
This paper describes a n operational teleprocessing system that allows
both low-speed conversational data entry and high-speed remote job
entry and output. A t the same time, the multiprocessing system
provides conventional batch processing.

The total system con$guration, which consists of standard equipment,
i s briejly introduced. Then the teleprocessing control program, the
major programming support developed for the system, is described in
detail. This program functions as the interface between the tele-
processing lines and the inputloutput streams of the batch processing
system. The $nul topic is the terminal program, which is provided
for the central processing units at the terminals.

A teleprocessing approach using standard equipment
by R. D. Wade, G. P. Cawsey, and R. A. K. Veber

A generalized teleprocessing system has been developed to meet
t'he specific requirements of the Central Electricity Generating
Board (CEGB) in London, United Kingdom, which produces and
distributes the total electricity supply for England and Wales to
local area boards.' As the interface to a conventional batch proces-
sing system doing advanced applications, this teleprocessing
system allows both low-speed conversational data entry and high-
speed job entry and output.

The Central Electricity Generating Board has traditionally
had a large scientific job-shop installation. The expanded use of
computers to assist in the control of the national electricity grid
transmission system required a teleprocessing design that would
provide rapid results once a control engineer decided on the need
for a calculation. The calculations are necessarily complex, requir-
ing a large computer to provide results in a reasonable time (a few
minutes). Fast response is also aided by allowing the control
engineer to enter data directly into the computer from a remote
location and to read directly the output presented to him from a
calculation. In addition to performance, efficient use of main
storage was a basic aim in the design. The system described is now
in operation and has proved successful in all of these respects.

This paper briefly discusses system considerations, including
the total configuration. Standard equipment is used, and the
programming support provided for the equipment is only extended

28 WADE, CBWSEY, A N D VEBER IBM SYST J

Figure 1 General system configuration

SYSTEM/360
MODEL 75

MAIN PROCESSOR

-j s;:EE t- DIRECT ACCESS

" TAPE POOL

'CHANNEL-TO CHANNEL ADAPTE

UNIT RECORD

FOR LOCAL
BATCH JOB

PROCESSING

REMOTE
PROCESSOR

""" REMOTE
PROCESSOR

SYSTEM1360
MODEL 50

DATA ADAPTER
UNITS

I"
>
3
H

LOCAL
TERMINALS
2740

2703

-
ATTACHED PROCESSOR

to provide the teleprocessing capability. The main emphasis of the
paper is on the principal program developed for the system, the
teleprocessing control program. This program controls the trans-
mission and receipt of data along both high-speed and low-speed
lines to a variety of terminals. The last topic discussed is the
program developed for use at the remote termnials.

System considerations
The teleprocessing system is based on standard IBM SYSTEM/360

computers supported by the SYSTEM/~SO Operating System. The
system configuration is shown in Figure 1. The principal terminal
supported is the IBM 1130 computer system, since it allows the
combination of a keyboard for data entry and a relatively fast
printer for output. Although the ensuing description assumes use
of the 1130 t o illustrate the concepts, any remote terminal could
be used that can communicate with the SYSTEM/~BO.

The teleprocessing control program (TCP) provides an interface
between the teleprocessing lines and the input/output streams of
a conventional batch processing installation. The programming
conforms with the Synchronous Transmit-Receive (S T R) method
of data communication, but the system includes local IBM 2740 com-
munication terminals that can be used through the teleprocessing
control program for local conversational file manipulation. Al-
though the techniques described in detail assume the STR mode,
the basic philosophy of the system is equally applicable to the
Binary Synchronous Communication (BSC) method.' In fact, the
package is now undergoing conversion to BSC. At the same time,
remote start/stop terminals, such as the IBM 2740 terminal, will
be included, extending the package for additional applications.

NO. 1 ' 1969 A TELEPROCESSING APPROACH 29

Since the system generally deals with a large number of
terminals, special consideration was given to supporting the dual
communications interface feature of the IBM 2701 data adapter,
which alloms two lines to come into one adapter, the switching
of lines being program controlled.

The teleprocessing control program functions under the
standard Attached Support Processor (ASP),3 which is a TYPE 2

extension of the SYSTEM/360 Operating System. ASP is a multi- ,
processor operating system designed to automate the operation ~

of one or more computers interconnected via channel-to-channel
adapters. ASP resides either in a separate smaller computer (the
attached processor) or in a main storage region of one of the larger
comput’ers. Although teleprocessing programming support is now
available with ASP, t’he project described here was developed
independently of this support because of the special-purpose ap-
plication aspects of the project.

