD + s3D2 + * 

operator D For ease of algebraic  manipulation, a code polynomial A ( x )  
representing an n-tuple  is  usually  transmitted  with the higher- 
order-first convention.  Writing 
A(z) = ulzn-l + u2Zn-2 + * ’ . + a,-1z + a, 

= zn-l(ul + &x-’ + * - + un-1z2-n + Unx1-) 
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we see that, in a sense, x-' becomes equivalent to  the delay 
operator D .  

Consider the  binary shift-register circuits as shown in  Figures 
2A and 2B. If s(D) = 1, one can see from the  paths directed  from 
the  input  to  the  output  that, in both cases, 

t (D)  l a ( D ) = l  = T ( D )  = 1 + D2 + D3 

If we let D = x-' in 2'(D), we have 

T(l/x) = 1 + + x-3  

x 3 ~ ( 1 / x )  = x3 + x + I = T * ( ~ )  

or 

Here, T*(x)  denotes the reciprocal of T ( x )  and is obtained  by 
reversing the order of coefficients in T(s ) .  Thus, in  terms of 
polynomials in x, the circuits in  Figures 2A and 2B are  both 
circuits for multiplying the  input polynomial by the polynomial 
x3 + x + 1. The coefficient of the highest degree term  in  the 
product is obtained at  the  output without  any delay. 

Figures 3A and 3B show two division circuits whose functions 
can be easily analyzed by first observing that  the following 
relationships hold in both circuits 

x ( D )  = (D3 + D2) t (D)  

and 

x ( D )  + s ( D )  = W )  

Combining the above  two  equations, we have 

s (D)  = (D3 + D2 + l ) t ( D )  

or 

Similarly, for both  circuits  in  Figures 4A and 4B, 

__ t ( D )  - - ~ _ _  D3 
s(D)  D3 + D2 + 1 

In terms of polynomial representations,  all  circuits  in  Figures 
3A, 3B, 4A, and 4B are circuits for dividing the  input polynomial 
by the polynomial x3 + x + 1. The first  bit of the quotient 
(coefficient of the highest degree term) is obtained at  the  output 
either  without  any  delay or after  three  units of delay  depending 
upon whether 1 or D3 appears  in the numerator of the  transfer 
function. 

Figures 5A and 5B show circuits for respectively  multiplying 
and dividing the  input polynomial by an  arbitrary polynomial 
of degree m, 

- 

A ( x )  = xm + un-lxm-l + . * . + u,x, + a, 

Figure 2 Multiplication circuits 

A 

Figure 3 Division circuits 

A 

Figure 4 Division circuits that 
produce residues 

A 
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Figure 6 Combinatorial encoder for  a  linear code 

4 L : 
tions  add  the  output  from  the  third register to  the  contents of 
the first and  the second  registers, thus effecting x3 = 1 + x 
(or x3 + x + 1 = 0) whenever this  reduction becomes possible. 
The final contents of the registers  clearly  represent the  input 
polynomial  minus  all  multiples of x3 + x + 1, that is, the residue 
of the  input polynomial  modulo x3 + z + 1. 

The shift-register contents of other  types of division circuits 
do  not necessarily correspond to  residues. For example, the 
shift-register  contents of the circuit in  Figure 3A represent the 
residue of the  input polynomial  multiplied by x3 modulo z3 + 
z + 1. I n  general,  register contents represent  linear  transforms 
of the residue coefficients described  above. 

Encoders and decoders 
An encoder  for an  (n, k )  linear code produces an n-tuple code 
word when an information  k-tuple is given. This  fact is illustrated 
by  writing  the symbols  in the n-tuple code word  as  functions of 
the given  k-tuple and  implementing each of these  functions  (as 
Boolean functions)  with logic circuits. For example, the linear 
code specified by  Equation 1 may  be implemented by  the circuit 
in  Figure 6. Note  that  the information  symbols  remain  unchanged; 
thus,  the code obtained is separable. 

When a cyclic polynomial code is  used, i t  is convenient to  
generate the code polynomials in a  sequential  manner. The binary 
cyclic code with  the  generator polynomial g(z) = x3 + x + 1, 
for  example, may  be encoded with the shift-register  (multi- 
plication)  circuits in Figures 2A and 2B yielding a  nonseparable 
code structure.  When  the code is  separable, a division circuit 
capable of producing the residue of the  input polynomial  modulo 
g(x) can  be used to produce the check symbols.  Figure 7 shows 
such an encoder. During  the transmission of the first k bits, 
information  symbols  are fed into  the encoders  shown  in Figure 7. 
The switch K is in the 0 position, allowing the same  symbols 
to  appear unchanged at  the  output.  At  the end of k bits, the 
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desired residue has formed in the registers and is obtained by 
throwing the switch I< to  the 1 position. Since the feedback of 
the division circuit  is now nullified, the register  contents will 
next  appear at  the  output. 

The cyclic code generated  by the polynomial g(x )  = x3 + x + 1 
is identical to  the linear code described by  the generator  matrix 
of Equation 1. Encoders shown in Figures 6 and 7, therefore, 
yield the same code words when fed with the same lc-tuple input. 

The basic function of a decoder is to establish  mapping  from 
the syndrome  (r-tuple) of the received message to  an error  n-tuple. 
By  subtractling  the error from the received message, one obtains 
the  transmitted code word which, in the case of separable codes, 
contains the original information lc-tuple. 

Since the mapping being implemented can be  completely 
specified by a  table, an immediate  approach to  the design of a 
decoder is via  a logic circuit that implements the  table lookup 
procedure.  When decoding delay  must  be minimized, the logic 
circuit  approach  in decoding can be quite  attractive.  The obvious 
limit to  this  approach is that  the complexity of the decoding 

Figure 8 General-purpose  de- circuit tends  to grow exponentially  with the capability of the 
coder for cyclic code code used. 

RECEIVED With cyclic codes, simplification in  the decoding circuitry is N-B,T CORRECTED 
7 i - h M E s s A G E -  MESSAGE possible. Figure 8 shows a general-purpose decoder which consists 

of the following components:  a division circuit that serves as a STORAGE 

SYNDROME 
GENERATOR 

DETECTION 
CIRCUIT 

I syndrome  generator,  an  n-stage buffer storage that retains the 
message received, and a  syndrome recognition circuit that usually 
recognizes the syndromes of error vectors that include an erroneous 
highest-degree digit. 

To see how this decoder works, let a ( x )  = alxn-’ + + 
U,-~X + a, be the code polynomial and  let a’(s) = a(z)  + e(.) be 
the received polynomial, where e ( x )  represents the error. As 
mentioned  earlier, the syndrome of a’(x) generated  here by a 
division circuit of g(x)  is independent of a(.). The  syndrome is 
obtained when the  last  digit of the code word, a,, has  entered 
the decoder. If the first  digit is not in error, the syndrome  detection 
circuit  maintains  a zero output  and  the highest  order  bit is ob- 
tained  unaltered at  the  output. After  a  shift, the transformed 
syndrome corresponds to  xe (x ) ,  which is the original error with 
the coefficients advanced one position toward the high-degree end. 
The syndrome recognition circuit then recognizes the syndrome 
if the second digit in  the original received message is in error. 
Since the  same  argument applies to  the subsequent  shifts and 
subsequent  errors, we see that erroneous digits of a  correctable 
error  pattern can  all be corrected. 

