A graphic job processor enables nonprogrammers to introduce applica-
tion programs conversationally from a display console. Although not
restricted to graphics applications, the processor makes the same dis-
play console available for both job definition and inferaction with a
graphics application program.

This paper discusses some of the factors considered in designing dis-
plays to elicit information from the user. The structure of the processor
15 then described, including its interface to the operating system under
which 1t functions. It also discusses communication among the system
operator, the console user, and the application programmer.

INTERACTIVE GRAPHICS IN DATA PROCESSING
Conversational job control
by S. H. Brown

A graphic job processor has been designed to help a nonprogrammer
display-console user to define and initiate computing system jobs
in a eonversational manner.! Although not restricted to graphics
jobs, the processor is particularly useful to the engineer or scientist
at the display console because:

e Jt automates many job control activities, speeding the job
control process.
It guides the nonprogrammer user, preventing some errors and
minimizing the effects of others.
It circumvents some job control activities requiring special
knowledge and training.
It enables the user to initiate an application program at the same
display console that will be used to interact with the executing
application program.
It permits the user to run both graphics and nongraphics
application programs on a demand basis at a time of his choos-
ing.

Job control includes those activities associated with desecribing
the job, defining its processing requirements, and getting it proc-
essed by the computer. (These operations are tabulated in more
detail later in the paper.)

Job control activities have grown in complexity with newer
data processing systems. Such systems make more efficient use of
data processing equipment and reduce maintenance activities asso-

NOS. 3 & 4 - 1968 CONVERSATIONAL JOB CONTROL

272

ciated with application programs. However, the graphics user
cannot enter his job in an interactive way.

Using the graphic job processor, a nonprogrammer user can
define jobs for computing systems supported by sysTEM/360 Op-
erating Systems capable of multiprogramming.?-®* Throughout this
paper, the emphasis is on foreground jobs, which we generally as-
sume to be interactive, real-time applications run at higher priori-
ties. The processor also accepts background jobs, which are usually
run at lower priority in batch mode.

One version of the processor permits job control over tele-
communications lines and is intended for use with a small, re-
motely located satellite computer. Throughout this paper, we con-
cern ourselves only with the graphie job processor intended for local
use. It should be noted, however, that the so-called local graphics
terminal is seldom in the same room with the central processing unit
and may not even be in the same building.

We first consider the graphic job processor from the point of
view of the user. Then we discuss some of the factors considered
in its functional relationship with the operating system. The final
topic in the paper is communication among the nonprogrammer
user, the system operator, and the application programmer.

Console user interface

The graphic job processor uses English phrases to elicit job con-
trol facts meaningful to the operating system from the user at the
display console, guiding him where practicable. From this infor-
mation, the processor usually constructs standard job control
statements, which are read and interpreted by the operating sys-
tem exactly as if they were entered in a job stream.

The activities required for job control are outlined in Table 1,
which compares how the user initiates job control functions econ-
ventionally and how he does it using the graphic job processor.
The operations required in using the graphic job processor are per-
formed in the order shown except for LOGON, which is the first
graphic job processor operation.

Users can perform operations other than those that result in
job control statements. For example, selection of ENTER DATA
permits the introduction of pure data. Users can also abort and
restart a job definition.

The RECALL function allows the user to bring back previously
entered information for re-use. Messages to the operator and data
previously entered at the display console may be accepted by the
user unseen, omitted, or redisplayed for review and possible modifi-
cation. Redisplayed information is shown exactly as last seen. The
present implementation represents a base from which it is possible
to allow preservation of an entire terminal session for future
RECALL. Even the writing of messages to the operator, such as re-
quests to mount tape volumes, can be done automatically as part
of the RECALL function.

