
can  readily be modi$ed for use  with a graphic  display  device,  and  the 
graphics  programming  can  usually be done in a higher-level language. 
Based on intermediate  results,  the  order of execution of application 
modules  can be controlled f r o m  the console. 

The  system  description  emphasizes  the  structure  and  generation of 
display  formats for displaying  output, for accepting user-de$ned com- 
mands,  and  for  accepting  data  that  is  made accessible to  the  application 
modules. Also described is a generalized  data  structure  and a set of 
experimental  routines  designed  to  adapt  the  structure  to  particular 
needs. 

INTERACTIVE  GRAPHICS IN DATA  PROCESSING 

A system for implementing  interactive  applica 
by F. C. Chen and R. L. Dougherty 

Computer-aided design has evolved from batch processing through 
keyboard-type conversational-mode operation to display-type 
man-machine interaction.' So far, however, use of display console 
interaction  has been inhibited by  the complexity of graphics pro- 
gramming  and the difficulty in some programming languages of 
executing program segments in  an  arbitrary order. 

The programming required to  create a  graphics  interface  for 
a new or existing application  program  has been simplified by 
general-purpose graphics  support  programs,  such  as that described 
by  Rully  in Ohis issue. However, creating the graphics  interface 
requires conventional  programming, and  the coding is specialized 
for a  particular  application. In  addition,  display  subroutines  have 
to be coded for the particular  system (for example, IBM 1130 versus 
S Y S T E M / ~ ~ O )  on which they will  be run. Thus, graphics  programming 
would be easier if basic display images and  interactive  controls 
could be specified in high-level, user-oriented statements.  Moreover, 
the coding of graphics  interfaces would be simpler if a  program  writ- 
ten for one  system could be  made  acceptable to another  system 
with only slight modifications. 

In  interactive  problem solving, unanticipated  situations fre- 
quently arise that make  complete  preplanning difficult or impossi- 
ble. It is therefore necessary to be  able to perform  functions  as the 
need for them becomes apparent during the problem-solving 
process. Thus, execution-time control  over the order of execution of 
program modules is needed for interactive problem solving, because 
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unanticipated  computations  must be performed. This  capability is 
provided, for example, in assembler language  as  implemented in 
the IBM SYSTEM/360 Operating  System,  a  language  unfamiliar to most 
graphics users. However, it is not  provided in some higher-level 
programming languages. The ability to dynamically load program 
modules is also desirable to conserve main  storage space. 

The approach to computer-aided design discussed here facili- 
problem tates  the use of graphics in several ways. The computational and 
solution the graphics portions of application programs are  separated, so 

that libraries of existing programs  can be modified and recompiled 
for  graphic  interactive problem solving. Furthermore,  standard 
display  program modules can be interfaced  with  application 
programs  by  means of problem-oriented language  statements.  This 
approach also facilitates the division of the computational  portions 
of application programs into segments or modules, even if they  are 
coded in  programming languages that do not provide for dynamic 
loading of program modules. Such modules can  then be called and 
executed in  any  order  by the console operator. 

The program discussed in  this  paper is called PLAN Graphics 
Support  (PGS), which in turn is supported by the PLAN system.2 PLAN 

provides the capability for creating,  interpreting,  and executing 
problem-oriented statements for requesting execution of modules, 
manipulating data,  etc.  Instead of problem-oriented statements, 
the primary communication media for PGS are  display  formats 
created at a  particular  installation  for the IBM 2250. This  paper is 
focused on those aspects of PLAN that enhance  graphics  and does 
not discuss its capabilities for interactive  computer-aided design 
using nongraphics terminals. 

PLAN and PGS are executed under  the SYSTEN/360 Operating 
System and under the IBM 1130 Monitor, Version 2, using the 
facilities of this  programming  support whenever appropriate. The 
graphics  subroutine package (GSP), described by  Rully  in  this 
issue, is also used, although the functions performed by GSP are 
usually requested a t  a higher level not requiring  conventional pro- 
gramming. 

This  paper describes the overall design of PLAN-PGS, including 
detailed descriptions of its major  features. PLAN-PGS is designed to 
provide  a  consistent user interface to  the S Y S T E M / ~ ~ O  and  the 1130; 

however,where internal differences exist, the implementation used 
in SYSTEM/~BO is described. Data structures  are also discussed, in- 
cluding one possible approach for associating properties  with data 
entities,  for model segmentation,  and for dynamic loading of data 
segments. 

