Tutortally presented are theoretical and practical concepts that
underlie error-control coding for data computing, storage, and
transmission systems.

Emphasis is on cyclic codes, the most deeply studied and widely
used of the many available codes. Operations of typical binary shift
registers illustrate the encoding and decoding processes.

Strategic considerations for applying coding to computer-com-
municalion systems are discussed. Actual applications further
exemplify the basis for code selection.

Coding for error control

48

by D. T. Tang and R. T. Chien

Error rates associated with current digital systems are usually
extremely low in spite of the increasingly high speed of processing
and transmission. Recent developments in error-correcting codes
have contributed toward achieving the high reliability required by
today’s digital systems, and it is evident that the use of coding

methods for error control has become an integral part in the
design of modern computers and communications systems.

This paper is intended as an introduction to the theory and
applications of error-control codes, involving both error detection
and error correction. The first two parts of this paper are con-
cerned with fundamental definitions in coding and digital data
channels. In the following sections, concepts of errors, code
structures for error control, and some general properties of shift-
register circuits are introduced. Methods of implementing en-
coders and decoders as well as the functional classes of error-
control codes are also described. The last two sections deal with cod-
ing strategy and applications of error-control schemes in exist-
ing data-transmission and storage systems.

Basic definitions

Coding is the representation of information (signals, numbers,
messages, etc.) by code symbols or sequences of code symbols
(often called code words). The set of code words and their mapping,
which determines the set, characterize a code. Information is said
to be placed into code form by encoding and extracted from code

TANG AND CHIEN IBM SYST J

form by decoding. Certain codes may have a larger average code
length than others. Such codes are said to contain ‘‘redundancy,”
which can be used to advantage for error control.

The development of redundancy schemes, in the form of
coding suitable for modern digital systems, took place after the
inspiration of Shannon’s basic theorem in 1948 Among other
things, Shannon showed that even in a noisy channel, errors in
data transmission can be reduced to any desired level if a certain
minimum percentage of redundancy is maintained by means of
proper encoding and decoding of the data. Although Shannon’s
theorem does not suggest any procedure for constructing such
codes, the work of Golay,” Hamming® Slepian,' Prange’ and
many others have contributed a whole body of new knowledge—
coding theory.®” Mathematical structures have been used to
construct codes with various types of error control, and these
structures provide means of analysis as well as sophisticated
encoding and decoding procedures.

Since encoding is no more than the digital representation
of information, a code does not necessarily have error-control
capability. Source codes, for example, are designed to represent
information with sequences of code symbols in the most efficient
way, i.e., using the smallest possible number of code symbols
on the average.® Therefore, source codes usually contain negligible
redundancy and should not be confused with the error-control
channel codes used under noisy situations. Typically, a source
code is first used to represent the output of an information source.
Then an error-control coding scheme is implemented to cope
with the noisy condition in which the resulting code sequence is
to be transmitted or stored.

An important class of error-control codes is that of block
codes. A block code consists of ‘‘code words,” which are sequences
of code symbols of fixed length n, often referred to as n-tuples or n-
vectors. In most cases, the information sequence to be encoded
contains k digits, which are encoded as an n-tuple code word. The
redundancy (normalized) is (n — k)/n, or r/n, where r = n — k.
Such a block code is often denoted as an (n, k) code.

Because of their applications in digital data transmission,
storage, and processing systems, binary codes are by far the most
important codes used. The simplicity of the binary representation
of information lends itself conveniently to mathematical treat-
ments, and as a result, we now know much more about binary
codes than others. We deal almost exclusively with binary codes in
this paper. Although familiarity with basic matrix operations is
assumed, other concepts of modern algebra are described as they
are used.

Errors in digital data channels

The transmission and storage of digital data have much in
common. They both accomplish the transfer of digital data from

No. 1 - 1969 ERROR CONTROL

redundancy

source
codes

transmission
and storage

49

source
encoding

modulation and
demodulation

Figure 1 Generalized data transmission or storage system

DIGITAL DATA SOURCE CHANNEL

ERROR-
SOURCE CONTROL

ENCODER conTRoL MODULATOR

|

|

!

|

;

]

!

|

|

1

|

|

! TRANSMISSION
L OR STORAGE
: MEDIUM
|

|

|

|

|

|

I

I

!

I

|

|

INFORMATION SOURGE ! SRROR.

DESTINATION DECCDER DECODER

DEMODULATOR

I
I
|
|
I
|
!
1
|
l

a source to a destination. For transmission, the source and desti-
nation are mainly separated in space, and for storage, they are
mainly separated in time. Transmitting lunar photographs from
a distant satellite back to earth, transferring data from one
computer component to another only inches away, and writing
and reading data on magnetic tape can all be described by the
same general process consisting of the steps shown in the block
diagram in Figure 1.

The purpose of the source encoder is to produce the best
digital representation of data originating at the information
source. Source encoding often requires redundancy removal.
When the information at the source is in analog form, the quantiza-
tion of analog signals must also be performed. This part of the
system is normally independent of the channel characteristics or
noise statistics. After the error-control encoder (or channel
encoder) adds the appropriate amount of redundancy, the modu-
lator then transforms the digital code symbols into physical
signals, such as voltage waveforms, ready for transmission or
storage via the noisy channel. On the other end of the channel,
the exact reversal of the above procedure is performed in com-
plementary steps.

Both the modulator and demodulator must be considered as
parts of the digital data channel, since an error-control code can
only protect against errors corresponding to the wrong identifica-
tions of digital symbols. Modulation and demodulation techniques
designed to produce the fewest possible errors are usually analog
in nature.

Although the analysis of modulation-demodulation techniques
are basically communications problems, which are not discussed
in this paper, several related facts are mentioned here. In order
to demodulate properly, the demodulation must be able to
establish the synchronization of received signals so that the
detection of a digital symbol is based on the proper portion of

TANG AND CHIEN IBM SYST J

the detected waveform. Any small change in detection threshold
level or sampling delay would, strictly speaking, result in a
different digital data channel. However, we may assume that
the system parameters do not change greatly during a typical
operating period. All temporary effects of changes can be regarded
as noise and included in the error statistics. In the final analysis,
the error statistics of the demodulated signals characterize the
digital data channel.

Error sources

The distribution of error statistics depends heavily on the following
sources of errors:

e Modulator and demodulator circuit noise is predominantly
thermal in origin and results mostly in uncorrelated errors.
Physical disturbances in terminal components include changing
air gap and changing surface velocity in magnetic surface
recording. Errors caused by physical disturbances are highly
correlated and tend to cluster in bursts.

Physical disturbances in transmission or storage media are
usually sources of burst errors.

The first two error sources are self-explanatory, but there
are many causes of transmission and storage disturbances. The
most common cause of errors in telephone lines, for example, is
switching-impulse noise. The duration of such impulses is in the
order of milliseconds, resulting in short error bursts. For micro-
wave and radio links, typical fading or dropouts may last from
milliseconds to seconds or even to minutes. The resulting bursts
thus tend to be much longer than those caused by switching
impulses, and they are often difficult to control by codes, unless
extremely long blocks are used.

In storage media, such as magnetic tapes, surface defects
include loss of oxide, scratches, dirt particles, and wrinkles.
The effect of such disturbances can accumulate until a tape is
no longer usable. Many of these defects are also common to
magnetic disks or drums. These defects typically assume sizes up
to several mils, resulting again in short bursts of errors. Core
storage arrays usually remain reliable after they are tested,
although breakage or other accidental defects may later cause
independent errors. Generally speaking, burst errors are much
more likely to be caused by physical disturbances. Background
noises do exist, but become significant only in special cases such as
space communications.

A digital data channel is characterized by the error statistics
associated with the input and output alphabets of the channel.
Therefore, it is often desirable to represent the error statistics
in terms of a certain simple mathematical model. List all the
conditional probabilities of receiving the symbols in the output
alphabet, for all possible transmitted symbols in the input alphabet.

No. 1 - 1969 ERROR CONTROL

error
statistics

storage

channel
models

linear
separable
codes

52

If these probabilities are independent of the locations of symbols,
then we have a model completely characterizing a digital
memoryless channel.! In such a channel, probabilities of erroneous
symbols received are independent of the neighboring transmitted
or received sequences of symbols.

When most errors tend to cluster, the channel is no longer a
memoryless one. A memoryless model can at best be considered
as an approximation of the real channel. If the clustering of
errors is independent of the transmitted symbols, a Markov
model is the appropriate one. Such a model consists of states
identified by one or more preceding symbols from the ‘“‘error
sequence’’ (the difference between the transmitted and received
sequences).

When error bursts are not necessarily solid, or when bursts
themselves tend to cluster, such as in a fading channel, one must
either go to Markov models of higher orders or use a different
model, such as one in which the probability distribution of the
number of digits between errors is described by a certain simple
function,’

Mathematical structures in coding

Some basie concepts of code structure and requirements of error-
control are now discussed. We choose a subset from the set of
all n-tuples to form a code set. This code set has some error-control
capability, since the receiver can detect the occurrence of an
error when the received n-tuple is not in the chosen code set.
For errors to be corrected, we must also have a decoding procedure
that determines the supposedly transmitted code word when an
unacceptable n-tuple is received. This can be done by a table
lookup procedure at the receiving end.

A mathematical treatment of the encoding-decoding process
is needed to (1) select a set of n-tuple code words with a specified
error-control capability, and (2) build a structure so that the
code set can be decoded systematically without table lookup
(which is clearly impractical for large code sets). Such structures
vield properties of code sets that facilitate analysis and simpli-
fication of the encoding-decoding procedure.

It is desirable to divide a code word into an information part
and a redundant checking part. A code with this feature is a
separable code. In the case of the linear separable codes, each of the
check symbols is a certain linear combination of the information
symbols. For example, a binary information 4-tuple, (¢4, %2, %3, 24)
can be coded as a binary 7-tuple with three binary check symbols
(c1, €1, ¢5). Here, a 7-tuple code word may take the general form
(21, T2, €3, 14, €1, Cq, C3), With

cl=i1+i2+i3, 02:2.2+Z.3+i4y s =1 + 12 + 1

where additions are binary operations.” The relationship can

TANG AND CHIEN IBM SYST J

be conveniently illustrated by an example expressed in matrix form
as shown in Equation 1. A code word vector results when a binary
information 4-tuple operates on the code generator matrix. The
configuration of the generator matrix is obtained from coefficients
of the corresponding simultaneous equations, which depend upon
the nature of the code selected.

0 0O 0
00
010

0 0 01

1
C 1
[1112’5314]
0
1

1
1
1
0

1
1
1

An equivalent way to characterize a linear code is to specify
a set of simultaneous parity equations that must be satisfied by
the code symbols. Using the example in Equation 1, the following
three equations must be satisfied by all the code words that take
the form (v, vy, -+, vy):

v+ v+ v +ovs=0
ve + 0y o0, =0
v +ov,+v, =0

Again, this set of linear simultaneous equations can be con-
veniently written in matrix form as follows:

1 01

[vlyv21 et ,1)7]

0 0 1]

In general, a k-tuple information part can be coded into an
n-tuple code word according to the equation

iG=v
where the matrix i is 1 by k, G is £ by n, and v is 1 by n. The

matrix G is called the generator matriz of the code. Alternatively,
the parity equations may be written in the form

vH” =0

where vis 1 byn, H isn by r(=n — k), and 0is 1 by r. H” is the
transpose of H, which is called the parity-check matriz of the code.
For some basic structural features of linear codes, see Appendix A.