BROWN IBM SYST J

% Table 1 Graphic job processor capabilities

n

o Job control activity Conventional method Graphic job processor method

&

- Define job

2 specify program or cataloged procedure programmer codes JCL JOB and EXEC statements user completes SPECIFY JOB STEP frame
2 describe data and devices programmer codes JCL DD statement user completes DESCRIBE DATA frame

enter data or control information
negate job definition information
amend job definition

communicate with system operator

Get job into computer
assemble input for run
deliver job to computer room
sign in job and get authorization
schedule job
place job in job stream

Run job
monitor during execution
abort execution

Return results to user
obtain final status and diagnose run
identify and collect output
sign out job
return input to user
deliver output to user

TOYILNOD 40l TVNOILVSHHANOD

programmer codes as required

programmer discards statement

programmer recodes or keypunches as required
programmer writes on job request form

programmer collates cards after keypunching
programmer delivers or uses mail service
control clerk logs in job request form

control clerk or job coordinator determines
system operator inserts in card reader

user present if desired
system operator decides

programmer receives with output and analyzes
system operator gathers output listings

control clerk logs out job request form
programmer fetches or receives by mail
programmer fetches or receives by mail

user completes ENTER DATA frame
user invokes CANCEL JOB

user invokes RECALL

user completes WRITE MESSAGE frame

none

none

user completes LOGON frame

user determines for foreground job
user invokes BEGIN JOB

user works with display terminal output
user decides

user sees immediate display of messages
unchanged

user completes LOGOFF frame

none

unchanged

€Le

limiting
specifications

display
frames

Figure 1 Frame used primarily for
commands and to select
operations

SELECT:

BEGIN PROCEDURE _
_ SPECIFY JOB STEP
_ ENTER DATA

_ WRITE MESSAGE
_ LOG OFF

_ RECALL

*2*HISTORY OF OPERATIONS®**
LOGON. JQMN DOE
2 JOB STEP LENS DESN
3 UESCRIBE LENS SAVE
BEGIN J2€00004

Figure 2 Completed frame used
to supply parameters
for a selected operation

SPECIFY JOB STEP:

PROCEDURE
NAME | LENSDESN — BROCEDURE

X PROGRAM
DISPLAY UNIT REFERENCE DEVICE | _

OPTIONAL SPECIFICATIONS
LIBRARY NAME _
PARAMETERS _

_ PROCESS IN BACKGROUND
OTHER _

CANCEL

A basic philosophy was followed in the design of a graphic job
processor that would provide these functions in an interactive,
easy-to-use manner—that of seeking only essential information.
The graphic job processor was designed so that user identification
and the name of a cataloged proceduret is the only information
always required. However, processing most jobs requires additional
information peculiar to that job. In the operating system, cata-
loged procedures are often overridden with specific information,
such as account numbers, input data characteristics, output data
disposition, changed references to terminal devices and data sets,
priorities, and many more.

The graphic job processor reduces this extensive array of
choices for the user. Default conditions are supplied in place of some
choices. Also, making a given choice often eliminates the need for
subsequent choices.

Job control information is elicited from the user by a sequence
of display images called frames, which we define as a formatted
presentation of information with allowance for optional responses
by the user. When a frame is first displayed, it is comparable to an
uncompleted application blank, as shown in Figures 1 and 2.

In the graphic job processor, a frame may assume variations
(partial overlays) as the user’s intentions become more apparent.
For example, in the basic frame in which the user can DESCRIBE
DATA, we assume that the data set to be used has been cataloged
and that the system has sufficient information to gain access to
it. However, if the user indicates that this is not the case, addi-
tional information, such as unit designation or number of records,
is requested by means of an overlay of part of the frame. The man-
ner in which overlays are manipulated may be changed by system
programmers based on needs at a given installation.

Although display screens have a high capacity for rapid textual
output, human factors cannot be ignored. In the graphic job
processor, we avoided overwhelming the user with large volumes
of text. The larger character size available with the character gen-
erator of the 1BM 2250 display console was used as much as possible,
and an effort was made to keep frames uncluttered. Yet, since the
display sereen allows a purposeful arrangement of a sizeable amount
of text, restrictions on the amount of text were not as stringent as
they would have been, for example, on a typewriter-like terminal.

Experience with a previous display terminal system indicates
that it is convenient to allow the user to supply as much informa-
tion as possible in a given frame. For example, rather than request
the user’s name first and then his account number, it is preferable
to request both items of information in the same LOGON frame.

