This paper discusses a system called DISPLAYTRAN thatl interpretively
executes FORTRAN statements entered al a display console, allowing
graphics users to perform unanticipated computations and to more
eastly debug graphics application programs.

The relationships among the operating system, the display terminal,
and the computing system are discussed, and the major components of
this system are described. A command language, the FORTRAN IV
subset, and the graphics language provided for users are presenled.
Internal operation of the graphic facility is outlined.

INTERACTIVE GRAPHICS IN DATA PROCESSING
A conversational display capability

by F. W. Gagliano, H. W. Thombs, and R. E. Cornish

Programming implies anticipating all conditions that may arise
in the course of solving a problem. Unfortunately, not all problem
solving lends itself to this tidy approach. In many cases, each suc-
cessive step can only be planned after the succeeding step has been
completed. Thus, effective use of graphics devices for interactive
problem solving requires some means for requesting that a data
processing system perform functions not anticipated at the be-
ginning of the problem-solving process. This fundamental prob-
lem has been attacked in various ways.!:? For example, one system
provides for a library of previously compiled computation modules
that can be called by the display console operator as needed.? How-
ever, that approach assumes that the needed computation modules
exist.

The system discussed here interprets and executes FORTRAN
statements as they are entered from the display console.#*® For
example, if a console operator, after seeing a display of a geometric
figure on the screen, decides that he would like to perform an un-
anticipated computation, he can do so without a separate compila-
tion run. He simply enters FORTRAN statements at the display con-
sole, which are interpreted in real time and then executed.

Interpretive FORTRAN execution also ameliorates the problem
of debugging for graphiecs programmers.® Syntax errors are revealed
as soon as the system attempts to interpret each statement. Also,
errors in logic can be corrected more easily because the console
operator can stop execution at any point he desires. These facilities
are provided for the graphics as well as the computational portions
of application programs.

NOS. 3 & 4 - 1968 CONVERSATIONAL DISPLAY

The system discussed here is called pISPLAYTRAN, which takes
its name by analogy from QUIKTRAN. 1011 Like QUIKTRAN, DISPLAY-
TRAN provides interpretive FORTRAN execution for interactive prob-
lem solving. Many of the capabilities of DISPLAYTRAN are useful for
graphics applications, although the system is not designed ex-
clusively for graphics jobs. Graphics and other jobs can be entered
directly from the console, and batch processing can be done con-
currently in a background partition of main storage. The system
provides time slicing for jobs done at the display console. General-
purpose graphics subroutines are supplied for FORTRAN program-
mers,!? % and can be called from a program being constructed at
the display console.

DISPLAYTRAN is one result of studies undertaken jointly by the
International Business Machines Corporation and the U. S. Naval

Weapons Laboratory.
Figure 1 DISPLAYTRAN computing The first part of the following discussion deals with the overall
system relationships among the display terminal, the computer configura-
tion, and the operating system. The remainder of the paper em-
phasizes the languages provided, which include a command lan-
guage, the FORTRAN 1v subset, and the graphics language. Also, the
manner in which the console operator can call and execute pre-

MULTIPLEXOR SELECTOR Viously compiled subprograms is discussed brieﬂy.
CHANNEL CHANNEL

