
The present status of interactive graphic displays in the application
environment i s reviewed.

Although graphics data processing i s still largely experimental, several
applications have come into productive use-especially in the areas
of data and design analysis. The primary beneJit f rom enhancing such
applications with graphic displays i s the savings in calendar time.

Before surveying several application areas, user aspects and applica-
tion characteristics are discussed.

INTERACTIVE GRAPHICS IN DATA PROCESSING

Implementation and usage \

by C. W. Day and L. L. Zimmerman

The use of displays in an interactive mode is a strong departure
from the conventional typewriter-oriented device. Research into
the support of multiple terminals and the use of display terminals
in problem solving is still young. The techniques for basic graphic
information display and the manipulation thereof have been de-
veloped and proved in the university and laboratory environment,
as discussed by C. I. Johnson in the first paper of this issue. In-
dustry is now taking on the task of implementation, keeping an eye
on the economics of graphic displays in man-machine interaction.
The purpose of this paper is to report on the current implementa-
tion state of the art.

The graphic display allows a large variety of ways in which
its user can form images and interpret his action. This versatility,
and thus complexity,' has made it necessary for most of today's
operational programs in graphics to have their own specific
graphics sections. Although the concept of utilizing generalized
graphics functions for applications is now gaining acceptance,2 all
programs discussed here exhibit the former structure.

On graphic display consoles, the data is presented in its natural
form for both input and output purposes. Adding the analyst to
the processing loop helps eliminate unnecessary processing. The
user can halt the run if he sees that further computation will be
fruitless. He can infer from several attempts of the design what
other attempts might be less fruitful and thereby steer a more
direct path to the eventual satisfactory design.

NOS. 3 & 4 . 1968 IMPLEMENTATION AND USAGE

user
aspects

373

Many decisions can be made at the display console, thus allow-
ing several separate trials during a single session; the net result is
that turnaround time is sharply decreased. Often the thinking done
during the design state is such that the definition of the phenomena
to be analyzed is incomplete. This is quite similar to a laboratory
environment. Engineering analysis done in such an environment is
most easily done on-line, allowing definition and solution efforts to
take place in parallel.

How much can a man’s thinking be enhanced by working a t
the display console? Can one attach a value to the fact that he
does his work faster or to the fact that he works several iterations
without interruption? It may be of value that, at this faster speed,
he can follow a train of thought farther down the line prior to
becoming exhausted. Also, a graphic image in motion, manipulated
by the user or the program, often provides added insight by sug-
gesting phenomena not apparent in a static picture.

Some early uses of graphics were too costly to be of any use
application beyond that of a technical curiosity. Others, however, have had

characteristics enough merit to point toward several specific characteristics that
should be considered as a guide in selecting sound application
programs in graphics. In general, many applications have benefited
from graphics support because this support can:

Immediately produce a plot of results for inspection
Reduce turnaround time between analyses
Allow more to be accomplished within a fixed time
Facilitate manipulation of representative design models
Facilitate selection of the appropriate solutions
Allow definition and solution efforts to occur in parallel (e.g.,
providing partial solutions of incompletely defined problems)
Stimulate insight into problems

Many applications are noticeably enhanced even if only one
of these improvements is achieved when using graphics support.
For instance, when using the graphics console for a quick look at
output scheduled for a plotter, emphasis is on saving calendar time
rather than providing more flexibility in manipulation and selec-
tion.

Most easily justified for conversion to graphics are programs
of an iterative nature, used repeatedly in approaching the solution
of a problem. I n this case, graphics considerably reduces the turna-
round time between iterations. But the display also provides the
user with great flexibility in manipulation and selection. Examples
of this sort of application are curve fitting and simulation runs.

