This paper argues that there is a need for a problem-oriented language
to handle three-dimensional geometric information, and proposes a
set of language facilities that illustrate how this need should be met.

The emphasis is on the facilities needed for describing solid objects and
their placement in space, and for defining and operating on configura-
tions of objects.

INTERACTIVE GRAPHICS IN DATA PROCESSING
A language for three-dimensional geometry

placement
problem

by P. G. Comba

Many branches of engineering and technology give rise to problems
of a geometric nature that cannot be conveniently formulated and
solved with currently available programming languages and
systems.

In this paper, we discuss in some detail one such problem (often
referred to as the placement problem), we formulate the general
requirements for a language that addresses itself to problems of
this type, and we present an outline of the specific features that
this language should have. For convenience and brevity, the
proposed language is called Geometry Language (6L). A fuller set
of specifications for GL may be found in Reference 1. It should be
pointed out that 6L has not been implemented.

Language requirements

The so-called placement problem is a major and recurring problem
faced by the designer of physical systems (e.g., ships, chemical
plants, jet engines). Tt arises when a large number of objects of
many different shapes (components, subsystems, pipes, cables)
have to be positioned in a restricted space in such a way that no
two objects are assigned to the same space.

The restriction that two objects cannot occupy the same space
at the same time is, of course, a basic property of physical bodies.
The problem of verifving that the plan of a system satisfies this
no-overlap condition can be very difficult. Many techniques have

COMBA IBM SYST J

been used in attempting to solve this problem,? and some of them
have been partially successful in special situations. For example,
one can subdivide the whole design space into a set of cubes and
keep track of which cubes are occupied and which are free. The
trouble with this approach is that either it is too coarse or it
generates an exhorbitant amount of data. Both of these objections
are avoided by the geometric and hierarchical approach of GL.

Another aspect of the design process is the use of different
media to represent the system being designed. At least three levels
can be distinguished:

¢ Physical: scale models
® Graphic: sketches, drawings, blueprints
e Symbolic or abstract: equations, formulas, geometric concepts

The Geometry Language s a tool for working at the symbolic or
abstract level.

If a scale model were used as the main design tool, the place-
ment problem would vanish: since different physical elements of
the model cannot occupy the same space, neither can the corre-
sponding elements of the system. It is obvious, however, that this
approach is impractical. In a typical design project, the specifica-
tions of the components and subsystems undergo a large number
of changes before they reach final form, and many people must
have access to those specifications. A scale model, on the other
hand, is expensive and time-consuming to build and modify, not
to mention the problems of duplication and dissemination. Further-
more, it may be difficult to read dimensional information off a scale
model without taking it apart.

The graphic approach to the placement problem is also inade-
quate, since it is impossible in general to represent fully a three-
dimensional object with curved surfaces on a flat surface such as a
sheet of paper. A partial exception to this statement is the tech-
nique of stereographic three-dimensional views, developed by
Strauss and Poley? to produce ‘“wire-frame” representations of
systems of pipes. If this technique can be extended to more com-
plicated systems of objects, it is very likely that it will require an
input language with many of the features of aL.

We are thus led to the abstract approach. The feasibility of
this approach has been recently demonstrated;* specifically, it has
been shown (for a certain class of geometric shapes) how the no-
overlap condition can be formulated and tested directly in terms of
the equations of the surfaces bounding the objects.

The placement problem is an instance of a larger class of prob-
lems of space allocation, partitioning, and accessibility that occur
in engineering and architectural design. It is the author’s contention
that the most natural language for handling such problems is one that
deals directly with the geometric properties of space.

If the designer’s mind thinks in terms of planes, spheres, and
cylinders, the language should deal with planes, spheres, and
cylinders, and with the properties of these objects. In other words,

NOS. 3 & 4 - 1968 A 3-D LANGUAGE

language
design
criteria

written vs.
pictorial
form

GL and COGO

why three
dimensions

the symbols used in the language should designate geometric
objects and relations rather than graphic constructs. (Whether
these symbols should be alphanumeric characters or pictographs
is a separate question, to be discussed below.)

The advances in engineering and technology in the last decades
have made it possible to design systems of great complexity where
hundreds of people are involved in the design process. This has
brought about new problems of control and documentation: what
space belongs to whom, and who has placed what where. A language
Jor geomelric processing must have facilities for defining and handling
sets and configurations of spacially and functionally related objects.