SYSTEM/360
MODEL 40G

System design

CONTROL DISPLAYTRAN is executed as a single task under the 1BM sYSTEM/360
Operating System (0s/360) capable of multiprogramming with a
fixed number of tasks (mrr). It requires a basic main storage
partition of 86K bytes, which may be expanded or reduced within
pp— - limits by overlays of a number of system subroutines. Wherever
PRINTER PRINTER possible, advantage is taken of the facilities of the operating system,
REMOTE USER | | REMOTE USER such as interrupt handling, input/output, and system macroinstruc-
TERMINAL TERMINAL N .
tions. Although at the time that pisPLAYTRAN was developed, many
2250 250 channel programs had to be written especially for the 1BmM 2250 display
CONGOLE CONGOLE console using the EXCP macroinstruction, available data manage-
ment access methods were used, such as the basic sequential access
method (Bsam) and the basic partitioned access method (BrPAM). !4
One of the primary advantages of DISPLAYTRAN is its ability to
provide the user with graphic subroutines that ean be used to plot
graphs or draw figures under FORTRAN program control. DISPLAY-
TRAN was developed for an 1BM sysTEM/360 Model 40G (128K bytes
of main storage) and with remote terminals, as shown schematically
in Figure 1. Each terminal consists of an 1BM 1053 printer and 2250
display console. The 2250 has a standard typewriter keyboard
through which statements are entered, a display screen that can
display up to 52 lines of 74 characters each, and a function keyboard
with 32 buttons, each of which signals a specific DISPLAYTRAN sys-
tem command. The 1053 printer is used for hard-copy output in list-
ing and/or debugging applications.
Three major program components had to be developed to pro-

GAGLIANO, THOMBS, AND CORNISH IBM SYST J

vide the facilities required for multiterminal conversational opera- system
tions: supervisor, translator, and interpreter. Figure 2 shows the components
relationships among the programming components of DISPLAYTRAN.

The supervisor primarily serves as an interface between the
DISPLAYTRAN components and the operating system. All 1/0, sys-

tem, or problem programs are scheduled through the supervisor to

the operating system, and all interrupts are posted back to the
supervisor. Thus, terminal status and terminal switching are cen-

trally controlled, and other components of DISPLAYTRAN are

relieved from handling the multi-user aspects of the system. All

system commands to be described here are acted upon by the super-

visor. In the Naval Weapons Laboratory two-terminal system,

switching of interpretive execution from one terminal to the other is

under supervisor control and is based on 1/0 requests and a time in-

crement. More complex algorithms were investigated, but with the
two-terminal system, the simpler approach is adequate.

Associated with each terminal is a buffer called a terminal record
that contains the terminal FORTRAN program. When a statement DISPLAYTRAN program-
is entered into the system, the supervisor calls the translator rou- ming system
tine to decode the symbolic statement into a string of operands and TERMINAL
operators (i.e., using Polish notation) and stores the results in the SThEAM
terminal record. Because this area is fixed in size, an overflow causes
a diagnostic message to be displayed on the display screen. The
programmer may then divide the program into smaller subroutines
because the system operates on one subroutine at a time.

Statements continue to be accumulated until a system com-
mand (or overflow) defines some alternate action, such as START. ispLATIEAN TERMINAL
A START command causes the supervisor to give control to the RECORD
DISPLAYTRAN interpreter, which analyzes the Polish string, dis-
tinguishing between operands and operations, and executes the
specified operations.

Execution of FORTRAN statements continues in this manner
until an END or system command terminates the program. Certain
types of statements are handled a little differently by the inter- TERMINA
preter. For example, a FORTRAN CALL results in the replacement
of the calling subroutine by the terminal record of the ealled sub-
routine. In the case of calling a binary subroutine, which does not
have a terminal record, the interpreter fetches the called routine
and gives it control. Because previously compiled routines have re-
stricted 1/0 and are assumed to be checked out, time slicing is sus-
pended while they are executing. Standard library routines, such
as sine and cosine, fall into this class. Input/output statements are
another type that the interpreter handles differently. Defined data
are transferred between main storage and the 2250 by the interpreter
through a call to the supervisor, which initiates the 1/0 operation.

INTERPRETER TRANSLATOR

User languages

The previous discussion suggests some system aspects of the
DISPLAYTRAN command language, the FORTRAN 1v subset, the

NOS. 3 & 4 + 1968 CONVERSATIONAL DISPLAY

Table 1 DISPLAYTRAN command language

Command class

Command

Description

Terminal

Program
control

Execution
control

Output
control

Program
modification

Debug aids

SIGN ON

SIGN OFF

PROGRAM

RESUME PROGRAM

SAVE

LOAD

PURGE

EXECUTE

STOP

CONTINUE

OUTPUT OPTIONS

INCREMENT

MODIFY

END MODIFY

RENUMBER

SNAPSHOT DUMP

END SNAPSHOT DUMP
BRANCH TRACE

END BRANCH TRACE
GUARD

END GUARD

284 GAGLIANO, THOMBS, AND CORNISH

Activate system via user name
and number (identification)
Deactivate system

Begin constructing current pro-
gram; destroy other program
Continue constructing current
program following use of

other commands

Enter user identification and
copy current program on disk
Retrieve program from disk via
user identification