ASP provides a flexiblc base, in association with the operating
system, for such teleprocessing work. This system combination
helped toward achieving the design aims of minimum main
storage and optimum performance; it also allowed, without addi-
tional eflort, a separate operator’s console at the central system to
be designated solely for control of the teleprocessing system. This
console is currently a local 2740. However, all the techniques
described are general enough to be applied to any of the input/
output operating system support provided for the SYSTEM/~RO.

The teleprocessing program provides the on-line, automatic
interface to the teleprocessing network. A fundamental design

Figure 2 Program interaction in the attached processor

ASP BUFFER POOL

7
+

ASP

FUNCTIONS
SUPPORT

(DSPS)

OPERATING
SYSTEM

WADE, CAWSEY, A N D VEBER IBM SYST J

objective is for it to run with mininlal operator intervention. Once
contact is established with a terminal, the program then auto-
matically controls that terminal, even in diagnost'ic mode.

An essential requirement for this application is tjhe ability
to diagnose any type of error on a dynamic basis. Therefore,
techniques were developed to automatically provide line-error
statistics, line-interruption traces, and on-line diagnostic tests
of equipment. While the teleprocessing system is working, the
central SYSTEM/~BO computers, under the combined control of ASP

and the operating system, continue with normal batch processing.
To support this general teleprocessing function, only minor
changes are made to existing IBM SYSTEM/~GO programming support.

The teleprocessing system is a step towards providing the
facilities of a real-time control system using standard SYSTEM/~GO

equipment. Wit'h the multiprocessing ASP programming support,
it is already feasible to design and operate a configuration with
litt'le redundancy t,hat, can be altered to continue running despite
most malfunctions.

Teleprocessing control program
The teleprocessing control program controls the transmission and
receipt of data along Synchronous Transmit-Receive (STR) lines
to remote processors on the lines. It initiates all input and output
operations over the lines, and it can control any number of remote
processors. The TCP provides the interface between the data
management programs of an ASP system and the standard pro-
gramming support for SYSTEM/XGO, as shown in Figure 2.

ASP consists of a set of modules, called dynamic support
programs (DSP'S), multiprogrammed on a time-sharing basis to
support such functions as card reading, printing, and volume
mounting, and to control one or more large SYSTEMI~GO computers
running under control of the operating system. To ASP, the tele-
processing control program is just another DSP. It,, together with
supporting DSP'S, is used to provide a data management interface
between the TCP and the normal job stream and to print out line-
interruption traces. All of these functions are done asynchronously.

The TCP uses a modified version of the TYPE 2 STR access method
(STRAM) r ~ u t i n e . ~ T h e modifications allow use of STIZAM in the
ASP environment and allow the TCP to, in effect, wait for multiple
events, which is not normally possible for a DSP. Coding
has been added to the STRAM I /O interruption-handling and error-
recovery routines so that, when an event is completed, its status
is set for any data adapter and an indication is given to the TCP.

The error routines have also been modified so that operating
system error messages are routed to the TCP and not to the opera-
tors' console. Other more specific additions to and exits from the
STR access method routine are described in relevant passages.

The data management DSP'S must allow conversational mode
operation, so that the remote user can build and update data files

NO. 1 . 1969 A TELEPROCESSING APPROACH

on the ASP support processor. In addition, the DSP’S must provide
for remote job entry, so that job output from the batch processing
stream can be transmitted a t high speed to the printers of the
remote processors. These two modes of operation are provided by
the TCP for the data management DSP’S, the mode used being
determined through system macroinstructions.

In addition to these two operating modes, the remote users
require 24-hour-per-day access to the central SYSTEM/~BO com-
puters. Therefore, it was essential that the whole teleprocessing
system be made as simple to use and as reliable as possible. The
TCP and associated programs were developed to meet these
requirements with minimum disruptive influence on the normal
batch processing operations of the central computers.

As well as ease of operation, it was important that the TCP

could be expanded to handle more remote terminals of various
types, as required. To achieve this, and to allow parallel develop-
ment of the various parts of the system, the TCP and associated
programs are of modular design. The TCP itself controls data
transmission, while the reentrant data management DSP’S handle
the data in the central computer, operating asynchronously with
the TCP. This modular approach means that additional remote
terminals can be incorporated into the system using high- or
low-speed lines without significant increases in the main storage
required.

