
This  paper  argues  that th.ere i s  a need for a  problem-oriented  language 
to  handle  three-dimensional geometrzc information,  and  proposes a 
set of language facilities  that  illustrate how this need should be met. 

The  emphasis  is  on the facilities needed for describing solid objects and 
their  placement in space,  and for  defining  and  operating on conjigura- 
tions of 0b.ject.s. 

INTERACTIVE GRAPHICS IN DATA  PROCESSING 

A language for three-dimensional  geometry 
by P. G. Comba 

Many branches of engineering and technology give rise to problems 
of a geometric nature  that  cannot be conveniently formulated and 
solved with  currently  available  programming languages and 
systems. 

In  this paper, we discuss in some detail one such  problem (often 
referred to as the placement  problem), we formulate the general 
requirements for a language that addresses itself to problems of 
this  type,  and we present an outline of the specific features that 
this  language should have. For convenience and  brevity,  the 
proposed language is called Geometry  Language (GL). A fuller set 
of specifications for GL may be found in Reference 1. It should be 
pointed out  that GL has  not been implemented. 

Language  requirements 
placement The so-called placement problem is a  major and recurring problem 

problem faced by the designer of physical  systems (e.g., ships, chemical 
plants,  jet engines). It arises when a large number of objects of 
many different shapes (components, subsystems, pipes, cables) 
have to be positioned in a restricted space in such  a way that no 
two  objects  are assigned to  the same space. 

The restriction that two objects  cannot occupy the same  space 
at  the same  time  is, of course, a basic property of physical bodies. 
The problem of verifying that  the plan of a system satisfies this 
no-overlap condition can be very difficult. Many techniques  have 
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been used in  attempting  to solve this problem12 and some of them 
have been partially successful in special situations. For example, 
one can  subdivide the whole design space into a  set of cubes and 
keep track of which cubes are occupied and which are free. The 
trouble  with this  approach is that either i t  is  too coarse or it 
generates an exhorbitant  amount of data.  Both of these  objections 
are avoided  by the geometric and hierarchical  approach of GL. 

Another  aspect of the design process is the use of different 
media to represent the system being designed. At least  three levels 
can be distinguished: 

Physical: scale models 
Graphic:  sketches,  drawings,  blueprints 
Symbolic or abstract:  equations, formulas,  geometric  concepts 

The Geometry  Language i s  a tool for working  at the symbolic or 
abstract level. 

If a scale model were used as the main design tool, the place- 
ment  problem would vanish: since different physical elements of 
the model cannot  occupy the same  space,  neither  can the corre- 
sponding  elements of the system. It is obvious, however, that  this 
approach is impractical. In a  typical design project, the specifica- 
tions of the components and subsystems undergo a large  number 
of changes before they reach final form, and  many people must 
have access to those specifications. A scale model, on  the  other 
hand, is expensive and time-consuming to build and modify, not 
to mention the problems of duplication and dissemination. Further- 
more, it may be difficult to  read dimensional information off a scale 
model without  taking it apart. 

The graphic  approach to the placement  problem  is also inade- 
quate, since it is impossible in general to represent  fully  a  three- 
dimensional object  with  curved surfaces on a flat  surface  such  as  a 
sheet of paper.  A partial exception to  this  statement  is  the tech- 
nique of stereographic  three-dimensional views, developed by 
Straws  and Poley3  to  produce  LLwire-framelJ  representations of 
systems of pipes. If this technique  can be extended to more com- 
plicated  systems of objects, it is  very  likely that it will require an 
input language  with  many of the features of GL. 

We are  thus led to  the  abstract  approach.  The feasibility of 
this  approach  has been recently dem~nst ra ted ;~  specifically, it has 
been shown (for a  certain class of geometric  shapes) how the no- 
overlap  condition  can be formulated  and  tested  directly  in  terms of 
the  equations of the surfaces bounding the objects. 

The placement  problem is an instance of a  larger class of prob- 
lems of space allocation,  partitioning,  and accessibility that occur 
in engineering and  architectural design. It is the author’s  contention 
that the most  natural  language for handling  such  problems i s  one that 
deals directly  with the geometric properties of space. 