The question whether the symbols of the language should be
alphanumeric characters, or graphics elements such as points,
lines, and curves, is related to the question whether the language
is intended to be used in a batch mode or in an interactive mode.
The point of view taken here may be summarized as follows:

® Both modes are necessary. Many geometric problems can be
adequately expressed in a programming language where one
writes statements on coding forms; it is then unnecessary and
wasteful to use a graphies console. Conversely, there are prob-
lems where interaction is essential and where it is more natural
to draw with a light pen or a stylus and to point to the elements
of a figure.
Although the “written” and the “pointing” language are in-
tended for .different uses, one can establish a correspondence
between the elements (variables, commands, etc.) of the two
languages. In fact one can think of them as two forms of the
same language. For this reason, only the written form of GL is
discussed in this paper. Besides, the emphasis here is on what
the language can do, i.e., on its meaning rather than its form.

The approach advocated here can be contrasted with the
design philosophy of the widely used Civil Engineering Coordinate
Geometry System (coGo).’

c0Go deals primarily with points, straight lines, angles, and
circular arcs, whereas GL deals with solid objects and the surfaces
bounding them.

An engineer working with coco “writes the deseription of his
problem and how to solve it as if he were solving it by hand”; in
other words, he specifies a linear sequence of instructions. By con-
trast, oL is intended to be imbedded in a full-fledged programming
language, with facilities for branching, looping, subroutine link-
age, and interrupt handling.

oGO operates on a simple data structure, whereas GL requires
a complex data structure.

Having established the need for a system for manipulating
three-dimensional geometric figures, the question arises whether
one should design a more general system to handle n-dimensional
geometry; this system could then be used to solve problems in 2-,
3-, or 4-dimensional space.

COMBA IBM SYST J

While this approach is appealing, it is quite impractical, as
shown by the following considerations of efficiency and relevance.

Efficiency. If the dimensionality n of the space is treated as a
parameter to be set at execution time, the allocation of storage
space for the data structures on which the system operates becomes
more complicated. For example, the coordinates of a point would
require a variable amount of storage depending on n. There is also
another source of inefficiency: if all the problems that the system
is intended to solve have to be formulated and coded in n dimen-
sions, many subroutines will be much harder to write and test, and
more time-consuming at execution time.

Relevance. Many problems in three-dimensional geometry become
either trivial or irrelevant or incompletely defined in a space of
different dimensionality. For example, questions of visibility and
caleulations of shadows are relevant only in three-dimension, since
the world in which we live is three-dimensional. A two-dimensional
space (i.e., a plane) should not be viewed as a special case of a
three-dimensional space, since a three-space contains infinitely
many planes. (A system for three-dimensional geometry should,
of course, provide facilities for defining planes and for computing
cross-sections of three-dimensional objects. The point here is that
if the natural way to formulate a problem requires only two-
dimensional concepts, the problem should be solved by using a
two-dimensional system.) In the opposite direction, the claim is
sometimes made that problems involving time, as in kinematics
and dynamies, require four-dimensional capabilities. Actually the
time variable occurs only as a parameter and it does not interact

with the space variables in the way these variables interact with
each other. For example, while it is meaningful to rotate an object
in space, it is usually meaningless to rotate it in space-time.

The global entities on which the language operates are called
models. A model is a data set containing a representation of a
region of space and (in that region) of a system or assembly of
graphic and/or physical objects.

The process of building a model is analogous to that of creating
or updating a file. Data is written in a file according to a specified
format; analogously, geometric data is placed in a model with
respect to a specified coordinate system.

The actual steps involved are the following:

. Defining a set of objects of type geometric. This is done by
means of a set of built-in primitive geometric functions, which
can be combined to form geometric expressions, whose value
can be assigned to geometric variables.

. Optionally defining one or more coordinate transformations,
using the transformation statement. These two steps are inde-
pendent of the specific model being built.

. Defining or retrieving the model being operated on, and option-
ally a submodel (or configuration) within it. The data type

NOS. 3 & 4 - 1968 A 3-D LANGUAGE

outline of
language
capabilities

remarks on
language
capabilities

model and the configuration statements are provided for this
purpose.

. Optionally selecting a subregion of the model space for the
purpose of qualifying the drawing and placement statements
and the interference checking (Step 7). This is done with the
region statements (the keywords are IREGION and WREGION).

