
This paper describes an approach to data management that i s based
on a hierarchical organization of the data management control
function and makes use of list processing concepts.

Discussed are the separation of the logical and physical control
functions as well as the data-element and operating-system controls.
Th i s hierarchical approach establishes a common basis for the creation,
maintenance, and retrieval of data in direct-access storage. Logical
functions express the control and management of generalized physical
data structures; the physical leuel typically includes strings for data
retrieval and maintenance.

Cndirected graphs, and matrices derived from them, illustrate the
data management relationships within the physical level. The same
type of analysis may he used to show relationships between the hier-
archical levels.

Hierarchical structure for data management
by W. R. Henry

The concept of list processing, or chaining, has been used as a
technique for the manipulation of logical data strings for many
years and has been formalized as a language' for handling data
in computer storage. List processing has also been utilized with
limited success for the control of data in direct-access storage
devices. In general, when list structures are used for external data
control, only a subset of the possible data structures is imple-
mented, and the logical and physical relationships are approached
as a single entity. Thus, the many ventures into this area are highly
individualized, resulting in duplication and incompatibility.

Consider various forms of list processing implicit within the
 SYSTEM/^^^ Operating System (os/36o)-access methods, com-
pilers, and application packages. Such programs could be im-
proved by a more formal discipline directed to the support of list
data structures, particularly for data control where direct-access
storage devices are used.

Data structures and control functions that are possible on
direct-access storage devices must be defined prior to the develop-
ment of a data base that supports a language or access-method
package. Historically, the utilization of direct-access devices has
been approached from three levels:

Device or channel program
Access-method package
Composite data-management systen

On today's sophisticated equipment, programming at the
device or channel level usually cannot be economically justified.

2 HENRY IBM SYST J

Access-method packages and data management systems are widely
used with considerable success where their capabilities match
the data requirements of the user. However, inherent restrictions
imposed on system design within this environment become evident
when attempts are made to implement information systems that
are based upon specific data organization or response-time re-
quirements.

It is unlikely that a single access-method package or data
management system could support either an information system
based upon a hierarchical data structure or a communication-
oriented system with definite response-time requirements. In
order to implement a system at the simplest control level, where
data is managed as a resource at the traditional logical record
level, the user generally must provide his own management
routines for the access methods.

This paper discusses data management as a hierarchical struc-
ture that incorporates concepts of list processing. First, some
overall aspects of the data management environment are intro-
duced as background material, stressing the distinction between
the logical determination process and the actual “physical”
retrieval of data. Next, a common physical data structure used
for the retrieval from direct-access storage is developed. The
logical organization and control of this physical data structure
is discussed in the last section of the paper.

Data management environment
In the past few years, the design of system support programs has
made it possible for application programs to become substantially
independent of the access-method routines as well as the actual
physical storage and retrieval of data. In such an
application programs are generally written in a high-level language.
Requests for data are directed through a common data-manage-
ment interface module which, in turn, utilizes one or more access-
method routines as its resource. The data-management interface
validates the request and restructures the user’s request into a
format acceptable to the appropriate access-method routine. The
routine operates on the data request and returns control to the
data management interface, which posts the fact that the request
has been completed.

The access-method routines receive a structured request. That
is, the request is specific in terms of data-set name and key or
address of the logical segment to be retrieved. The access-method
routines translate the request and pass it to the input/output
supervisor in the form of channel programs to be scheduled and
executed.

A distinction is made between the logical retrieval-determina-
tion process and the actual retrieval process at the physical
level. The execution of the access-method routine merges two
distinct functions into one: (1) the logical interpretation and

NO. 1 . 1969 DATA MANAGEMENT

traditional
environment

3

Figure 1 Data management

control hierarchy

4

decision process of how the record is to be retrieved, and (2)
the translation of the data into a series of “physical” requests
to the I /O supervisor. The access method contains not only the
logical retrieval-organization sequence, but also the characteristics
of the physical data structure and the external storage medium.
Today we see a trend wherein once data is placed under the control
of a specific access-met’hod routine, involving more than physical
sequential retrieval, no other access-method routine can reference
the data. Generally speaking, the lowest-level access-method
routine is used to retrieve data.