If the designer’s mind thinks  in  terms of planes,  spheres, and 
cylinders, the language  should  deal  with planes, spheres, and 
cylinders, and  with  the properties of these  objects. In  other words, 
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the symbols used in  the language  should  designate  geometric 
objects  and relations rather  than graphic  constructs.  (Whether 
these  symbols  should  be  alphanumeric  characters or pictographs 
is a separate question, to be discussed below.) 

The advances in engineering and technology in  the  last decades 
have  made it possible to design  systems of great  complexity  where 
hundreds of people are involved in  the design process. This  has 
brought  about new problems of control and documentation:  what 
space belongs to whom, and who has placed what where. A language 
for geometric processing  must have facilities  for  deJining  and  handling 
sets  and  configurations of spacially  and  functionally related  objects. 

The question  whether the symbols of the language  should  be 
written vs. alphanumeric  characters, or graphics  elements  such as points, 

pictorial lines, and curves, is related to  the question  whether the language 
form is  intended  to be used in a batch mode or in  an  interactive mode. 

The point of view taken here  may be summarized as follows: 

Both modes are necessary. Many geometric problems can  be 
adequately expressed in  a  programming  language where one 
writes statements on coding forms; it is then unnecessary and 
wasteful to use a  graphics console. Conversely, there  are prob- 
lems where interaction is essential and where it is more natural 
to  draw  with a  light  pen or a  stylus  and  to  point  to  the elements 
of a figure. 
Although the “written”  and  the  “pointing” language are in- 
tended for .different uses, one can  establish  a correspondence 
between the elements  (variables,  commands,  etc.) of the two 
languages. In  fact  one  can  think of them  as two  forms of the 
same  language. For this reason,  only the written  form of GL is 
discussed in  this paper. Besides, the emphasis here is on  what 
the language  can  do,  i.e.,  on its meaning rather  than  its form. 

The  approach  advocated here  can  be  contrasted  with the 
GL and COG0 design philosophy of the widely used Civil Engineering  Coordinate 

Geometry  System (COGO).  

COGO deals primarily  with  points,  straight lines, angles, and 
circular  arcs, whereas GL deals with solid objects  and  the surfaces 
bounding  them. 

An engineer working with COGO ((writes the description of his 
problem and how to solve it as if he were solving it by hand”;  in 
other words, he specifies a  linear sequence of instructions. By con- 
trast, GL is  intended  to be imbedded in a full-fledged programming 
language,  with facilities for  branching, looping, subroutine link- 
age, and  interrupt handling. 

COGO operates  on  a  simple data  structure, whereas GL requires 
a complex data  structure. 

Having  established the need for  a  system  for  manipulating 
why three three-dimensional  geometric figures, the question  arises  whether 

dimensions one should design a more general  system to handle n-dimensional 
geometry;  this  system could then be used to solve problems in 2-, 
3-, or 4-dimensional space. 
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While this  approach  is appealing, it is quite  impractical, as 
shown by the following considerations of efficiency and relevance. 

Ef ic i ency .  If the dimensionality n of the space  is treated  as a 
parameter to be set  at execution time,  the allocation of storage 
space  for the  data  structures  on which the system  operates becomes 
more complicated. For example, the coordinates of a  point would 
require  a  variable  amount of storage  depending on n. There is also 
another source of ineficiency: if all the problems that  the system 
is intended  to solve have  to be  formulated  and coded in n dimen- 
sions, many  subroutines will be  much  harder  to  write  and  test,  and 
more time-consuming a t  execution  time. 