One way to represent an n-tuple is to consider the symbols of
the n-tuple to be coefficients of a polynomial of degree n — 1

NO. 1 - 1969 ERROR CONTROL

polynomial
cyclic codes

53

error
syndromes

or less. Specifically, an n-tuple (a,, as, - -+ , a,) gives rise to a
polynomial representation a;z"" -+ a,z** + --- 4+ a,.
When the addition and multiplication are both defined on
the symbols used as the coefficients of polynomials, the addition
and multiplication of polynomials can be carried out in the
ordinary manner. The addition of two polynomials of degree
n — 1 or less does not differ from the addition of corresponding
n-tuples. The product of two polynomials a(x) and b(x) of degree
n — 1 or less can be defined as another polynomial ¢(x), also of
degree n — 1 or less, which is the residue of the usual produect
when divided by z" 4 1. This operation is written in the form

a(x)b(z) = c¢(z) modulo (" + 1)

We use the symbol = in this paper to mean ‘‘is congruent to.”

Any binary polynomial g(z) must divide 2™ + 1 for some posi-
tive integer n. The set of all polynomials that are distinet multiples
of g(z) modulo 2" + 1 constitutes a cyclic (polynomial) code in
the sense that if a(x) and b(z) are code polynomials then a(x) +
b(z) is also a code polynomial.

Furthermore, any cyclic (end-around) shift of a code word is
also a code word, since a cyclic shift of a code word is equivalent to
the multiplication of z° by the code polynomial modulo (2" + 1),
resulting in another polynomial in the code set. The polynomial
g(z) is called the generator polynomial of the code, and such a
polynomial uniquely characterizes a cyclic code. The polynomial
h{z) = (" + 1)/g(z) is called the recursive polynomial of the same
code.

If the degree of g(x) is 7, then there are 2° distinct multiples of
g(x) of degree n — 1 or less, where k = n — r is also the degree of
h(z). Some basic structural features of polynomial codes are
included in Appendix B.

General requirements for encoding and decoding

Thus far we have discussed the generation of linear separable
and cyclic codes and have appended some basic structural fea-
tures of these codes. Now, we briefly discuss certain general
requirements of linear and cyclic codes. It was stated that the
encoding procedure consists of essentially the selection of an
n-tuple code word, given any number of information symbols.
At the same time, the decoding procedure essentially consists
of determining what these information symbols should be, when
receiving any n-tuple. Without any code structure, decoding
can only be done by table lookup.

When linear codes are used, however, the correctable error
patterns become separable from the code words and can thus
be identified independently of the code words transmitted.
To show this, let v be a code word, and H be a parity-check
matrix. If the error is e (an n-tuple), then the received n-tuple

TANG AND CHIEN IBM SYST J

is vV = v + e. If we calculate the syndrome, defined as
S=vH" = (v+eH" =vH" + eH" = eH"

we see that it is an r-tuple independent of the code word v. The
syndrome S contains all the information regarding the error
that has been added to the code word during the transmission.
For a deterministic correction scheme, each syndrome must be
identified with a unique error n-tuple. Since the zero syndrome
always means ‘‘no error,” a nonzero syndrome is necessary for
the detection of any error n-tuple.

The following observation can now be made for a binary
code. Since the syndromes are r-tuples, there are 2" distinet forms.
Clearly, we cannot expect the code to correct more than 27 distinet
errors (including no error). Furthermore, if two errors result in
the same syndrome, at most one of them can be corrected. A con-
dition for a set of errors to be correctable is for any two errors
e, and e, from the set to satisfy

eH" —e,H" = (e, ~ e)H" 5 0
In terms of polynomials, the condition becomes
e(x) — e(x) # 0 modulo g¢(x)

where e,(x) and ey(x) are any two correctable error polynomials.
In particular, if an error takes the same form as a code word,
then it cannot be distinguished from zero error.

For a cyclic code, the syndrome of an error e(z) usually
means the residue of e(z) modulo g(z), the generator polynomial.
However, depending on the specific decoding procedure chosen,
the syndrome may take other forms such as the residue of z"e(x)
modulo ¢g(z).

It should be noted that the performance of a decoding scheme
depends on the characteristics of the information source and
the channel, as well as that of the code used. Generally speaking,
if we want to minimize the decoding error with a specific code,
the conditional maximum likelihood decision scheme should be
used. With this scheme, a code word v, is selected as the decoded
message upon receiving v/, such that the conditional probability
P(v; | v/) is maximum for all v;. In evaluating these conditional
probabilities, accurate source statistics must be used. This in-
troduces an immediate difficulty since such detailed source
statistics are usually not available. Furthermore, the calculation
of P(v, | v') for all v, is impractical for most cases.

An alternative method of decoding is to use the maximum
likelihood decision rule, which selects a code word v,, upon re-
ceiving v/, such that the conditional probability P(v' | v,) is
maximum for all possible code words. The calculation of condi-
tional probabilities P(v' | v;) no longer depends on the source
statistics. This rule is equivalent to the conditional maximum
likelihood decision rule when all source symbols are equally
likely. For linear codes, this decoding method requires that,
among all error n-tuples resulting in the syndrome calculated, the

No. 1 - 1969 ERROR CONTROL

conditional
maximum
likelihood
decoding

maximum
likelihood
decoding

minimum
distance
decoding

polynomials
in delay
operator D

one with the highest probability of occurrence should be taken
as the error that occurred. Note that the error can be identified
independently of the code transmitted.

We may consider all possible n-tuples to be points in an
n-dimensional space, and define a distance function D(x, y) be-~
tween two points (n-tuples) x and y to be the number of places
where the two n-tuples differ. (In binary cases, this is usually
called the “Hamming distance.””) We may then use the following
minimum distance decoding scheme: upon receiving v/, select a
code word v; that minimizes D(v/, v,) among all code words.
Minimum distance decoding is equivalent to that obtained by
using the maximum likelihood decision rule, provided that the
errors are independent. This geometrical interpretation of the
coding and decoding procedure is often very useful.

The distance function previously defined has the following
“triangular’ property: for any three points x, y, and z, then
D(x, y) + D(y, z) > D(x, z). From this property, one can show
that, if for a given code the minimum distance between any
pair of code words is D,,, then this code is capable of correcting ¢
errors and simultaneously detecting d errors (d > {) as long as
d + ¢t < D,. On the other hand, if i-error correction is desired,
then D,, > 2t + 1.

Linear switching circuits and shift registers

A properly designed electronic linear switching circuit is capable
of storing and manipulating a given digital message sequence
algebraically, and hence can be used for encoding or decoding
purposes. The basic elements of a linear switching circuit are:
delay units, adders, and multipliers. In binary cases, no multi-
pliers are necessary because the multiplication of 1 implies a
direct connection, and the multiplication of 0 implies no con-
nection. A switching circuit with modulo 2 adders and delay
units (or registers) is referred to as a shift-register circuit.

The relationships between input and output sequences of a
linear switching circuit depends upon the connections among the
basic elements previously described. With respect to a pair of
input/output points, the behavior of such a circuit can be de-
scribed by its unit response. This response is the output sequence
caused by an input sequence wherein the first symbol is 1, and
all the following symbols are 0. (The initial contents of all delay
units must be 0.)

We may denote a sequence s = (s, S, **+) in terms of its
transform,'* which is a power series in the delay operator D

s(D) = s + &D + sD* + ---

For ease of algebraic manipulation, a code polynomial A(x)
representing an n-tuple is usually transmitted with the higher-
order-first convention. Writing
A@) = a2 F " 4+ - F gz + 0.

=" o, + e + -+ "+ a2’ ")

TANG AND CHIEN IBM SYST J

we see that, in a sense, ™' becomes equivalent to the delay Figure 2 Multiplication circuits
operator D. A
Consider the binary shift-register circuits as shown in Figures
2A and 2B. If s(D) = 1, one can see from the paths directed from
the input to the output that, in both cases,

HD) ooy = T(D) = 1+ D* + D
If we let D = 27" in T(D), we have
Tl/x) = 1 + 27> + 27°

or

P2TA/z) = 2° + 2 + 1 = T*q)

Here, T*(x) denotes the reciprocal of T'(z) and is obtained by
reversing the order of coefficients in 7'(x). Thus, in terms of
polynomials in x, the circuits in Figures 2A and 2B are both
circuits for multiplying the input polynomial by the polynomial
¥ + 2 4 1. The coefficient of the highest degree term in the
product is obtained at the output without any delay.
Figures 3A and 3B show two division circuits whose functions Figure 3 Division circuits
can be easily analyzed by first observing that the following A
relationships hold in both circuits

a(D) = (D* + D)D)

and

(D) + s(D) = (D)

Combining the above two equations, we have
s(D) = (D* + D* + L)t(D)

or

{D) 1

D) =0) "D F D +1

Similarly, for both circuits in Figures 4A and 4B,

uD) D’
sD) "D+ D+ 1

Figure 4 Division circuits that

In terms of polynomial representations, all circuits in Figures produce residues

3A, 3B, 4A, and 4B are circuits for dividing the input polynomial
by the polynomial 2* + z + 1. The first bit of the quotient
(coeflicient of the highest degree term) is obtained at the output
either without any delay or after three units of delay depending
upon whether 1 or D? appears in the numerator of the transfer
function.

Figures 5A and 5B show circuits for respectively multiplying
and dividing the input polynomial by an arbitrary polynomial
of degree m,

A@) = 2" + ap@” ™ 4+ - + am + a

A

No. 1 - 1969 ERROR CONTROL

58

Figure 5 Generalized multiplication and division circuits

/D QUTPUT

INPUT

QUTPUT

The division circuits described, perform essentially the long
division process. Thus, if the input polynomial is a multiple of
the dividing polynomial, the output sequence is the quotient
followed by zeros. Otherwise, the output sequence is the infinite
sequence corresponding exactly to what one obtains in the long
division process. For example, if we divide 2* by 2* + 2 + 1
as follows:

14z 4+ +2* +z7 4.
2+ x4 D2t
2441
z+1
x + =
14+ 2z
1

4

4

xz
Z
X

-t gt 27

the outcome is 1 + 22> 4+ 2 * +2* + 277 + --- . The division
circuit of Figure 3A or 3B, on the other hand, gives a corresponding
output sequence 1 + D* + D* + D* 4+ D7 + -+ .

The circuit in Figure 4A (or the general circuit of Figure 5B)
has the following special property. The contents of the registers
represent the residue of the division after the last term of the
input polynomial has entered the circuit. For example, if we
consider the register contents from left to right as coefficients
of 1, z, and 2°, respectively, in Figure 4A, then a shift to the
right is equivalent to multiplication by x. The feedback connec-

TANG AND CHIEN IBM SYST J

Figure 6 Combinatorial encoder for a linear code

m

¥

tions add the output from the third register to the contents of
the first and the second registers, thus effecting 2° = 1 + =z
(or 2* + z + 1 = 0) whenever this reduction becomes possible.
The final contents of the registers clearly represent the input
polynomial minus all multiples of 2° 4 = + 1, that is, the residue
of the input polynomial modulo 2* + z + 1.