. Optionally defining and selecting sets of (already drawn or
placed) objects for further qualifying the interference checking
and graphic display. This is done with set variables and sef
assignment and selection statements (the keywords are SET
and ISET).

. Optionally selecting a coordinate transformation, to facilitate
the next step. The coordinate statement is used for this.

. Designating certain geometric objects to represent graphic or
physical objects and incorporating these representations into a
configuration. This essential step is done with the drawing and
placement statements, respectively. The term component is
generally used hereafter to mean ‘“‘the representation of a
(graphic or physical) object.” The distinction between geo-
metric, graphic, and physical is discussed more fully below.
Two kinds of tests are performed when an attempt is made to
draw a graphic component or place a physical component:

® the component must lie in the selected working region.

e if it is a physical component, it must not interfere with
(i.e., overlap) any other physical component in the selected
interference set and in the selected interference region.

If either test fails, the drawing or placement statement is not
executed and an interrupt takes place.

. Displaying a set of components in a selected display region,
with various options as to type of projection, shading, appear-
ance of hidden boundaries, ete. This is done with the display
statement. Further options provide for saving display-generated
data.

. Optionally using the attach and merge statements to combine
independently defined configurations and models.

The interrelation of the concepts introduced in Steps 1 through 7
is illustrated in Figure 1. Each entry depends on (i.e., is defined or
executed with reference to) the entities pointing to it.

Only the geometric and modeling capabilities of GL are de-
scribed in this paper. It is assumed, however, that the full capabili-
ties of a higher-level language such as pL/1 are available. In fact
6L has been designed as a possible set of extensions to PL/L

‘Whenever an available option is not used, a default definition is
provided for it. For example, if no coordinate transformation has
been selected, all operations involving eoordinates are executed
with reference to an implied absolute coordinate system.

The concept of seleciion statement deserves further discussion.
A selection statement (for selecting a coordinate transformation or

COMBA IBM SYST J

Figure 1 Interrelation of concepts

GEOMETRIC COORDINATE
MODEL OBJECT TRANSFORMATION

CONFIGURATION

an interference set, for example) may be thought of as setting a
new default condition that will govern the subsequent execution of
certain other statements (e.g., a PLACE statement). It must be
noted, however, that selection statements are used more extensively
in 6L than in conventional programming languages. Thus in the
analogy between building a model in 6L and writing a file (say in
PL/1), the analogue of a L selection statement would be a state-
ment that selects a FORMAT so that subsequent WRITE statements
are governed by that FORMAT without explicitly referencing it.
There are several reasons for having selection statements in 6L
rather than following the alternative approach of requiring each
DRAW and PLACE statement to refer explicitly to the conditions by
which it is governed:

& Ag can be seen from Figure 1, the DRAW, and especially the

PLACE, statements are subject to many conditions, and it would
be quite unwieldy to have to reference or specify them in each
such statement.
In most programs, there is expected to be a high ratio of DRAW
and PLACE statements to selection statements: in other words,
the conditions affecting successive DRAW and PLACE state-
ments are relatively stable. This is due both to the nature of
the computer-aided design process and to the fact that each
DRAW or PLACE can operate on only one object. The latter
fact in turn is determined both by the considerations in the next
paragraph, and by the need for a simple interpretation of an
interrupt occurring during the execution of a DRAW or PLACE.
The written form of the language must contain the facilities
that are needed in the pointing (conversational) form. In a
conversational language, the statements should be designed for
simplicity of form and richness of implied or contextual mean-
ing.

The basie distinction between geometric, graphic, and physical
entities can be viewed in several ways. Functionally they are used
in different ways in the language, as explained in later sections:
geometric objects are defined independently of a model, whereas

NOS. 3 & 4 - 1968 A 3-D LANGUAGE

coordinate
transformations

graphic and physical components are instances of geometric objects
attached to specific configurations, hence to specific models; and
physical components are the only ones for which interference test-
ing is done. Intuitively a geometric object is an abstract entity; a
graphic component is like a figure drawn on a piece of paper,
possibly for reference or construction purposes; and a physical
component is a figure drawn for the purpose of designating a
physical object.

Geometric manipulation

A formal definition of the main features of &L is now presented. A
fuller definition may be found in Reference 1. Where necessary, the
so-called SRL® notation is used for displaying the form of the state-
ments in the language.

The attribute TRIPLE may be used for defining arrays of three
arithmetic scalar elements; it is introduced merely as a convenience.