The graphic display screen offers several methods for directing
the attention of the user to a particular part of the display. In
the graphic job processor, underlining is presently used to signify
default options, which are provided automatically if the user
makes no choice. Also, parts of the image are intensified to call
attention to incorrect entries or possible errors. Blinking could

BROWN IBM SYST J

have been substituted for intensification. If color were available,
errors could be indicated in red.

Data for the generation of frames is stored in separate program
modules to permit changes to be made easily. For example, the
English words and phrases used in the graphic job processor can
be replaced by other languages, entry requests can be added or
deleted, and frame formats can be modified to suit the particular
installation.

Operating system interface

Many of the major decisions about the graphic job processor de-
sign involved its relationship to the operating system. Decisions
related to such factors as the structure of the graphic job processor
for best usage of system resources. Also considered was the question
of which existing operating system facilities should be used by the
processor and which should be duplicated in the processor.

At the beginning of the design process, we had to decide whether
the graphic job processor should retain system resources continu-
ously, or whether it should be brought into a region or partition as
needed. If the graphie job processor were always present, it could
always coordinate information, handle attention signals, and re-
ceive messages. There would be no interval during changeover
from one program to another when the graphie job processor was
not available. However, system resources, including main storage,
allocated to the job processor would not be available to the user
or to other tasks being executed in the system. And it is a require-
ment that one system resource, the display unit, be made available
to the user.

The actual graphic job processor design is a compromise: the
communication program, execution of which is treated as a sep-
arate task, remains in main storage throughout conversational job
control operations; the terminal program, a copy of which supports
each display console directly, is brought into main storage as
needed.

The communication program, which requires less than 10K
bytes of main storage, is initiated as a system task by an operator
command before display console operations begin. The communica-
tion program

® Causes loading and initializing of the terminal program when
the user is ready to define and initiate his job.
Starts the user’s job.
Terminates the terminal program or the user’s job.
Communicates with the system operator, so that he can change
operating parameters and can activate and de-activate ter-
minals according to operating needs.
Stores status information essential to the continuity of terminal
program support for each display terminal between application
program executions.

NOS. 3 & 4 - 1968 CONVERSATIONAL JOB CONTROL

communication
program

terminat
program

system
operation

A copy of the terminal program is brought into main storage by
the communication program as it is needed to define a job at a
particular 2250. The 2250 at which the user sits is allocated to the
terminal program (no 2250 is ever allocated to the communication
program). The terminal program

& Presents the frames to the user and accepts his responses.

& Checks for some types of errors as the user defines his job.

& Produces job control statements and submits them to the
operating system.

The terminal program operates in a 60K-byte region or parti-
tion, which is large enough to also contain the 44K-byte interpreter
portion of the operating system. (The interpreter interprets the
job control language and places the job in a queue to be executed.)
When a job has been given to the system, the main storage space
allocated to the terminal program is freed for subsequent re-alloca-
tion to the application program or for other uses. This approach
maximizes the main storage available to the application program,
since no part of the terminal program remains in the region or
partition.

The application program operates independently of both the
terminal program and the communication program.

Some of the remaining concepts of the graphic job processor can
be better understood within the context of overall operation.

At the beginning of the terminal day, the system operator
starts the communication program as a system task. At this time,
he can amend information that was originally defined during system
generation, such as the priority of the graphie job processor or
background jobs.

The system operator next supplies to the system the channel
address of all 2250 display consoles to be used for job control opera-
tions, distinguishing them from 2250 display consoles that are to be
used as conventional input/output devices. From this point on, if
an attention signal originates from any of the designated display
consoles, the communication program causes the terminal program
for that display console to be loaded into main storage and its
execution to be started. It does this by giving a START command
internally.

Note that the LOGON function is invoked by an initial (i.e., new
or out-of-context) attention signal from any display console pre-
viously designated as an eligible terminal. On the 2250, this signal
can be generated by a program function key or by an END or
CANCEL key.

The terminal program presents the frames to the user, through
which he defines the processing requirements for his foreground job.
When the user selects BEGIN JOB, the interpreter portion of the
operating system is brought into main storage to accept the job
control statements that have been constructed. When interpreter
processing is completed, execution of the terminal program is
terminated, freeing all system resources that have been allocated

BROWN IBM SYST J

to it, including the 2250 display console. During its termination
processing, the terminal program notifies the communication pro-
gram of its pending termination. The user’s job can then be ini-
tiated. The 2250 freed by the terminal program is allocated to the
user’s application program whether it is required or not.