The shift-register contents of other types of division circuits
do not necessarily correspond to residues. For example, the
shift-register contents of the circuit in Figure 3A represent the
residue of the input polynomial multiplied by z* modulo x* -+
z + 1. In general, register contents represent linear transforms
of the residue coeflicients described above.

Encoders and decoders

An encoder for an (n, k) linear code produces an n-tuple code
word when an information k-tuple is given. This fact is illustrated
by writing the symbols in the n-tuple code word as functions of
the given k-tuple and implementing each of these functions (as
Boolean functions) with logic circuits. For example, the linear
code specified by Equation 1 may be implemented by the circuit
in Figure 6. Note that the information symbols remain unchanged;
thus, the code obtained is separable.

When a eyclic polynomial code is used, it is convenient to
generate the code polynomials in a sequential manner. The binary
cyclic code with the generator polynomial g(z) = 2* + = + 1,
for example, may be encoded with the shift-register (multi-
plication) circuits in Figures 2A and 2B yielding a nonseparable
code structure. When the code is separable, a division circuit
capable of producing the residue of the input polynomial modulo
g(x) can be used to produce the check symbols. Figure 7 shows
such an encoder. During the transmission of the first & bits,
information symbols are fed into the encoders shown in Figure 7.
The switch K is in the 0 position, allowing the same symbols
to appear unchanged at the output. At the end of k bits, the

NO. 1 - 1969 ERROR CONTROL

Figure 7 Sequential encoder for

a linear code

INPUT

Figure 8 General-purpose de-

RECEIVED
MESSAGE

coder for cyclic code

CORRECTED

N-BIT
BUFFER F)MESSAGE
STORAGE

SYNDROME
GENERATOR

i

SYNDROME
DETECTION
CIRCUIT

desired residue has formed in the registers and is obtained by
throwing the switch K to the 1 position. Since the feedback of
the division circuit is now nullified, the register contents will
next appear at the output.

The eyclic code generated by the polynomial g(z) = 2* 4z + 1
is identical to the linear code described by the generator matrix
of Equation 1. Encoders shown in Figures 6 and 7, therefore,
vield the same code words when fed with the same k-tuple input.

The basic function of a decoder is to establish mapping from
the syndrome (r-tuple) of the received message to an error n-tuple.
By subtracting the error from the received message, one obtains
the transmitted code word which, in the case of separable codes,
contains the original information k-tuple.

Since the mapping being implemented can be completely
specified by a table, an immediate approach to the design of a
decoder is via a logic circuit that implements the table lookup
procedure. When decoding delay must be minimized, the logic
circuit approach in decoding can be quite attractive. The obvious
limit to this approach is that the complexity of the decoding
circuit tends to grow exponentially with the capability of the
code used.

With eyclic codes, simplification in the decoding circuitry is
possible. Figure 8 shows a general-purpose decoder which consists
of the following components: a division circuit that serves as a
syndrome generator, an n-stage buffer storage that retains the
message received, and a syndrome recognition circuit that usually
recognizes the syndromes of error vectors that include an erroneous
highest-degree digit.

To see how this decoder works, let a(z) = a;z*™' + -+ +
@,:& + a, be the code polynomial and let a'(s) = a(zx) + e(x) be
the received polynomial, where e(x) represents the error. As
mentioned earlier, the syndrome of a’(x) generated here by a
division ecircuit of g(x) is independent of a(x). The syndrome is
obtained when the last digit of the code word, a,, has entered
the decoder. If the first digit is not in error, the syndrome detection
circuit maintains a zero output and the highest order bit is ob-
tained unaltered at the output. After a shift, the transformed
syndrome corresponds to ze(x), which is the original error with
the coefficients advanced one position toward the high-degree end.
The syndrome recognition circuit then recognizes the syndrome
if the second digit in the original received message is in error.
Since the same argument applies to the subsequent shifts and
subsequent errors, we sece that erroneous digits of a correctable
error pattern can all be corrected.

The decoding circuit of Figure 8 requires a delay of n digits
before the decoded message is received. The errors are corrected
sequentially. Although generally applicable to all types of cyclic
codes, the syndrome recognition circuit may in many cases still
be too complicated (in spite of the relative simplicity in com-
parison with the pure combinatorial circuit). However, remarkably

TANG AND CHIEN IBM SYST J

simple decoding circuits of this type are possible with cyclic
burst-error-correcting codes (including the Hamming codes).

If a code is used for error detection only, one merely needs a
recognition circuit to determine whether the residue is zero. A
nonzero residue indicates that an error has been detected.

Functional classes of error-control codes

Several functional classes of eyelic polynomial codes have been
found:

o Single-error-correcting codes. A single-error-correcting code

of length n is capable of correcting any error affecting no more
than one symbol in a code block of n symbols.
Burst-error-correctings codes. A burst-error-correcting code of
length n is one that can correct any span of errors of fixed
length b or less in a code block of n symbols.
Independent-error-correcting codes. An independent- (or multi-
ple-) error-correcting code is a code of length n that is capable
of correcting up to a multiple of ¢ errors within a code block of
length 7.
Multiple-character-correcting codes. A multiple-character-cor-
recting code is a code of length n characters, where a character
is a group of bits with fixed length. Any combination up to a
fixed number of character errors within a block may be cor-
rected.

Depending upon channel characteristics, members of these
code classes may be selected. Methods for finding generator poly-
nomials for these codes are given in Appendix C.

Certain specialized codes are modifications of some members
of previously mentioned functional classes of codes. Interleaved
codes, N-dimensional codes, and shortened codes, for example,
are methods of constructing stronger codes based on weaker ones.
Self-orthogonal codes are characterized by their threshold logic
decodability, which leads to simple decoding circuits. Synchroniza-
tion codes add framing capability to error-control. Convolutional
codes form a class of nonblock codes with various possible error-
control capabilities and are often used in conjunction with the
sequential decoding technique. Constant-weight codes are useful
in channels with some special properties. Arithmetic codes are
based on arithmetic operations and are useful in channels which
include arithmetic processors. Certain basic properties of such
specialized codes are included in Appendix D.

Coding strategy

When an error-control code is considered in a digital transmission
or storage system, one should ask not only what can this code do,
but also what is needed to achieve the capability of the code.
Generally speaking, the longer the block length (i.e., larger n),
the more storage the decoder requires, and the greater the mini-

NO. 1 - 1969 ERROR CONTROL

61

error
detection

mum decoding delay. It is also generally true that the longer
the code block the larger the class of errors to be corrected, hence
the more complicated the decoding circuits. However, the dis-
tribution of errors in longer code blocks becomes much more
predictable, thereby permitting the use of codes with smaller
redundancy while maintaining the same reliability.

The data flow in a complex computer system may take different
forms at different levels corresponding to the channels desecribed
previously. Therefore, basic requirements for error-control codes
may also change in emphasis from one case to another. For
example, intermachine data fransmission may go through many
conventional communications channels. The primary requirements
of the preferred error-control scheme are high reliability and high
information rate. Since decoding delay does not reduce throughput,
one would tend to use longer codes with lower redundancy even
though they require more decoding complexity.

TFor intramachine transmission, such as going in and out of
an internal random-access storage, the primary coding require-
ments are high reliability and speed. Thus, simple decoding by
circuitry is essential in keeping storage access-time small. Another
feature of the codes used for intramachine transmission is that an
error-control code is often used in the detecting mode, since
retransmission can usually be effected by simple instructions
based on the outcome of error detection. There are exceptions to
such general rules. An optimum coding strategy can be achieved,
and the best code obtained, only after a design engineer evaluates
several alternatives.

We now outline several different courses of action he may
prefer as an alternative of forward-acting full-power correction
with block codes.

The main advantage of error detection is the simplicity of
its implementation. An error is detected if the received message
yields a nonzero syndrome. For cyclic codes, a division circuit
plus a test for zero constitute a complete decoder.

The detection capability of a code is closely related to its
correction capability. If a code is capable of correcting a set
{e;} of error n-tuples, then the syndromes of any two errors,
e; and e; from the set must be distinct. This implies that any error
of the form e, + e; must be detectable. It should be pointed out
that the code also detects many other errors. Any error of the
form e; + e; + v is clearly detectable if v is a code vector (and
vH” = 0). This often results in a significant reduction in the
undetected and uncorrected error rate.

Trom the preceding, we observe that a t-error-correcting code
is capable of detecting all combinations of 2¢ errors, and a burst-b-
correcting code is capable of detecting any two bursts of length
b or less. A Fire code generated by g(x) = (2° 4+ 1)p(z)—as
described in Appendix C—when used for detection only, is capable
of detecting any combination of two bursts of which the length of
the shorter burst is no greater than the degree of p(x). Any eyclic

TANG AND CHIEN IBM SYST J

code of degree r is capable of detecting all single bursts of length
up to r.

Error detection is an attractive means of error control provided
it is possible to effect retransmission. In the case of data trans-
mission, this implies the existence of a reliable feedback channel,
which is used to relay the request-for-retransmission message
back to the sender.””** Many data links within a computer
system have the ability to regenerate a message at the sending
end when it is not cleared at the receiving end. On the other
hand, an error detected during a readback process from storage
may not be successfully avoided by rereading the same message
when the error is due to a permanent damage in the storage
medium or when the error occurred during the writing process.

When a feedback channel is available, one should calculate,
from available statistics, the probability of requests for retrans-
mission and the average time the system is tied up because of
the requests. Performance of the detection-retransmission method
can then be evaluated within the context of given system param-
eters.”” In general, detection and retransmission is effective
against highly clustered errors. FFor random errors or for a com-
bination of random and burst errors, some error will tend to
appear regularly in every block. In such cases, some forward-acting
error correction is necessary to maintain the performance of the
transmission system.

We have seen that, even where a feedback channel is available,
some forward error correction is often needed to combat random
errors. For most codes, there is a trade-off between the numbers
of correctable and detectable errors. A multiple-error-correcting
code is capable of correcting ¢ errors and simultaneously detecting
d errors as long as the minimum distance of this code is at least
t + d + 1. A Fire code generated by g(x) = (&° — l)g(x) is
capable of correcting a burst of length up to b and simultaneously
detecting any other burst of length up to de > b as long as b +
d — 1 < cand b < m, the degree of p(z). See Appendix C.

Aside from the need to use partial correction in conjunction
with the detection-retransmission method, there may be other
reasons for the use of partial correction in the overall error-control
scheme, namely, to minimize the decoding complexity. We
mention here two situations wherein partial correction may
prove useful.