The coordinate transformation selection statement has the
form

COORDINATE trans;
where ‘“trans’” has the form

TRANSFORMATION ([t1], [t2], [s] [,trans])
label-designator

The first form of “trans” may be termed an immediate transforma-
tion designation, and the second form a remote designation. If the
immediate form does not contain the optional clause * trans” it
is a simple transformation, defined with respect to the absolute
coordinate system of the space of geometric objects; if it does con-
tain the clause ““,trans” it is a compound transformation, i.e., the
transformation specified by the first three arguments is defined
with respect to the coordinate system defined by the ¢ trans”
clause. In the remote form, the label designator must designate
the label of a TRANSFORMATION statement (defined below). These
definitions make it possible to compound transformations, both
immediately and remotely designated, to any depth.

As to the first three arguments of the transformation, t1is a triple
expression (i.e., an expression of type TRIPLE) that defines the
origin of the coordinate system, t2 is a triple expression interpreted
as a triple of Eulerian angles that defines its orientation in space,
and s is an arithmetic scalar expression that defines its scale. If
any of these arguments are omitted, the triples are taken as zero
and s is taken as 1. (The use of Eulerian angles to represent a
rotation in space is discussed in most textbooks on classical
mechanics: for example, see References 7 and 8.)

Like all selection statements, the COORDINATE statement
conditions the executions of several other statement types (to be
described in later sections) until superseded by the execution of
another COORDINATE statement. If a transformation contains

COMBA IBM SYST J

nonconstant expressions, the latter are evaluated whenever one
of the statements which it conditions is evaluated.

The coordinate transformation definition statement has the
form

label: transl;

where “transl” is the immediate form of “trans” defined above.

The attribute GEOMETRIC is used for declaring identifiers of
data of type geometric. The latter can be scalars, arrays, function
procedures, and formal parameters.

There are no geometric constants. The effect of geometric
constants can be achieved by using the built-in primitive geometric
functions with constant arguments.

Geometric elements can be combined to form geometric ex-
pressions. A geometric expression is any of the following:

® A geometric variable

® A geometric function reference

® An expression enclosed in parentheses

® Any two expressions connected by one of the infix operators
+7 *? /

The meaning of the operators (listed here in order of decreasing

binding strength) is:

/ Relative complementation
* Intersection
+ Union

Thus A/B is that portion of space contained in the geometric
figure A but not in the geometric figure B. Similarly, intersection

and union are interpreted as referring to the sets of points com-
prised by the geometric entities. Mixed expressions of geometric
and other data types are meaningless.

The evaluation of a geometric expression has a meaning differ-
ent from the case of an arithmetic expression. The evaluation of a
(scalar) arithmetic expression involves the successive execution of
a sequence of arithmetic operations, from which a single value is
produced. The evaluation of a geometric expression involves the
setting up of a data structure as well as the performance of numeri-
cal calculations; the entire data structure is the value of the ex-
pression.

The built-in functions provided by the system for handling
geometric information can be grouped into four classes, depending
mainly on the type of the function arguments and values. This is
shown in Table 1.

The first class contains a few functions that facilitate the
handling of triples of numbers.

The second and most important class is that of the primitive
geometric functions on which all geometrie constructions are based.
The execution of a primitive geometric function results in the
creation of an internal data structure, where information is kept

NOS. 3 & 4 - 1968 A 3-D LANGUAGE

geometric
expressions

built-in
geometric
functions

Function arguments

Function value

arithmetic

arithmetic/point

geometric
geometric

arithmetic
geometric
arithmetic
geometric

Table 2 Examples of built-in geometric functions

Genus of
Sfunction
value

Function

Meaning

arithmetic to arithmetic

t

arithmetic or point to geometric

(no genus)

triangle

plane

sphere

cone

half space

full space

TR(x,r,r)

DIR(t)

LENGTH(t)

NULL

PT(r,r,r)
PT(t)

SEG(p,p)

LINE(p,p)
LINE(p,t)

TRIA(p,p,p)
TRIA(p,t,t)

PLANE(p,p,p)
PLANE(p,t)

SPHERE(p,r)

CONE(p,t,r)

HSPACE(p,t)
FULL

Triple whose elements are the argu-
ments.

Normalized triple, i.e., direction
cosines cotresponding to argument
triple.

Square root of the sum of the squares
of the elements of the triple.

The null object; used for freeing
storage.

Point with given coordinates.

Point whose coordinates are the
given triple.