Just as the current access methods are generally mbtually
incompatible, data-management systems are similarly irrecon-
cilable. The more sophisticated the system, the more incompatible
it is with other systems and access methods. Differences at the
physical level may be minor or even nonexistent, but, as additional
orders of logical interpretation are involved in translating a request
to the physical level, differences grow.

A design criterion for an effective data management system
is that it should be able to manage data as a resource a t multiple
levels in a dynamic environment. The user should be free to deter-
mine the level of data independence desired in any situation a t
execution time. It follows that the higher the degree of data in-
dependence, the greater the retrieval overhead. Although the
overhead can be lessened by the choice of the physical data struc-
ture, each successive level of control must be built upon a common
foundation in order not t o preclude a lower interface when desired.
Thus, not only may data be considered as a hierarchical structure,
but also the data management is hierarchically structured.

The hierarchical structure of data management is represented
by Figure 1, wherein the actual data at the element level is a t
the apex. Here, a data element may be defined as a field in the
traditional sense. In some cases, the smallest element at the apex
may be a quantum of data or a group item representing two or
more physically contiguous data elements. At this level, the :,er
is independent of both the logical and physical structure of the
data, as exemplified by an inquiry system utilizing a natural
language. A request for a data element is expressed without implied
knowledge of how the data might be structured.

The second level of the pyramid represents the data hierarchy
at the logical-string level, such as a line item in a purchase order.
The user interface a t this level implies knowledge of the logical
structure of the data or the ability to determine its logical struc-
ture.

The third level represents the actual organization or physical
list structure of the data. Extending the purchase-order example,
an invoice line item might be in a physical list where its header
is the invoice, the original purchase order, or a line item of the
purchase order. The actual physical association of the data should
be determined in accordance with the optimization of system
resources. Restating this idea, factors such as frequency of use,

HENRY IBM SYST J

-~ ~~ ~~~

data reconstruction criteria, or response-time requirements
should determine the number of hierarchical levels.

In terms of OS/360, the lowest level of control is through the
Input/Output Supervisor (IOS), which handles the scheduling
of device requests. The 10s does not include the logical or physical
data structures. Thus, 10s must be supplied with the physical
request in the form of channel programs. The physical level of con-
trol in the hierarchy (level 3 in Figure 1) formulates requests that
reflect the user data requirements.

As soon as a higher control than the 10s is used, all com-
monality disappears, and the logical and physical structures of
data are intertwined. For example, in order to reference a data
set created by the Queued Sequential Access Method (QSAM)

using another method such as the Basic Sequential Access Method
(BSAM), Basic Direct Access Method- (RDAM), or the system
macroinstruction to execute a channel program (EXCP),5 the
user must know a t least the logical record length, as opposed to
the physical record length. This knowledge is not difficult where
only physically sequential data sets are involved; but indexed
data-set organizations, such as the Indexed Sequential Access
Method (ISAM) or the Basic Partitioned Access Method (BPAM),

present a significant problem.5 Here, the logical and physical
structures are merged, and access to those data structures using
other than ISAM or BPAM is difficult.

An indexed file organization such as ISAM should itself be
considered as a hierarchical data structure. In such a case, each
index level is a list structure in which each entry points to a sublist
until the actual data is reached. Within this context, all access
methods are logically identical, and their differences appear only
at the physical level, in terms of string relationships. However,
if the logical versus physical distinction is maintained, then
symbolic references to the physical data structure are independent
of the actual organization. Thus, an access method for indexed-
file organizations may be viewed as a general program for the
creation of a hierarchical data structure that creates additional
indices to existing data, since, at the physical level, all data
management is string manipulation.

To illustrate the concepts of hierarchical access structures,
the Bill of Material Processor' is chosen as a simple example.
Although the name implies an application-limited system, we
can look at i t as a generalized file maintenance and retrieval
program. At the physical level, the processor supports three
specific forms of physical data structures. However, no other
logical access method can be used to process those data structures.

The Bill of Material Processor supports the following physical
data structures :

Part-number and work-center master files, which are indexed
master files that can be retrieved randomly or sequentially
(called the Control Sequential Access Method-csAM).