The decoding circuit of Figure 8 requires  a  delay of n  digits 
before the decoded messsge is received. The errors are corrected 
sequentially.  Although generally applicable to all  types of cyclic 
codes, the syndrome recognition circuit  may in  many cases still 
be  too complicated  (in spite of the  relative simplicity in com- 
parison  with the  pure combinatorial  circuit).  However,  remarkably 
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If a code is used for error  detection  only,  one merely needs a 
recognition  circuit to  determine  whether the residue is zero. A 
nonzero  residue  indicates that  an error  has been detected. 

Functional classes of error-control codes 

Several  functional classes of cyclic polynomial codes have been 
found : 

Xingle-error-correcting  codes. A single-error-correcting code 
of length n is capable of correcting any  error affect'ing no more 
than one  symbol  in  a code block of n symbols. 
Burst-error-correctings  codes. A burst-error-correcting code of 
length n is one that can  correct any  span of errors of fixed 
length b or less in  a code block of 12 symbols. 
Independent-error-correcting  codes. An independent- (or multi- 
ple-) error-correcting code is a code of length n that is capable 
of correcting up  to a  multiple of t errors  within  a code block of 
length n. 
Multiple-character-correcting  codes. A multiple-character-cor- 
recting code is a code of length n characters,  where a character 
is a  group of bits  with fixed length. Any combination  up to a 
fixed number of character  errors  within  a block may  be cor- 
rect'ed. 

Depending  upon  channel  characteristics,  members of these 
code classes may  be  selected.  Methods  for finding generator  poly- 
nomials for  these codes are given in Appendix C. 

Certain specialized codes are modifications of some members 
of previously  mentioned  functional classes of codes. Int'erleaved 
codes, N-dimensional codes, and shortened codes, for example, 
are  methods of constructing  stronger codes based  on weaker ones. 
Self-orthogonal codes are characterized by  their  threshold logic 
decodability, which leads to  simple decoding circuits.  Synchroniza- 
tion codes add  framing  capability  to error-control.  Convolutional 
codes form  a class of nonblock codes with  various possible error- 
control  capabilities and  are often used in  conjunction  with the 
sequential decoding technique.  Constant-weight codes are useful 
in channels  with  some special properties.  Arithmetic codes are 
based on arithmetic  operations  and  are useful in  channels which 
include arithmetic processors. Certain basic properties of such 
specialized codes are included in Appendix D. 

Coding  strategy 
When an  error-control code is considered in  a  digital  transmission 
or storage  system, one should  ask not only what  can  this code do, 
but also what  is needed to achieve the capability of the code. 

Generally  speaking, the longer the block length (ie., larger n),  
the more  storage the decoder requires, and  the  greater  the mini- 
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mum decoding delay. It is also generally true  that  the longer 
the code block the larger the class of errors to be corrected, hence 
the more complicated the decoding circuits.  However, the dis- 
tribution of errors in longer code blocks becomes much more 
predictable,  thereby  permitting the use of codes with  smaller 
redundancy while maintaining the same  reliability. 

The  data flow in  a complex computer syst,em may  take different 
forms at different levels corresponding to  the channels described 
previously.  Therefore, basic requirements for error-control codes 
may also change  in emphasis from one case to  another. For 
example, intermachine data transmission  may go through  many 
conventional  communications channels. The  primary requirements 
of the preferred error-control scheme are high reliability  and high 
information rate. Since decoding delay does not reduce throughput, 
one would tend  to use longer codes with lower redundancy even 
though  they require more decoding complexity. 

For  intramachine  transmission,  such  as going in and  out of 
an internal random-a,ccess storage,  the  primary coding require- 
ments  are high  reliability and speed. Thus, simple decoding by 
circuitry is essential  in keeping storage access-time small.  Another 
feature of the codes  used for intramachirle  transmission is that  an 
error-control code is often used in the detecting mode, since 
retransmission  can usually be effected by simple instructions 
based on the outcome of error  detection.  There  are exceptions to 
such general rules. An optimum coding strategy can be achieved, 
a id   the best code obtained, only after  a design engineer evaluates 
several  alternatives. 

We now outline  several different courses of action he may 
prefer as an alternative of forward-acting full-power correction 
with block codes. 

The main  advantage of error  detection is the simplicity of 
error its  implementation. An error is detected if the received message 

detection yields a nonzero syndrome.  For cyclic codes, a division circuit 
plus a test for zero constitute a complete decoder. 

The detection  capability of a code is closely related to  its 
correction  capability. If a code is capable of correcting a set 
(ei) of error  n-tuples,  then  the  syndromes of any  two  errors, 
e and e from the set  must be distinct.  This implies that  any error 
of the form e i  + e ,  must be detectable. It should be pointed out 
that  the code also detects  many  other  errors. Any error of the 
form e i  + ei + v is clearly detectable if v is a code vector  (and 
vH” = 0 ) .  This  often  results  in  a significant reduction  in the 
undetected  and  uncorrected  error rate. 

From  the preceding, we observe that a t-error-correcting code 
is capable of detecting  all  combinations of 2t errors, and a burst-b- 
correcting code is capable of detecting any two  bursts of length 
b or less. A Fire code generated by g(z) = (xc + l)p(z)-as 
described in Appendix C-when used for detection  only, is capable 
of detecting  any combination of two  bursts of which the length of 



code of degree r is capable of detecting all single bursts of length 
up to r .  

Error detection is an  attractive means of error  control provided 
it is possible to effect retransmission. In  the case of data  trans- 
mission, this implies the existence of a reliable feedback channel, 
which is used to relay the request-for-retransmission message 
back to  the sender.12-14 Many  data links  within a computer 
system  have the  ability  to regenerate a message at  the sending 
end when it is not cleared at  the receiving end. On the  other 
hand,  an error  detected  during  a  readback process from  storage 
may not be successfully avoided by  rereading the same message 
when the error is due to a  permanent  damage  in the storage 
medium or when the error occurred during the writing process. 

When  a feedback channel  is  available, one should  calculate, 
from available  statistics, the probability of requests for retrans- 
mission and  the average  time the system is tied  up because of 
the requests.  Performance of the detection-retransmission  method 
can then be evaluated  within the context of given system  param- 
e t e r ~ . ~ ~  In general, detection and ret'rsnsmission is effective 
against highly clustered  errors. For random  errors  or for a com- 
bination of random and  burst errors, some error will tend  to 
appear  regularly  in  every block. In such cases, some forward-acting 
error correction is necessary to maintain the performance of the 
transmission  system. 

We have seen that, even where a feedback channel is available, 
some forward  error correction is often needed to combat  random 
errors. For most codes, there is a trade-off between the numbers 
of correctable  and  detectable  errors. A multiple-error-correcting 
code is  capable of correcting t errors and simultaneously  detecting 
d errors  as long as the minimum  distance of this code is a t  least 
t + d + 1. A Fire code generated by g(x )  = (xc - l)g(x) is 
capable of correcting a  burst of length  up  to b and simultaneously 
detecting any  other  burst of length  up  to dc 2 b as long as b + 
d - 1 5 c and b 5 m, the degree of p ( x ) .  See Appendix C. 

Aside from the need to use partial  correction  in  conjunction 
with the detection-retransmission  met'hod,  there  may be other 
reasons for the use of partial correction in the overall  error-control 
scheme, namely, to minimize the decoding complexity. We 
mention  here  two  situations wherein partial correction  may 
prove useful. 