The design of the TCP was also influenced by the need to
incorporate support for Binary Synchronous Communication links.
The modular approach ensures that the only additions that are
required are in the more detailed line control routines within the
TCP. All of the remaining modules of the system are independent
of the type of transmission and of the type of remote processor or
terminal.

The TCP automatically attempts to establish contact with all
the remote processors after every central computer failure, and
data are not lost because of such breakdowns (i.e., the remote user
is not affected by a central computer breakdown except for being
unable to gain access to the system during the time of the break-
down). The TCP also ensures that data are not lost due to failures
of the teleprocessing links and includes automatic recovery of all
detected transient error conditions, such as noise on the lines or
short breaks in transmission. In this way, completely unrecoverable
errors are almost eliminated and, when they do occur, the TCP

informs the central computer operators and allows them to restart
data transmission after clearing the cause of the error, without
loss of data.

During development and testing of the system, a number of
fault detection techniques were incorporated, which are summa-
rized here and described in greater detail later in the paper. The
first of these was a line-interruption trace (LIT) program, which
stores indicative data in a disk data set after every input/output
operation on a teleprocessing line. This data can be printed out

32 WADE, CAWSEY, .4ND VEBER IBM SYST J

selectively during normal operations and was essential to the
initial debugging of the TCP. After the initial testing stages, this
facility was retained as an aid to fault analysis and is used in
conjunction with a number of on-line diagnostic routines.

The 24-hour-per-day operation of the system implied that time
would not be available for running normal diagnostic programs
for fault detection (since they would completely interrupt the
ASP system). The on-line diagnostic rout'ines are executed asyn-
chronously with the data management, DSP'S servicing other
remote processors. The diagnostic routines are simple to operate
and can be initiated by either t,he remote processor user or by the
cent'ral computer operator.

As a further aid in fault detection, statistics of data transmitted
and transmission errors are kept for every line. These statistics
are automatically logged out on a central computer console, giving
an indication of any lines that have an error rate higher than a
preset expected rate. These topics are discussed in greater detail
later in the paper.

The telecommunications control program has three modes of
operation :

Initialization mode, during which contact is established with
particular remote processors.
Data communication mode, during which the conversational
and remote job entry facilities for the data management DSP'S

are provided. This is the normal operating mode.
Diagnostic mode, in which attempts are made to diagnose
suspected equipment faults and identify the system components
from which errors are originating.

The initialization mode can be entered in either of two ways.
Normally, as soon as ASP becomes active, the TCP automatically
attempts to set all lines attached to the system into initialization
mode. This attempt is made without any console operator action,
although the TCP informs the teleprocessing operator that it is
carrying out this operation. Also, initialization of one or more
particular lines can be requested by the teleprocessing operator
entering a command.

To initialize a particular line, the TCP initiates a series of fixed
data transmissions on that line in an attempt to identify the
remote processor connected to the line. When a line is operat'ing
in initialization mode, the second interface of bhe adapter is idle;
meanwhile, other lines connected through active adapters can
operate as normal in data communication mode.

Any permanent transmission errors (i.e., repeated data checks
or failure to establish synchronization) during initialization are
counted by the TCP. If the remote processor has not been identified
before that count reaches a preset maximum, the attempt to
initialize the line is abandoned and the console operator informed.

If the remote processor is identified successfully, an entry is
made in a table called the TCP linetable, which is built into the

NO. 1 . 1969 A TELEPROCESSING APPROACH

operating

modes

initialization
mode

33

data
communication

mode

TCP program. This table associates each active remote processor
location (by its having a unique number) with the adapter and
interface to which that remote processor is currently att,ached.
Thus, for example, the data management DSP'S can direct data to
a particular geographical location, by specifying the unique number
assigned to that location, without knowing which adapter is, in
fact, connected to the remote processor.

If the initialization has been successful, the updated version of
the linetable is printed out for the console operators' reference,
and the line is set into data communication mode.

In the data communication mode, the TCP sends data messages
continually to the remote processor. Where both interfaces of an
adapter are connected to remote processors in data communication
mode, messages are sent alternately to the two terminals. This is
the normal operating situation. It allows both remote processors
to be used concurrently for data input and output. (In a normal
remot,e job entry system, only one remote processor is attached
t'o each adapter a t one time.)