System design 

Interactive problem solving using PLAN-PGS is illustrated by the 
closed-loop system in E’igure 1. Problem input is interpreted,  and 
the execution sequence of the application  program modules is 



Figure 1 Computer-aided  design  environment * PROBLEM INPUT 
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intermediate  results  are  made  available for review and possible 
refinement. At  this  time,  the console operator may decide that 
other  computations  are needed or that different data should be 
displayed. If t,he computation modules have been previously coded 
and exist in his library  and if appropriate provisions for display 
and  interaction  have been defined, he can proceed in  this  inter- 
active fashion to his problem solution. 

PLAN provides a  dynamic loading capability that eliminates 
most of the programming effort connected with  preplanning the 
sequences for executing program modules. For example, FORTRAN 

source program modules designed to perform  discrete  functions 
can be written  in conformance with established conventions. Appli- 
cation modules written for use under PLAN make extensive use of 
a common data  area,  to enable communication among separately 
executed application modules. After each module has been com- 
piled and processed for loading, the modules can be loaded and 
executed in  any meaningful sequence by  the console operator 
without help from a programmer. 

In  this  environment, the scope of an application  program is not 
rigidly defined; thus it does not  have  to  be redefined for every 
addition or change of logic. Modules can be added to libraries 
without requiring an existing program to be rewritten, recompiled, 
and reprocessed for loading. 

To gain access to  these funct(iona1 modules, dictionary  entries 
are  created that name  library modules, supply  default data,  and 
define a language devised at  the installation and based on the 
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nature of the applications. For any given application, the sequence 
of execution of program modules may be predefined or  it may be 
specified during the course of the analysis. 

The display  formats of PGS are similar to  the problem-oriented 
language of PLAN. Under PLAN, each computation  step definition in- 
cludes a phrase, a data list, and a  program sequence. A phrase is 
defined as a unique  group of words that identifies a command. A 
data  list defines data items, values, and  output. A program  sequence 
identifies one or more program modules to be executed when the 
defined phrase  is specified. 

PGS supplements PLAN for  graphics  applications,  primarily  by 
PLAN graphics facilitating development of the graphics  portions of interactive 

support graphics  applications, usually without  conventional programming. 
The flow of operation of PLAN-PGS is shown in Figure 2. Several 
conditions are  required for operation of the system. 

The  state of the entire 2250 console must  have been predefined. 
Thus, one condition for operation of the  system is that  the  data 
needed to control the  state of the 2250 must be available  either  on 
specification files (i.e., in a form  independent of display devices) or 
on panel files (i.e., in 2250 graphics  order  format).  Another require- 
ment is that  the appropriate compiled program modules needed to 
perform computation  functions  are  available  in a library. 

To initiate  an application, PLAN itself must  be loaded, of course. 
For example, in  the SYSTEM/~BO Operating  System  environment, the 
job  control statements needed to describe PLAN as a job are re- 
quired. Because the system resources needed for  application pro- 
grams run under PLAN are allocated at  this time, the console 
operator need not concern himself with  job  control  statements for 
each  application. 

PGS is then initialized to  run under PLAN. PGS sets  up a  control 
table  in main storage. Data stored  in  this  table is used to interpret 
light  pen  and keyboard  actions to satisfy  such  requests as: to 
transfer  control to a program module already in main  storage, to 
place a  program  name in a last-in-first-out stack so that  the pro- 
gram  can be dynamically  loaded by PLAN, or to place input  data 
in a common data area so that it is accessible to  the application 
program. 

The  state of the 2250 at a given time  is called a panel. This 
panels state includes more than  the image on  the 2250 screen; it includes, 

for example, the significance of the function  keys at  the time  the 
image  is being displayed.  Panels fulfill the basic functions of accept- 
ing data  from  the user and of displaying data resulting  from applica- 
tion module execution. Depending  on the alternatives,  a panel 
may  provide the medium for accepting a command, which is 
passed to PLAN for execution; a panel may also be designed to 
accept data, which is stored in a common data area accessible to 
application modules; and a panel  may be the means of displaying 
data. 