1. In  the case of multiple-error  correction, decoding com- 
plexity grows exponentially  with the number of errors  corrected. 
Thus,  even if a given code can correct t > 1 errors, one may 
still  want  to go through  a single-error-correction procedure and 
test  the syndrome for possible erroneous correction. If single 
errors  account for a large portion of the overall  error rate, con- 
siderable  reduction  in  average decoding delay can thereby be 
achieved. Success of single-error correction eliminates the need 
to go through the more complicated t-error-correction. If two 
or more errors occur, the single-error-correction procedure  may 
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make  an erroneous  correction  in  some cases. However, due  to 
the minimum  distance of the code, the result is still  a  detectable 
error. The correction  algorithm specifies returning  to  the original 
message received and  trying a  more powerful correction  procedure. 
A  similar  approach also applies to  the  partial correction of multiple 
errors  up  to  the maximum number of correctable  errors. 

2. For  certain classes of multiple-error-correcting codes, 
simple  circuit  implementation is possible for correcting  a  small 
number of errors. Since threshold-logic decoding has  error de- 
tection  and correction  capabilities  approaching  those of multiple- 
error  correcting codes, the combination of partial correction by 
logic circuitry  and  detection  may  prove  very useful. 

Erasures usually correspond to detected signals that  are 
erasures considered to  be in  a  certain "no-confidenc:e zone". In the case 

of binary level detection, the erasure zone is intermediate  between 
the 1- and  the 0-zone. In  general, an  erasure implies an unknown 
symbol  (or  character) at a  known  location. 

In  a  pure  erasure  channel,  locations of errors are always  known. 
The error-correction  capability of a code in  an  erasure channel is 
similar to  its detection  capability  in  a  nonerasure  channel. An 
erasure  pattern is correctable if (and only if),  by  substituting all 
possible combinations of symbols a t  these  erased  digits,  only  one  re- 
sults in a code word. With a  t-error-correcting code, any  pattern of 
2t erasures is correctable. This follows immediately  from the  fact 
that, with 2t erasures,  any  two  n-tuple resulting  from  different 
substitutions  can differ a t  most a t  2t digits.  However,  a t-error- 
correcting code must  have a  minimum  distance at  least 2t + 1, 
which means  these  two  n-tuples  cannot both be code words. 
Similarly,  with  a  burst-b-correcting code, any  pattern consisting 
of two  erasure  bursts of length b or less is correctable. 

In more  realistic  channels,  erasures are often  compounded 
with  nonerasure  errors.  Again,  there is a trade-off between the 
numbers of correctable  errors and erasures. For example,  a 
multiple-error-correcting code is capable of correcting any com- 
bination of t errors  and e erasures  as long as the minimum  distance 
of the code is a t  least 2t + e + 1. 

Generally  speaking, the use of erasures tends  to reduce the 
uncorrectable-error rate.  The  amount of imurovement  is  a  function 

olds that define the erasures. The price of improvement  here is a 
probable  increase  in decoding complexity.  When  correcting 
combinations of errors and erasures  with  a  multiple-error-cor- 
recting code, one must perform the additional  step of transforming 
the error  syndromes  in  order to  separate  the erasures  from non- 
erasures before the ordinary decoding procedures  can be applied."j 
At least part of this  added effort is  compensated  by  a  reduction 
in the number of errors to  be  corrected,  as  compared  with forcing 
all  erasures into decisions of code symbols. The erasure  concept 
can  be generalized as an increased  number of levels at  the  detector 
output whereby further gain  in  reliability is po~sible. '~ 
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If the noise characteristics of a  digital data channel  tend to 
change  from  time to time,  an  adaptive coding scheme may  be 
desirable. In  the method of detection and retransmission,  certain 
forward-acting partial correction becomes necessary if a  small 
number of errors tend  to occur regularly. The  amount of partial 
correction can be monitored at  the receiving end to cope with 
the  varying error rate.  Recently,  an  interesting method of adaptive 
decoding without feedback has been developed." With  this 
method,  a received message is analyzed to determine  whether 
the burst-error correction or the independent-error correction 
should be performed. Methods  have been studied for changing 
the code used (as well as the decoding algorithm) in such  a way 
as to minimize implementation complexity." a z o  

Although  sequential decoding has been successfully applied 
to space communications, its use in  computer  systems is still 
in an exploratory  stage. Quantitative performance  evaluation of 
a  sequential decoding algorithm is difficult without  actual im- 
plementation  and  testing. As  we have  indicated  previously, since 
the decoding algorithm can only be implemented  by  a  computer, 
sequential decoding is not applicable where sufficient processing 
capability is not  provided.  Another  factor that may  limit the 
use of sequential decoding is that decoding effort is a  random 
variable  without an upper  bound.  However, the sequential 
decoding algorithm is applicable to a wide range of conditions, 
including those  in which other block coding schemes do  not 
perform satisfactorily.  Such conditions exist, for example, where 
the  initial error rate is high, or where high reliability is required 
at a  high  information rate. 

Some  error-control  applications 
Many IBM terminals use cyclic codes for error  detection. Because of 
their  relatively low error  rates,  the codes are  mostly  burst-detect- 
ing codes that usually have  very  little  redundancy. 

The IBM 1050 data communication  system uses an  interleaved 
code, generated by g ( x )  = (x6 + I), in which six check digits 
form a  character at  the end of each message. Single burst-errors 
of length  up  to six are detectable,  as  are  many  other  error patterns. 

The  Binary Synchronous  Communication (BSC) '~ convention 
uses a  burst-2-correcting code generated by g(x )  = (x + l)p(x), 
where p ( x )  is a primitive polynomial of degree 15. The BSC code 
is capable of detecting  two bursts of length  two. Also, because 
the minimum  distance  is  four, BSC can  detect  any  three or fewer 
independent  errors in messages up  to a  length of 215 - 1. 

Although  errors on microwave links used for voice-grade 
channels are effectively eliminated  by the use of pulse code 
modulation  and  repeaters, encoders and decoders for additional 
error  control  are  provided.  For  example, private lines are available 
with  additional coding equipment, wherein the code used is a 
shortened (200, 175) BCH type  with a  minimum  distance  equal 
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to eight. The generator  polynomial of this code is of the form 
g(x )  = (x + l)ml(z)m3(z)m5(z), where m,(x) ,  m3(x),  and m5(x)  
are polynomials of degree eight. The (200, 175) code is  obtained 
by  shortening a  full-length (255, 230) code. This code is capable 
of correcting three  independent  errors  and,  in  addition,  detecting 
four  errors.  Retransnission  is requested if an  uncorrectable  error 
is detected. The use of a  convolutional code with one-sixth re- 
dundancy is also an option  with the direct-distance-dialing 
switched  network. 

Although  magnetic cores are highly  reliable,  such  storage 
data elements as  drivers, sense amplifiers, and  read-write  gates, which 

storage control the storage  operation,  are  subject to occasional failures. 
The use of an  error-control code in the CPU of a  computing  system 
not only  helps to locate  failures, but also keeps the CPU in  operation 
when the effect of a failure is within the correction  capability of 
the code used. 

The IBM 650 central processing unit uses a  “bi-quinary” code, 
which encodes a  decimal  digit into seven binary  digits  with 
two  1’s.  This code, like the four-of-eight code, detects  all odd 
numbers of errors. 