Relevance. Many problems  in  three-dimensional  geometry become 
either  trivial  or  irrelevant  or  incompletely defined in  a  space of 
different dimensionality.  For example, questions of visibility and 
calculations of shadows are relevant only in three-dimension, since 
the world in which we live is three-dimensional.  A two-dimensional 
space (i.e.,  a  plane)  should not be viewed as  a special case of a 
three-dimensional space, since a  three-space  contains  infinitely 
many planes. (A system  for three-dimensional  geometry  should, 
of course, provide facilities for defining planes  a,nd  for  computing 
cross-sections of three-dimensional objects. The  point here  is that 
if the  natural way to formulate  a  problem  requires  only two- 
dimensional concepts, the problem  should  be solved by using a 
two-dimensional system.) In  the opposite  direction, the claim is 
sometimes made that problems  involving time,  as  in kinematics 
and dynamics,  require four-dimensional capabilities.  Actually the 
time  variable occurs only as  a  parameter  and  it does not  interact 
with the space variables  in the way these  variables interact with 
each other.  For example, while i t  is meaningful to  rotate  an object 
in  space, it is usually meaningless to  rotate  it  in space-time. 

The global entities  on which the language  operates are called 
models. A model is  a data set  containing  a  representation of a 
region of space and (in that region) of a system  or assembly of 
graphic and/or physical  objects. 

The process of building  a model is analogous to  that of creating 
or updating  a file. Data is written  in a file according to a specified 
format; analogously, geometric data is  placed in a model with 
respect to a specified coordinate  system. 

The  actual  steps involved are  the following: 

1. Defining a set of objects of type geometric. This is done by 
means of a set of built-in primitive  geometric  functions,  which 
can be combined to form geometric expressions, whose value 
can be assigned to geometric  variables. 

2. Optionally defining one or more coordinate  transformations, 
using the transfoymation statement. These t,wo steps  are inde- 
pendent, of the specific model being built. 

3. Defining or retrieving the model being operated  on,  and  option- 
ally a  submodel (or configuration)  within  it,. The  data  type 
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model and  the conjiguration statements  are provided  for this 
purpose. 

4. Optionally  selecting  a  subregion of the model space for the 
purpose of qualifying the drawing and placement statements 
and  the interference checking (Step 7). This  is  done  with the 
region statements  (the keywords are IREGION and WREGION). 

5.  Optionally defining and selecting sets of (already  drawn  or 
placed) objects  for further qualifying the interference checking 
and graphic  display. This  is  done  with set variables and set 
assignment and selection statements  (the keywords are SET 
and ISET). 

6. Optionally  selecting  a  coordinate  transformation, to  facilitate 
the next  step.  The coordinate statement is used for  this. 

7. Designating  certain  geometric  objects to represent  graphic or 
physical  objects and incorporating these representations into a 
configuration. This  essential step is done  with the drawing and 
placement statements,  respectively. The  term component is 
generally used hereafter  to mean “the representation of a 
(graphic  or  physical)  object.” The distinction  between geo- 
metric,  graphic, and physical is discussed more fully below. 
Two  kinds of tests  are performed when an  attempt is made to 
draw  a  graphic  component or place a  physical  component: 

the component  must  lie in  the selected working region. 
if it is a  physical  component, it must  not  interfere  with 
(i.e., overlap) any  other physical  component in  the selected 
interference set  and  in  the selected interference region. 

If either  test fails, the drawing or placement statement is not 
executed and  an  interrupt  takes place. 

8. Displaying  a  set of components  in  a selected display region, 
with  various  options  as to  type of projection,  shading,  appear- 
ance of hidden  boundaries,  etc. This is done  with the display 
statement.  Further  options provide  for  saving  display-generated 
data. 

9. Optionally using the attach and merge statements  to combine 
independently defined configurations and models. 

The interrelation of the concepts  introduced in  Steps 1 through 7 
is illustrated  in  Figure 1. Each  entry depends on (i.e., is defined or 
executed  with reference to)  the  entities  pointing  to it. 

Only the geometric and modeling capabilities of GL are de- 
remarks on scribed in this  paper. It is  assumed, however, that  the full capabili- 

language ties of a higher-level language  such  as PL/I are available. In  fact 
capabilities GL has been designed as  a possible set of extensions to PL/I. 