The TCP establishes synchronization with the remote processor
attached to one interface alld transmits a data block to that termi-
nal. On receiving :til acknowledge sequence in reply, indicating
that the data has been received successfully, the TCP transmits a
second data block. After receipt, of the second block has been
acknowledged, t'he TCP establishes synchronization with the remote
processor attached to the second interface and transmits two
blocks of data to that terminal. The TCP continues sending data
blocks alter~x~tely to t'he two remote processors either until one
of tlhe terminals has some datla. to transmit to the central SYSTEM/3BO
or until one of the lines leaves dat'a communication mode. While
synchronization is est]ablished on one interface, the TCP temporarily
ignores the other interface, leaving the remote terminal attached
to it continuously trying to establish synchronization.

When the user of a remote processor wishes to transmit data
to the central system, the remote processor replies to a data block
with an inquiry sequence instead of an acknowledge sequence. This
abnormal sequenve is detected by STRAM, and an error indication
is passed to the TCP. The TCP checks the type of error and, in this
case, indicates that no real error has occurred and then attempts
to read data from the remote processor. The remote processor can
send one or two data blocks followed by an end-of-transmission
(EOT) sequence. The TCP receives the data and replies each time
wit,h an acknowledge sequence until it receives t,he EOT sequence.
It then replies with its own EOT and returns to the normal alter-
nate sending of data blocks to the tn-o remote processors.

If one of the remote processors connected to an adapter fails
to be initialized (i.e., remains idle), the TCP sends data to the other
remote processor only. The failing adapter is left for operator
intervention at the central computer. The operators determine
corrective action from the error information displayed, and can
subsequently request the TCP to attempt another initialization of

Table 1 TCP operoting commands

Name

OPEN

CLOSE

RETRY

SEND

TAB

CANCEL

EXEC

STATS

ALTER

Command

Set a line in initialization mode.

Set a line to idle, and reset all status switches for that line.

Retry line indicated in command, which has had a perma-
nent TCP error. This command is used after operator has
corrected likely cause of original error.

Send a data message from the teleprocessing operators’
console to a remote processor. This function is also provided
by the message-switching facilities of the data-preparation
DSP’S.

Initiate preparation of a list of all lines currently in data
communications mode. This list is the TCP linetable set up
during initialization mode, which indicates each line and
its equipment address that has successfully entered initiali-
zation mode and has not been reset to idle.

Delete the TCP from t,he system. This command is ac-
cepted only if all lines are currently idle.

Set a line to the diagnostic mode, and run the test indicated
in the command. After the test has been completed, the line
is returned to the mode it was in before the command wits
executed.

List the data transmission statistics for each line. These
statistics are accumulated by the TCP.

Perform indicated one of several fault analyses and diagnos-
tic functions. For example, alter operating speed of an
adapter (e.g., from 2,000 baud to 1,200 baud) and indicate
to the data management DSP’S to send a text message to
one or more remote terminals using the message-switching
facilities of the data management DSP’S.

NO. 1 ’ 1969 A TELEPROCESSING APPROACH 35

The TCP operating commands available to the teleprocessing
console operator and the functions of those commands are listed
in Table 1. For all TCP console operating purposes, the remote
processor or lines are referred to by their data adapter unit number
and interface.

The diagnostic mode can be entered either following an ASP

diagnostic teleprocessing operator’s command to the TCP (an EXEC command)
mode or when a line is in data communication mode and the remote user

enters a request for a diagnostic function. This remote request is
intercepted by the TCP before it reaches a data management DSP.

Following a request to enter the diagnostic mode, the TCP sets
flags to prevent further data transmission. After waiting for any
current activity to be finished, the TCP initiates the test by linking
to the diagnostic driver module. While the test is being conducted,
the other interface on the adapter being tested is set to an idle
state. The diagnostic driver analyzes a test parameter block passed
to it by the TCP and loads in the required diagnostic routine. The
routine initiates some input/output activity on the line and then
returns control via the driver to the TCP. When the activity ends,
the TCP finds that the line is in diagnostic mode, so instead of itself
analyzing the ending status, it again passes control to the diag-
nostic driver. In this way, the diagnostic routines are executed in
the ASP environment using the multiple wait facilities built into
the TCP and GTRAM.

The diagnostic driver analyzes each channel-end interruption
and records the results in a line control block (LCB), keeping
account of successes and failures as the test progresses. (The LCB

is an appendage to the data control block, D C B , ~ for the STR

adapters. All of these LCB’S and DCB’P are in the TCP.)
The STRAM error recovery procedures are inhibited on the line

being tested during diagnostic mode, so that every fault is counted
directly by the driver module. After analyzing the channel-end
status, the driver transfers control to the test routine again to
initiate a new input or output activity.