NO. 1 . 1969 DATA MANAGEMENT

A product structure file and a standard routing file, which
are lists (or chained files) with variable numbers of repeating
segments chained from a specific master record.
The part-number and where-used files, which are imbedded
list strings. They have their headers in individual master
records, and they chain records or segments together in the
product-structure and standard-routing files.

I n terms of application requirements, there are many desirable
logical sequences, all involving different physical sequences of
string retrieval. In each case, the problem program can remain
partially independent of the storage organization and retrieval
by utilizing a string-retrieval macroinstruction to retrieve data
in a variety of logical sequences.

The macroinstruction supplied with the Bill of Materials
Processor for the string retrieval function is called CHA$E. Al-
though this macroinstruction is highly structured in its informa-
tional requirements, it is powerful because the user may nest
several levels of string retrieval. The routine is not recursive, but
provides a similar facility. Thus, CHA$E provides a simple,
but good, example of the list retrieval function within a physical
data structure, particularly if CHA$E were expanded to operate
at the symbolic level. In the present format, the user must have the
master record or list header in main storage. The master record
points to the string to be retrieved, and-in addition-the user
must supply the macroinstruction with locations of all list pointers
involved.

The symbolic elements of a request for CHA$E are simple
to specify, and the elements exemplify the advantage of dis-
tinguishing between different levels of data organization. For
example, if the user desires to know all the items in which a
specified part is used and obtain the master record of each item,
the general format of the request requires the following: names
of the two lists to be retrieved, identification of the list header,
and the location in which records should be placed. Expressed in a
high-level language, such as COBOL, we might state:

CALL CHA$E USING STRING-1, STRING-2, LIST-HEADER,
WORK-1, WORK-2.

Thus it can be seen that the current implementation of the
CHA$E string retrieval macroinstruction requires the user to be
familiar with the physical and logical data structures plus the
actual list organization. On the other hand, the example symbolic
representation of the identical function allows the user to be free
from the list structure itself but requires that he know the logical
and physical data relationships. If the list structure of the where-
used data were changed from an imbedded list to a sublist similar to
the product-structure list, there would be no change to the user
program. Although the list structure changes, the physical hier-
archical structure does not.

6 HENRY IBM SYST J

r
If the physical hierarchy is cahangcd, the problem program

must be modified, since it has an interface at the physical and not
a t the logical level. For example, if the decision were made to
store where-used information as repeating segments within each
master record, the logical hierarchy would be unchanged, but
the physical hierarchy would no longer recognize a physicaI string
called “where used.” Thus, the logical data hierarchy could be
considered as a directory or index into the physical structure.

In spite of this change, the COBOL example could be identical
except that the call would be to a logical CNA$E instead of a
physical CHAW function. If the logical and physical structures
were identical (or parallel), the requedt might be directly trans-
ferred to the physical level. However, where the structure is not
identical, the request would be remapped or translated into the

is worki~lg with logical strings of data, not with data element’s
(as discussed earlier) and the interfacing requests are highly
structured even at the symbolic level.

Extending the example, assume that t,he requestor is not an
application program hut a person a t a terminal who is conversing
with the computer via an inquiry language. The previous retrieval
request might be made as follows: “On which assemblies is part
ABC used?” or “Is subsystem ABC used in system XYZ?”
Now, an inquiry-language program must analyse the terminal
input and attempt to correlate it with the logical-element data
structure, which is an index or directory into the logical hierarchical
data structure.

Within this environment, each level of data independence
represents an entry into the total data management) hierarchy.
At the same time, each level is a list structure whether data,
indices, directories, or cat>alogs are involved. It is necessary to
address the physical characteristics of data as t<hey are stored
and retrieved on direct-access &orage devices separately from
the logical relationship of data as they are required hy the ultimate
user. This logical-versus-physical distinction is important : al-
though their relationship may be identical (or parallel), this is
not necessary and in many cases undesirable.

~

L appropriate symbolic physical requests. At this point, the user

1

r

Physical data structure
In order to support a hierarchical data control function, a common
physical data structure is now defined. Such a structure requires
a different approach to data organizat,ion on direct-access storage.

A direct-access storage device is capable of supporting tjwo
physical data organizations, namely, sequential and direct. As
an independent structure, the purely sequential organization has
been reasonably well defined and implemented at the traditional
access-method level. On the other hand, the direct organization
has usually been categorized as being either a pure direct (Le.,

randomizing algorithm) or an indexed type organization, which
provides both random and sequential retrieval capability.