The provisions in PGS for designing panels  enable  panel  contents 
to be described in  terms of text  and graphics. Panels also allow the 
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In  addition to panel  and specification files, display files are 
needed for the  actual display of an image. A 2250 display  results 
from  graphics  orders and  must be  continually  regenerated. To 
identify the elements of the image (for light-pen  detection,  for 
example),  control data is also required. In  PGS, this  control data 
is  kept  in  control  tables  in main  storage. The regenerating  orders 
together  with  these  control  tables  constitute an activated display 
file. When the 2250 is  attached  to  the 1130, the display file is an 
in-storage array. For the S Y S T E M / ~ ~ O ,  the graphics  orders  for 
regeneration are  kept  in  the display unit buffer and  the  control 
tables  in main  storage. For the 1130, the panel file is a  disk file copy 
of the display file. For the SYSTEM/~BO, the panel file is  kept  in 
main  storage  in the form of an equivalent  graphics data set  plus 
control  tables. There  may be as many  as fifty of these  panel files, 
each  with a  unique  identification  number  from  one to  fifty. 

Both panel and display files can be created  from specification 
files. Specifications include  such  information as  the  actual  text 
for  a  display, canonical-form data of graphics  items,  display screen 
coordinates,  light  pen and function key action codes, and identifi- 
cation data. 

Specifications for each panel are contained in  individual 23- 
word records, as shown in Figure 3. Records  may  be formed  from 
each  command statement pertaining to  the creation of a  panel, 
and for every  panel there  may be as  many as desired. Records  are 
grouped in a uniquely identified specification file. 

Associated with  every  record is a program  action code (PAC). 

The PAC determines  program flow and function. Each PAC specifies 
control  information  to  be associated with  display specifications or 
attention signal sources (program  function  keys and  the END key on 
the alphanumeric  keyboard).  Program  action codes are classified ac- 
cording to  the functions  with which they  are associated: 

PLAN monitor  functions 
Panel switching and display  control  functions 
Logical functions 
Functions  related  to  the  entry,  manipulation,  and display of 
data values 

Each  program  action code is  a  four-digit  number. The first 
digit specifies when the action  is  to be performed, which may  be  at 
display  generation  time, a t  console attention signal  time, or at 
both times. The second digit specifies the  type of function,  and  the 
last  two  digits specify the particular  program  action. The program 
action code is also designed to allow an  alternative  type of function 
a t  display  generation  time. If certain  digits  are specified as  the first 
digit,  such a digit replaces the second digit a t  display  generation 
time. 

A program  action code extension (PACE) is a field added to  a 
PAC and used to specify  additional  information that may be re- 
quired  with  some  program  action codes. A PACE is divided into 
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a  pointer used to specify a  particular common data location and a 
subfield used to specify the information. 

A record also contains an appearance code, which specifies the 
information to be displayed on the screen. Appearance specifica- 
tions may include text, lines or line set,s, points or point  sets, and 
geometric entities  such as circles, arcs, ellipses, hyperbolas, and 
parabolas.  The  display item specification is identified by  a type 
code. 

In some cases, the area  allocated for appearance data within 
t’he specification record may not be adequate.  For  this reason, a 
pointer is provided (Jvords 15 and 16 in Figure 3), in which is 
specified an external  disk file and record identification. Thus,  the 
appearance data can be obtained when the panel associated with 
the record is to be displayed. 

Whenever a specification file is to be activated,  i.e.,  either  to 
be displayed  or to be made into a panel file, the PGS monitor 
processes each record and generates  graphics orders that are placed 
into the specified graphics data  set.  The PAC/PACE information is 
retained in a  control table for the  particular panel.  (The PAC is also 
analyzed to determine  whether  any  activity  is to be done at  this 
time.) 

When  a  panel  is being displayed, the PAC/PACE table for the 
panel is interrogated  by  the PGS interruption  analyzer,  and the 
appropriate  actions  are  taken.  (At  present,  about one hundred 
PAC’s have been coded into PGS.) 

A  set of command statements is provided so that a  panel 
designer can specify, generate, and maintain panels. These state- 
ments conform with the rules for PLAN commands (mentioned 
earlier). The general form of these statements is: 

COMMAND NAME, DATA NAME AND VALUE, DATA NAME AND 
VALUE, . . . ; 
After the command name,  several data names may be specified, 
separated  by commas. The  statement ends with  a semicolon. Data 
names and values may be entered  in  any  order. 