Line segment (directed) from first
point to second point.

Directed line defined by two points.
Directed line defined by point and
direction.

Triangle with given vertices.
Triangle defined by point and two
vectors issuing from point.

Plane defined by three points.
Plane defined by point and direction
of normal.

Defined by center and radius.

Right circular cone with center of
base at p, height t, and radius of
base r.

Defined by point and direction.

Needed for taking complements.

IBM SYST J

Table 2 Examples of buili-in geometric functions (cont'd)

Genus of
Sfunction
value Function Meaning

geometric to arithmetic

t TR(p) The triple of the coordinates of a
point.

TR(s) The triple of the components of a
segment.

DIR(s) This funetion is defined for all argu-
ment genera to which a direction is
associated.

r LENGTH(s) Length of segment.

geometric to geometric
geom COPY(geom) Produces copy of object.

geom AFFINE(geom,t,t,t,t) Affine transformation of geometric
object. The first 3 triples are the
column vectors of the transformation
matrix, the last one is a displace-
ment vector.

geom BDARY(geom) Boundary of the geometric object.

Abbreviations used in this table:

type genus abbreviation

real T
integer i
real array of
dimension 3 (triple) t
point p
geometric segment]
(other) (no abbreviation)

arithmetic

about the genus of the corresponding geometric object, its com-
ponent parts, their interrelations, and the numerical values associ-
ated with these components. The concept of data structure is
discussed in the paper by C. I. Johnson elsewhere in this issue. The
value returned by a primitive geometric function, besides being of
type geometric, can be characterized by its genus. (By analogy, a
number is of type arithmetic but has additional characteristics,
e.g., scale and precision.)

The third class comprises such functions as the length of a
segment.

The fourth class may be regarded as a set of transformations
of geometric objects into geometric objects.

Examples of built-in geometric functions are shown in Table 2.
The abbreviations used for specifying the type and genus of argu-
ments and values are indicated at the end of the table.

NOS. 3 & 4 - 1968 A 3-D LANGUAGE

geometric
assignment
statement

user-defined
geometric
functions

models and
configurations

The geometric assignment statement has the form:
geom-variable [,geom-variable] . . . = geom-expression [,trans];

The geometric variables on the left can be simple or subscripted
variables. The assignment statement produces the following se-
quence of events:

1. The geometric expressions on the right-hand side are evaluated;

2. If the optional clause “ trans” is used, the designated transfor-
mation is evaluated and applied to the value of the expression;
the resulting value is then assigned to the identifier(s) on the
left-hand side;
Otherwise, if a transformation has been selected by the previous
execution of a statement, that transformation is evaluated and
applied to the value of the expression; the resulting value is
then assigned;

. Otherwise, the value of the expression is assigned.

The geometric assignment statement can be executed only if
its right-hand side contains only references to variables which have
already been assigned values, or constants (including variables
and constants appearing as function arguments). In general, the
value of a geometric expression is a data structure, hence it is
possible to change the value of a variable without the explicit
assignment of a new value to it. For example, if the geometric
assignment statement

A =B+ C;

is followed by a statement that changes the value of C, the latter
statement changes the value of A as well. If one wishes to avoid
this, one can use the COPY function and replace the first assign-
ment statement by

A = corY(B 4+ C);

The user can define function procedures of type geometric by using
the normal formalism for procedure definition. Funetions defined
in this way differ from the primitive geometric functions in that
they do not have a genus; in this respect, they resemble pL/1
structures, which can comprise items of heterogeneous character-
istics.

Model building

Since GL is defined as a set of extensions to a higher-level language
(such as PL/1), it is assumed that adequate facilities for the defining,
opening, and closing of files are available in that language. It is
further assumed that a new file organization attribute, GRAPHIC,
can be added to the language. A file with that attribute is hence-
forth called a model.

All the statements to be described in this and the following
sections, except attaching and merging, can only be executed with

COMBA IBM SYST J

respect to a designated model. This designation is done with the
model selection statement

MODEL identifier;

where the identifier is a model name.

The structure of the data in a2 model is deseribed in terms of
configurations. A configuration is intended to represent a grouping
of functionally related objects and can be represented by a tree.
An outer configuration, i.e., one not contained in other configura-
tions, is a model. This is illustrated in Figure 2 where the dots
represent configurations, the uppermost dot represents a model,
and the circles represent components.