The IBM 7030 (STRETCH) computer uses a single-error-cor- 
auxiliary recting  double-error-detecting code with 64 data bits and eight 
storage check bits.  The encoding and decoding are  implemented  by 

logic circuits. 
The IBM 7070 data processing system uses a “two-of-five” 

code with  an  additional overall parity check. Many  other CPU’S, 

including SYSTEM/XO, use single parity checks for  error  detection. 
Disk files, like other magnetic  surface-recording  systems, 

are  vulnerable  to surface  irregularities.  Therefore,  protection 
against  burst  error is usually  needed. As the recording  density 
increases,  more powerful coding schemes are needed. The IBM 1300- 
series disk  storage uses a cyclic code for burst  detection,  in which 
there  are  13 check digits at   the end of every  record. The IBM 2301 

drum  storage  unit also uses a cyclic code with 19 check digits  for 
error  detection.  Most of the  other disk files use similar cyclic 
codes for  error  detection. 

Magnetic tape  units used today  contain  several  tracks,  and a 
character or a byte is obtained  by  reading  one  bit  from  each 
t,rack.  Error  control is necessary  since tapes  are  relatively less 
reliable than magnetic cores. Control  can  be  achieved  in  a  number 
of ways. The  tractor  tape  unit  has 22 tracks,  16 of which are 
information  bits  and six are check bits.  Each  character is a 
(22,  16) code obtained  by  shortening a (31, 2 5 )  BCH code with 
minimum  distance of four. The IBM 727 and 729-series magnetic 
tape unit’s use a two-dimensional coding scheme.  One track, 
which provides a vertical  redundancy check (VRC), is used for an 
overall check on each  character. Also, one  character at  the  end 
of each  record is used for an overall check on  each  track  and is 
known  as the longitudinal  redundancy check (LRC).  The overall 
code detects  errors  in a single track, plus many  other  errors. 
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The IBM 2400-series magnetic tape  units use a coding scheme 
involving another  character  next  to LRC as a check based on a 
cyclic code, in  addition to  the VRC and LRC already  described. 
This check is called cyclic redundancy check (CRC) and is discussed 
in  greater  detail  in Appendix E. 

The photo-digital  storage  for the IBM 1360 computer,  known 
as Digit’al  Cypress,45 uses a (366, 300) Reed-Solomon code, which 
is  one of the most  sophisticated codes ever used for  storage. 
With six bits in each  character,  this code is a multiple-character- 
error-correcting code with a minimum distanrc (on the character 
basis) equal to  12,which  requires 11 check characters (66 bits).  The 
full length of the code is 2‘ - 1 characters  (i.e., 63 characters  or 378 
bits).  There  are 300 bits  (or 50 characters) of data plus  two  char- 
acters for line  number  2nd 11 check characters,  The code is capable 
of correcting any combination of independent  and  burst  errors 
representable by five characters. A sixth  character  error,  plus 
many  ot’hers,  can  be  detect’ed. 

Except  for the encoder and  the syndrome-gencrating  circuit, 
the  Digital Cypress decoding procedure  is  implemented  by 
programming, the  strategy for which may he outlined  as follows. 
When a nonzero syndrome is detected,  a rescml  is called for first,. 
If the error  is  still  present, the program goes to a single-error 
partial-correction  subroutine. If that procedure is unsuccessful 
in  correcting the error, a two-error partial-correc.t,ion subroutine 
is called. The full-power  correction  routine is used only when 
both  the single-error- and  the double-error-correction  subroutines 
are unsuccessful. 

Concluding  remarks 
We have developed basic concepts of error-cont’rol coding, with 
emphasis  on the use of cyclic codes, which form  a  subclass of 
linear block codes. The use of an error-control  scheme  should  be 
an integral part of the overall  system  design, rather  than a 
“remedy” or a “bonus” for  a  system  with  unsatisfactory reli- 
ability. To  achieve a  proper  error-control  scheme,  a  systems 
engineer needs an extensive knowledge of existing coding methods 
and  their implementat’ions.  Since this  paper is not  intended  to 
give a  full treat’ment of the  theory  and applications of all types 
of codes, the aim  has been to  expose some of the underlying 
principles involved  in  selecting an error-control coding scheme 
for a  realistic  computer or communication system. 

The demands on overall data-processing and  communicatio~~s 
capacities have been increasing and  are expected to  grow. This 
implies a prev:tiling need to fully  utilize  every  communication 
or memory  channel  available. One approach is by tvay of error- 
control  coding. With advances in intjegrated  circuit  technology, 
costs of logic and  storage elements are declining in comparison 
n-ith  increasing rates of data-processing. Thus, circuit-imple- 
mented  error-control schemes are expected to become increasingly 
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integral part of the monolithic  circuit design. 
As applications of more sophisticated  error-control coding 

schemes for computer  and communications  systems become more 
extensive, one may expect coding principles to he applied to 
other  types of problems. For example,  algebraic  procedures 
typical of  e11codillg and decsocling can be used to obtain  solutions 
in  such  problem  areas :is file organization and document’ re- 
t r i e ~ a l . ~ ~ , ~ ~  Since :a document  in n file is  usually  characterized 
by a  list of “descriptors”  contained  in a “dictionary,” a  binary 
n-vector  can  identify  a  document, wherein each  position of 
t’he  n-vector  represents  a  descriptor.  Storage  required  for  such 
:L dictionary becomes t,oo large to be  practical  in  most cases. 
However, if we regard  t’he  n-vectors a s  crrors, the vectors  can be 
t,r:msformed into r-t’uples  (syndromes) appropriate  to  the code 
sclec8ted. Thc r-tuples  can  then be used to identify  documents  in 
the file. Requests for retrieval c a n  be handled  with the help of 
the cm-responding decoding :dgorithm. 

The design of matrix swit,ches, such as those used in  main 
storage  arrays, is another  example. It has been show11 that certain 
codes (:an be used to  determine se1ect)ion p:rtterns ill a matrix 
switch so that all driving power is ch:~nneled to  the sclected 

Coding  conrepts  and techniques are dso  pot’enti:dly useful 
in  such  other  areas as signal  design,  digital  modulation, pattern 
recognition,  fault  diagnosis,  image processing, and  cryptography. 

output  0111y.~~,~~ 

Appendix A: Structure of linear codes 
The first  four columns of the four-by-seven coefficient matrix 

in  Equation 1 form a11 identity  submat’rix. In  general, the gen- 
erator  matrix of a separable code is a IC by n matrix  containing 
a IC by 1; identity  submatrix.  The columns of the  submatrix cor- 
respond to  information  positions. 

A fundamental  property of :t. linear code is that if v, and vi 
are two code words, t,hen v,( =v,  + vi) must also be n code word, 
since 

v i  + v i  = xiG + x,G = (X, + xj)G = x ~ G  = ~k 

The use of a  generator  matrix  to represent  a code eliminates 
the need to list all the n-tuples in the code set. In the binary 
case,  a IC by n generator  matrix uniquely specifies the code set 
containing 2k n-tuples. 

With respect to  every  linear code set IT, it is possible to find 
a set U of n-tuples  such that C and V are  “orthogonal”  in  the 
sense that for any  n-tuple code word v in V and  any  n-tuple 
code word u in C ,  
V U T  = 0 

Here, v and u are row matrices, :md uT denot’es the transpose of U. 
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The  set U is obtained  by summing  all possible combinations of 
rows of an r by n  parity-check  matrix. The  orthogonality require- 
ment  can,  therefore,  be written  as 

G H ~  = o 
Given the code word v = (vl, v2, , v,) in V that satisfies 

the equation 

vHT = [v,, . . , vn][y h;, . * = 0 

then  the following set of linear  simultaneous  equations is obtained: 

hi1 h x  a * *  hvl 

hln hzn 1 . .  hrn 

hllvl + hlzvz + . * * + hlnvn = 0 

h,lvl + hr2v2 + * * * + hrnvn ! I  = 0 

A  parity-check  matrix H specifies r linear  simultaneous 
parity-check  equations that  must be satisfied by  the symbols of 
every code word from V .  