An example of an evolving utility involves the linking of pro-
grams. As an engineering library of programs increases in size,
attempts are usually made to tie the programs together in such a
manner that the data output of one program serves as input to the
next program. Since data formats are usually not compatible, this
process is quite involved. The more difficult problem, however, is

program runs regarding the data being used. These decisions
usually require not so much the user’s time as his quick attention
and judgment. Providing the user with a graphics terminal to view
the data between runs facilitates the amalgamation of many pro-
grams. When reducing data, for example, the iterations involve
trying one of several methods of data reduction and then passing
judgment on the results. Thus, while at the display console, the
user desires dynamic access to several types of data reduction
programs. This access can be accomplished in one of two ways:

Generation of programs by scheduling at the graphics terminal.
In scheduling a series of jobs, this type of terminal scheduling
involves the use of the IBM S Y S T E M ~ ~ O Operating System and
its associated job control language, much as one would use a
card reader. On tjhe display console, however, the user is not
required to select the next job until he sees the result of the
previous job.
Composite program generation. This type of overall program
usually involves some sort of dynamic linking among specialized
load modules. Though harder to program, this approach has the
advantage of speed at the graphics terminal.

In general, if graphics support is provided for an already useful
application program, early payback can be expected and the task
of justifying the result is simplified because the output has already
been determined to be of value.

graphics for industrial data processing purposes, it becomes obvious similarity
that display console applications are predominantly of the analysis
type. In one way or another, the program analyzes a problem and
displays the result on the console screen, so that the user can pass
judgment on it. The individual engineering analysis applications
discussed here are similar in two aspects:

They arrive at their solutions in one or more iterative processes.
An example is thermodynamic analysis. Given the boundary
values of temperatures as a function of time around a structure,
one can calculate and display internal isotherms for given points
in time. In a similar manner, electrical charge or physical stress
-both dynamic and static-can be calculated and displayed.
They frequently use data of a geometrical or topological nature.
Examples are plots of two or more variables in two or three di-
mensions, topological representations of schematics, geometric
representations of cross sections of structures, line drawings of
large structures, representations of curved surfaces, statistical
data plots, and fully dimensioned engineering drawings.

The use of graphics in optical design enjoyed an early success. optical
The functional characteristics of an optical system can be de- design
termined by calculation of the paths of light rays through the
system by the digital computer. The input to the calculation in-
cludes the geometry of the optical system and the physical charac-