Delete program(s) on disk via
user identification

Begin executing program at
specified statement

Halt program execution;
indicate last statement
executed

Resume execution after
execution error, or GUARD,
PAUSE, STOP commands
Cancel effects and results of
executing a program

Cancel effects of all previous
commands of the ‘“debug”
class

Specify output for “debug’” and
“display’’ command classes
Specify increment for generat-
ing line numbers differing
from system standard

Insert, replace, or delete
program statement or
statements (MODIFY
sequence)

Terminate a MODIFY sequence
and return to RESUME
PROGRAM status

Renumber all statements in
program

Print leftmost variable of
arithmetic agsignment state-
ment whenever it changes
Cancel SNAPSHOT DUMP
Print origin and destination
(line numbers) of every
transfer

Cancel BRANCH TRACE

Do not execute guarded state-
ments—to procede, issue
CONTINUE command
Cancel GUARD

IBM SYST J

Table 1 DISPLAYTRAN command language (cont’d)

Command class Command Description

SUBPROGRAM TRACE Print notice when program calls
library subroutine, e.g. sine
END SUBPROGRAM TRACE Cancel SUBPROGRAM TRACE

LIST List specified area of program

DUMP List variables with current
values in specified area of
program

DUMP CHANGES List variable and value changes
since beginning on last DUMP

UNUSED List unused program areas and
variables not “set”’

Miscellaneous CALCULATE Enter one arithmetic assign-
ment statement, execute, and
print results (do not save state-
ment or results)

Same as CALCULATE except
save results

graphic language, and the compiled routine facility. We now de-
scribe briefly how one uses the languages to build and debug pro-
grams and to produce displays. Capabilities and restrictions on
building and executing binary subprograms are also briefly dis-
cussed.

The pISPLAYTRAN command language, listed in Table 1, directs
the overall operation of the system. At the present time, there are
thirty-one command words, shown in the table grouped into eight
functional classes. For purposes of discussion, we shall simply di-
vide the commands into two major groups: system commands and
debugging aids.

All commands are entered via the 2250 function keyboard,
checked at the time of entry, and the console operator is notified
of an incorrect command or command sequence. When the console
operator issues a command, it appears on the screen for visual in-
spection.

In general, system commands are procedural in effect, per-
forming such functions as identifying the console operator to the
system at the beginning of his session (SIGN ON) and the com-
plementary function of terminating his session (SIGN OFF). The
PROGRAM command enables the console operator to construct his
FORTRAN program, and the LOAD command brings in a previously
entered program. Other such commands allow programs to be
saved or destroyed.

As with commands, FORTRAN source programs are also entered
into the system on a statement-by-statement basis. A number of
system commands are interspersed with the FORTRAN statements.
For example, the command EXECUTE causes FORTRAN statements
to be executed. Commands are also needed to resume program

NOS. 3 & 4 - 1968 CONVERSATIONAL DISPLAY

command
language

Table 2 DISPLAYTRAN FORTRAN IV

Ezxecutable or
Statement Normal sequencing nonexecutable Order in source program

Anywhere except preceding specification
statement

Anywhere except preceding specification
statement

Anywhere except preceding specification
statement

Anywhere except preceding specification
statement

Must precede all executable and DATA
statements

Must precede all executable or DATA
statements

Anywhere, but usually as last statement
in DO routine

Must precede all executable statements
Must precede all executable or DATA
statements