To obtain the parity-check matrix, we can  write the generator 
matrix  in the  standard  form G = [I, PI, where I, is a k by k 
identity  submatrix  and P is a k by r submatrix  that describes 
the interdependence between information  and parity-check 
symbols. The parity-check matrix  can  then be written  as H = 
[P' I,]. One  can check to see that 

GHT = [I, PI[:] = o 

Although the specification of either  a  generator  matrix or a 
parity-check  matrix  uniquely  determines  a  linear code, neither 
the generator  matrix nor the parity-check matrix is unique. 
In  general, different generator or parity-check  matrices for the 
same code are  obtainable  from one another  by means of non- 
singular  linear  transformations. 

Appendix B: Structure of polynomial codes 
Given  a  generator  polynomial g(x) of a cyclic code, a cor- 

responding  generator matrix G can be  written  by listing lc n-tuples 
(corresponding to k code polynomials),  none of which can be 
obtained  by a  linear  combination of the others. For example, 
n-tuples corresponding to  xig(x), i = k - 1, IC - 2,  . . . , 0 consti- 
tute IC rows of a  generator  matrix of the same code. The generator 
matrix of the specific form G = [I, PI can  be  determined  as 
follows. For each xi, where i = n - 1, n - 2,  . . . , r, find the 
residue pi(.) = xi, modulo g(x) .  The IC polynomials 
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are multiples of g(x)  and  are,  therefore, code words. Also, by 
writing the corresponding  n-tuples  as rows, the result is a  generator 
matrix of the form 

G = [I, PI 

To  obtain a parity-check matrix H, simply  write  each  n-tuple 
corresponding to  x ih(x) ,  i = 0, 1, . . . , r - 1 in the reverse  order. 
The r rows thus  obtained form  a  parity-check matrix.  This 
procedure  can  be checked by  identifying  the  product of any 
row of G corresponding to  x ig (x ) ,  where 0 5 i 5 IC - I ,  and 
any row of the previously  mentioned H to be  identical to  one 
of t'he missing coefficients in the equation g(x)h(x) = xn + 1. 
To  obtain  the specific form H = [P' I,], we find the residue 
q i (x )  = xi, modulo h(x), for  each x i ,  where i = IC, k + 1, - , n. 
The reversal of each  n-tuple  corresponding to  the polynomials 
xi + qi(x), where i = k ,  k + 1, . . . , n, which are all  multiples 
of h(x), gives the r rows of the parity-check  matrix  in  the desired 
form H = [P' I,]. 

For example, consider the primitive  polynomial g(z) = 

x3 + x + 1, which as a  generator  polynomial,  generates  a code 
of length 23 - 1 = 7. To write the corresponding  generator 
matrix,  calculate residues of xi as follows: 

p3(x)-x3=X+1, p4(x)=x = x  +x, p 5 ( x ) = x 5 = x 3 + x  "x +x+l, 4 2  2 2  

p 6 ( x ) = x  "x +x +x-x2+1, modulo (x3+x+l) 

The following generator  matrix contains rows corresponding 
to  the vector  representation of polynomials xi + p,(x), i = 6, 
5 ,  4, 3: 

6 3 2  

1 0 0 0 1 0 1  

G = i ; ! K i ; j  

To write the parity-check  matrix,  first  calculate h(x) = (x7 + I)/  
(x3 + x + I) as follows: 

x 4 + x 2 " + x + 1  
x3 + x + 1 2  t 1  

x7 + x5 + x4 
x5 + x4 + 1  
x,5 + xa + x; 

'io TANG A N D  CHIEN 



Thus, h(x) = z4 + x2 + x + I, and 

p4(x)=x4=z2+z+I, ps(x)=x5=x3+z2+2, 

q e ( 5 ) ~ x 6 ~ 2 4 + 2 3 + z 2 - x 3 + z + I ,  modulo (z4+z2+5+l) 

Writing,  in  reverse  order, the vector  representation of poly- 
nomials xi + q i (x ) ,  where i = 4, 5 ,  6, we have  the parity-check 
matrix 

It can  be seen that  the cyclic code in  this example is identical 
to the liuear code of the  last example. 

Appendix C: Methods for finding  generator 
polynomials 

Single-error-correcting codes are often  referred to  as  Hamming single-error- 
c ~ d e s . ~   I n  such  a code, any  two  distinct single errors xi and x i  corecting codes 
must yield distinct  syndromes. Let e t  and e i  be row vectors 
corresponding to xi and x i  respectively 

e,HT # eiHT 

or 

(ei + ei)HT # 0 

Thus, the generator  polynomial g(z) never  divides x i  + x i  for 
any i and j .  This  condition  can be satisfied if  we choose the code 
length n to be e,  where e is the period of g(z). The period e is the 
smallest  integer  such that g(x)  divides z E  + 1. With i and j both 
smaller than n, g ( x )  can  never  divide (xi + xi) = + 1). 
In  particular, if an  rth degree g(z) is irreducible (i.e.,  not divisible 
by  any  other polynomial except I), then  the period of g(z) divides 
2‘ - 1. Then, if the period of g(z) is 2’ - I, g(z) is said to  be 
primitive.  A single-error-correcting code generated  by a primitive 
polynomial is “close-packed”  in the sense that all 2’ syndromes 
are used for the prescribed  correctable  errors, 2‘ - 1 single errors 
and one zero error.  Since  primitive  polynomials  are  known  to 
exist for all degrees, Hamming codes of length 2‘ - 1 exist for all r .  

codes is to obtain codes to correct any error burst  within a  span correcting codes 
of b digits.  Such codes are called burst-b  correcting and 
are  suitable for channels  with occasional error  bursts. 

A class of burst-error-correcting codes, known  as Fire  code^,^' 
is best defined as the class cyclic codes wherein the  generator 
polynomials take  the  form 

One  way to  generalize the class of single-error-correcting burst-error- 

g(x) = (xC + l ) p ( x )  

Here, c 2 2b + 1, the length of the code is the least common 
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multiple (LCM) of c and  the period of p ( x ) ,  and  the degree of 
p ( z )  is a t  least b. When  these  conditions  are  satisfied, the resulting 
code is capable of distinguishing  syndromes  resulting  from any 
two  burst errors  each of length no greater than b. 

There  are burst-error-correcting codes other than  the class 
of Fire codes;  many are  optimum codes, which are more efficient 
than  the  Fire codes of the same length  and maximum  correctable 
bursts." 

It was pointed out earlier that  an irreducible  polynomial p ( z )  
independent-error- can  be used to generate  a  single-error-correcting  code of a  length 

correcting  codes equal to  the period e of the polynomial p ( x ) ,  where e is the smallest 
integer  such that p ( z )  divides X' + 1. If we properly  combine 
several  irreducible  factors of X' + 1, we can obtain  the  generator 
polynomial of an independent  (or  multiple)-error-correcting code. 
Given that some a is a  root of m,(x) = p ( x ) ,  i.e., p ( a )  = 0. Then 
for any i, only one among  these  factors,  denoted  by m i ( z ) ,  satisfies 
mi(ai)  = 0. These m i ( x ) ,  called the minimum polynomials of 
xi ,  are  not necessarily distinct for different i ' s .  