When execution of the application program is terminated, the
termination routines in the operating system record this fact in
the communication program. The communication program re-
starts the terminal program for the particular graphic console. The
user may then define another job or log off.

Although the graphic job processor is designed to provide con-
trol of a foreground job, background jobs can be defined and en-
tered into the job queue. A background job is any job that does
not use the foreground resources during its execution. Both fore-
ground and background jobs may use any additional 2250 display
devices not currently designated for job control. Furthermore, a
foreground job is not required to use the 2250 display device at
which it was defined, even though the device is reserved for it. For
example, ordinary assemblies may be run in the foreground. Back-
ground jobs defined in the foreground are abandoned to the sys-
tem, and the user is not informed when a background job is started
or when it has been completed, since it is very likely that he may
not be available to receive the information. If he were available, he
probably would run it as a foreground job.

During design of the graphic job processor, a question arose
as to whether the operating system should schedule execution of
the user’s application program in the normal way, making use of
the resource allocation facilities of the operating system, or whether
the graphic job processor should load and transfer control to the
application program. Since the operating system does not permit
the definition or allocation of a data set as needed during execution,
loading the application program into main storage would require
pre-allocation of all required data sets and devices. Because it was
not considered possible to predict these requirements, this ap-
proach was not taken. Depending on the multiprogramming option
used, the same problem may occur to a lesser extent with main
storage.

In scheduling jobs, the interpreter of the operating system
obtains information from the job control statements and stores it
in a group of control blocks that can be referred to by the operat-
ing system as needed during processing of the job. In designing
the graphic job processor, consideration was given to having the
processor fill in the needed data in these control blocks directly,
rather than constructing job control statements. There are several
advantages to having the graphic job processor produce job control
statements as input to the operating system. For example, the
graphie job processor can produce a listing of the job control state-
ments it generates. Thus, checking this language, familiar to many
operating system users, would be easier than checking storage
dumps of control block information. Moreover, some of the rather

NOS. 3 & 4 + 1968 CONVERSATIONAL JOB CONTROL

scheduling
applications

other
considerations

Table 2 Distribution of messages to system operator

Category Number of messages

Internal program error 2
Normal status conditions

System operator errors

5*
3
3
9

Abnormal conditions due to configuration or malpractice

* Expected only as a result of installation modifications

Table 3 Messages to console user

Category Number of messages

Advisory or status 3
(to inform or reassure user)

LOGON or job definition 48
(produced by either graphic job processor or user

accounting routine to report conditions that usually

must be corrected before user can proceed)

Explanations of why job could not be started 162*
(developed from selected system scheduler messages)

Explanations of why job was terminated 193*
(developed from system completion codes)

* Number depends on output of operating system as well as disposition or
attribute codes in terminal program tables

complex functions of the interpreter would have to be duplicated,
such as scanning and overriding of cataloged procedures and han-
dling of errors, incurring additional overhead for the user.

After deciding to use the interpreter, it became necessary to
decide on a mechanism for providing it with the job control state-
ments produced by the graphie job processor. The statements could
be written out onto a disk unit and read in again by the interpreter.
However, this approach would reduce system performance when a
large number of display consoles are active. Fortunately, the design
of the operating system permits the graphic job processor to use the
interpreter function directly, eliminating any intermediate steps.

The graphie job processor as presently implemented waits until
the user selects BEGIN JOB before calling the interpreter. This fune-
tion, if done earlier, could overlap the user’s “think” time, but that
would have several disadvantages. Job control statements already
released to the interpreter could not be altered, and information
resulting in requests to override cataloged procedures would have
to be provided in the correct order. In addition, bringing the in-
terpreter into main storage at this time could tax storage space to
an extent that might require use of a smaller but slower version of
the interpreter or a larger partition or region for the terminal pro-
gram and interpreter.