Anywhere except preceding specification
statement

Must precede all executable or DATA
statements

Must be last program statement

a=2»b Next statement

SIS

ASSIGN n to 7 Next statement

=

BACKSPACE 7 Next statement
CALL First statement of a called
program

COMMON Next statement

COMPLEX Next statement

2 =z 2Z =

CONTINUE Next statement

DATA Next statement
DIMENSION Next statement

DO Normal DO sequencing,
then next statement
DOUBLE PRECISION Next statement

END Terminates compilation
program

END FILE Next statement Anywhere except preceding specification

statements

Must precede all executable and DATA

statements

Must precede first appearance of subpro-

gram name in executable statements

Anywhere except preceding specification

statements

Only as first statement of FUNCTION

subprogram

Anywhere except preceding specification

statements

Anywhere except preceding specification

statements

Anywhere except preceding specification

statements

Anywhere except preceding specification

statements

Anywhere except preceding specification

statements

Must precede all executable or DATA

statements

Must precede all executable or DATA

statements

Where temporary halt is desired

Anywhere except preceding specification

statements

Anywhere except preceding specification

statements

Anywhere except preceding specification

statements

EQUIVALENCE Next statement
EXTERNAL Next statement
FORMAT Next statement
FUNCTION Next statement
GO TOn Statement n

GO TO 7, (N1, Nay . . Statement last assigned to ¢

H 52 =5 2 2 Z Z ®H 2 2 = 27

GO TO (n1, Ny, . . Statement n;

IF (@) ny, N2, ng Statement ni, ns, ng if
a<0,a=00ra>0

IF (I) s Statement s if ¢ is true; next
statement if ¢ is false

INTEGER Next statement

Z 2z = =

LOGICAL Next statement

PAUSE Next statement
PRINT Next statement

PUNCH Next statement

H B =HEH

READ Next statement

286 GAGLIANO, THOMBS, AND CORNISH IBM SYST J

Table 2 DISPLAYTRAN FORTRAN [V {cont’d)

Ezxecutable or
Statement Normal sequencing nonexecutable Order in source program

REAL Next statement N Must precede all executable or DATA
statements
RETURN First statement or part Must be placed in subprogram where
statement following return to calling program is desired
reference to subprogram
REWIND Next statement Anywhere except preceding specification
statements
STOP Terminates execution Where program termination is desired
SUBROUTINE Next statement Only as first statement of SUBROUTINE
subprogram
WRITE Next statement Anywhere except preceding specification
statements

construction after use of other commands and to stop or continue
program execution.

Mouch of the benefit of a conversational system derives from the
fact that it permits on-line debugging; therefore, many pispLAY-
TRAN commands are used as debugging aids. Notice how many of
the commands in Table 1 relate to creating program or variable
listings and traces. Many debugging commands are in the class of
debugging aids, while others are scattered among the other classes.
In general, debugging aids enable the user to monitor the execution
of his program and keep informed of changes in values of variables.
The output device for debugging commands may be specified as
either the 2250 display screen or the 1053 printer; if neither is speci-
fied, the 2250 is selected by default. An indication that a debugging
aid has been initiated or cancelled is always recorded on the printer.

FORTRAN IV Is the second major language that the DISPLAYTRAN ~ FORTRAN IV
user applies, and it consists of the statements, expressions, and
operations used to write source programs. Table 2 gives a complete
listing of FORTRAN 1V source program statements acceptable to Dis-
PLAYTRAN, their sequence in interpretive execution, and their order
when used in a source program.

As previously mentioned, the DISPLAYTRAN system does not
compile FORTRAN source programs into machine language as is con-
ventionally done on batch processing systems. Rather, a FORTRAN
source program is entered into the system, one statement at a time,
through the 2250 keyboard. The system translates each statement
to a Polish string and stores the string for later execution. p1spLAY-
TRAN checks each statement for syntax errors, and immediately
notifies the user that the statement is in the system and if any
errors were detected.

FORTRAN input/output statements are limited to the 2250.
Initiated by a START command during the execution phase, the
system interprets the Polish strings, and the resulting computation
or debugging information is displayed or printed.

NOS. 3 & 4 - 1968 CONVERSATIONAL DISPLAY

graphics
language

288

Several advantages are gained by using the interpretive method:

Multiple console operators are more easily serviced concurrently
because the system has complete control.