When surveying the implementation and use of interactive application

NOS. 3 & 4 . 1968 IMPLEMENTATION AND USAGE 375


~~~ 

teristics of the optical elements. Among the  parameters describing 
the  function of such  a  system of interest to  the designer are  the 
location of focal  points  and the sensitivity of this  location  as  a 
function of system  parameters.  A  graphics version of this  program 
utilizes the display console for entering  and/or editing the descrip- 
tion of the  system,  as well as for viewing the  ray positions anywhere 
in the system, using the console to simulate  a  ground glass. The 
ability to observe more alternatives  and the drastic  reduction of de- 
sign time  are  the benefits derived from this version of the program. 

Space flight trajectory  analysis is being done in  two modes: 
trajectory one is the plotting of telemetry data from actual flights, and  the 

analysis other is the plotting of a theoretical flight path based on the analysis 
of design parameters. The first mode is similar to  the one of data 
reduction discussed earlier. Viewing the  data before and  after re- 
duction allows the analyst working a t  bhe display console to apply 
his own experience to  the problem of quickly choosing the best 
method.  Within  any given method, he can also exercise judgment 
as  to which points should be disregarded due  to  data error. Bringing 
such  expertise to bear makes feasible the use of less expensive 
telemetering  equipment in  the  actual flights. Since parametric 
analysis is a highly iterative procedure, the  interactive graphics 
approach provides a considerable savings of elapsed calendar  time. 
Combining these  two modes, one can  plot  the  actual versus the 
theoretical  curves and make  judgments as  to  the  validity of the 
model used in the analysis of design parameters.  The program 
could allow for possible later  change of the  theory upon which the 
program is based, dynamically creating a better tool for future 
design purposes. 

Today’s  primary  tool for the  automated design of electronic 
automated circuits is some form of a  network  simulator. One such  program is 

circuit IBM’S Electronic  Circuit Analysis Program  (ECAP). Originally, the 
design program was written for a small desk-size computer, the IBM 1620. 

Watching  the results of the analysis  appear on the console type- 
writer, the designer was able to exercise a  fair degree of interaction 
with the program. Many users found the size of the problem they 
were able to handle  with  this version of ECAP inadequate for their 
purposes. Thus, larger versions were written for larger machines 
at  the expense of interactivity. An available  graphics version of 
this program3 puts  the designer back  in  his  interactive role, even 
for complex problems. Users with  a  library of models for frequently- 
used transistors, diodes, and so forth,  can use graphics economically 
for simulating  circuit  manipulation and oscilloscope viewing, thus 
saving the  time  and materials otherwise used to breadboard  the 
circuit. The graphics version of ECAP provides immediate access to  
the analysis results, thus allowing a  quick decision on any necessary 
input alterations.  Having the  input  in  the form of a schematic aids 
in  this decision-making process and also simplifies the procedures 
involved in modifying the model. Figure 1 shows an application of 
an early version of graphics ECAP. A  typical  output of a  graphics 
EcAP-designed circuit  is shown in  Figure 2. 

376 DAY AND ZIMMERMAN IBM SYST J 



Figure 1 Application  of  an  early graphics ECAP 

Another  simulation  program is the Continuous  Systems Model- 
ing  Program ( c s M P ) . ~ ~ ~  Several persons have  adapted  this program 
for use in a  graphics  environment. Just as one would use an analog 
computer,  the program  is used as a generalized differential- 
equation solver, the problem description being in  the form of a 
block diagram  familiar to users of analog computers. The use of 
the Continuous  Systems Modeling Program is characterized by 
many  iterations.  First, one attempts  to model a known phenomena, 
the  output of which is then compared  with known data. Once the 
model has  a degree of sophistication necessary to  adequately  match 
the  data,  the model can  be  manipulated  in  many ways to  try  out 
new ideas  for designs for which data is not available.  This  program 
has been successfully applied  in  such  areas  as  control  systems 
analysis, kinematics, process dynamics,  thermodynamics, and bio- 
medical studies. As with ECAP, this form of analysis saves con- 
siderable t'ime (possibly in the order of weeks or months for a 
complete study)  and materials otherwise used to physically model 
the system  under study.  In addition,  measurements that would be 
difficult or impossible in a real model are  readily accessible. The 
available  graphics versions of the program  have output in the form 
of curves, the growth of which can  be observed during the analysis. 