Whenever an available  option  is not used,  a default definition is 
provided for it. For example, if no  coordinate  transformation  has 
been selected,  all  operations  involving  coordinates are executed 
with reference to  an implied absolute  coordinate  system. 

The concept of selection statement deserves further discussion. 
A selection statement (for selecting a  coordinate  transformation or 
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I Figure 1 Interrelation of concepts 

an interference  set,  for example) may  be  thought of as setting a 
new default  condition that will govern the subsequent execution of 
certain  other  statements (e.g., a PLACE statement). It must be 
noted, however, that selection statements  are used more extensively 
in GL than  in conventional  programming  languages. Thus  in  the 
analogy between building  a model in GL and writing a file (say in 
PL/I), the analogue of a GL selection statement would be a state- 
ment that selects a FORMAT so that subsequent WRITE statements 
are  governed  by that FORMAT without explicitly referencing it. 
There  are several reasons for having selection statements  in GL 
rather  than following t,he  alternative  approach of requiring  each 
DRAW and PLACE statement  to refer explicitly to  the conditions  by 
which it is  governed: 

As can  be seen from  Figure I, the DRAW, and especially the 
PLACE, statements  are  subject  to  many conditions, and  it would 
be quite unwieldy to  have  to reference or specify them  in each 
such statement. 
In  most  programs,  there is expected to be a high  ratio of DRAW 
and PLACE statements  to selection statements:  in  other words, 
the conditions affecting successive DRAW and PLACE state- 
ments  are relatively  stable. This  is  due  both  to  the  nature of 
the computer-aided design process and  to  the fact that each 
DRAW or PLACE can  operate  on only one  object. The  latter 
fact  in  turn  is  determined  both  by  the considerations in  the  next 
paragraph, and by the need  for a simple  interpretation of an 
interrupt occurring  during the execution of a DRAW or PLACE. 
The written  form of the language  must  contain the facilities 
that  are needed in the pointing  (conversational)  form. In  a 
conversational language, the  statements should be designed for 
simplicity of form  and richness of implied or contextual  mean- 
ing. 

The basic distinction  between geometric,  graphic, and physical 
entities  can be viewed in  several ways. Functionally  they  are used 
in different ways in the language, as explained in  later sections: 



graphic and physical  components are instances of geometric  objects 
attached  to specific configurations,  hence to specific models; and 
physical  components are  the only ones for which interference  test- 
ing is done. Intuitively a  geometric  object  is an  abstract  entity; a 
graphic  component is like a figure drawn  on a piece of paper, 
possibly for reference or  construction  purposes;  and  a  physical 
component is a figure drawn for the purpose of designating a 
physical  object. 

Geometric  manipulation 
A formal definition of the main  features of GL is now presented. A 
fuller definition may  be  found in Reference 1.  Where  necessary, the 
so-called S R L ~  notation  is used for  displaying the form of the  state- 
ments  in  the language. 

The  attribute TRIPLE may be  used for defining arrays of three 
arithmetic scalar  elements; it is introduced merely as  a convenience. 

The coordinate  transformation selection statement  has  the 
coordinate form 

transformations COORDINATE trans; 

where “trans”  has  the form 

{ TRANSFORMATION ([tl],  [tal, [s] [,trans]) 
label-designator 1 

The first  form of “trans”  may be  termed an immediate  transforma- 
tion designation, and  the second form  a  remote  designation. If the 
immediate  form does not  contain  the  optional clause “,trans” it 
is  a  simple  transformation, defined with  respect to  the absolute 
coordinate  system of the space of geometric  objects; if it does con- 
tain  the clause “,trans” it is a  compound  transformation, i.e., the 
transformation specified by  the first three  arguments is defined 
with  respect to  the coordinate  system defined by  the  “,trans” 
clause. In  the remote  form, the label  designator must designate 
the label of a TRANSFORMATION statement (defined below). These 
definitions make it possible to compound  transformations,  both 
immediately  and remotely  designated, to  any  depth. 