More extensive debugging is provided.

The system immediately responds to syntax errors on a state-
ment-by-statement basis.

A console operator can interrupt a program at any execution
point, perform some function, then continue execution.

Storage requirements for Polish strings are less than storage
requirements for machine language programs. The main disad-
vantage of the interpretive method of program execution as com-
pared to the compiler approach is that execution time is increased
by at least an order of magnitude.

The third language available to the DISPLAYTRAN user is the
graphics language, which consists of FORTRAN CALL statements
that permit access to a set of subroutines. These subroutines permit
the FORTRAN programmer to program the 2250 display unit at the
FORTRAN level. The subroutines provided with DISPLAYTRAN are
similar to those in the graphies subroutine package described by
Rully in this issue, and the organization of DISPLAYTRAN is such
that that package could be substituted for the subroutines pro-
vided. One of the major differences is the naming capability pro-
vided with the subroutines.

With appropriate programming, one can perform such tasks as
displaying, deleting, expanding, contracting, or rotating images.
Some of the capabilities of the graphics language are summarized
here.

Figure 3 Graphics storage areas

COMMUNICATIONS REGION

BUFFER AREA 2250 BUFFER

ORDERS \,\/\
CHANNEL PROGRAM
AREA

ORDERS

ORDERS

GAGLIANO, THOMBS, AND CORNISH IBM SYST J

Figure 4 Graphics naming levels

LEVEL ONE (Xl, Xz\' L
1

LEVEL TWO T
1

LEVEL THREE
1

LEVEL FOUR
1 - e

256

Draw coordinates—rectangular, polar, logarithmic
Display points, symbols, or vectors

Label coordinates and images

Count numbers of points (or vector ends)

Display text

Delay computation while waiting for interrupt

Identify portion of displayed image touched by light pen
Tag image 0 or 1 and retrieve tag

Enter alphanumeric data from keyboard

Read contents of any portion of the 2250 buffer into main
storage

The graphics routines make use of four areas in main storage: a
buffer area, a channel program area, a communications region, and
an area called map. The communications region is for storage
of such information as the names of graphic images or grid limits
that may be later needed by other routines. An array is provided by
the user for each of the other three areas.

In order to display an image on the 2250, the necessary 2250
orders must be constructed by calls to graphics subroutines, which
place the orders and their associated data bytes in the buffer area.
At the same time, the name to be associated with the image gen-
erated by these orders and the number of bytes occupied by the
orders is placed in the map, as shown in Figure 3. A pointer to the
orders in the buffer area is also placed in map. The console operator
supplies a name to a graphic image by calling a subprogram with
the name as an argument, and then calling the graphies subpro-
grams that generate graphies orders. There is a capability to delete
names and associated images from the system.

The graphics system provides four levels of naming with 256
unique names at each level, as shown in Figure 4. Thus, each image
can be identified by referring to its name. Further, a group of
images can be identified by referring to the appropriate level in the
tree to which the sublevels are attached. Likewise, distinet portions
of any image may be broken into components by assigning sublevel
names.

NOS. 3 & 4 - 1968 CONVERSATIONAL DISPLAY

compiled
subprograms

When the user is ready to actually have the image displayed,
its name is located in map, and the information there is used in con-
structing a channel program in the channel program area, causing
the orders to be transferred from the buffer area to the 2250 buffer
and the image to be displayed. The 2250 buffer address to which the
orders will be transferred is also placed in the map.

If a console operator detects an image with the light pen, which
may be one of many being displayed simultaneously, the name of
the image detected is passed back to the FORTRAN program via
association between the 2250 buffer address at the time of interrup-
tion and the map entries.

Although not a language, one other programming facility availa-
ble to the DISPLAYTRAN user is the ability to call and execute pre-
viously compiled subprograms from his FORTRAN interpretive rou-
tines. These subprograms must be added to the pisPLAYTRAN-
FORTRAN library via a special update program and must adhere to
several restrictions:

® Size must not exceed the terminal buffer space.