The binary BCH (Bose-Chaudhuri-IIoquenghem) codes form 
BCH codes a class of multiple-error-correcting c ~ d e ~ ~ ' ~ ~ - ~ ~  that can  be  de- 

scribed  in terms of the minimum  polynomials mi(.) as follows. 
Let  the  generator polynomial  be defined as 

g(2) = LCM [ml(x), %(x:)>, ' ' ' , mzt-l(x)I (2)  

then  the code generated  by g(x )  is a  t-error  correcting code with 
a minimum  distance a t  least 2t + 1 and a  length n = e,, where 
e, is the period of m,(x). 

If the generator  polynomial is 

g(z) = LCN [mo(x), m,(x),  m&), * * , mzt-,(x)I (3) 
the corresponding code has a minimum  distance of a t  least 2t + 2 .  
The length of this code is again n = e ,  for t 2 1. For t = 0, g(z) = 

m,(x) = x: + 1. The code generated  by g(x )  = x + 1 has a mini- 
mum  distance of 2. This is a code with  a single parity  digit,  and 
the code length  can be arbitrary. 

Given any m,(x), one could obtain m,(z) for any i by using 
algebraic p r o ~ e d u r e s . ~ ~ ' ~ ~  However, this is generally time con- 
suming and unnecessary  since  tables of binary  minimum poly- 
nomials are available.34 

As an example,  assume that we are  generating a binary 
examples double-error-correcting code of length n = 26 - 1 = 63. Since a 

primitive  polynomial of degree six has a period equal to 63, we 
select m,(x)  as  a  primitive  polynomial.  From  Reference 34, if the 
primitive  polynomial z6 + x: + 1 is chosen as m, (x), then m3 (x) = 

x6 + z4 + z2 + x: + 1. From  Equation 3, the generator  polynomial 

g(x) = LCM [%(x),  '%(x)] = m,(z)'%(x) 

= (x6 + x + 1)(x6 + x4 + x 2  + x + 1) 

= x12 + x10 + x:* + xs + x4 + x3 + 1 
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generates  a (63, 51) code with a  minimum  distance a t  least 5, 
good for  double  independent-error  correction.  Note that  the 
coefficients in  the  product  can be  obtained  by  first  writing the 
product  in  the  ordinary fashion. Then all  even coefficients are 
transformed to 0’s and all the odd ones to 1’s. 

The period of m,(x)  may be  smaller than  that of ml(x) ; the 
degree of mi(x) may also be  smaller than  that of m,(x) .  Such 
properties are sometimes useful, as shown in the following example. 

With  the same m, (x) as used in  the  last example, if  we let mi ( x )  = 

m,(x) and p = a3, such that rn : (P )  = m3(a3) = 0, then m;(x) = 

m,(x), where m;(p3) = mg(a9) = 0. From Reference 34 we find that 
mg(x)  = x3 + x2 + 1. From  Equation  3,  the  genemtor poly- 
nomial is 

g(x)  = + I ) ( ~ ~  + x4 + + + 1)(x3 + + 1) 

= d o  + x7 + x6 + x4 + x2 + 1 (4) 

which generates  a  (21, 11) code with  a  minimum  distance of 6. 
It should  be  pointed out  that  the minimum  distance d 

guaranteed  by the BCH code in  Equation 2 is just a lower bound 
to  the  actual minimum  distance of the code. For example, the 
primitive  binary  polynomial m,(x) = + x’ + 1 has a period 
2’’ - 1 = 89 x 23. The polynomial m,,(x) = xl’ + xg + x7 + 
x‘ + x 5  + x + 1 has a period of 23. Assuming p = a’’ and m { ( x )  = 

m,,(x), then  the  roots of mi(.) are p, p2, p4, /Is, P I 6 ,  (b3’ = p g ) ,  
PI’, = p”), (pZ6 = p’),  p6, PI’. Since m:( r )  = mi(x)  = m ~ ( x )  = 
m:(x),  as a BCH code, m,(x) generates  a (23, 12) code of minimum 
distance a t  least 5. However, the (23, 12) code is equivalent to 
the Golay code35 with  a  minimum  distance  equal to 7. Other 
BCH codes have also been found to  have  actual  minimum distances 
exceeding those  guaranteed  by the  theory of BCH 

Error-correction  procedures of BCH codes are  rather compli- 
cated.  They generally involve solving the roots of a t-degree 
polynomial and a set of t simultaneous  equations, where t is the 
number of correctable  errors. The number of operations  needed 
to perform  these  procedures grows exponentially  with  respect to  t .  
Recent  research  suggests ways of significantly  reducing the 
decoding complexity of BCH c ~ d e s . ~ ~ - ~ ’  Perhaps decoding com- 
plexity will eventually  increase  only  linearly  with t .  

For many applications where the number of errors to  be 
corrected  in  a code block is small, logic implementation of table 
lookup is a  practical  solution to  the decoding of BCH codes. Another 
attractive  method of implementation  by  means of majority  gates 
can  be used for a class called “self-orthogonal” codes, which 
includes  certain BCH codes. This  subject is covered later  in Ap- 
pendix D. 

Another well-known class of multiple-error-correcting code 
is the class of Reed-Muller codes.40 ,41  Although not originally 
formulated  in  terms of cyclic codes, Reed-Muller codes have 
been shown to be obtainable  from  a special class of BCH codes.42 
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, Figure 10 Decoder  for a single-error-correcting  code 
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shown in Figure 9.  The registers  in the division circuit  contain 
the residue of xae(x) modulo g ( x ) ,  where e(x)  is the error poly- 
nomial. Since t>he  syndrome  detection  circuit  must recognize the 
syndrome when the error burst is lorated  at  the high-degree end, 
we may  write  the corresponding  error  polynomial as 

e(.) = P 2  b(z)  

where b(x )  is the error-burst po1ynomi:d of degree 1) - 1 = 1. 
The syndrome of this e(.) is the residue of x ~ ~ - ~ + ~  b(x )  modulo 
(x5 + x4 + z2 + I), which is simply :e’bb(x). The existence of 
three zeros in  this  syndrome is taken  as  the basis of syndrome 
detection  as shown in  Figure 9. Once the  burst location  is de- 
termined,  feedbacks  in the division circuit  can  be cut off‘ or, ns 
shown  in  Figure 9, nullified by establishing an additional  feedback 
path.  The  detected error patt,ern (including  no  error) is then 
gated  through  and removed  from the received message coming 
out of the 15-bit buffer storage.  Switch ‘41 is  closed onlv during 
the second n-bit cycle. 

Another  example is the single-error-correcting code generat’ed 
by g(z) = x3 + IC + I ,  a decoder for which is shown  in  Figure 10. 
The operation of this decoder is similar to  t,hat shown in Figure  9. 

In some  applications, the  input message may  not be in the 
exact  serial  form.  Combinatorial decoders or decoders that com- 
bine  serial and parallel  operations  then become distinct pos- 
~ i b i l i t i e s . ~ ~ ’ ~ ’  

Appendix D: Specialized error-control codes 
The interleaving of codes is just like the time-division mu1t)iplexing interleaved 
of a number of messages. Each “subcode”  consists of symbols codes 
separated periodically by m digits;  there  are m such  subcodes. 
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g'(z). Clearly, if the length of the subcode is n', the overall code 
length is n = mn'. The generator polynomial of the interleaved 
code can be shown to be 

g(x! = g'(x") 
where g'(x) is the generator polynomial of individual subcodes. 