As to  the first three  arguments of the transformation, t l  is a  triple 
expression (i.e., an expression of type TRIPLE) that defines the 
origin of the coordinate  system, t2 is  a  triple expression interpreted 
as a triple of Eulerian angles that defines its orientation in space, 
and s is an  arithmetic  scalar expression that defines its scale. If 
any of these  arguments  are  omitted,  the  triples  are  taken  as zero 
and s is  taken  as 1. (The use of Eulerian angles to represent a 
rotation  in space is discussed in most textbooks  on classical 
mechanics: for example, see References 7 and 8.) 

Like all selection statements,  the COORDINATE statement 
conditions the executions of several other  statement  types  (to be 
described in  later sections) until superseded  by the execution of 
another COORDINATE statement. If a  transformation  contains 
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nonconstant expressions, the  latter  are  evaluated whenever one 
of the  statements which it conditions is evaluated. 

The coordinate  transformation definition statement  has  the 
form 

label: trans1 ; 

where “transl” is the immediate  form of “trans” defined above. 
The  attribute GEOMETRIC is used for declaring identifiers of 

data of type geometric. The  latter can be scalars, arrays,  function 
procedures, and formal parameters. 

There  are no geometric constants. The effect of geometric 
constants  can be achieved by using the built-in primitive geometric 
functions  with  constant  arguments. 

Geometric elements  can be combined to form geometric ex- 
pressions. A geometric expression is any of the following: 

A geometric variable 
A geometric function reference 
An expression enclosed in parentheses 
Any two expressions connected by one of the infix operators 
+ l   * l /  

The meaning of the operators  (listed here in order of decreasing 
binding strength)  is: 

/ Relative  complementation 
* Intersection 
+ Union 

Thus A/B is that portion of space contained in  the geometric 
figure A but  not  in  the geometric figure B. Similarly,  intersection 
and  union  are  interpreted  as referring to  the sets of points com- 
prised by the geometric entities. Mixed expressions of geometric 
and  other  data  types  are meaningless. 

The evaluation of a geometric expression has  a meaning differ- 
ent from the case of an arithmetic expression. The evaluation of a 
(scalar) arithmetic expression involves the successive execution of 
a sequence of arithmetic  operations, from which a single value is 
produced. The evaluation of a geometric expression involves the 
setting  up of a data  structure as well as the performance of numeri- 
cal calculations; the entire data  structure is the value of the ex- 
pression. 

The built-in  functions provided by the system for handling 
geometric information  can be grouped into four classes, depending 
mainly  on  the type of the function  arguments  and values. This is 
shown in  Table 1. 

The first class contains  a few functions that facilitate  the 
handling of triples of numbers. 

The second and most important class is that of the primitive 
geometric functions on which all geometric construcbions are based. 
The execution of a  primitive geometric function  results in  the 
creation of an  internal  data  structure, where information  is  kept 
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Table 1 

Function  arguments  Function  value 

arithmetic  arithmetic 
arithmetic/point geometric 
geometric arithmetic 
geometric geometric 

Table 2 Examples of built-in  geometric functions 

Genus of 
function 

value  Function  Meaning 

arithmetic  to  arithmetic 

t TR(r,r,r) 

t DIR(t) 

r LENGTH(t) 

arithmetic or point  to  geometric 

(no  genus) NULL 

triangle TRIA(p,p,p) 
TRIA(P,t,t) 

plane  PLANE(P,P,P) 
PLANE(p,t) 

sphere SPHERE(p,r) 

cone CONE(p,t,r) 

half space HSPACE(p,t) 

Triple whose elements are  the argu- 
ments. 

Normalized triple, i.e., direction 
cosines corresponding to argument 
triple. 

Square root of the  sum of the squares 
of the elements of the triple. 

The null object; used for freeing 
storage. 

Point  with given coordinates. 

Point whose coordinates are  the 
given triple. 

Line  segment (directed) from  first 
point to second point. 

Directed  line defined by two points. 
Directed  line defined by point and 
direction. 

Triangle with given vertices. 
Triangle defined by  point  and two 
vectors issuing from  point. 

Plane defined by  three points. 
Plane defined by point and direction 
of normal. 