® (Calls are from and returns are to a DISPLAYTRAN program.
Returns to the DISPLAYTRAN program are made in accordance
with specified programming eonventions.
Input/output is not permitted.
Data must be referenced in FORTRAN CALL statements.
The subprogram must be debugged.
Time slicing is not possible.

This facility allows a programmer to mix previously compiled
subprograms and interpretive routines as one program. Of course,
once a symbolie program is checked out, a programmer can compile
that program by a FORTRAN compiler and execute it as a background
job.

Summary comment

Begun as an exploratory development in 1964, DISPLAYTRAN has
proved itself in operation, and it is econtinuing to be improved es-
pecially in the areas of performance and capability. Being added is
the preloading of symbolic programs from a card reader.

For the Naval Weapons Laboratory, which is mainly FORTRAN
1v-oriented, the system provides means for efficient FORTRAN pro-
gram writing, debugging, and maintaining. Graphic displays aid
programmers, engineers, and scientists according to their needs.
DISPLAYTRAN is a nondedicated system and is compatible with
08/360.

It is possible to modify pISPLAYTRAN to become a production
tool instead of an experimental facility. Additional capabilities
could be incorporated as well as means for supporting other types
of terminals that might be needed in a time-sharing environment.
The fact that DISPLAYTRAN is capable of producing useful work
makes it desirable to further exploit this system.

GAGLIANO, THOMBS, AND CORNISH IBM SYST J

CITED REFERENCES

1. E. L. Jacks, “A laboratory for the study of graphical man-machine com-
munication,” AFIPS Conference Proceedings, Fall Joint Computer Con-
ference 26, Part I, 343-350 (1964).

. 8. H. Chasen, ‘Man-computer graphics,” Lockheed Quarterly, Lockheed
Corporation, Marietta, Georgia (Summer 1965).

. The Program Language ANalyzer (pPLaAN) with PrLaN Graphics Support
(pas) discussed by Chen and Dougherty in this issue.

. A. D. Parker, “Graphical communications in an on-line system,” On-Line
Computing Symposium Proceedings, vcLa and Informatics Corporation
(February 1965).

. J. D. Joyce and M. J. Cianciolo, “Reactive displays—improving man-
machine graphical communications,” AFIPS Conference Proceedings, Fall
Joint Computer Conference 31, 713-721 (1967).

. A, Ruyle, J. W. Brackett, and R. Kaplow, ‘“The status of systems for on-
line mathematical assistance,” Proceedings of the 22nd National Conference
of the Association for Computing M achinery P-67, 151-167 (1967).

. R. A. Morrison, “Graphic language translation with a language-indepen-
dent processor,” AFIPS Conference Proceedings, Fall Joint Computer Con-
Jerence 31, 723-731 (1967).

. R. V. Smith, The Electronic Coding Pad, IBM Thomas J. Watson Research
Report NC-731, Yorktown, New York (1967).

. T. G. Stockham, Jr., “Some method of graphical debugging,” Proceedings
of the IBM Scientific Computing Symposium on Man-Mackine Communica-
tion, 57-72 (1965).

. T. M. Dunn and J. H. Morrissey, “Remote computing, an experimental
system—external specifications,” AFIPS Conference Proceedings, Spring
Joint Computer Conference 25, 413-422 (1964).

. J. M. Keller, E. C. Strum, and G. H. Yang, ““‘Remote computing, an experi-
mental system—internal design,” AFIPS Conference Proceedings, Spring
Joint Computer Conference 25, 425443 (1964).

. Graphics Subroutine Package (asp) discussed by Rully in this issue.

. A, Hurwitz, J. P. Citren, and J. B. Yeaton, “grar: Graphic additions to
FORTRAN,”” AFIPS Conference Proceedings, Spring Joint Computer Con-
ference 30, 553-557 (1967).

. W. A. Clark, “The functional structure of 0s/360, Part IIT, Data manage-
ment,” IBM Systems Journal 5, No. 1, 30-51 (1966).

NOS. 3 & 4 -+ 1968 CONVERSATIONAL DISPLAY 291