Interleaved codes tend  to break up error bursts,  and subcodes 
interpret  them  as independent  errors.  Thus, one can  use in- 
dependent-error-correcting codes of acceptable decoding com- 
plexity  against  burst or multiple-burst  errors, which might 
otherwise require a, multiple-burst correcting code with  impractical 
decoding complexity. On the other  hand, a single-burst-correcting 
code with  simple  implementation  cannot  handle long bursts 
(e.g.,  drop-outs) unless the code is long. In  that case, long code 
words would be exposed to some  additional  errors  not  protected 
by  the code. The main  disadvantage of interleaved codes is that 
the redundancy  requirement is relatively high in comparison 
with that of multiple-burst-error-correcting codes. 

The N-dimensional codes are, as the name suggests, best 
discussed in geometric  terms.  Figure 11 shows a two-dimensional 
code format  in which each row belongs to a subcode and each 
column belongs to another  (not necessarily distinct)  subcode. 

If dl and d, are respectively the minimum  distances of row 
and column subcodes, then  the two-dimensional code has  a 
minimum  distance d = dl&. More dimensions can  be  added to 
the code to  further  strengthen  the correction capability. 

The above two-dimensional code is equivalenk to a two-level 
interleaved code. Columns of information  symbols  can be con- 
sidered  as being interleaved  with the row subcode, and N iterations 
of interleaving clearly result in  an N-dimensional code. It is 
from this point of view that N-dimensional codes are often 
referred to  as  iterated  The geometrical interpretation 
of N-dimensional codes also enables one to obtain  simple im- 
plementations of such codes especially for such  storage devices 
as  tapes  and core arrays whose geometrical configurations are 
ideal. 

An N-dimensional code may also suffer from the high re- 
dundancy  requirement when used in  burst channels because of 
interleaving.  Nevertheless,  such a code has  the  attractive  feature 
that  as long as the error rate is reduced in each level of it]eration, 
more and more iterations will, in  theory,  make the error rate 
diminish while keeping the information rate nonzero.49 

We have seen that in any cyclic code capable of correcting 
single errors, the code length should not exceed e, the period of the 
generator  polynomial.  However, an (n, k )  code can  be  shortened 
to become an (n - s, k - s) code by constraining the s high- 
degree  digits of the code polynomial to be always zero. These s 
digits are  then  omitted  from  all code words. The linear  sequential 
encoder of Figure 7 can be used for shortened codes without 
change. However, if the decoding delay  is to be n' = n - s digits 
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instead of n digits, the  input of the division circuit  in the decoder 
of Figure 8 should be premultiplied  by x*. The same  syndrome 
detection  circuit  can  then be used.” 

Shortened codes are often used because natural code lengths 
may not be suitable  in some  applications.  They can also be used 
to improve  reliability,  since  with the reduced code length (n - s), 
the expected  number of errors is reduced  by :t factor (n - s) /n .  
The most attractive  feature of shortened codes, however, is that 
the maximum  correctable  errors  may now exceed what was 
originally possible with  full-length This  feature is partic- 
ularly  desirable  with  burst-error  correcting codes, since the 
increased  correcting capabilit,y presents no extra decoding com- 
plexity. In :tpplications to variable  length messages, codes that 
have  increased  capabilities a t  shorter  lengths  can  achieve  addi- 
tional  reduction  in  overall  error rate. 

We  have seen that decoding complexity is a severe  limitation 
to  the application of powerful BCH codes. It is,  therefore,  desirable 
to find new classes of codes with  structures  that enable one to 
use simple decoding procedure. Codes obtained  from  project’ive 
and  Euclidean geometries  have  recently been shown to be de- 
codable  by  threshold logic.” We shall illustrate  the basic caoncept 
with a special class of binary  “self-orthogoll:~l” codes.53 

Sdf-orthogonality is defined on the parity-check  matrix as 
follows: the  set of rows (hl, hz, . . . h,) in  a  parity-check  matrix 
H wit’h 1’s in a particular column i are self-orthogonal on the  ith 
column if,  in this  set (considered as a submatrix), no other column 
contains  two  or more 1’s. To decode the digit  corresponding to 
the  ith column of H, we first assume that  the error at  this digit 
is unknown,  and  that each of the J parity  equations  from  the 
set gives an  “estimate” of this  error.  The  majority  determines 
the final error  value.  Since  an  error  corresponding to  the  ith 
column has J votes, while an  error at  any other  position has  at 
most one vote (because of the self-orthogonality), the  majority 
decision must be correct as long as  the t,otal  number of errors 
does not exceed J / 2 .  If the self-orthogonality  condition  can  be 
established for every  digit  (not necessarily with the same  parity- 
check matrix),  the code is threshold  decodable  with n minimum 
distance at  least J + 1. 

The most  interesting case occurs when the code is cyclic, 
because a, decoder with the general form  show1  in  Figure 8 c a n  
be  used. The syndrome  detection  circuit,  in  this case, csontains 
majority logic with  inputs  from J modulo-2 adders  performing 
the  set of J parity checks found to be  self-orthogonal 011 the 
highest’-degree digit. We now demonstrate  this  with  an example. 

The code generated  by g(s) = x10 + 2’ + x‘ + x4 + 2 + 1 
of Equation 1 was shown to be  a (21, 11)-code wit’h minimum 
distance  equal  to  six. Using the division circuit of Figure 1A in 
the decoder of Figure 8, the content’s of the shift-registers  (con- 
sidered as an  r-tuple) give the syndrome of the error, whicsh, in 
this  case, is the residue of the received polynomial  modulo g ( x ) .  
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The  ith column of the  puity-check  matrix can  be  written as the 
residue of xi-’ modulo g(x )  as follows: 

. . .  0 1 1 0 0 1 1 0 0 0 0 1 0 1  

1 0 1 0 1 1 0 0 0 0 1 0 1 0  

1 1 1 1 0 0 0 0 1 0 1 0 0  

I 

1 

1 1 1 0 1 1 1 1 1 0 0 1 0  

0 I 0 1 0 0 1 1 0 0 0 0 1  
. . .  0 0 1 1 0 0 1 1 0 0 0 0 1 0  

I 

I 

This  matrix does not  satisfy  the desired  “self-orthogonality” 
condition.  However, an  equivalent  parity-check  matrix can be 
obtained  by cyclicly shifting the first row of H in Equation 6. 
There  are five such c:yc:lic shifts  with a 1 in the right-most  rolumn 
(bemuse  the row has five 1’s) as shown in  Equation 7. 

I 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1  i l  1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1  
I 

The five rows of H’ are self-orthogonal on the right-most 1 
column,  since  no other column contains  two 1’s. The minimum , 
distance is 6. Any row of H’, denoted  by h, ,  is a linear  combination 
of a  unique collection of rows in H and c:m be  “synthesized” 
from the  ten left-most  digits by  adding rows of H (of Equation  6) 
with 1’s at  the desired  position.  These  sums are  equivalent  to 
modulo-2 additions of the  contents of the corresponding  shift- 
registers. A complete  implementation of the decoder is shown 
in Figure 12. 

Self-orthogonal codes, such as the one just discussed, belong to 
a general class of threshold-logic decodable codes, which are 
derived  from  finite  geometries. For more  details  regarding the 
recent  developments in threshold  decodable codes, see References 
54 and 55. 