The configuration statement has the form:

CONFIGURATION identifier;

The identifier must designate a unique configuration within the
selected model; if necessary, this can be achieved, as in PL/1, by
name qualification. The function of the statement is:

e TIf the identifier is the name of a configuration within the se-
lected model, that configuration is selected.
If not, a new configuration within the model is defined and
named, and selected.

The execution of subsequent drawing and placement statements
has effect with respect to the selected configuration, i.e., any com-
ponents drawn or placed become elements of that configuration.
If no configuration statement is given, the model itself is the
selected configuration.

Figure 2 Configuration tree

NOS. 3 & 4 - 1968 A 3-D LANGUAGE

303

regions

drawing,
placement,
interference
testing

It follows from the above that a configuration does not require
a declaration independent of its selection.

Set is a new type of datum which makes it possible to define and
name arbitrary collections of components within a model. The
attribute SET applies to identifiers of this type.

A set-expression is an expresgion formed by using the operators
4+, *, /, and the parentheses for grouping. Each operand in a set
expression can be a set, a component (interpreted as a set of one
element), or a configuration (interpreted as a set of elements). The
operators, listed in order of decreasing binding strength, have the
following meaning:

/ Relative complementation
* Intersection
+ Union

It is important to note that these operators are interpreted as
operating on sets of elements, not on the elements themselves. For
example, if A and B are overlapping geometric objects, their geo-
metric intersection is not empty; whereas, if A1 and Bl are graphic
components corresponding to A and B, the intersection of the set
consisting of Al and the set consisting of Bl is empty.

The set assignment statement has the form:

set-variable [,set-variable] . . . = set-expression;

The set variable may be simple or subseripted.
The interference set selection statement, which conditions the
executions of subsequent placement statements, has the form:

ISET set-expression;

A region is defined by a geometric expression (which should
normally represent a three-dimensional object).

Region selection, which conditions subsequent drawing and
placement statements, is done with the statements:

WREGION geom-expression [,trans];
IREGION geom-expression [,trans];

(for “working region” and “interference region”). The execution
of a region selection statement is similar to the evaluation of the
right-hand side of a geometric assignment statement: it is condi-
tioned by the currently selected coordinate transformation unless
overruled by the “ trans” clause.

The drawing statements have the following form:

DRAW (variable = geom-expression [,trans]);
REDRAW (variable {,trans}]);
ERASE (variable);

The variable, which is also termed a component name, may be
simple or subscripted, and it need not be declared in a separate
statement. The execution of a DRAW statement involves the follow-
ing steps:

COMBA IBM SYST J

1. The geometric expression is evaluated and the value trans-
formed, as in the case of the geometric assignment statement.

2. The final (transformed) value is tested to determine whether it
lies in the WREGION; if no WREGION has been selected, the
model region (which is implementation defined) is used for the
test. If the test fails, the execution of the statement is inter-
rupted. The on-condition raised by this interrupt is called
BOUNDS (see below).
If the test is passed, the value is assigned to the variable. If
the latter had previously designated a component in the cur-
rently selected configuration, this assignment is an updating of
its value; if not, the variable is entered as a new component
name in the currently selected configuration.

The assignment that takes place in a DRAW statement differs
from the geometric assignment in that subsequent changes in the
value of the expression do not affect the value of the component
(as discussed earlier).

The REDRAW statement is executed as follows:

If the variable does not designate a graphic component in the
currently selected configuration, the statement is invalid.

If the statement is valid, a copy of the component is made and
transformed according to the “jtrans” clause if that clause is
present, otherwise according to the currently selected transfor-
mation.

. The transformed component is tested to determine whether it
lies in the WREGION. If the test fails, a BOUNDS interrupt
occurs and the variable still designates the original component.

. If the test is suceessful, the transformed component is assigned

to the variable, replacing the original one.

The ERASE statement, subject to Condition 1 of the REDRAW
statement, removes the component designated by the wvariable
from the configuration.

It should be clear from this discussion that the drawing state-
ments do not cause a drawing to appear on a console: their purpose
is to create a data structure that represents a drawing. To display
a drawing one must use a display statement.

The placement statements have the same form as the drawing
statements except that the keywords PLACE, REPLACE, and
REMOVE are used. The function of these statements is also analo-
gous to that of the drawing statements, except that the objects
being operated on are physical components.

The PLACE statement is executed as follows:

. As Step 1 in the DRAW statement.

. As Step 2 in the DRAW statement.