The latter viewpoint toward direct and indexed data structures
has tended t o &ratify the approach to the support of direct-access
devices. Actually, the direct and indexing approaches merely
define entry techniques to the prime data struct,ure and have
no inherent relationship to the actual prime data being stored
on the device.

Any data structure for a direct-access device can be described
organizational in fundamental terms of external list organization and internal

structure list structure, reflect'ing the organizational and retrieval inter-
relationships. The basic organization can be sequential or direct
and the structure can be sequential, direct, or combined for
efficient retrieval and maintenance. These relationships can be
grouped into the five basic organization-structure retrieval speci-
fications shown in Table 1.

Sequential organization and sequential structure (S/S) is the
sequential organization that has a strictly sequential structure
internally. Such a structure is a restatement of an ordinary
sequential data set or list string. However, since the structure
resides on a direct'-access device, it has the following inherent
facilities: update in place, start a sequential scan a t a directly
accessed location, and permit more than one scan on a concurrent
basis within the same data structure. The structure may be
considered as a list string with transparent pointers represented
by physical continuity.

Sequential organization with a dual structure (S/SD) might
be considered as a physically sequential string having the addi-
tional facilit'y for logically inserting new segments into the list.
Direct linkage is used to maintain logical ties between physically
noncontiguous segments. Pointers may be specified a t a definable
control level, such as the segment, block, or track level.

Direct organization and direct structure (D/D) imply that the
data string is discontinuous and that any sequential continuity
is a coincidence. Thus, look-ahead physical-sequential buffering
probably would be of 110 value. For string-retrieval purposes,
the list pointers are individually checked for additional segment
retrieval.

Table 1 Organization-structure retrieval specifications

External list Internal list
organization structure

1 s/s Sequential Sequential
2 S/SD Sequential Sequential/Direct
3 D /n Direct Direct
4 D /S Direct Sequential
5 D /SD Direct Seq1lential/Direct

8 HENRY IBM SYST J

Direct organization with sequential list structures (D/S) is a
list string or chain of data segments organized as a direct data
structure. However, D/S has t,he characteristic that the segment
groups are physically contiguous. The implications of this structure
appear primarily in the areas of retrieval, where look-ahead is
advantageous, and in segmenting an otherwise sequential organiza-
tion.

Direct organization with a duo1 structure (D/SD) is an ext,ension
of the D/S structure with t,he facility t,o logically insert new
segments into individual subst,rings of the direct organization.
In general, the /SD type of internal list st'ructure provides the
ability to merge or add one string with another st,ring without
reorganizing both.

Each of t,hcse five organizational and structural retrieval
techniques services a variety of possible list struct,urcs as well as
the traditional sequential processing. There are many ways of
creating list strings and manipulating list pointers. However,
all the possible list structures can be categorized within the general
organization and structural illterrelat,ionsllips present,cd at their
creation.

The organization structures mentioned currently exist in
various forms. They appear as subset,s of access methods, data-
management systems, and storage-paging systems. However,
because the logical interpretation of the organization and the
physical retricval of the data are intermingled, the same basic
data structures have become mutually incompatible. Icigures 2
and 3 illustrate how two indexed access methods can be categorized
according to their organization structure and retrieval illter-
relationships. Within the framework set forth in Table 1, the
differences in physical implementation hecome minor and exist
as a subset of the total data structure.

The S/S organization structure is analogous to traditional
sequential organization, as mentioned earlier in t,his paper. The
D/D form has been used for years as a method for handling
synonyms in the random-data organization, which is an extension
of the simple, direct list structure used to compensate for imperfect
randomizing algorithms. The D/D structure is also used in t'he
Bill of Material Processor for the maintenance and retrieval of
imbedded lists (e.g., the where-used st'ring).

The D/S form has been used in virtual-storage syst,ems, data
management systems, and in indexed access methods to support
logical-record segmentation or repeating-field requirements. Thus,
D/S provides a capability similar to the variable-length-record
function and provides a useful data structure for supporting a
hierarchical data base. The D/S form also appears as the imbedded
track index of both ISAM and CSAM and as the prime data of
ISAM. Virtual-storage systems7 have used the same form as a con-
tinuous address-space image of storage sements, where the data
are normally performatted into fixed-length blocks on t'he direct-
access device.