Defined by center and radius. 

Right circular cone with center of 
base a t  p, height t, and radius of 
base r. 

Defined by  point  and direction. 



' Table 2 Exomples of built-in geometric functions  (cont'd) 

Genus  oj 
junction 

value  Function  Meaning 
" ~ 

geometric to arithmetic 

t DIR(s) 

r LENGTH@) 

geometric to geometric 

geom COPY(geom) 

geom AFFINE(geom,t,t,t,t) 

geom BDARY(geom) 

The triple of the coordinates of a 
point. 

The triple of the components of a 
segment. 

This function is defined for all argu- 
ment genera to  which a direction is 
associated. 

Length of segment. 

Produces copy of object. 

Affine transformation of geometric 
object. The first 3 triples are  the 
column vectors of the transformation 
matrix, the  last one is a displace- 
ment vector. 
Boundary of the geometric object. 

Abbreviations used in this  table: 

type  genus  abbreviation 

(real r 

arithmetic integer 
real array of 

1 

dimension 3 (triple) t 
point P 

(other) (no abbreviation) 
S 

about  the genus of the corresponding geometric object, its com- 
ponent  parts,  their interrelations, and  the numerical  values associ- 
ated  with these components. The concept of data  structure is 
discussed in t'he paper  by C. I. Johnson elsewhere in  this issue. The 
value  returned  by  a  primitive geometric function, besides being of 
type geometric, can be characterized by  its genus. (By analogy, a 
number  is of type  arithmetic  but  has  additional characteristics, 
e.g., scale and precision.) 

The  third class comprises such  functions as  the length of a 
segment. 

The  fourth class may be regarded as a  set of transformations 
of geometric objects  into geometric objects. 

Examples of built-in geometric functions  are shown in  Table 2. 
The abbreviations used for specifying the  type  and genus of argu- 
ments and values are  indicated at  the end of the table. 
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geometric 
assignment 

statement 

user-defined 
geometric 
functions 

models and 
configurations 

302 

The geometric assignment statement  has  the form: 

geom-variable [,geom-variable] . . . = geom-expression [,trans]; 

The geometric variables  on t,he left can be simple or subscripted 
variables. The assignment statement produces the following  se- 
quence of events: 

1. The geometric expressions on the right-hand side are  evaluated; 
2 .  If the opt,ional clause “,trans” is used, the designated transfor- 

mation  is  evaluated and applied t o  the  value of the expression; 
the resulting  value is then assigned to  the identifier(s) on the 
left-hand  side; 

3. Otherwise, if a  transformation  has been selected by the previous 
execution of a  statement, that transformation is evaluated  and 
applied to  the value of the expression; the resulting  value is 
then assigned; 

4. Otherwise, the value of the expression is assigned. 

The geometric assignment statement  can be executed only if 
its  right-hand side contains only references to variables which have 
already been assigned values, or constants (including variables 
and  constants appearing  as  function  arguments). In general, the 
value of a geometric expression is a data  structure, hence it is 
possible to change the value of a  variable  without the explicit 
assignment of a new value to  it. For example, if the geometric 
assignment statement 

A = B + C ;  

is followed by  a statement  that changes the value of C, the  latter 
statement changes the value of A  as well. If one wishes to avoid 
this, one can use the COPY function and replace the first assign- 
ment statement  by 

A = COPY(B + C); 

The user can define function procedures of type geometric by using 
the normal formalism for procedure definition. Functions defined 
in  this way differ from  the primitive geometric functions in  that 
they do not  have  a  genus;  in  this  respect,  they resemble PL/I 

structures, which can comprise items of heterogeneous character- 
istics. 

Model building 

Since GL is defined as a  set of extensions to a higher-level language 
(such as PL/I), i t  is assumed that adequate facilities for the defining, 
opening, and closing of files are  available in t,hat language. It is 
further assumed that a new  file organization attribute, GRAPHIC, 
can be added to  the language. A file with that  attribute is hence- 
forth called a model. 