The diagnostic driver can control any number of diagnostic
routines on different adapters, and t’he test modules are reentrant
so that the same test can be carried out on two adapters simul-
taneously.

The diagnostic tests themselves are designed to investigate
the various parts and functions of the data transmission system
as follows :

Data adapter unit, by executing commands in the adapter’s
test mode.
Synchronization of the line, by repeatedly sending single data
messages and re-establishing synchronization between each.
Data transmission ability of the line, by continuously trans-
mitting data between the SYSTEM/BBO and the remote processor
in either direction. The data transmitted can be chosen by the
operator, so that suspected data bit patterns can be tested.

36 WADE, CAWSEY, AND VEBER IBM SYST J

Local Modem (or Data Set) attached to the SYSTEM/XO data
adapter unit. This is done by manually looping the line from
the Modem back via a second Modem and a second data
adapter into the SYSTEM/~~O and running communication
diagnostic tests on the two adapters.

The diagnostic driver keeps the results of the test as it pro-
gresses, and, on its completion, sends a diagnostic results message
to the operator who originally requested the test (the ASP tele-
processing console operator or the remote user). The driver then
indicates to the TCP that the test is finished, and the TCP resets its
flags and resets both interfaces of the adapter just tested back to
their original modes.

Because the TCP can send data continuously to the remote
processor, which itself can a t any time request to send data to
the SYSTEM/SBO, use of the remote processor console keyboard and
typewriter must be carefully controlled. To avoid conflict between
the remote user (keying in data on his console) and the data
management DSP'S (sending data to be typed on the console), the
user must request to use the keyboard before he can begin keying.
This request (achieved by pressing the interruption request key)
is transmitted to the TCP as a particular data message - TX. In
response to this message, the TCP sets flags so that the data manage-
ment DSP'S are not able to send data to the remote processor con-
sole, and it indicates to the remote user to begin keying in data by
sending him. a reply of six successive question marks. This reply
is typed on the remote console typewriter. Any data waiting to be
sent to the remote processor console precede the question marks.

While the remote user is keying in data, the TCP continues to
send data (either dummies or data to be printed 011 the remote
line printer). When the user has either typed 63 characters or hit
the end-of-field (EOF) key, a line turnaround occurs, and the TCP

receives a data block from the remote processor. If EOF is pressed,
an indication is given in the data block to the TCP, which causes the
TCP to reset flags to allow data to be sent to the remote processor
console again and to prevent the remote user from keying in more
data until a reply is sent to the messages just received by the TCP.
The remote user may also press the interruption request key after
EOF if he desires to key in a new data message immediat'ely. In
this case, a second data block is sent to the SYSTEM/360"sgain the
characters TX. Thus, the TCP receives two data blocks. On receipt
of the first, the TCP sets flags to allow output to the console and
passes the data to a data management DSP; the second is a request
to use the remote keyboard again. The TCP remembers this request
but does not immediately reply with the question mark sequence;
this message is, in fact, attached to the last reply message from
the data management DSP that has just received the remote user's
data. In this way, the remote user can continuously communicate
with the data management DSP'S without unnecessary delay due
to turnaround.

NO. 1 . 1969 A T E L E P R O C E S S I N G A P P R O A C H

The data preparation DSP’S accept input data from the remote
processor and operate according to the control verbs in the data.
The main funct,ions of these DSP’S are to create, edit, and update
application (job control) and data files on the support processor
prior to job execution on the main processor. The files are created
as ASP files with control information (such as location and status)
kept on reserved disk storage areas. Checkpoints are regularly
made of these reserved areas, and they are protected against all
but the most serious ASP breakdowns. In the control area, there
is a file table for each remote processor’s data, which enables a
particular terminal to prepare its own data and also to have access
to data from other terminals. Thus, the jobs initiated from a
terminal can include multiple input data files and historical data
files without the normal remote job entry requirement of trans-
mitting all that data from the terminal itself.

The data preparation DSP’S also have extensive facilities for
checking the format of input data before initiating a main pro-
cessor job and for editing the data to correct any errors found.
The remote user is thus ensured that when he initiates his job by
a control message, it will have a better chance of running success-
fully on the main processor-saving expensive and unnecessary
delay in job turnaround due to data errors.