NO. 1 ' 1969

Figure 2 Indexed sequential

access method

I
01 MASTER INDEX S I S I

6 i PRIME DATA D I S
04 OVERFLOW DATA DID I

application
areas

Figure 3 Control sequential

access method

I CYLINDER INDEX I I
1 TRACK INDEX I I

The S/SD and D/SD organization structures are extensions
of S/S and D/S that reflect the ability to maintain logical strings
using direct pointers for record insertion. D/SD represents the
prime data structure of CSAM and is utilized for supporting chain
files by the Bill of Material Processor.

Note that when physical data structures are examined within
the framework illustrated by Table 1, the support of any device
can be so categorized. The five generalized organization-structure
relationships collectively represent a single level of list processing
applicable to the physical storage and retrieval of data on direct-
access storage devices, with the support of sequential devices as
a logical subset. For example, if the S/S organization structure
is supported for direct-access storage devices, the programming
support for any sequential device can be incorporated by adding
the device characteristics a t the physical level. In addition, many
of the functions could be incorporat'ed into read-only storage or
writable control store at the channel, control-unit, or device level.

Within this framework, it is possible for the user to specify
the type of buffering he desires for string retrieval. The S/SD
dah-retrieval format might express buffer cont)rol in the form of
S(n)D(n). Here, 11 is the number of buffers of appropriate length

Figure 4 6"ffering specifications to be managed for each group. The S/SD format may also take
for retrieval formats the form (n)SD, where buffer utilization follows the logical string,

as illustrated in Figure 4 and in the following:

For S(1) D(2) schedule SI, Dl, D,.
For S(2) D(2) schedule SI, S,, Dl, D,.
For (5)SD schedule S,, S,, D,, D,, D,.

Equivalent buffering specifications are also appropriate for the
S/S, D/S, D/D, and D/SD formats. An additional topic within the
scope of physical data structures is that of multiple indexing on
attributes. Three basic approaches are possible, since common
segment's or logical attributes can be related to each other ex-
t'ernally, internally, or both externally and internally combined.

A purely external attribute index is one wherein a secondary
data structure is created as a cross reference to an internal at-
tribute of an existing data string. Though the physical format
of the index may vary, there is basically one data entry for each
attribute occurrence. This structure is commonly termed an
inverted list or inverted index.

Conversely, the actual data elements may be tied together,
forming an imbedded list structure within another list-data string.
This is the approach in the where-used chain of the Bill of Material
Processor. Entry t'o t'he chain or list hea,der is via a specific record
in the parent list, i.e., the master file.

The third or combined approach occurs when the exact list
header is unknown. In this case, an external index of the list
headers is searched in order to locate the starting point of a
particular imbedded list or chain.

10 HENRY IBM SYST J

approach that distinguishes between the logical and physical
retrieval of data.

Logical organization and control
The logical organization and control directs the creation of strings
by supplying the physical data-management routines with t'he
necessary information, which is assembled into list-data-structure
control blocks. Information cont'ained in the control block for any
list structure assumes the characteristics of a list structure itself
as shown by Table 2. The list header (01) contains status or control
information about tjhe list plus pointers to sublists (02) that
represent the variable characteristics of the list. The sublists
(03) may be repeating segments of the form D,/SD, when each sub-
list represents such information as variable symbolic-key control
data, list interrelationships, dnplicating lists, aliases, generation
changes, privacy, security, and data element descriptions.