1. In the case of multiple-error correction, decoding com-
plexity grows exponentially with the number of errors corrected.
Thus, even if a given code can correct t > 1 errors, one may
still want to go through a single-error-correction procedure and
test the syndrome for possible erroneous correction. If single
errors account for a large portion of the overall error rate, con-
siderable reduction in average decoding delay can thereby be
achieved. Success of single-error correction eliminates the need
to go through the more complicated t-error-correction. If two
or more errors occur, the single-error-correction procedure may

NO. 1 - 1969 ERROR CONTROL

partial
correction

erasures

make an erroneous correction in some cases. However, due to
the minimum distance of the code, the result is still a detectable
error. The correction algorithm specifies returning to the original
message received and trying a more powerful correction procedure.
A similar approach also applies to the partial correction of multiple
errors up to the maximum number of correctable errors.

2. For certain classes of multiple-error-correcting codes,
simple circuit implementation is possible for correcting a small
number of errors. Since threshold-logic decoding has error de-
tection and correction capabilities approaching those of multiple-
error correcting codes, the combination of partial correction by
logic circuitry and detection may prove very useful.

Erasures usually correspond to detected signals that are
considered to be in a certain “no-confidence zone'. In the case
of binary level detection, the erasure zone is intermediate between
the 1- and the 0-zone. In general, an erasure implies an unknown
symbol (or character) at a known location.

In a pure erasure channel, locations of errors are always known.
The error-correction capability of a code in an erasure channel is
similar to its detection capability in a nonerasure channel. An
erasure pattern is correctable if (and only if), by substituting all
possible combinations of symbols at these erased digits, only one re-
sults in a code word. With a t-error-correcting code, any pattern of
2t erasures is correctable. This follows immediately from the fact
that, with 2¢ erasures, any two n-tuple resulting from different
substitutions can differ at most at 2¢ digits. However, a ¢-error-
correcting code must have a minimum distance at least 2t + 1,
which means these two n-tuples cannot both be code words.
Similarly, with a burst-b-correcting code, any pattern consisting
of two erasure bursts of length b or less is correctable.

In more realistic channels, erasures are often compounded
with nonerasure errors. Again, there is a trade-off between the
numbers of correctable errors and erasures. For example, a
multiple-error-correcting code is capable of correcting any com-
bination of ¢ errors and e erasures as long as the minimum distance
of the code is at least 2t + ¢ + 1.

Generally speaking, the use of erasures tends to reduce the
uncorrectable-error rate. The amount of improvement is a function
of the detailed statisties of the detected signals and of the thresh-
olds that define the erasures. The price of improvement here is a
probable increase in decoding complexity. When correcting
combinations of errors and erasures with a multiple-error-cor-
recting code, one must perform the additional step of transforming
the error syndromes in order to separate the erasures from non-
erasures before the ordinary decoding procedures can be applied."®
At least part of this added effort is compensated by a reduction
in the number of errors to be corrected, as compared with forcing
all erasures into decisions of code symbols. The erasure concept
can be generalized as an increased number of levels at the detector
output whereby further gain in reliability is possible.'”

TANG AND CHIEN IBM SYST J

If the noise characteristics of a digital data channel tend to
change from time to time, an adaptive coding scheme may be
desirable. In the method of detection and retransmission, certain
forward-acting partial correction becomes necessary if a small
number of errors tend to occur regularly. The amount of partial
correction can be monitored at the receiving end to cope with
the varying error rate. Recently, an interesting method of adaptive
decoding without feedback has been developed.”® With this
method, a received message is analyzed to determine whether
the burst-error correction or the independent-error correction
should be performed. Methods have been studied for changing
the code used (as well as the decoding algorithm) in such a way
as to minimize implementation complexity." >’

Although sequential decoding has been successfully applied
to space communications, its use in computer systems is still
in an exploratory stage. Quantitative performance evaluation of
a sequential decoding algorithm is difficult without actual im-
plementation and testing. As we have indicated previously, since
the decoding algorithm can only be implemented by a computer,
sequential decoding is not applicable where sufficient processing
capability is not provided. Another factor that may limit the
use of sequential decoding is that decoding effort is a random
variable without an upper bound. However, the sequential
decoding algorithm is applicable to a wide range of conditions,
including those in which other block coding schemes do not
perform satisfactorily. Such conditions exist, for example, where
the initial error rate is high, or where high reliability is required
at a high information rate.

Some error-control applications

Many 1BM terminals use cyclic codes for error detection. Because of
their relatively low error rates, the codes are mostly burst-detect-
ing codes that usually have very little redundancy.

The 1BM 1050 data communication system uses an interleaved
code, generated by g(z) = (2* + 1), in which six check digits
form a character at the end of each message. Single burst-errors
of length up to six are detectable, as are many other error patterns.

The Binary Synchronous Communication (Bsc)® convention
uses a burst-2-correcting code generated by ¢g(z) = (z + 1)p(x),
where p(z) is a primitive polynomial of degree 15. The Bsc code
is capable of detecting two bursts of length two. Also, because
the minimum distance is four, Bsc can detect any three or fewer
independent errors in messages up to a length of 2'° — 1.

Although errors on microwave links used for voice-grade
channels are effectively eliminated by the use of pulse code
modulation and repeaters, encoders and decoders for additional
error control are provided. For example, private lines are available
with additional coding equipment, wherein the code used is a
shortened (200, 175) BcH type with a minimum distance equal

NO. 1 - 1969 ERROR CONTROL

adaptive
coding
schemes

sequential
decoding

data
communications

data
storage

auxiliary
storage

66

to eight. The generator polynomial of this code is of the form
g@) = (z + Lm(x)ms(z)ms(z), where my(z), ms(2), and ms(x)
are polynomials of degree eight. The (200, 175) code is obtained
by shortening a full-length (255, 230) code. This code is capable
of correcting three independent errors and, in addition, detecting
four errors. Retransmission is requested if an uncorrectable error
is detected. The use of a convolutional code with one-sixth re-
dundancy is also an option with the direct-distance-dialing
switched network.

Although magnetic cores are highly reliable, such storage
elements as drivers, sense amplifiers, and read-write gates, which
control the storage operation, are subject to occasional failures.
The use of an error-control code in the cpu of a computing system
not only helps to locate failures, but also keeps the cpu in operation
when the effect of a failure is within the correction capability of
the code used.

The 1BM 650 central processing unit uses a ‘‘bi-quinary’’ code,
which encodes a decimal digit into seven binary digits with
two 1's. This code, like the four-of-eight code, detects all odd
numbers of errors.

The 1BM 7030 (STRETCH) computer uses a single-error-cor-
recting double-error-detecting code with 64 data bits and eight
check bits. The encoding and decoding are implemented by
logic circuits.

The 1BM 7070 data processing system uses a ‘‘two-of-five”
code with an additional overall parity check. Many other cru’s,
including sYsTEM/360, use single parity checks for error detection.

Disk files, like other magnetic surface-recording systems,
are vulnerable to surface irregularities. Therefore, protection
against burst error is usually needed. As the recording density
increases, more powerful coding schemes are needed. The 18BM 1300-
series disk storage uses a cyclic code for burst detection, in which
there are 13 check digits at the end of every record. The 1BM 2301
drum storage unit also uses a cyclic code with 19 check digits for
error detection. Most of the other disk files use similar cyeclic
codes for error detection.

Magnetic tape units used today contain several tracks, and a
character or a byte is obtained by reading one bit from each
track. Error control is necessary since tapes are relatively less
reliable than magnetic cores. Control can be achieved in a number
of ways. The tractor tape unit has 22 tracks, 16 of which are
information bits and six are check bits. Each character is a
(22, 16) code obtained by shortening a (31, 25) BcH code with
minimum distance of four. The 1Bm 727 and 729-series magnetic
tape units use a two-dimensional coding scheme. One track,
which provides a vertical redundancy check (vre), is used for an
overall check on each character. Also, one character at the end
of each record is used for an overall check on each track and is
known as the longitudinal redundancy check (LrRc). The overall
code detects errors in a single track, plus many other errors.

TANG AND CHIEN IBM SYST J

The 1BM 2400-series magnetic tape units use a coding scheme
involving another character next to LRc as a check based on a
cyclic code, in addition to the vrRe and Lre already described.
This check is called cyclic redundancy check (cre) and is discussed
in greater detail in Appendix E.

The photo-digital storage for the 1BmM 1360 computer, known
as Digital Cypress,*’ uses a (366, 300) Reed-Solomon code, which
is one of the most sophisticated codes ever used for storage.
With six bits in each character, this code is a multiple-character-
error-correcting code with a minimum distance (on the character
basis) equal to 12, which requires 11 check eharacters (66 bits). The
full length of the codeis 2° — 1 characters (i.e., 63 characters or 378
bits). There are 300 bits (or 50 characters) of data plus two char-
acters for line number and 11 check characters. The code is capable
of correcting any combination of independent and burst errors
representable by five characters. A sixth character error, plus
many others, can be detected.

Except for the encoder and the syndrome-generating circuit,
the Digital Cypress decoding procedure is implemented by
programming, the strategy for which may be outlined as follows,
When a nonzero syndrome is detected, a rescan is called for first.
If the error is still present, the program goes to a single-error
partial-correction subroutine. If that procedure is unsuccessful
in correcting the error, a two-error partial-correction subroutine
is called. The full-power correction routine is used only when
both the single-error- and the double-error-correction subroutines
are unsuccessful.

Concluding remarks

We have developed basic concepts of error-control coding, with
emphasis on the use of cyclic codes, which form a subclass of
linear block codes. The use of an error-control scheme should be
an integral part of the overall system design, rather than a
“remedy”’ or a ‘‘bonus” for a system with unsatisfactory reli-
ability. To achieve a proper error-control scheme, a systems
engineer needs an extensive knowledge of existing coding methods
and their implementations. Since this paper is not intended to
give a full treatment of the theory and applications of all types
of codes, the aim has been to expose some of the underlying
principles involved in selecting an error-control coding scheme
for a realistic computer or communication system.

The demands on overall data-processing and communications
capacities have been increasing and are expected to grow. This
implies a prevailing need to fully utilize every communication
or memory channel available. One approach is by way of error-
control coding. With advances in integrated circuit technology,
costs of logic and storage elements are declining in comparison
with increasing rates of data-processing. Thus, circuit-imple-
mented error-control schemes are expected to become increasingly

NO. 1 -+ 1969 ERROR CONTROL

Digital
Cypress
error
control

attractive. One objective of system designers is to achieve “ultra
reliable” components, in which error-control capabilities are an
integral part of the monolithic circuit design.

As applications of more sophisticated error-control coding
schemes for computer and communications systems become more
extensive, one may expect coding principles to be applied to
other types of problems. For example, algebraic procedures
typical of encoding and decoding can be used to obtain solutions
in such problem areas as file organization and document re-
trieval**®* Since a document in a file is usually characterized
by a list of ““descriptors” contained in a “dictionary,” a binary
n-vector can identify a document, wherein each position of
the n-vector represents a deseriptor. Storage required for such
a dictionary becomes too large to be practical in most cases.
However, if we regard the n-vectors as errors, the vectors can be
transformed into r-tuples (syndromes) appropriate to the code
sclected. The r-tuples can then be used to identify documents in
the file. Requests for retrieval can be handled with the help of
the corresponding decoding algorithm.