The error-control codes discussed thus  far deal with  additive 
synchronization errors,  and we assume that  there is no misidentification of loca- 

codes tions of symbols. In  real  transmission or storage  systems,  however, 
synchronization  errors  can occur a t  a bit level, char 
even at  a higher level, where the framing of code words is involved. I 



Figure 12 Decoder for a self-orthogonol code 
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Various methods of controlling synchronization  errors  have been 
suggested. The use of a  synchronization sequence with  a  sharp 
autocorrelation  function56  sets up  the word-framing. To avoid 
subsequent loss of word synchronization  due to  the possible loss 
of bit  synchronization,  such special sequences may be inserted 
before each code word, or periodically at longer intervals to 
avoid the need for excessive redundancy. 

When  a cyclic code is to be used for error  control, it  is possible 
to incorporate  synchronization-error  control  in the code capability. 
Since, in  that case,  a cyclic shift of a code word is also a code 
word, ordinary coding schemes must be modified if a slip in word 
framing is to be controlled within the context of a code. There  are 
three possibilities : 

1.  Add  a fixed n-tuple,  with  a special synchronizatiorl property, 
to every code word. (Such a code is known us a “coset code.”) 
The same  n-tuple is subtracted from the received message 
after  the word-framing is e~tablished.‘~ 

2. Use a  shortened cyclic code to control word-fran~ing.~’ 
3. Use an extended cyclic code for the same p u ~ p o s e . ~ ~ ’ ~ ~  

Recovering  errors due  to  the loss or insertion of bits  within 
a code block is a different problem and has yielded relatively 
few results.60’61 A more practical  method is the detection of 
this  type of errors accompanied by  a possible request for retraus- 
mission. 

The relationship between information symbols and code 
symbols need not be confined to disjoint blocks. In a convolutional 
(or recurrent) code, check digits  in  a given block, check some of 
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the information  digits  in  other blocks as well. One may describe 
a  convolutional code as one that has  overlapping blocks. In a 
separable  linear code, the generator  matrix  may be written  in 
the  standard form G = [I, PI. Similarly, we may  write the 
generator  matrix for a truncated convolutional code of length 
n’ = m(k + r )  as 

Here, the first IC information  digits  are  related to  the r following 
check digits  in the same block by P,, and  are related to  the check 
digits in  the m - 1 following blocks by P,, . . . , Pm-l. The cor- 
responding parity-check  matrix is the following: 

P: I, 0 0 

P:’ 0 P,’ I, 
. .  

-P:-I 0 P:-2 0 : P,’ . . I  I, 
Although  convolutional codes for correcting burst e r r o ~ s ~ ~ “ j ~  

and independent e r r ~ r s ~ ~ , ~ ~  have been studied, a t  present they 
are  not as well understood as block codes. As far as  theoretical 
error-control  capability is concerned, there  appears  to be no 
significant difference betmeen block  codes and convolutional 
codes.68 

There  are two different approaches  in decoding a convolutional 
code. The first is “deterministic  decoding,” in which syndromes 
are calculated  and algebraic procedures are carried out  to de- 
termine  the error sequence, similar to  the decoding of block 
codes. However, if the decoding results of previous blocks are 
fed back to modify syndromes that determine the following 
blocks, any decoding error  may  “propagate” to succeeding blocks. 
Although the error  propagation problem may  not be serious, it 
must be analyzed  and  evaluated when convolutional codes 
are used. 

Another  method of decoding a  convolutional code is known 
as the  “sequential decoding” te~hnique.~’-~l  With sequential 
decoding, one evaluates the accumulated likelihood of correct 
decisions at each digit and accepts  a  digit only after a certain 
number of succeeding digits  tend to confirm (in terms of ac- 
cumulated likelihood measure) that  the first  digit  is  correct. 
If succeeding digits  indicate that  the first  digit is in  error, a 
search  through  the code t’ree, based on a  predetermined  algorithm 
follows, with corresponding likelihood evaluated,  until a satis- 
fact’ory decoding of the  digit is found. 
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The following can be said about  sequential decoding in  general: 

The decoding algorithm is usually flexible enough to be used 

Randomly chosen convolutional codes can be used. 
A computer  with large  storage is required. 
In  theory, given sufficient redundancy, the deroding  error 
decreases  exponentially with  the  constraint  length n’. 
The decoding effort (in  terms of computations or storage 
required) is a random  variable  without an upper  bound, 
although the expected decoding effort is bounded. 

A constant-weight code consist’s of all  n-vectors of a  certain 
fixed weight (number of 1;s) w. Since two  n-vectors of weight w 
do not always  result  in a vector  sum of the same  weight,  such 
codes are generally not linear codes. Constant-weight codes are 
useful in  asymmetric  channels  in which errors of one polarity 
dominate, since such  errors  always  change the weight of the 
code vectors  and,  thus, can be dete(*ted.72,73  The minimum 
Hamming  distance  between  any  two code vectors is two.  There- 
fore, any combination of an odd  number of errors  can also be 
detected.  When n = 2w, the code vectors  can be used directly 
to specify the exact  bipolar  signal sequences to be used in the 
channel.  Such signals would contain  no  dc  component.  This is a 
desirable  feature, since it is common for a channel  frequency 
characteristic  to  assume a zero value at  t,he zero frequency. 

Arithmetic codes have beeu proposed for use with  computers 
to control  errors that occur in  arithmet’ic  operations :ts well as 
in  transmission and  storage.Gz Code Ivords are considered integer 
numbers,  and  ordinary  arithmetic  operations  apply.  There is 
a  generator A ,  similar to  that of  chyclic polynomial codes, and 
the code words are all  integer  multiples of A ,  within  a  certain 
range of n digits. For  binary  arithmetic codes, the number of 
redundant  digits is the  smdlest integer r 2 log, A .  Such a code is 
linear  with  respect to  arithmetic opernt,ions.  i.e., AN,  + AN,  = 

An error in arithmetic code is defined by  subtracting  the 
transmitted code “number”  from  the received number  arith- 
metically. Because of carries, a “single” arithmetic  error  may 
appear as a burst of errors in the vector  representation. 

A single-error-detecting  arithmetic: code can  be  obtained  by 
letting A = 3 .  Since  a single error  must  assume a magnitude 
of the form f 2 i ,  no single error  can  change  one code number  to 
another because code numbers  must differ by  a  multiple of three. 
Such  a  multiple  can  never  assume the form f 2 i .  The  arithmetic 
code length  can  be  arbitrary. 

For single-error correction, the residues of ~ t 2 ~  (i = 0, * * * , 
n - 1) modulo A (which are similar t o  the syndromes  in  poly- 
nomial codes) must be distinct.  For example, with A = 19, we 
have the following residues: 

on  a variety of channels. 

A ( N ,  + N,)  = AN,. 
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Figure 13 Nine-bit  division  circuit 

x a o W  x a , W  xa,K 

in any single track. Therefore, the register  contents of the second 
division circuit correspond to 

s’(z) = z8e,(x) modulo g(z) 

Making 8 - i additional  shifts  in  the original divider  after s(z) 
is obtained  (and  referring to  Equation 8), the register  contents are 

z8s-is(z) = xs-ixiei(z) = s’(x) modulo g(z) 

matching the register  contents of the second divider.  After the 
error track is determined  by  shifting and  matching  the divider 
register contents, the  track is reread  with the VRC error sequence 
added to  the message. Many errors  not  correctable  by the above 
procedure, including any single-track  error e,(.) that is divisible 
by g(z) and  any combination of odd  numbers of bit  errors, are 
still  detectable. 
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