An inherent characteristic of the proposed physical data
management system is that it must support itself. Other charac-
teristics relating to the management of the physical data structure
can be generalized for any list structure:

Organization implies the broad organization structure forms
S/S, S/SD, D/S, D/D, and D/SD.
List-pointer format provides pointers that map be classified
as relative device-type addresses' (as used in os/360), as
symbolic keys which may be internal or external to the phys-
ical segment, as the actual device address, or as a transforma-
tion thereof. The pointers of a list should not be restrict'ed to
actual device addresses alone.
Maintenance control involves the addition and deletion char-
acteristics of a list, which can be categorized as either symbolic

Table 2 list-structure control block

01 LIST CONTROL BLOCK (FIXED)
02 INTERNAL LIST CONTROL

03 SYMBOLIC OR POSITIONAL CONTROL
03 ALIASES
03 DUPLICATING FUNCTIONS

03 PARENT LISTS
03 SUBORDINATE LISTS

02 LOGICAL LIST CONTROL
03 GENERATION CHANGES
03 PRIVACY & SECURITY

02 DATA ELEMENT DESCRIPTORS

02 EXTERNAL LIST CONTROL

NO. 1 * 1969 DATA MANAGEMENT 11

or positional. The symbolic list implies a collating sequence
on specified control elements. A positional list assumes relative
placement of such elements.
List in terrelat ionships involve an obvious aspect of the control
of list structures that appears when logical records or segments
are referenced by an actual or relative address. If such a list
is nonsymbolically referenced only by itself, then its reorganiza-
tion or movement is quite easily resolved at that time. How-
ever, if a direct or relative pointer is used by another list,
the chains may be effectively severed until the external ref-
erences have again been resolved. In this case, the information
describing external linkages is a sublist from the specific
list header. In essence, that sublist is an inverted list or a
"by whom referenced" list.

The discussion of physical data-management control is now
list expanded to include a directory of list interactions and a hier-

interactions archical structure. A control directory in matrix form can be
used as a compressed representation of specific: sublists, as for ex-
ample a multiple-level index to a prime data list, an index to
determine alt'ernate paths to specific lists in case the primary path
fails, or a reflection of logical hierarchical modifications. 12 simple
example is an access method involving a multilevel index, such as
ISAM. The primary route to a logical record starts at the highest-
level index and proceeds through each individual index level.
If one index is unreachable for some reason, the prime data is still
valid and can be reached by bracketing the index search at the
next lower level. This procedure is slow, but preferable to obtaining
no data.

A technique that appears to be quite usable as an index or
undirected directory to list structures is an undirected graph. Such a graph

graph for use in list interactions is shown in Figure 5. The solid lines

Figure 5 Undirected graph for list interactions

- - - - - - - -
I
I
I

""""""""""" - - - - - - - -

I I
L""""""""""""""""""""""""~

12 HENRY IBM SYST .T

linkages which arc either unidirectional or bidirectional. E'or
example, A,, is initially created from A l l ; the prime parent (Ao)
and attachments to other lists arc secondary.

form as shown in Table 3; the matrix indicates the connections representation
among the various lists. Table 3 is a one-step matrix showing all
single-step relationships within the structure shown in Figure 5 .
The same type of undirected graph can be used as a logical-
clement association matrix when dealing with a hierarchical
language structure. Thus, we can see at least one common ap-
proach to representing the logical data structure and the physical
data structure. As previously mentioned, the two structures may
be identical, although such a restriction is neither necessary nor
desirable. The matrix in Table 3 also shows all the list intcrrela-
tionships and thus reflects one of the variable sublists of the list-
structure control block.

Continuing the discussion of the data structure in Figure 5,
consider the question of alternate paths to the same list. If the

[one-step matrix in Table 3 is multiplied by itself, i t becomes the
two-step matrix shown in Table 4. This matrix shows the num-

The undirected graph of Figure 5 may be written in matrix matrix

Table 3 One-step matrix

Ao A11 A12 A21 A22 BO B11 Biz

0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 0 1 0 0
0 0 1 0 0 0 0 1
1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0

-

Table 4 Two-step matrix

I A. All AIZ API A22 BO B11 1312

1 0 0 1 2 0 0
1 1 1 0 0 1 0
0 1 2 0 0 0 0
1 1 1 1 I O 1
1 0 0 0 1 1 0
0 1 1 0 0 1 0
0 0 0 0 0 1 0
1 0 0 0 0 0 1

NO. 1 . 1969

is cubed, we have a three-step matrix and so on.
Comparing the two matrices and the undirected graph, we

see that. list A,, can be reached in one step from A, or A,,. The
two-step matrix shows that A,, can be reached in two steps from
itself via two separate paths, and from A,,, A,,, and Bo by one
two-step path each. Certainly, not every two-step path is usable,
but the logical level of control should be able to analyze the
physical data structure and determine if the logic of the original
request can be redirected via an available alternate path. If the
user were at n terminal, the inquiry system might respond by ask-
ing for a synonym related to one or more specific contexts, since i t
knon-s the alternate paths available to it.