Some versions also allow the  plotting of parameters  after the analy- 
sis. Figure 3 shows a  graphics CSMP analog input model. An IBM 

2250 display of a  typical CSMP model analysis is shown in Figure 4. 
One graphics  program  with  great  potential, now in  its embryonic 

stage, is in  the  area of circuit  layout. Manual design of circuit 
boards and  integrated circuits  requires that much  time be spent  in 
placing and connecting elements for a given circuit on  paper 
without  violating  a  set of constraints.  A  computer  can  be pro- 
grammed easily to check for design violations and  to check that  the 
constraints  have been satisfied; but for the most part, programs in 

NOS. 3 & 4 1968 IMPLEMENTATION  AND  USAGE 





existence today  are only partially successful in doing the module 
placement and  the connector  routing. For a  complete  solution to 
the problem, the difficult portion  must still  be  completed by  hand 
on  paper. T o  be checked for design violations, the results of this 
manual finishing work must  be  reentered  into  the  computer. It is 
considerably  faster if the designer can do his  work  on the display 
console while being dynamically  provided  with  diagnostic messages. 
At  any point, during the design, the efficiency of the design can  be 
calculated  and measured-for example-as the percentage of the 
surface covered by modules and connectors. The results of the 
design are usually fed t,o a drafting machine to  generate  the  art- 
work for  etching of the product. The use of interactive  graphics for 
this  type of electronics design may exceed the use of a graphics 
version of network  simulators if methods of circuit  synthesis 
become completely automated. 

One of today’s  largest  experimental  graphics  endeavors in  data 
processing is that of three-dimensional design and analysis. The 
models involved are  frequently  quite large, and  construction  and 
analysis  are often  done piece-wise rather  than on the entire model. 
Because the  many designers involved must be allowed to work on 
their  individual  subsets of the  total  product  in  an  independent, 
yet coordinated  manner,  communication of the most  current infor- 
mation  through data base  maintenance is essential. This  is  in 
contrast  to most other graphics  applications now in  productive 
use, in which only a handful of people are responsible for the entire 
design or analysis, and dependency on a data base is almost nil. 

Areas in which three-dimensional  graphics is appearing  include 
airframe and  auto-body design, three-dimensional  pipe and wire 
routing, and chemical structure research, to mention a few. In  a 
pipe-routing program  under  development,6 the designer at  the 
graphics console can specify the geometric and  parametric  quantities 
of a piping  structure,  perform  stress  analyses  on the system, ob- 
serve the results, and modify the original design for further analysis. 
This  implementation is especidly  interesting  for the three-dimen- 
sional cues it provides. To increase the viewer’s perception of image 
depth, stereoscopic images are displayed.  Two images, each corre- 
sponding to  the view of the piping structure as seen by one of the 
viewer’s  eyes, are  juxtaposed  on  the screen. Viewed through a 
stereoscope, the two images are blended into one  producing an 
excellent rendering of the  third dimension. In  this  way, a much 
more complex system  may  be  displayed  without confusing the 
user. This application is one of several  first  steps being taken  in 
three-dimensional  computer  graphics. Methods  are still being 
sought to streamline  storage,  manipulation,  and access associated 
with  three-dimensional  graphics  applications and  their highly com- 
plex central data bases. 

The problem of engineering drawing or design drafting differs 
from  most  graphics  applications  in that  the economic justification 
is more closely tied  to  the mechanics of a person working at   the 
display console. We  are  not comparing  two  methods of using the 

NOS. 3 & 4 . 1968 IMPLEMENTATION  AND USAGE 

3-D design 
and analysis 

engineering 
drafting 

379 



computer but  rather two  methods of drawing a picture. The contest 
is not  yet  settled between the method of drawing  pictures  on the 
display console by using a language and  that of using a light  pen 
or similar device. There  are those who feel that  the geometry of a 
part should be described using a descriptive  language, such as APT 

(Automatically  Programmed  Tools), and  then  to use the display 
console for  verification of the result; it is fully  expected that users 
of this  method will use the display  in  a  dynamic  mode  for  correcting 
the image. Others feel that a rough  drawing must  be  made prior 
to  the use of the language anyway; therefore, the display console 
should  be used to  make the drawing,  bypassing the language step 
altogether. In  either case, one by-product of the application is out- 