The design of matrix switches, such as those used in main
storage arrays, is another example. It has been shown that certain
codes can be used to determine selection patterns in a matrix
switch so that all driving power is channeled to the selected
output only.****

Coding concepts and techniques are also potentially useful
in such other arcas as signal design, digital modulation, pattern
recognition, fault diagnosis, image processing, and cryptography.

Appendix A: Structure of linear codes

The first four columns of the four-by-seven coefficient matrix
in Equation 1 form an identity submatrix. In general, the gen-
erator matrix of a separable code 18 a & by n matrix containing
a k by k identity submatrix. The columns of the submatrix cor-
respond to information positions.

A fundamental property of a linear code is that if v, and v;
are two code words, then v,(=v, 4+ v;) must also be a code word,
since

v, +v, =xG+x6G=(x +x)G6G=x6G=w

The use of a generator matrix to represent a code eliminates
the need to list all the n-tuples in the code set. In the binary
case, & & by n generator matrix uniquely specifies the code set
containing 2* n-tuples.

With respect to every linear code set V, it is possible to find
a set U of n-tuples such that U and V are “orthogonal’” in the
sense that for any n-tuple code word v in V and any n-tuple
code word u in U,

va" =0

Here, v and u are row matrices, and u” denotes the transpose of u.

TANG AND CHIEN IBM SYST J

The set U is obtained by summing all possible combinations of
rows of an r by n parity-check matrix. The orthogonality require-
ment can, therefore, be written as

GH” =0

Given the code word v = (v, v, -+, v,) in V that satisfies
the equation

h11 h21 e hrl

N L R

R R
then the following set of linear simultaneous equations is obtained:

haoy + by A+ o0+ i, = 0

h,]?]l + h,zvz + e + hrnvn =0

A parity-check matrix H specifies r linear simultaneous
parity-check equations that must be satisfied by the symbols of
every code word from V',

To obtain the parity-check matrix, we can write the generator
matrix in the standard form G = [I, P], where I, is a k by k
identity submatrix and P is a k& by » submatrix that describes
the interdependence between information and parity-check
symbols. The parity-check matrix can then be written as H =
[P” I,]. One can check to see that

GH™ = [I, P][PJ =0
I

Although the specification of either a generator matrix or a
parity-check matrix uniquely determines a linear code, neither
the generator matrix nor the parity-check matrix is unique.
In general, different generator or parity-check matrices for the
same code are obtainable from one another by means of non-
singular linear transformations.

Appendix B: Structure of polynomial codes

Given a generator polynomial g(z) of a cyclic code, a cor-
responding generator matrix G can be written by listing k n-tuples
(corresponding to k code polynomials), none of which can be
obtained by a linear combination of the others. For example,
n-tuples corresponding to 2’g(z), ¢ = k — 1,k — 2, -- - , O consti-
tute k rows of a generator matrix of the same code. The generator
matrix of the specific form G = [I, P] can be determined as
follows. For each z*, where ¢ = n — 1, n — 2, -+ | r, find the
residue p,(r) = ', modulo g(x). The k polynomials

NO. 1 -+ 1969 ERROR CONTROL

70

'+ pi) (wherei =n —1,n — 2, - ,)

are multiples of g(z) and are, therefore, code words. Also, by
writing the corresponding n-tuples as rows, the result is a generator
matrix of the form

G = [I, P]

To obtain a parity-check matriz H, simply write each n-tuple
corresponding to z°h(x), ¢ = 0,1, --- , r — 1 in the reverse order.
The r rows thus obtained form a parity-check matrix. This
procedure can be checked by identifying the product of any
row of G corresponding to z'g(x), where 0 < ¢ < k — 1, and
any row of the previously mentioned H to be identical to one
of the missing coefficients in the equation g(x)h(z) = z" + 1.
To obtain the specific form H = [P” 1,], we find the residue
¢:(x) = z°, modulo h(x), for each 2°, where ¢ = k, k + 1, -+ | n.
The reversal of each n-tuple corresponding to the polynomials
z' + ¢;(2), where 4 = k, k 4+ 1, --- , n, which are all multiples
of h(x), gives the r rows of the parity-check matrix in the desired
foormH = [P" 1,].

For example, consider the primitive polynomial g(x) =
#* + x -+ 1, which as a generator polynomial, generates a code
of length 2° — 1 = 7. To write the corresponding generator
matrix, calculate residues of x° as follows:

px)=2"=a+1, pa)=a'=2r"+r, p)=2r"="+r"="+z+1,
pel@)=2"=s"+2’+r=2"+1, modulo (’+z+1)

The following generator matrix contains rows corresponding
to the vector representation of polynomials z* -+ p;(z), ¢ = 6,
5, 4, 3:

0 0
1 0
0 0

1

0 00

To write the parity-check matrix, first calculate h(z) = (&7 + 1)/
(x> + = + 1) as follows:

TANG AND CHIEN IBM SYST J

Thus, h(x) = 2* + 2 + = + 1, and
a@)=r=+a+1, g@)=2"=2>+2"+x,
@) =2"=a2"++2’=2"+2+1, modulo (2*+2*4z+1)

Writing, in reverse order, the vector representation of poly-
nomials z° + ¢,(2), where ¢ = 4, 5, 6, we have the parity-check
matrix

1110100
H=]01 11010
1101001

It can be seen that the evclic code in this example is identical
to the linear code of the last example.

Appendix C: Methods for finding generator
polynomials
Single-error-correcting codes are often referred to as Hamming
codes’ In such a code, any two distinct single errors z* and z’
must yield distinct syndromes. Let e, and e; be row vectors
corresponding to z° and 2’ respectively

eH” = ¢H"
or
(e; + e)H" =0

Thus, the generator polynomial g(z) never divides 2* 4+ 2’ for
any ¢ and 4. This condition can be satisfied if we choose the code
length n to be e, where ¢ is the period of g(x). The period e is the
smallest integer such that g(x) divides 2° 4+ 1. With ¢ and 7 both
smaller than n, g(x) can never divide (z° + z’) = z'(z*"" + 1).
In particular, if an rth degree g(x) is rreducible (i.e., not divisible
by any other polynomial except 1), then the period of g(z) divides
2" — 1. Then, if the period of g(x) is 2" — 1, g(x) is said to be
primitive. A single-error-correcting code generated by a primitive
polynomial is “close-packed” in the sense that all 2" syndromes
are used for the prescribed correctable errors, 2" — 1 single errors
and one zero error. Since primitive polynomials are known to
exist for all degrees, Hamming codes of length 2" — 1 exist for all r.

One way to generalize the class of single-error-correcting
codes is to obtain codes to correct any error burst within a span
of b digits. Such codes are called burst-b correcting codes™*" and
are suitable for channels with occasional error bursts.

A class of burst-error-correcting codes, known as Fire codes,”
is best defined as the class cyclic codes wherein the generator
polynomials take the form

g(x) = (=* + Dp(x)
Here, ¢ > 2b 4+ 1, the length of the code is the least common

NO. 1 - 1969 ERROR CONTROL

single-error-
corecting codes

burst-error-
correcting codes

independent-error-
correcting codes

BCH codes

examples

multiple (Lem) of ¢ and the period of p(x), and the degree of
p(z) is at least b. When these conditions are satisfied, the resulting
code is capable of distinguishing syndromes resulting from any
two burst errors each of length no greater than b.

There are burst-error-correcting codes other than the class
of Fire codes; many are optimum codes, which are more efficient
than the Fire codes of the same length and maximum correctable
bursts.*®

It was pointed out earlier that an irreducible polynomial p(z)
can be used to generate a single-error-correcting code of a length
equal to the period e of the polynomial p(z), where ¢ is the smallest
integer such that p(z) divides 2 + 1. If we properly combine
several irreducible factors of 2° + 1, we can obtain the generator
polynomial of an independent (or multiple)-error-correcting code.
Given that some « is a root of m,(z) = p(x), i.e., p(a) = 0. Then
for any 7, only one among these factors, denoted by m,(x), satisfies
mi(a®) = 0. These m,(x), called the minimum polynomials of
2°, are not necessarily distinet for different 's.

The binary scH (Bose-Chaudhuri-Hoquenghem) codes form
a class of multiple-error-correcting codes®*~®' that can be de-
scribed in terms of the minimum polynomials m;(z) as follows.
Let the generator polynomial be defined as

g{x) = Lom [my(x), my(z), -+, May_1(2)] 2

then the code generated by g(x) is a t-error correcting code with
a minimum distance at least 2{ 4 1 and a length n = e¢,, where
e, is the period of m,(x).

If the generator polynomial is

g9(@) = 1M [mo(2), mi(x), ms(x), -+, My (2)] ®3)

the corresponding code has a minimum distance of at least 2t + 2.
The length of this code is againn = ¢, fort > 1. Fort = 0, g(x) =
mo(x) = x -+ 1. The code generated by g(x) = x + 1 has a mini-
mum distance of 2. This is a code with a single parity digit, and
the code length can be arbitrary.

Given any m,(z), one could obtain m,(z) for any ¢ by using
algebraic procedures.’*** However, this is generally time con-
suming and unnecessary since tables of binary minimum poly-
nomials are available.**

As an example, assume that we are generating a binary
double-error-correcting code of length n = 2° — 1 = 63. Since a
primitive polynomial of degree six has a period equal to 63, we
select m,(x) as a primitive polynomial. F'rom Reference 34, if the
primitive polynomial ° + 2 -+ 1 is chosen as m,(z), then m,(zx) =
2° 4+ 2* + 2 + x + 1. From Equation 3, the generator polynomial

g(@) = noM [mi(x), ma(x)] = mi(x)ms(x)
@ H+z+ D+ + 2+ 2+ 1)
xlz + xlO + xs + xs + x4 + x3 + 1

TANG AND CHIEN IBM SYST J

generates a (63, 51) code with a minimum distance at least 5,
good for double independent-error correction. Note that the
coefficients in the product can be obtained by first writing the
product in the ordinary fashion. Then all even coeflicients are
transformed to 0's and all the odd ones to 1’s.

The period of m;(x) may be smaller than that of m,(z); the
degree of m;(z) may also be smaller than that of m,(x). Such
properties are sometimes useful, as shown in the following example.

With the same m, (x) as used in the last example, if we let m!(z) =
ma(z) and B8 = &, such that m{(8) = ms(a®) = 0, then mj(zx) =
me(x), where m4(8°) = mo(e’) = 0. From Reference 34 we find that
mo(x) = 2° + 2* 4+ 1. From Equation 3, the generator poly-
nomial is

9@ =@+ D+ +2+2+DE+ 2"+ 1)

=2+ + 2+t 2+ 1 4)
which generates a (21, 11) code with a minimum distance of 6.
It should be pointed out that the minimum distance d
guaranteed by the BcH code in Equation 2 is just a lower bound
to the actual minimum distance of the code. For example, the
primitive binary polynomial m,(z) = 2" + 2° + 1 has a period
2" — 1 = 89 X 23. The polynomial mge(z) = 2 + 2° + 2" +
2® 4 2° + x + 1 has a period of 23. Assuming 8 = «*° and m{(2) =
mea(z), then the Toots of mi(x) arc 8, &, ', &, 8%, (68 = 6,
B, (B = 8), (B = 8%, 8°, 8. Since m[(z) = mi(x) = mi(x) =
m}(x), as a BCH code, m, () generates a (23, 12) code of minimum
distance at least 5. However, the (23, 12) code is equivalent to
the Golay code®® with a minimum distance equal to 7. Other
BcH codes have also been found to have actual minimum distances
exceeding those guaranteed by the theory of BcH codes.®

Error-correction procedures of BcH codes are rather compli-
cated. They generally involve solving the roots of a t-degree
polynomial and a set of ¢ simultaneous equations, where ¢ is the
number of correctable errors. The number of operations needed
to perform these procedures grows exponentially with respect to ¢.
Recent research suggests ways of significantly reducing the
decoding complexity of Bcn codes.*” ™ Perhaps decoding com-
plexity will eventually increase only linearly with &.