All the  statements  to be described in  this  and  the following 
sections, except attaching  and merging, can only be executed with 
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It follows from the above that a configuration does not  require 

Set is  a new type of datum which makes it possible to define and 
sets name arbitrary collections of components  within a model. The 

attribute SET applies to identifiers of this  type. 
A set-expression is an expression formed by using the operators 

+, *, /, and  the parentheses for grouping. Each operand in a  set 
expression can be a set, a component (interpreted  as  a  set of one 
element), or a configuration (interpreted as a  set of elements). The 
operators,  listed in order of decreasing binding  strength,  have  the 
following meaning: 

/ Relative  complementation 
* Intersection 
+ Union 

a  declaration  independent of its selection. 

It is important  to  note  that these  operators  are  interpreted  as 
operating  on  sets of elements, not  on the elements themselves. For 
example, if A and B are  overlapping geometric objects,  their geo- 
metric  intersection is not  empty; whereas, if A1 and Bl are  graphic 
components corresponding to A and B, the intersection of the set 
consisting of A1 and the set consisting of B1 is empty. 

The set assignment statement  has  the  form: 

set-variable [,set-variable] . . . = set-expression; 

The  set variable  may be simple or subscripted. 

executions of subsequent placement statements,  has the form: 

ISET set-expression; 

The interference set selection statement, which conditions the 

A region is defined by a geometric expression (which should 

Region selection, which conditions subsequent drawing and 
regions normally  represent  a three-dimensional object). 

placement statements, is done with  the  statements: 

WREGION geom-expression [,trans]; 
IREGION geom-expression [,trans]; 

(for “working region” and “interference region”). The execution 
of a region selection statement is similar to  the evaluation of the 
right-hand side of a geometric assignment statement:  it is condi- 
tioned  by the currently selected coordinate  transformation unless 
overruled by the  “,trans” clause. 

The drawing statements  have  the following form: 

drawing, DRAW (variable = geom-expression [,trans]) ; 
placement, REDRAW (variable  [,trans]) ; 

interference ERASE (variable); 
testing The variable, which is also termed  a component nume, may be 

simple or subscripted, and it need not  be declared in a  separate 
statement.  The execution of a DRAW statement involves the follow- 
ing  steps: 
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1. The geometric expression is evaluated and  the value  trans- 
formed,  as in  the case of the geometric assignment statement. 

2.  The final (transformed)  value  is  tested to determine  whether it 
lies in  the WREGION; if no WREGION has been selected, the 
model region (which is implementation defined) is used for the 
test. i f  the  test fails, the execution of the  statement is inter- 
rupted.  The on-condition raised by this  interrupt is called 
BOUNDS (see below). 

3. If the  test is passed, the value is assigned to  the variable. If 
the  latter  had previously designated  a component in  the cur- 
rently selected configuration, this assignment is an  updating of 
its value; if not,  the variable  is  entered as a new component 
name  in  the currently selected configuration. 

The assignment that takes place in a DRAW statement differs 
from the geometric assignment in  that subsequent changes in  the 
value of the expression do not affect the value of the component 
(as discussed earlier). 

The REDRAW statement is executed as follows: 

1. If the variable does not designate a  graphic component in  the 
currently selected configuration, the  statement is invalid. 

2. If the statement  is  valid,  a copy of the component is made and 
transformed according to the “,trans” cIause if that clause is 
present, otherwise according to  the currently selected transfor- 
mation. 

3. The  transformed component is  tested to determine  whether it 
lies in  the WREGION. If the  test fails, a BOUNDS interrupt 
occurs and the variable  still designates the original component. 

4. i f  the  test is successful, the transformed component is assigned 
to  the variable, replacing the original one. 

The ERASE statement, subject to Condition 1 of the K.EDKAW 
statement, removes the component designated by the variable 
from the configuration. 

it should be clear from this discussion that  the drawing state- 
ments do not, cause a drawing to appear  on  a console: their  purpose 
is to create  a data  structure  that represents  a drawing. To display 
a  drawing one must use a display statement. 