An additional topic of interest involves data-set security and
data the protection of logical segments from dual updates in a multi-

protection task environment. The current approach to data-set security
is based on the assumption that the logical and physical data sets
are identical. When the logical and physical data relationships
are separated, several additional levels of control are possible
at the systjem level.

Referring to Figure 5 , system-level control can be specified at the
A,, level either exclusively or inclusively. Exclusively, A, would
control A, alone, and inclusively A, would control A,, A,, , A,,, A,,,
A,, and all their interlinkages. On the other hand, only the A2,-
to-,4], list linkage might be specified. In that case, control is based
on a physical relationship.

The same possibilities are available at the logical level. The
example using Figure 5 may be extended to show control of the
logical or phvsical list structures, in which case the control might
be used on the data string from a specific header.

Protection may also be exercised at the physical-segment
level, so as to prevent dual updating. Basically the procedure is
this: if a single physical segment consists of one or more logical
elements, the logical elements can be controlled using their list
name, while another task has access to the same physical segment
for the use of a difi’erent logical element. Thus, it is possible to
protect discrete elements of a hierarchical data base at the system
or 10s level, with only general logical identification supplied by the
user.

Concluding remarks
Data management has been presented as a hierarchical structure
incorporating the concepts of list processing. The ability to control
the structure includes the facility to manage data at each of
several levels within a compatible framework. Such a unified
approach allows the proper definition of functions that might be
incorporated in the actual circuit logic. The distinction between
logical and physical data structures provides the user with a flex-

14 HENRY IBM SYST J

ible level of data independence that is compatible with each level.
This integrated approach to the management of data structures
may permit the investigation of other techniques that are applic-
able to data retrieval. Experimental approaches to problem-
solving, utilizing heuristic programs and r n i n i r n a ~ i n g , ~ ~ ~ have been
tried and could be very useful in the area of information retrieval.
The notation of sets might be a powerful technique in the speci-
fication of string or segment requirements.

CITED REFERENCES

1. J. McCarthy, LISP I. Programmer’s Manual, Computation Center and
Research Laboratory of Electronics, Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts (1960).

2. C. W. Bachman and S. B. Williams, “A general purpose programming
system for random access memories,” A F I P S Conference Proceedings,
Fall Joint Computer Conference 26, 411-422, Sparten Books, Washington,
D. C. (1964).

3. SYSTEM/360 Generalized Informatim System, Application Description
Manual, H20-0521. International Business Machines Corporation, Data
Processing Division, White Plains, New York.

4. Information “hagement, S Y S T E M / ~ ~ O Application Description Manual,
H20-0524, International Business Machines Corporation, Data Processing
Division, White Plains, New York.

5. W. A. Clark, “The functional structure of 05/360, Part 111, Data manage-
ment,” ZBM Systems Journal 5 , No. 1, 30-51 (1966).

6. SYSTEM/~GO Bill of $faterials Processer, Application Description Manual,
H20-0197, International Business Machines Corporation, Data Processing
Division, White Plains, New York.

7. IBM SYSTEM/~RO Time Sharing System, Concepts and Facilities, C28-2003,
International Business Machines Corporation, Data Processing Division,
White Plains, New York.

8. A. L. Samuel, “Some studies in machine learning using the game of
checkers,” I B M Journal of Research and Development 3, No. 3, 211-229
(July 1959).

9. A. Newel1 and J. C. Shaw, “Programming the logic theory machine,”
Proceedings of the Western Joint Computer Conference 15, 218-239 (1957).

10. D. G. Bobrow and B. Raphael, “A comparison of list-processing lan-
guages,” Communications of the A C M 7, No. 4, 231-240 (1964).

11. A. J. Perlis and C. Thornton, “Symbol manipulation by threaded lists,”
Communications of the A C M 3, No. 4, 195-204 (1960).

12. C. T. Meadow, The Analysis of Information Systems, John Wiley and Sons,
New York, New York (1967).

I NO. 1 . 1969 DATA MANAGEMENT 15