For many applications where the number of errors to be
corrected in a code block is small, logic implementation of table
lookup is a practical solution to the decoding of BcH codes. Another
attractive method of implementation by means of majority gates
can be used for a class called ‘‘self-orthogonal” codes, which
includes certain BcH codes. This subject is covered later in Ap-
pendix D.

Another well-known class of multiple-error-correcting code
is the class of Reed-Muller codes.*”"*' Although not originally
formulated in terms of cyclic codes, Reed-Muller codes have
been shown to be obtainable from a special class of BcH codes.*

NO. 1 - 1969 ERROR CONTROL

multiple-burst-
correcting codes

Reed-Solomon
codes

example
decoders

74

Figure 9 Decoder for a burst-2 code

ﬂ—.—-l 15-BIT BUFFER STORAGE F)QUTPUT

The BcH codes described earlier exist in other than binary
cases. A ¢g-nary BCH code can be generated by a g-nary polynomial
(a polynomial with ¢-nary coefficients), provided the ¢ symbols
can be identified as elements in a field.** A character (or a byte)
consisting of a binary m-tuple, for example, may be considered
as belonging to a field of 2™ elements.

Reed-Solomon codes are a special class of BcH codes where
the message symbols are m-tuples.** When used for binary mes-
sages, binary symbols must be grouped as m-tuples (or characters).
A generator polynomial taking the form

gx) = (@ — a)(x — o) -+ (x — ') ()

generates a code with minimum distance of at least d. Note that
the coefficients of the generator polynomial and code polynomials
are now m-tuples and the distance between two code words is
the number of places wherein corresponding m-tuples differ. The
length of this code is e = 2™ — 1 characters, or m(2™ — 1) binary
digits.

Because of their independent-character-error correcting capa-
bility, Reed-Solomon codes are effective against multiple bursts
of error if they occur within a code block. The decoding procedure
is rather complex and usually requires program implementation.
The code efficiency is usually attractive when compared with the
efficiency of competitive schemes, such as the use of interleaved
codes. A Reed-Solomon code with a minimum distance equal to
12 has been used in Digital Cypress.*®

We indicated previously that burst-error-correcting codes can
easily be implemented. This is illustrated in the following example.
A binary code having as its generator polynomial

g) = @+ D@+ + 1) =2"+2* +° + 1

is a burst-2 correcting code of length 15, a decoder for which is

TANG AND CHIEN IBM SYST J

Figure 10 Decoder for a single-error-correcting code

Pl
INPUT 7-BIT BUFFER STORAGE

shown in TFigure 9. The registers in the division circuit contain
the residue of a’¢(x) modulo g(z), where e(z) is the error poly-
nomial. Since the syndrome detection circuit must recognize the
syndrome when the error burst is located at the high-degree end,
we may write the corresponding error polynomial as

e(x) = 2% b(x)

where b(x) is the error-burst polynomial of degree b — 1 = 1.
The syndrome of this e(z) is the residue of 2'°7*"® b(x) modulo
(z* + 2 + 2° + 1), which is simply 2°b(x). The existence of
three zeros in this syndrome is taken as the basis of syndrome
detection as shown in Figure 9. Once the burst location is de-
termined, feedbacks in the division circuit can be cut off or, as
shown in Figure 9, nullified by establishing an additional feedback
path. The detected error pattern (including no error) is then
gated through and removed from the received message coming
out of the 15-bit buffer storage. Switch N is closed only during
the second n-bit cycle.

Another example is the single-error-correcting code generated
by g(z) = 2* + 2 + 1, a decoder for which is shown in Figure 10,
The operation of this decoder is similar to that shown in Figure 9.

In some applications, the input message may not be in the
exact serial form. Combinatorial decoders or decoders that com-
bine serial and parallel operations then become distinet pos-
sibilities.**"*’

Appendix D: Specialized error-control codes

The interleaving of codes is just like the time-division multiplexing
of a number of messages. Each ‘“‘subcode’” consists of symbols
separated periodically by m digits; there are m such subcodes.
Usually all m subcodes are generated by the same polynomial

NO. 1 - 1969 ERROR CONTROL

interleaved
codes

N-dimensional

codes

Figure 11 Two-dimensional code

format

INFORMATION
SYMBOLS

COLUMN CHECKS

ROW
CHECKS

CHECKS
ON
CHECKS

shortened
codes

g'(z). Clearly, if the length of the subcode is n’, the overall code
length is n = mn’. The generator polynomial of the interleaved
code can be shown to be

gx) = g'(a")

where ¢'(z) is the generator polynomial of individual subcodes.

Interleaved codes tend to break up error bursts, and subcodes
interpret them as independent errors. Thus, one can use in-
dependent-error-correcting codes of acceptable decoding com-
plexity against burst or multiple-burst errors, which might
otherwise require a multiple-burst correcting code with impractical
decoding complexity. On the other hand, a single-burst-correcting
code with simple implementation cannot handle long bursts
(e.g., drop-outs) unless the code is long. In that case, long code
words would be exposed to some additional errors not protected
by the code. The main disadvantage of interleaved codes is that
the redundancy requirement is relatively high in comparison
with that of multiple-burst-error-correcting codes.

The N-dimensional codes are, as the name suggests, best
discussed in geometric terms. ¥igure 11 shows a two-dimensional
code format in which each row belongs to a subcode and each
column belongs to another (not necessarily distinet) subcode.

If d; and d, are respectively the minimum distances of row
and column subcodes, then the two-dimensional code has a
minimum distance d = d,d.. More dimensions can be added to
the code to further strengthen the correction capability.

The above two-dimensional code is equivalent to a two-level
interleaved code. Columns of information symbols can be con-
sidered as being interleaved with the row subcode, and N iterations
of interleaving clearly result in an N-dimensional code. It is
from this point of view that N-dimensional codes are often
referred to as iterated codes.® The geometrical interpretation
of N-dimensional codes also enables one to obtain simple im-
plementations of such codes especially for such storage devices
as tapes and core arrays whose geometrical configurations are
ideal.

An N-dimensional code may also suffer from the high re-
dundancy requirement when used in burst channels because of
interleaving. Nevertheless, such a code has the attractive feature
that as long as the error rate is reduced in each level of iteration,
more and more iterations will, in theory, make the error rate
diminish while keeping the information rate nonzero.*’

We have seen that in any cyclic code capable of correcting
single errors, the code length should not exceed e, the period of the
generator polynomial. However, an (n, k) code can be shortened
to become an (n — s, k — s) code by constraining the s high-
degree digits of the code polynomial to be always zero. These s
digits are then omitted from all code words. The linear sequential
encoder of Figure 7 can be used for shortened codes without
change. However, if the decoding delay is to be n’ = n — s digits

TANG AND CHIEN IBM SYST J

instead of n digits, the input of the division circuit in the decoder
of Tigure 8 should be premultiplied by 2°. The same syndrome
detection circuit can then be used.*

Shortened codes are often used because natural code lengths
may not be suitable in some applications. They can also be used
to improve reliability, since with the reduced code length (n — s),
the expected number of errors is reduced by a factor (n — s)/n.
The most attractive feature of shortened codes, however, is that
the maximum correctable errors may now exceed what was
originally possible with full-length codes.”® This feature is partic-
ularly desirable with burst-error correcting codes, since the
increased correcting capability presents no extra decoding com-
plexity. In applications to variable length messages, codes that
have increased capabilities at shorter lengths can achieve addi-
tional reduction in overall error rate.

We have secen that decoding complexity is a severe limitation
to the application of powerful BcH codes. It is, therefore, desirable
to find new classes of codes with structures that enable one to
use simple decoding procedure. Codes obtained from projective
and Euclidean geometries have recently been shown to be de-
codable by threshold logic.’® We shall illustrate the basic concept
with a special class of binary “self-orthogonal” codes.”

Self-orthogonality is defined on the parity-check matrix as
follows: the set of rows (hy, hy, -+ h;) in a parity-check matrix
H with 1’s in a particular column ¢ are self-orthogonal on the 7th
column if, in this set (considered as a submatrix), no other column
contains two or more 1’s. To decode the digit corresponding to
the 7th column of H, we first assume that the error at this digit
is unknown, and that each of the J parity equations from the
set gives an ‘‘estimate’ of this error. The majority determines
the final error value. Since an error corresponding to the 7th
column has J votes, while an error at any other position has at
most one vote (because of the self-orthogonality), the majority
decision must be correct as long as the total number of errors
does not exceed J/2. If the self-orthogonality condition can be
established for every digit (not necessarily with the same parity-
check matrix), the code is threshold decodable with a minimum
distance at least J 4 1.

The most interesting case occurs when the code is cyeclic,
because a decoder with the general form shown in Figure 8 can
be used. The syndrome detection circuit, in this case, contains
majority logic with inputs from J modulo-2 adders performing
the set of J parity checks found to be self-orthogonal on the
highest-degree digit. We now demonstrate this with an example.

The code generated by g(x) = 2’ + 2" +2° + 2" + 2" + 1
of Equation 4 was shown to be a (21, 11)-code with minimum
distance equal to six. Using the division circuit of Figure 4A in
the decoder of IFigure 8, the contents of the shift-registers (con-
sidered as an r-tuple) give the syndrome of the error, which, in
this case, is the residue of the received polynomial modulo g(x).

NO. 1 + 1969 ERROR CONTROL

threshold-
logic-
decodable
codes

self-orthogonal
decoding example

(6)

)

0
0

H =
0
1
0
0

H =0
1
0

synchronization
codes

o OO = OO

The 7th column of the parity-check matrix can be written as the
residue of 2'™" modulo g(x) as follows:

i—1

|

01500110000101
10501100001010

1 511000010100

1 ':10110101101

1 501011011111

1 ':10110111110

1 501011111001
1 510111110010
0501001100001
001100110000 1 0]

This matrix does not satisfy the desired ‘‘self-orthogonality”
condition. However, an equivalent parity-check matrix can be
obtained by cyclicly shifting the first row of H in Equation 6.
There are five such cyclic shifts with a 1 in the right-most column
(because the row has five 1's) as shown in Equation 7.