Table 1 shows, by category,  a  representative  set of commands. 
The  data associated with  a  particular command varies depending 
on  the function desired. In  the case of specification statements, 
the  data can  be of two  types: 

Appearance, which may include text, points,  and  other  graphic 
entities with their locations. Lines and conics may be specified 
along with line types  and smoothness factors. 

Function, in which program  control may be indicated  via  a PAC and 
its PACE. For example, a PAC might request  a  program to be called 
as  a  result of a light-pen detect on an  entity  in  the appearance 
section, and  the PACE might provide the  name of the program to be 
called. The  system contains  a predefined set of PAC’s for performing 
various  control  and data management  functions.  Each of the com- 
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Table 1 Sample  panel  commands 

Category Command  name 
~ ~~~ ~ 

Initialization INITIALIZE  PGS 
and termination TERMINATE PGS 

Specification MENU  ITEM 
statements TEXT 

COMMAND 
DATA NAME 
VARIABLE NAME 
POINT 
PLOT CHARACTER 
POSITION  BEAM 
VECTOR 
POLYSTRING 
LINE 
LINE  SET 
CIRCLE 
ARC 
HYPERBOLA 
PARABOLA 
ELLIPSE 
FUNCTION  KEY 
END  KEY 

File generation READ SPECIFICATION CARDS 
BEGIN  SPECIFICATION  STATEMENTS 
END  SPECIFICATION  STATEMENTS 
CREATE 
CREATE  HIGH  SPEED 
DISPLAY HIGH  SPEED 
DISPLAY 
READ  COORDINATE SET 

Maintenance LIST SPECIFICATIONS 
DELETE  SPECIFICATIONS 
ADD SPECIFICATIONS 
DELETE PANEL 

mands  grouped  under specification statements  in  Table 1 causes 
the system to create  a specification record. All of the specification 
records created for an entire  panel  are grouped into a specification 
file. 

An example of a specification statement  with its associated 
data is: 
MENU  ITEM,  LETTERS ‘PROGRAM A’, LOCATION 300, 400, CHAR- 
SIZE LARGE, ACTION CODE 313, DATA  ‘PROGA’; 
This  statement,  as  interpreted  by PGS, would display in large 
characters 
PROGRAM A 

on  the screen commencing at  location (x,y) = (300,400) when the 



I Table 2 Sample commands 

INITIALIZE PGS 
BEGIN  SPECIFICATION STATEMENTS, NUMBER 6; 

TEXT, LOCATION 18,  32, LETTERS ‘Z COMPUTATION’, 
VARIABLE NAME, LETTERS ‘A =’, LOCATION 7,  26, 

LARGE, ACTION CODE 4422, DATA 0, 
POINTER 51; 

VARIABLE NAME, LETTERS ‘B =’, LOCATION 7 ,  22, 
LARGE, ACTION CODE 4422, DATA 0, 
POINTER 52, 

VARIABLE NAME, LETTERS ‘C =’, LOCATION 7, 18, 
LARGE, ACTION CODE 4422, DATA 0, 
POINTER 53; 

VARIABLE NAME, LETTERS ‘2 =’, LOCATION 12,  13, 
LARGE, ACTION CODE 4602, DATA 0, 
POINTER 60; 

MENU  ITEM,  LETTERS ‘COMPUTE Z’, LOCATION 5, 4, 
LARGE, ACTION CODE 0313, 
DATA ‘ZCMP’; 

MENU  ITEM,  LETTERS ‘CONTINUE’, LOCATION 34, 4 

END  SPECIFICATION STATEMENTS, NUMBER 6; 

CREATE, PANEL 8, FROM FILE 6, WITH BOUNDS 0,  0, 49, 35; 
DISPLAY, PANEL 8; 

LARGE, ACTION CODE 0318; 

PROGA is the PACE associated with  the action code (PAC). The PAC 

of 313 specifies that when a  light-pen  detect is made on the menu 
item PROGRAM A, the system will call the application  program 
named PROGA. When PROGA has been executed,  control  is to be 
returned to the panel t)o wait for another  action  (interruption)  by 
the console operator. PROGA is a  computational  module coded in 
accordance  with PLAN rules. Table 2 shows an example in which 
PGS commands are used. 