The placement statements  have  the same  form  as the drawing 
statements except that  the keywords PLACE, REPLACE, and 
REMOVE are used. The  function of these statements is also analo- 
gous to  that of the drawing statements, except that  the objects 
being operated  on  are physical components. 

The PLACE statement is executed as follows: 

1. As Step 1 in  the DRAW statement. 
2. As Step 2 in  the DRAW statement. 
3. If the WREGION test is passed, the interference test is executed. 

This consists of determining  whether the final value of the 
geometric expression overlaps certain physical components or 
portions of them, i.e.,  whether it occupies space already occu- 
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pied. The interference test  is done  with  respect to those parts 
of the components of the selected ISET which also lie in  the 
selected IREGION. If no ISET has been selected, the entire 
model is implied. If no IREGION has been selected, the model 
region is implied. If the  test fails, the execution of the  state- 
ment is interrupted  and  the on-condition CLASH is raised. 

4. If the interference test is passed, the  last  step is like the  third 
one  in the DRAW statement,  with “graphic” replaced by “physi- 
cal.” 

Regarding the REPLACE statement, it is best described by 
saying that REPLACE is to REDRAW as PLACE is to DRAW. This 
means that  the first three  steps of its execution are analogous to 
those of the REDRAW statement;  then  the interference test is 
executed;  then  the  last  step is as  in REDRAW. 

The REMOT’E statement is entirely  analogous to ERASE. 
As to  the on-conditions BOUNDS and CLASH, they  are always 

enabled and, as in PL/I, the programmer  can  write appropriate 
on-unit,s to be executed if the  interrupts occur. If the on-units  are 
not included, an appropriate  standard  system  action will be de- 
fined. It should be  noted  that, since the DRAW, REDRAW, PLACE, 
and REPLACE statements  operate  on only  one  component (at a 
time),  it is easier for the programmer to  interpret  any  interrupts 
that may arise than if these  statements  operated  on  lists of oper- 
ands. 

All model building statements specified so far refer to a single 
attaching and model. The intermodel facilities needed in  the language are briefly 

merging described here;  a complete specification is not given,  as i t  would 
depend  on the interface  between the language and  the  operating 
system. 

Two kinds of facilities are needed: 

Attaching  a model (as a  configuration) to a  designated con- 

Merging  two  or more models into a new model. 
figuration of another model. 

The  attaching  operation  subordinates  one model to  another; 
the merging operation  coordinates the several models. With  either 
operation  there should be the option of requesting an interference 
test of the  type associated with  the PLACE statement,  and specify- 
ing  appropriate ON-condition actions. 

Display 
Only a brief outline of the display facilities is presented here. The 
DISPLAY statement  has  the  form 

DISPLAY data-list  [format-list]; 

where data-list is a  list of set-expressions. 
The items  on  the  format list specify the manner in which the 

corresponding sets of objects are  to be displayed. The following 
remarks describe the main  options that should  be  available: 
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Having specified (by means of the data-list) the sets of objects 
to be displayed, one may  request that only the graphic  objects 
in those  sets be displayed,  or only the physical  objects, or that 
both be displayed but  with different renderings (e.g., dotted 
lines vs. solid lines). 
The  further restriction  may be imposed that only  those  objects 
that lie in a specified region be  displayed. 
There  are two  main ways of rendering  three-dimensional  objects 
by means of drawings: cross sections and projections; the  latter 
being the more widely used method. 
To specify a  projection, one must give a viewing point  and a 
projection  plane. 
Shading may be requested by specifying a  light source. The 
hidden lines (i.e., those lines that  are hidden by the object itself 
or by some ot’her  object)  may  be  rendered  as  dotted lines or 
suppressed  altogether. 

Conclusion 
This  paper  has  attempted  to show why and how a  language for 
dealing with  space  problems  must focus on the geometric and 
structural aspects of those problems. By  providing tools for work- 
ing a t  a  fairly high level of abstraction, the proposed language 
enables the user to  state his problems without  getting bogged 
down in  a mass of system- and implementation-dependent  details. 
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