The data preparation DSP’S are also used for message switching
between the remote processors and the ASP console operators. The
sending of messages to single or multiple terminals and/or consoles
can be initiated, and the messages are queued by the data manage-
ment DSP’S until they can be transmitted.

The remote printing DSP’S establish the format of and transmit
output data from the main processor to the remote terminals.
These programs create the line records discussed earlier and block
them into ASP buffers for passing to the TCP. Additionally, these
DSP’S can be used to transmit the contents of data files to the
remote processors, so that a user can inspect the contents of any
of his files by initiating a request for a remote print DSP to be
activated and specifying the required file.

automatic error recovery and for fault detection can be summarized and recovery
as follows :

The facilities included in the data transmission system for error detection

Error recovery extensions to the STRAM error routines to
attempt to recover from apparently permanent errors without
operator intervention.
Statistics gathering to indicate automatically when the error
rate on a line increases above an installation standard (e.g.,
this standard is currently three data checks in lo5 bits trans-
mitted, which is a relatively high error rate in normal cir-
cumstances). Statistics also provide a long-term indication of
the performance of a line.
Diagnostic tests, mentioned previously, that can be run to
attempt to isolate a particular device as the cause of faults

I NO. 1 . 1969 A TELEPROCESSING APPROACH 39

in the system. These tests can also be used as a confidence
check when faults have been corrected.
Line interrupt traces, which are always available, so that a
fault can be analyzed each time i t occurs. These traces arc
also available for analysis following running of diagnostic
tests if the test results themselves arc not conclusive.

These facilities arc all available under the ASP system and
do not interrupt the normal operations of any part of the data
transmission system except when a particular adapter is in
diagnostic mode. When one interface is being tested, the other
interface is aut'omatically set into an idle state until the test
has been completed, a t which time it is reset to its previous operat-
ing mode.

Errors due to equipment or line faults are detected by the
errors in data STRAM error routines. These routines automatically initiate error

communication recovery procedures in an attempt to continue normal operations.
mode The recovery procedure used depends on the type of error that

has occurred. For example, if the remote processor indicates
that it has not received a data block correctly (error reply),
that data block is retransmitted; if the remote processor fails to
reply to a data block after a predetermined interval, the line is
tested for synchronization and an inquiry sequence is sent to
interrogate the remote processor again.

When the STRAM error recovery procedures have completely
failed to clear the error condition after the specified number of
attempts, an indication is passed to the TCP that a permanent
error has occurred. The TCP error routines then analyze the type
of error and determine what procedure is to be followed.

In data communication mode, certain types of unusual condi-
tions and errors arc expected. An inquiry sequence in reply to a
data block is an indication that the remote processor is waiting
to transmit data. Thus, the TCP ignores this unusual condition
and attempts to receive the data.

If the error is due to the remote processor sending error se-
quences in reply to a data block, the TCP extends the STRAM

error recovery procedures. It has been found that about ninety
percent of these errors arc due to transient line faults. By delaying
for a short time before retransmitting the data, the error can often
be cleared. To do this, the TCP error routines send a sequence to
the remote processor that causes a delay of several seconds and
also indicates to the terminal that extended error recovery is
being attempted. The TCP then breaks the line, re-establishes
synchronization, and repeats the data block in which the error
occurred. If another error occurs before the current ASP buffer
of data (a maximum of four data blocks) has been cleared, a TCP

permanent error procedure is entered. This procedure is also used
for errors not of the error reply type. A message is sent to the ASP

console operator indicating the line and type of error that has
occurred, and the TCP sets an entry in a table, which is checked

40 WADE, CAWSEY, A N D VEBER IBM SYST J

if the operator attempts a retry by entering a TCP command
(this procedure is discussed later in the paper).

In addition to informing the console operator, the TCP tries
to indicate to the remote processor that an error has occurred by
sending an EOT sequence. When the remote processor receives this
sequence, this processor knows that any retry will result in the
transmission of all of the data blocks that were in the ASP buffer
when the error occurred, and it therefore replies with its own EOT
sequence. If the remote processor does respond with an EOT se-
quence, STRAM again indicates this condition as a permanent
error to the TCP, but the TCP ignores this.