. If the WREGION test is passed, the interference test is executed.
This consists of determining whether the final value of the
geometric expression overlaps certain physical components or
portions of them, i.e., whether it occupies space already occu-

NOs. 3 & 4 - 1968 A 3-D LANGUAGE

attaching and
merging

pied. The interference test is done with respect to those parts
of the components of the selected ISET which also lie in the
selected IREGION. If no ISET has been selected, the entire
model is implied. If no TREGION has been selected, the model
region is implied. If the test fails, the execution of the state-
ment is interrupted and the on-condition CLASH is raised.

If the interference test is passed, the last step is like the third
one in the DRAW statement, with “graphic” replaced by “physi-
cal.”

Regarding the REPLACE statement, it is best deseribed by
saying that REPLACE is to REDRAW as PLACE is to DRAW. This
means that the first three steps of its execution are analogous to
those of the REDRAW statement; then the interference test is
executed; then the last step is as in REDRAW.

The REMOVE statement is entirely analogous to ERASE.

As to the on-conditions BOUNDS and CLASH, they are always
enabled and, as in pL/1, the programmer can write appropriate
on-units to be executed if the interrupts occur. If the on-units are
not included, an appropriate standard system action will be de-
fined. It should be noted that, since the DRAW, REDRAW, PLACE,
and REPLACE statements operate on only one component (at a
time), it is easier for the programmer to interpret any interrupts
that may arise than if these statements operated on lists of oper-
ands.

All model building statements specified so far refer to a single
model. The intermodel facilities needed in the language are briefly
described here; a complete specification is not given, as it would
depend on the interface between the language and the operating
system.

Two kinds of facilities are needed:

Attaching a model (as a configuration) to a designated con-
figuration of another model.
Merging two or more models into a new model.

The attaching operation subordinates one model to another;
the merging operation coordinates the several models. With either
operation there should be the option of requesting an interference
test of the type associated with the PLACE statement, and specify-
ing appropriate ON-condition actions.

Display

Ounly a brief outline of the display facilities is presented here. The
DISPLAY statement has the form

DISPLAY data-list [format-list];

where data-list is a list of set-expressions.

The items on the format list specify the manner in which the
corresponding sets of objects are to be displayed. The following
remarks describe the main options that should be available:

COMBA IBM SYST J

Having specified (by means of the data-list) the sets of objects
to be displayed, one may request that only the graphic objects
in those sets be displayed, or only the physical objects, or that
both be displayed but with different renderings (e.g., dotted
lines vs. solid lines).

The further restrietion may be imposed that only those objects
that lie in a specified region be displayed.

There are two main ways of rendering three-dimensional objeets
by means of drawings: cross sections and projections; the latter
being the more widely used method.

To specify a projection, one must give a viewing point and a
projection plane.

Shading may be requested by specifying a light source. The
hidden lines (i.e., those lines that are hidden by the object itself
or by some other object) may be rendered as dotted lines or
suppressed altogether.

Conclusion

This paper has attempted to show why and how a language for
dealing with space problems must focus on the geometric and
structural aspects of those problems. By providing tools for work-
ing at a fairly high level of abstraction, the proposed language
enables the user to state his problems without getting bogged
down in a mass of system- and implementation-dependent details.

REFERENCES

1. P. G. Comba, A Language for Three-Dimensional Geometric Processing-
Written Form, 183M New York Scientific Center Technical Report No.
320-2923, International Business Machines Corporation, New York
Scientific Center, New York, New York (Nov. 1967).

. Three-Dimensional Placement Routing, E20-0119, International Business
Machines Corporation, Data Processing Division, White Plains, New York
(1963).

. C. M. Strauss and S. Poley, “spppp: A three-dimensional piping design
program.”’ To appear in Proceedings of IFIP Congress in Edinburgh (1968).

. P. G. Comba, “A procedure for detecting intersections of three-dimen-
sional objects.” Journal of the Association for Computing Machinery 15, No.
3, 354-366 (July 1968).

. Civil Engineering Coordinate Geometry (coco), 1sm Application Pro-
gram H20-0143, International Business Machines Corporation, Branch
Office.

. Systems Reference Library.

. H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, Massachusetts
(1950).

. W. V. Houston, Principles of Mathematical Physics, 2nd Edition, McGraw-
Hill Book Company, New York, New York (1948).

NOS. 3 & 4 - 1968 A 3-D LANGUAGE

307