00000001500110000101
00000000501001100001
00101000i0000001001]1
00010100200000001001
11000010i100000O0GO0GO0O0 1]

The five rows of H' are self-orthogonal on the right-most
column, since no other column contains two 1's. The minimum
distance is 6. Any row of H', denoted by h;, is a linear combination
of a unique collection of rows in H and can be ‘‘synthesized”
from the ten left-most digits by adding rows of H (of Equation 6)
with 1’s at the desired position. These sums are equivalent to
modulo-2 additions of the contents of the corresponding shift-
registers. A complete implementation of the decoder is shown
in Figure 12.

Self-orthogonal codes, such as the one just discussed, belong to
a general class of threshold-logic decodable codes, which are
derived from finite geometries. For more details regarding the
recent developments in threshold decodable codes, see References
54 and 55.

The error-control codes discussed thus far deal with additive
errors, and we assume that there is no misidentification of loca-~
tions of symbols. In real transmission or storage systems, however,
synchronization errors can occur at a bit level, character level, and
even at a higher level, where the framing of code words is involved.

TANG AND CHIEN IBM SYST J

Figure 12 Decoder for a self-orthogonal code

RECEIVED

MESSAGE
’ 21-BIT STORAGE BUFFER

DECODED
/_;_\MESSAGE
/

o

MAJORITY LOGIC GATE
THRESHOLD = 21/,

Various methods of controlling synchronization errors have been
suggested. The use of a synchronization sequence with a sharp
autocorrelation function® sets up the word-framing. To avoid
subsequent loss of word synchronization due to the possible loss
of bit synchronization, such special sequences may be inserted
before each code word, or periodically at longer intervals to
avoid the need for excessive redundancy.

When a eyclic code is to be used for error control, it is possible

to incorporate synchronization-error control in the code capability.
Since, in that case, a cyeclic shift of a code word is also a code
word, ordinary coding schemes must be modified if a slip in word
framing is to be controlled within the context of a code. There are
three possibilities:

1. Add a fixed n-tuple, with a special synchronization property,
to every code word. (Such a code is known as a ‘‘coset code.”’)
The same n-tuple is subtracted from the received message
after the word-framing is established.’”

Use a shortened cyclic code to control word-framing.”
Use an extended cyclic code for the same purpose.®®*

Recovering errors due to the loss or insertion of bits within
a code block is a different problem and has yielded relatively
few results.’”®® A more practical method is the detection of
this type of errors accompanied by a possible request for retrans-
mission.

The relationship between information symbols and code
symbols need not be confined to disjoint blocks. In a convolutional
(or recurrent) code, check digits in a given block, check some of

NO. 1 - 1969 ERROR CONTROL

convolutional
codes

the information digits in other blocks as well. One may describe
a convolutional code as one that has overlapping blocks. In a
separable linear code, the generator matrix may be written in
the standard form G = [I, P]. Similarly, we may write the
generator matrix for a truncated convolutional code of length
n' = mk + r) as

I, p, 0 P, --- 0 P,
o o I, P, --- 0 P,

I. P,

Here, the first & information digits are related to the r following
check digits in the same block by P, and are related to the check
digits in the m — 1 following blocks by Py, --- , P,_;. The cor-
responding parity-check matrix is the following:

P, I. 0 0

P, 0 P, I

H=

P,, 0 P,, 0 P/ I

Although convolutional codes for correcting burst errors
and independent errors®®® have been studied, at present they
are not as well understood as block codes. As far as theoretical
error-control capability is concerned, there appears to be no
significant difference between block codes and convolutional
codes.®®

There are two different approaches in decoding a convolutional
code. The first is ‘‘deterministic decoding,” in which syndromes
are calculated and algebraic procedures are carried out to de-
termine the error sequence, similar to the decoding of block
codes. However, if the decoding results of previous blocks are
fed back to modify syndromes that determine the following
blocks, any decoding error may ‘‘propagate’” to succeeding blocks.
Although the error propagation problem may not be serious, it
must be analyzed and evaluated when convolutional codes
are used.

Another method of decoding a convolutional code is known
as the “sequential decoding’’ technique.”””” With sequential
decoding, one evaluates the accumulated likelihood of correct
decisions at each digit and accepts a digit only after a certain
number of succeeding digits tend to confirm (in terms of ac-
cumulated likelihood measure) that the first digit is correct.
If succeeding digits indicate that the first digit is in error, a
search through the code tree, based on a predetermined algorithm
follows, with corresponding likelihood evaluated, until a satis-
factory decoding of the digit is found.

63—65

TANG AND CHIEN IBM SYST J

The following can be said about sequential decoding in general:

The decoding algorithm is usually flexible enough to be used
on a variety of channels.

Randomly chosen convolutional codes can be used.

A computer with large storage is required.

In theory, given sufficient redundancy, the decoding ecrror
decreases exponentially with the constraint length »’.

The decoding effort (in terms of computations or storage
required) is a random variable without an upper bound,
although the expected decoding effort is bounded.

A constant-weight code consists of all n-vectors of a certain
fixed weight (number of 1"s) w. Sinee two n-vectors of weight w
do not always result in a vector sum of the same weight, such
codes are generally not linear codes. Constant-weight codes are
useful in asymmetric channels in which errors of one polarity
dominate, since such errors always change the weight of the
code vectors and, thus, can be detected.”””™ The minimum
Hamming distance between any two code vectors is two. There-
fore, any combination of an odd number of errors can also be
detected. When n = 2w, the code vectors can be used directly
to specify the exact bipolar signal sequences to be used in the
channel. Such signals would contain no de¢ component. This is a
desirable feature, since it is common for a channel frequency
characteristic to assume a zero value at the zero frequency.

Arithmetic codes have been proposed for use with computers
to control errors that occur in arithmetic operations as well as
in transmission and storage.”® Code words are considered integer
numbers, and ordinary arithmetic operations apply. There is
a generator A, similar to that of cyclic polynomial codes, and
the code words are all integer multiples of A, within a certain
range of n digits. For binary arithmetic codes, the number of
redundant digits is the smallest integer » > log, A. Such a code is
linear with respect to arithmetic operations, i.e., AN, + AN, =
A(N, + N,) = AN,

An error in arithmetic code is defined by subtracting the
transmitted code ‘“‘number” from the received number arith-
metically. Because of carries, a “‘single’” arithmetic error may
appear as a burst of errors in the vector representation.

A single-error-detecting arithmetic code can be obtained by
letting A = 3. Since a single error must assume a magnitude
of the form 42°, no single error can change one code number to
another because code numbers must differ by a multiple of three.
Such a multiple can never assume the form =42°. The arithmetic
code length can be arbitrary.

Tor single-error correction, the residues of 2" (i = 0, - -- |
n — 1) modulo A (which are similar to the syndromes in poly-
nomial codes) must be distinct. For example, with 4 = 19, we
have the following residues:

No. 1 - 1969 ERROR CONTROL

constant-
weight
codes

arithmetic
codes

82

=1,2"=22"=4,2" =8 2" = 16,
=13,2°=72"=14,2° =9, —2° = 18,
=17, =2 = 15, =2° = 11, 2" = 3,

modulo 19

=6 —2'=12 2" =5, -2 =10

7

The code length is nine digits with five redundancy digits.
Despite their attractive features for error control in computer-
communication systems, there are few known classes of arithmetic
codes. However, some encouraging results in the theory of arith-
metic codes for multiple-error correction have recently been
obtained.™

Appendix E: Cyclic redundancy checking

Operation of the crc in IBM 2400-series magnetic tapes is
now illustrated. If a,(2), 7 = 0, --- , 8, indicates the message
polynomials on the ¢th track, then the crc character contains the
residue

e@) =co +ex+ o Fea®= 2 2 a(x) modulo g(2)

=0

where
gle) =2 + 2+ 22 + 2+ 2° 4+ 1
The residue ¢(2) can be obtained from the division circuit shown
in Figure 13. Comparing Figure 13 with Tigure 4a, it is clear
that the contribution of za,(x) in the residue c(x) is ¢ (x) =
za,(z) modulo g(z). Similarly, because of the successively advanced
input points, the contribution of za,(z) in ¢(x) is ¢ (x) = z*a,(2)
modulo g(z). The complete residue is »_5_, ¢ (x) = c(z).

The effect of the premultiplication by z at all inputs is equiva-
lent to an additional shift after the last digits in a,(z) are in the
division circuit. The crc-coded message in the ith track is m;(x) =
za,(z) + c;. When the error-free coded messages in nine tracks
are fed into the division circuit of Figure 13, the shift-register
contents correspond to the residue of

8 8 8
3 aimx) 3 atMax) + 2 ale
=0 1=10 =0

=c¢(@) + c(r) =0 modulo g(x)

If an error ¢,(x) occurs in the 7th track, then the register contents
correspond to

s(z) = z'e,(x) modulo g(x) (8)

which is not zero if g(x) does not divide e;(x).

To determine the track ¢, feed the Ve error sequence into
a second division circuit similar to the one shown in Figure 13,
but with the input point corresponding to that of the eighth
track. An error appears in the vRc sequence when e(x) occurs

TANG AND CHIEN IBM SYST J

Figure 13 Nine-bit division circuit

xao(x) xal(x) xaz(x)

in any single track. Therefore, the register contents of the second
division circuit correspond to

§'(z) = 2% (x) modulo ¢(z)

Making 8 — ¢ additional shifts in the original divider after s(z)
is obtained (and referring to Equation 8), the register contents are

P 7s(x) = 28 wte () = §'(@) modulo g(x)

matching the register contents of the second divider. After the
error track is determined by shifting and matching the divider
register contents, the track is reread with the vRc error sequence
added to the message. Many errors not correctable by the above
procedure, including any single-track error ¢;(x) that is divisible
by g(z) and any combination of odd numbers of bit errors, are
still detectable.

CITED REFERENCES AND FOOTNOTES

1. C. E. Shannon, “A mathematical theory of communications,”” Bell System
Technical Jouwrnal 27, 379-423, 623-656 (1948).

2. M. J. E. Golay, “Notes on digital coding,’”’ Proceedings of the IRE 37,
657 (1949).

3. W. R. Hamming, “Error detecting and error correcting codes,”” Bell
System Technical Journal 29, 147-160 (1950).

. D. Slepian, “A class of binary signalling alphabets,”’” Bell System Technical
Journal 35, 203-234 (1956).

. E. Prange, Cyclic Error Correcting Codes in Two Symbols, U. 8. Air Force
Cambridge Research Center, Technical Report AFCRC-TN-58-156,
Bedford, Massachusetts (1957).

. W. W. Peterson, Error-Correciing Codes, The MIT Press and John Wiley
and Sons, Inc. (1961).

. R. W. Lucky, J. Salz, and E. J. Weldon, Jr., Principles of Data Com-
municaiion, McGraw-Hill Book Company, New York, New York (1968).

. D. A. Huffman, “A method for the construction of minimum-redundancy
codes,’”’ Proceedings of the IRE 40, No. 9, 1098-1101 (September 1952).

. J. M. Berger and B. Mandelbrot, “A new model for error clustering in
telephone circuits,”” IBM Journal of Research and Development 7, No. 3,
224-236 (July 1963).