These procedures to inform the remote processor of error
conditions and to indicate the type of recovery to follow are
nonstandard STR operations that have been added to the system to
reduce operator responsibility to a minimum. Retrying a TCP

permanent error results in repeating the operations that caused
the original error. If a further permanent error occurs before any
successful data transmission, the TCP closes the line and again
informs the operator, who can only restart data communication on
that line by first setting it to the initialization mode. If the attempt
to retry data transmission after an error is successful, the data
communication mode is resumed as normal.

The appendage to the STRAM routine for handling channel-
end and/or abnormal-end conditions and the STRAM first-level
error routine have been modified for the TCP. An exit has been
added to each so that a TCP module, which passes information to
the line-interruption trace and statistics-gathering routines, is
entered every time a channel-end interruption occurs from an
STR terminal adapter unit (i.e., every time an operation is com-
pleted on any line). This module is thus entered during execution
of the operating system input/output supervisor and has access
to the status information for the unit on which the interruption
occurred. The module updates line statistics in a line control
b!ock (LCB) associated with the adapter. These statistics are the
number of data characters transmitted over the line and the
number of errors requiring retransmission.

Each time an interruption occurs, the format of a line inter-
ruption trace (LIT) is established. The LIT, which has an inter-
ruption number to identify it, contains the following information:

Euent completion block, indicating status of I/O event.
Input/output block, the O S / B ~ O I/O control block for this adapter.
L i n e control block, the STRAM 110 control block for this adapter.
Channel command word chain, the channel program being
executed.
L i n e control block appendage, diagnostic flags, counts, and
statistics.
L i n e control block user area, flags that indicate the current
operating mode and pointers to data to be transmitted or
just received.

NO. 1 . 1969 A TELEPROCESSING APPROACH

This information is passed to another DSP that creates the
format of, stores, and retrieves LIT’S. The LIT is processed ac-
cording to flags in the LCB appendage. These flags initially indicate
that only LIT’S corresponding to error conditions are stored on
disk storage. However, the flags can be changed for any adapter
by using the ALTER command and can be set so that all LIT’S

are stored on disk or that LIT’S are printed on a line printer as
they occur. This DSP also retains the most recently stored LIT’S

for each adapter (about 120 for each) in ASP files on disk storage.
These can be printed by the teleprocessing console operator by
entering an ASP start command indicating which adapter’s LIT’S

are required. The LIT’S are printed asynchronously (sPooLed)‘ by a
local printer.

The statistics mentioned above are updated in the LCB ap-
pendage in main storage. They are then periodically (every few
minutes) added to a statistics record on disk storage. This record
is a t a fixed disk location and is protected from all but the most
serious ASP breakdowns. The record on disk has three levels of
statistics. The first level, updated every few minutes, is checked
automatically every hour. Any lines with a high error rate are
indicated to the ASP teleprocessing operator by messages, and
the statistics are then added to the second-level figures. The
console operator can have these second-level figures listed by
entering the TCP command STATS. They are also available to the
installation accounting routines, giving an indication of the remote
processor usage of the system. The third level of statistics is
updated each time the second level is cleared and again can be
listed by the operator.

When the system using remote processors over STR lines was
TCP support working satisfact’orily, the TCP was extended to support local

of local typewriter terminals (the IBM 2740). Obviously, since these ter-
terminals minals are basically typewriters, the remote print capability is

not available, but, in all other respects, they provide all of the
same facilities to the user a t a terminal such as the IBM 2740 as
though it were the keyboard of the IBM 1130 console. In addition,
the local user can overcome his lack of a remote print-type facility
by directing his job output of file listings onto one of the ASP

support line printers at the central computer location or to any
of the attached 1130 computers.

As was mentioned earlier, the TCP has been developed on
modular lines, so that incorporation of the new type of terminals
was simple. Additional routines to control the input/output of
the 2740’s were incorporated into the TCP using the same basic
modules that already existed in the ASP system for supporting
multiple operator consoles. Thus, for data transmission to a local
2740 terminal, the TCP interface to the 2740 support routines of
ASP is similar to the TCP interface to STRAM for data transmission
to a remote 1130 over an STR line.

The local terminal user has exactly the same status as the
remote users and can communicate with them via the TCP. The

42 WADE, CAWSEY, AND VEBER IBM SYST J

only operational difference is that the local terminals are always
in data communication mode and are available to the local user
all the time that the TCP and ASP systems are active.

The local terminal support, in addition to giving new users
access to the system, also provides an alternative means of entering
work from a remote user in the event of an extended breakdown
of his data link or remote processor. (All the files created by a
remote user can be made available to the local user.) This al-
ternative access to the system becomes more important as the
use of the system increases, and the ease with which it was provided
is an indication of the importance of the initial design philosophy
of the teleprocessing system, to allow new and various types of
access terminals.