put for use in  operating  numerically controlled machine tools. Such 
an  argument  can be applied to  any  area of discipline where cur- 
rently a language is used to describe a diagram of some  sort. 

The experienced programmer using the display console as a 
programming programming  terminal  often  gains  impressive  advantages in  time, 

terminal efficiency, and cost because he is able  to perform  a part of his  job 
on-line. This popular  activity of on-line programming and debug- 
ging evolved from the simple, often  unjustified use of the computer 
console lights  and switches to today’s  program-aided,  terminal- 
oriented  methods and  has  found  its way to  the graphics device. 
And  with good reason:  speed is a necessary ingredient in successful 
on-line programming.  Conventional devices are  limited  in  this 
property; only a  display console can  handle  repeated  requests  for 
large  amounts of data.  Thus,  the graphics device is a natural choice 
for a programmer’s  terminal  in which paging through source list- 
ings is as common as the dumping of data,  object code, and main- 
storage images. Some programming  packages now in use interface 
the programmer  through the IBM 2250 display console to  the normal 
programs used in a batch mode. One of these packages’ provides a 
QUIKTRAN-like interaction at  the 2250, allowing the programmer to 
write his program  in FORTRAN language. During execution of this 
program, the programmer  retains  control and observes the progress 
while receiving its generated  output.  At  any  time, he  can  debug the 
program,  edit his source statements,  and  prepare for  a  rerun. 
Another  programming package, aimed at  the assembler language 
programmer,  responds to program  interrupts. The error  can be 
located  and  either corrected or circumvented on-line. In  this way, 
many  programming bugs may  be remedied during  a single run, re- 
sulting  in fewer reassemblies and reloads as well as marked  im- 
provements  in  program  checkout  time. 

When combining modules or sections of code to form  a single 
program,  some type of linking  facilities is needed. On-line job 
control may be  carried  out  through a graphic  job processor package8 
which allows the programmer to specify such  jobs as the running 
of the linkage  editor at  the 2250. The graphic  job processor can 
also be  used to execute the results of the link  step.  At his  desk,  a 
programmer is able to work on several  programs  concurrently, and 
it  may  take  him several weeks of elapsed time  to  create  any given 

380 DAY  AND ZIMMERMAN IBM SYST J 



working program. However, the time  he  actually works on one 
program from his first assembly or compilation to completion is 
usually a very small percentage of this elapsed time. The use of a 
graphic  programming  terminal allows the programmer to execute 
several  man and machine phases of programming  end-to-end, 
speeding up  the generation of programs of high priority. 

It should be noted that  the use of graphics devices is not  at all 
restricted to technical  applications.  Information  retrieval and file 
maintenance  have also found a tool in graphics. Production  line 
scheduling has been done with graphics. Discrete  simulation (such 
as the General  Purpose  Systems  Simulator)  has  found its way to 
graphics, and project  control (such as PERT diagrams) has been 
used experimentally  with graphics. As commercial data bases come 
into  practical existence, and as personnel in planning  functions are 
forced to interact  with  these  data bases, graphics devices of various 
degrees of sophistication  can be expected to satisfy  their require- 
ments. Thus-although the  majority of display console applications 
are  still in an experimental stage-the present trend indicates more 
productive use of interactive  graphics  in data processing over the 
next few years. 

CITED REFERENCES  AND FOOTNOTES 

1. Treated  by A. Appel, T. P. Dankowski, and It. L. Dougherty in another 
paper of this issue. 

2. Approaches in this direction are discussed by F. C.  Chen and 12. L. 
Dougherty as well as by  H. B. Baskin and S. P. Morse in two other papers 
of this issue. 

3. The graphics version of the Electronic  Circuit Analysis Program (ECAP) is 
available from the IBM Program  Information  Department in Hawthorne, 
New York, as a Type-I11  program  under  number 360D-16.4.002. 

4. The  SYSTEM/^^^ CSMP and  the IBM 1130 CSMP are discussed by R. D. Brennan 
and  M. Y. Silberberg, “Two  continuous  systems modeling programs,” 
IBM Systems  Journal 6, No. 4, 242-266 (1967). 

5 .  For  an IBM 1130 CSMP application, see the paper by  H. B. Baskin and S. P. 
Morse in this issue. 

6. C. M. Strauss  and S. Poley, “ ~ D P D P :  a three-dimensional piping design 
program,” to  appear in Proceedings of Z F I P  Congress in Edinburgh (1968). 

7. This project is discussed by F. Gagliano, H. W. Thombs, and R. E. Cornish 
in  this issue. 

8. Discussed by S. Brown  in another  paper of this issue. 

NOS. 3 & 4 f 1968 IMPLEMENTATION AND  USAGE 