. The addition (+) and the multiplication () in a binary field are defined
by the following equations: 0 +0 =0, 0 +1=140=1, 1 41 =0,
0-0=0-1=1-0=0,and1-1 = 1.

. D. A. Huffman, “The synthesis of linear sequential coding networks,”
Information Theory, 77-95, Academic Press, New York, New York (1956).

.1 - 1969 ERROR CONTROL

. C. E. Shannon, ‘“Probability of error for optimal codes in a Gaussian
channel,”” Bell System Technical Journal 38, No. 3, 611-656 (1959).

. G. L. Turin, “Signal design for sequential detection systems with feed-
back,”” TEEE Transactions on Information Theory 1T-11, 401-408 (July
1965).

. J. P. Schalkwijk and T. Kailath, “A coding scheme for additive noise
channels with feedback—Part I: no bandwidth constraint,” IEEE Trans-
actions on Information Theory IT-12, 172-188 (April 1966).

. A. H. Frey, Jr. and R. J. Benice, “An analysis of retransmission systems,”’
IEEE Transactions on Communication Technology COM~12, 135-146
(1964).

. G. D. Forney, Jr., “On decoding Bcu codes,”” IEEE Transactions on
Information Theory IT=11, No. 4, 549-557 (October 1965).

. G. D. Forney, “Generalized minimum distance coding,” IEEE Trans-
actions on Information Theory IT=12, No. 2, 125-131 (April 1966).

. A. H. Frey, Jr., “Adaptive decoding without feedback,”” Proceedings of
the International Symposium on Information Theory (Athens, September
1967).

. D. T. Tang, “Dual codes as variable redundancy codes,” IEEE Inter-
national Convention Record 13, Part 7, 220-226 (March 1965).

. D. T. Tang and R. T. Chien, “Cyclic product codes and their imple-
mentation,” Information and Control 9, No. 2, 196-209 (April 1966).

. J. L. Eisenbies, “Conventions for digital data communication design,”
IBM Systems Journal 6, No. 4, 267-302 (1967).

. R.T. Chien and D. Frazer, “An application of coding theory to document
retrieval,”” IEEE Transactions on Information Theory 1T=12, No. 2, 92-96
(April 1966).

. C. T. Abraham, S. P. Ghosh, and D. K. Ray-Chaudhuri, “File organiza-
tion schemes based on finite geometries,” Information and Control 12,
No. 2, 143-163 (February 1968).

. G. Constantine, Jr., “A load-sharing matrix switch,” IBM Journal of
Research and Development 2, No. 3, 204-211 (July 1958).

. R. T. Chien, “A class of optimal noiseless load-sharing matrix switches,”
IBM Journal of Research and Development 4, No. 4, 414-417 (October
1960).

. N. M. Abramson, “A class of systematic codes for non-independent
errors,” IRE Transactions on Information Theory IT-5, No. 4, 150-157
(December 1959).

. P. Fire, A Class of Multiple-Error-Correcting Binary Codes for Non-
Independent Errors, Sylvania Report RSL-E-2, Sylvania Reconnaissance
Systems Laboratory, Mountain View, California (1959).

. B. Elspas and R. A. Short, “A note on optimum burst-error-correcting
codes, IRE Transactions on Information Theory IT-8, No. 1, 39-42
(January 1962).

. R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error correcting
binary group codes,” Information and Conirol 3, 68-79 (1960).

. R. C. Bose and D. K. Ray-Chaudhuri, “Further results on error cor-
recting binary group codes,”’ Information and Control 3, 279-290 (1960).

. A, Hocquenghem, “Codes correcteurs d’erreurs,” Chiffres 2, 147-156
(1959).

. W. W. Peterson, op. cit., 141~142.

. A. A. Albert, Fundamenial Concepts of Higher Algebra, 143 (Theorem 25),
The University of Chicago Press (1956).

. W. W. Peterson, op. cit., 254-270.

. M. J. E. Golay, “Notes on the penny-weighing problem, lossless symbol
coding with nonprimes, etc.,”” IRE Transactions on Information Theory
IT-4, No. 3, 103-109 (September 1958).

. V. Y. Lum, On Bose—Chaudhuri~Hocquenghem Codes Over GF(gq), Report
R-306, University of Illinois, Urbana, Illinois (July 1966).

. R. T. Chien, “Cyclic decoding procedures for Bose—Chaudhuri-Hoc-

TANG AND CHIEN IBM SYST J

quenghem codes, IEEE Transactions on Information Theory IT=-10,
No. 4, 357-363 (October 1964).

. E. R. Berlecamp, Algebraic Coding Theory, Chapters 7 and 10, McGraw-
Hill Book Company, New York, New York (1968).

. J. L. Massey, ‘“Feedback shift-register synthesis and Bcu decoding,”
submitted for publication in the IEEE Transactions on Information
Theory.

. D. E. Muller, “Application of Boolean algebra to switching circuit design
and to error detection,” IRE Transactions on Elecironic Compulers,
EC-3, No. 3, 6-12 (September 1954).

. I S. Reed, “A class of multiple-error-correcting codes and the decoding
scheme,” IRE Transactions—Professional Group on Information Theory
PGIT-4, 38-49 (September 1954).

. T. Kasami, S. Lin, and W. Peterson, “New generalizations of the Reed-
Muller codes part I: primative codes,”’ IEEE Transactions on Information
Theory IT-14, No. 2, 189-199 (March 1968), and E. J. Weldon, “New
generalizations of the Reed-Muller codes part II: nonprimative codes,”
IEEE Transactions on Information Theory 1T-14, No. 2, 199-205 (March
1968).

. There are two operations defined in a field, addition and multiplication.
If 2m binary m-tuples are represented by corresponding polynomials, the
addition and multiplication of binary polynomials can be taken as field
operations, provided that we always reduce a product polynomial of
degree m or higher to its residue modulo a fixed, irreducible polynomial
of degree m. For a rigorous treatment on the theory of finite fields, see
Chapter 6 in Reference 6.

. I 8. Reed and G. Soloman, “Polynomial codes over certain finite fields,”’
Journal of the Society for Industrial and Applied Mathematics 8, No. 2,
300-304 (1960).

. I. B. Oldham, R. T. Chien, and D. T. Tang, “Error detection and cor-
rection in a photo-digital memory system,”’ IBM Journal of Research and
Develorment 12, No. 6 (November 1968).

. K. Y. Sih and M. Y. Hsiao, “Cyeclic codes in multiple channel parallel
systems,” IEEE Transactions on Electronic Computers EC-15, No. 6,
927-930 (December 1966).

. A. Gill, “On the series-to-parallel transformations of linear sequential
circuits,”” IEEE Transactions on Electronic Computers EC-15, No. 1,
107-108 (February 1966).

. T. G. Birdsall and M. P. Ristenblatt, Introduction to Linear Shift-Register
Generated Sequences, EDG Technical Report No. 90, University of
Michigan Research Institute (1958).

. P. Elias, “Error-free coding,”’ IRE Transactions of the Professional Group
on Information Theory PGIT-4, 29-37 (1954).

. W. W. Peterson, op. cit., 194-195.

. T. Kasami, “Optimum shortened cyclic codes for burst-error-correction,”
IEEE Transactions on Information Theory IT=9, No. 2, 105-109 (April
1963).

. L. D. Rudolph, “A class of majority logic decodable codes,” IEEE Trans-
actions on Information Theory 1T-13, No. 12, 305-306 (April 1967).

. J. Massey, Threshold Decoding, The MIT Press, Cambridge, Massa-
chusetts (1963).

. E. J. Weldon, Jr., “Difference-set cyclic codes,” Bell System Technical
Journal 45, No. 7, 1045-1057 (1966).

. D. K. Chow, A Geometric Approach to Coding Theory with Application
to Information Relrieval, Report R-368 (Doctoral Dissertation), Uni-
versity of Illinois, Urbana, Illinois.

. R. H. Barker, “Group synchronizing of binary digital systems,” Com-
munication Theory, W. Jackson, Editor, 273287, Academic Press, Inc.,
New York, New York (1953).

.1 - 1969 ERROR CONTROL

86

57.

58.

59.

S. Y. Tong, “Synchronization recovery techniques for binary cyclic
codes,” Bell System Technical Journal 45, 561-596 (1966).

R. C. Bose and J. G. Caldwell, “Synchronizable error-correcting codes,”
Information and Control 10, 616-630 (1967).

E. J. Weldon, Jr., A note on synchronization recovery with extended
cyclic codes,”’ Proceedings of the First Annual Princelon Conference on
Information Sciences and Systems, Department of Electrical Engineering,
233, Princeton, New Jersey (1967).

. F. F. Sellers, “Bit loss and gain correction code,” IEEE Transactions on

Information Theory IT=8, No. 1, 35-38 (January 1962).

. J. D. Ullman, “Near-optimal, single-synchronization-error-correcting

code,”” IEEE Transactions on Information Theory 1T=12, No. 4, 418-425
(October 1966).

. D. T. Brown, “Error detecting and correcting binary codes for arithmetie

operations,” IRE Transactions on Electronic Computers EC-9, 333-337
(1960).

. A. D. Wyner and R. B. Ash, “Analysis of recurrent codes,”” IEEE Trans-

actions on Information Theory 1T-11, No. 3, 143-156 (July 1963).

. D. W. Hagelbarger, “Recurrent codes: easily mechanized, burst-cor-

recting, binary codes,” Bell System Technical Journal 38, 969-984 (1959).

. E. R. Berlekamp, “Note on recurrent codes,”” IEEE Transactions on

Information Theory IT-10, No. 3, 257-259 (July 1964).

. J. J. Bussgang, “Some properties of binary convolutional code generators,”

IEEE Transactions on Information Theory IT=11, No. 1, 90-100 (January
1965).

. J. P. Robinson, “An upper bound on minimal distance of convolutional

code,”” ITEEE Transactions on Information Theory IT-11, No. 4, 567-571
(October 1965).

. C. V. Freiman and J. P. Robinson, “A comparigson of block and recurrent

codes for the correction of independent errors,” IEEE Transactions on
Information Theory IT-11, No. 3, 445-449 (July 1965).

. J. M. Wozencraft, Sequential Decoding for Reliable Communication,

Massachusetts Institute of Technology, Research Laboratory for Elee-
tronics, Technical Report TR325 (1957).

. R. M. Fano, “A heuristic discussion of probabilistic decoding,”” IEEE

Transactions on Information Theory IT=-9, No. 2, 64-74 (January 1963).

. F. Jelinek, Probabilistic Information Theory—Discrete and Memoryless

Models, McGraw-Hill Book Company (1968).

. J. M. Berger, “A note on burst error detection codes for asymmetric

channels,” Information and Conirol 4, No. 3, 68-73 (March 1961).

. C. V. Freiman, “Optimal error detection codes for completely asymmetric

binary channels,” Information and Control 5, No. 1 (March 1961).

. R. T. Chien, S. J. Hong, and F. P. Preparata, “Some contributions to

the theory of arithmetic codes,”’ Proceedings of the Hawaiz International
Conference on Systems Sciences, Honolulu, Hawaii (1968).

TANG AND CHIEN IBM SYST J