BROWN IBM SYST J

An approach called “‘back-to-back” jobs was considered to
minimize the time required to reschedule the terminal program
after the user application program has been terminated. Two jobs
would be scheduled at the same time, the user-defined job first,
followed by the terminal program. The difficulty here is that if the
terminal program were scheduled as a normal job, it would not be
executed with the privileges of a system task.

Since the graphic job processor provides terminal services to
assist display console users, it uses a measurable amount of com-
puter resources. The execution times and the main storage required
for initiation, execution, and termination of the user’s application
programs, of course, remain the same.

However, time is required to initiate, execute, and terminate the
terminal program itself. Defining a job at the display console
typically requires between 360 and 3000 milliseconds of central
processing unit (cPU) time on a systeM/360 Model 50. The major
time factor in the present implementation is that required to
initiate the terminal program using an internal START command.
This may take minutes if contention for serially reusable resources
is at a high level. It is conceivable that this time (and subsequent
termination time) can be reduced to a once-a-day frequency by
some sort of save-and-restore facility.

Another cost of using the graphie job processor is the unavaila-
bility of the 10 K bytes of main storage required by the communica-~
tion program, which is not available to other jobs during graphie
job control operations.

User-operator-programmer interface

In addition to the interfaces between the graphic job processor
and the user, and between the graphic job processor and the op-
erating system, there must also be an interface between the graphic
job processor communication program and the system operator.
The graphic job processor is designed so that messages originating
from either the terminal program or the communication program
appear at the system console typewriter to help the system operator
control the system. These messages fall into the categories indi-
cated in Table 2.

Messages that have no value to the system operator but are
useful to the application programmer (who may or may not be the
user at the console) are stored in a system message block data set.
Some messages that might also be useful to the system operator
are supplied both to him and to the system message block data set.

Only messages of interest to the user are displayed on the 2250.
They may be one to five lines of information, such as the general
type of message, actual data referred to, cause of message, and sug-
gested action. Emphasis is placed on the suggested action or remedy,
where known. These messages to the user are categorized in Table 3.

Messages explaining why the job could not be started or why it
was terminated are derived from operating system messages that

NOS. 3 & 4 - 1968 CONVERSATIONAL JOB CONTROL

processing
times and
storage
requirements

preventing
errors

are translated by the terminal program so as to be readily under-
stood by the nonprogrammer user. When the terminal program
regains control after termination of the user’s application program,
it locates the system message block data set and scans it. Messages
significant to the user are extracted and translated. When an
operating system message is translated, the original message num-
ber is also supplied to the user so that he can find a more technical
description in a reference manual if he chooses.

The sequencing of frames is designed to prevent errors. For
example, BEGIN JOB is not made available for selection until the
user has successfully defined at least one job step. Thus, he can-
not start a job that has no job step. The design of the graphic job
processor in this way eliminates the need for many types of error
messages. Nonetheless, it must duplicate some operating system
error checking to support meaningful interaction during job de-
seription, since the operating system would detect some errors
too late to permit recovery. In general, the graphic job processor
detects the following types of errors:

Too little or missing information

Too much or conflicting information

Specification of nonexistent or misspelled procedures

Some syntax errors, such as unpaired parentheses, embedded
blanks or special characters, overly long fields, and data that
is improperly numeric or alphabetic

Summary

Graphic display users, typically engineers and scientists, need the
ability to process jobs on a computing system at a time and in a
manner of their own choosing. The graphic job processor is de-
signed for such users and requires little knowledge of data proc-
essing. Rather than passively accepting preplanned input, the
graphics job processor interacts with and guides the user, per-
forming some job control activities without user’s direction. One
of the design objectives was to prevent certain errors and to reduce
the effects of others.

CITED REFERENCE AND FOOTNOTES

1. The graphic job processor, program number 360S-RC-541, is available
through 1Bm Branch Offices.
2. B. I. Witt, “The functional structure of os/seo, Part II, Job and task
management,”’ IBM Systems Journal 5, No. 1, 12-19 (1966).
. Those operating system options capable of multiprogramming with a fixed
number of tasks (MFT) and a variable number of tasks (MvT).
. After processing requirements have been specified in a set of job control
statements and the set has been cataloged, theoretically only a request to
execute the cataloged procedure is needed to run a job in the batched mode.

IBM SYST J