Terminal program
The design objectives for the terminal program are to:

Allow a small amount of data input from a keyboard.
Allow a larger amount of printed results, to be completed as
soon as possible after the data has been keyed in.
Provide inquiry facilities from the terminals, with as fast of a
response as possible, but in any case within the limits of
operator frustration.

From these objectives, the need for a central processing unit
at the terminal is not obvious. However, the output printing rate
required use of a line printer, and the 1130 is a successful competitor
with other equipment. The 1130 configuration, with 4K bytes
of main storage, includes an IBM 1132 line printer and an IBM 1134

paper-tape reader (for the program loader only).
A line speed of 2,000 baud, combined with 2701’s at the

SYSTEM/~BO end, and use of the dual communication interface
seemed to be the most economical method of servicing the ter-
minals. This decision took into account the idea that the high
line speed should be sufficient to keep one 1130 in operation for
the time it took to switch the interface, send data to the second
1130, and switch back. However, this brought to the forefront an
immediate problem at the 1130-the limited main storage size of
4K bytes.

The required programming support to control the communica-
tions adapter, printer, and console/keyboard amounts to about
3K bytes, leaving only 1K bytes for the control program and
input buffers and for the print buffers. The paper-tape reader is
only used for control program input, and the control program
resides in main storage until power is turned off on the 1130.

The second problem concerned the conversational require-
ment. The STR line control method does not provide for this
except by using the end-of-transmission sequence followed by an
agreed turnaround in data transmission direction. However, this
was ruled out by the fact that the 1130 programming support

NO. 1 1969 A TELEPROCESSING APPROACH 43

requires about 10 seconds to process an end-of-transmission
sequence, which is out of the question.

Therefore, it was decided to implement an unusual line control
sequence in order to initiate a line turnaround in the conver-
sational mode. An inquiry sequence (TL-IN&) is sent in reply to
receipt of an error-free data message from the S Y S T E M / ~ ~ O , instead
of an odd or even acknowledge sequence. The 1130 then transmits
a second inquiry sequence, the data, and an end-of-transmission
sequence. After this, transmission reverts to normal procedure.
The complete line control procedure is shown in Table 2 for two
1130’s connected to one 2701 with the dual communications interface
feature. Note that no changes have been made to 1130 basic
programming support.

The programming support for the 1130 (SCATi) need not be
altered to send the inquiry sequence in response to data instead of
the conventional acknowledge sequence. An indicator bit in
SCATl, which would normally prevent sending the inquiry se-
quence, is turned off by the terminal program. Thus, there is no
loss of time in regaining synchronization.

To print output at an 1130 terminal, 400 characters are sent
in one cycle. These 400 characters are organized into any number
of lines, each line preceded by a two-hexadecimal count and by a
format character, which may indicate skip to channel 1, print on
console printer, etc.

The organization of the program is such that the contents
of one buffer, 200 characters, is received. As the first 200 char-
acters are being processed and printed, a second 200 characters
are received. As soon as all of the second 200 characters have
been received, if no message is waiting to be sent from the 1130,

a SCATl acknowledge and receive function is initiated, followed
by a 1/2-second loop, to allow the acknowledge sequence to be
sent. Then a SCATl CLOSE function is performed, followed by a
SCATl “open data-in” function to synchronize and accept an
inquiry on the next cycle.

The 1130 operator is not allowed to key in unless he has first
inquired from the SYSTEM/~~O, by pressing the interrupt re-
quest’ key, whether there are any console messages queued.
The interruption request key sets up the program to send the
message T X to the SYSTEM/~BO. If there are no console messages
to be sent to the terminal, the SYSTEM/36O sends a line of data,
possibly blanks, with a format character K . On receipt of this line,
the terminal program unlocks t’he keyboard to allow the typing of
data. When the EOF key is pressed, the data is sent to the

The terminal language is designed for comprehensive con-
terminal versational file manipulation from the termina’l keyboard. Any
language character can be specified, through one of the commands, to be a

backspace character. Information is typed as a series of messages
of one or more lines, terminated by the special end-of-message
key (EOM). Blank characters or commas are used as separators.

SYSTEM/360.

44 WADE, CAWSEY, A N D VEBER IBM SYST J

A TELEPROCESSING APPROACH 47