Graphics  data  structure 

The need for a dynamic  and flexible data  structure arises when  a 
console operator  creates or modifies the shape  and description of a 
geometric  object  on the display screen. All geometric  relationships 
of surfaces, lines, and curves must be  preserved as  the  structure is 
rapidly  updated  in response to light-pen  actions at  the display 
console. A complete set of routines was designed experimentally 
to  permit  the programmer to readily organize a  particular data 
structure  and  tailor  the elements  within the  structure  to individual 
needs. These  routines are based  upon  a  dynamic  storage  allocation 
scheme (discussed later) so that  the  actual  amount of data  may 
outgrow the size of main  storage. 
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Figure 4 Group of objects 
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Some of the requirements for a viable data  structure  are best 
illustrated  by  a simple picture  drawn  on a graphic display. A 
square, for example, has different features of interest: for some, the 
coordinates of the square  may be significant; for others, the con- 
nectivity of the lines or the  area may be of interest.  The  data 
structure should be general enough to  take all  these  individual 
requirements into account. 

When  a console operator  points to, or detects, an object  on the 
display screen with  the light pen, an interruption occurs in the pro- 
gram,  and the program is given the address of the  data  that generated 
the detected  graphic  object. From  this information, the program 
must  deduce  various  properties of the object. For example, if a line 
has been selected, not only the  identity of the line and its location 
must  be  made  available, but also the  fact  that  the line may be part 
of a  square,  and that a circle may be associated with the square, 
as  indicated  in  Figure 4. Objects  can be associated by grouping. 
In  Figure 4, the combination of the  square  and circle are considered 
a group. 

This example illustrates  a few problems that a generalized 
structure must be able to resolve: (1) an individual  graphic object 
must be identifiable, ( 2 )  relationships, hierarchical or otherwise, 
between objects  must be established, (3) properties  must be shared 
by different objects, and objects  must  be allowed to have  multiple 
properties. Since drawings may be modified, deleted, or expanded 
in  interactive problem solving, data structures  must allow for 
dynamic  growth  and  dynamic association. 

An implementation that meets this basic objective includes 
pointers  with the  data (such as  in a  list  structure),  and ties  together 
-in a closed ring structure-objects sharing  a common property. 
The use of multiple address pointers  within a block of data allows 
many  properties to be associated with the block. The power  of 
the multiple ring structure was demonstrated  by Ivan   S~ther land .~ .~  

Physically,  a block is a set of contiguous words. A typical block 
contains the following items: 

Link  area 
TYPE word 
Data area 

Link areas  contain  address  pointers that  tie together blocks and 
by which blocks can be related. The TYPE word is actually a 
pointer to a generic block, a block that contains  information 
relevant to all the blocks of a  particular  type.  The data area may 
contain any information  about the element that  the block repre- 
sents.  For example, data words can  contain coded information 
(flags, formats),  values of variables, or text. Normally, blocks are 
fixed in size, but  the system does support blocks having variable- 
size data areas. 

Rings  are closed chains that string  together  all the  data ele- 
ments that are associated with each other.  The ring pointers  are 
called links. A link in one block points  to a  link  in  another,  and 
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Figure 5 Ring structure of a model 
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so on  until  the  last link points  back  to the first. Every ring  has a 
ring start called master-link; the rest of the members of the ring 
are slave-links. Rings  are formed according to certain rules: 

A ring must  have one and only one master  link, but it may  have 

A link  cannot be a member of more than one ring. 
A block may be a part of as many rings as it has links. 
A block may have  any combination of master  links and slave 

any  number of slave links. 

links. 

In  Figure 5, a data representation (or modeel) for the  square 
(SQ1) and circle (a) of Figure 4 is shown using the ring structure. 
A block, called “group,” associates the square  and the circle. For 
easier readability, the rings in  Figure 5 are  not connected back to  
the  starting point. All blocks may be reached from any given block. 
The end points of a line are defined in  separate  point blocks (PI 
through ~ 4 ) .  The lines (LI through ~ 4 )  are  actually  subordinate to 
these  points. Thus, if a point is relocated, all connected lines move 
with it.  The location and radius of the circle are described in block 

The system in which this data  structure is used contains a set of 
subroutines that allows the programmer to build a model, retrieve 
information  by  name  from it, modify it,  and process this  informa- 
tion  with an application program. This set of data  structure sub- 
routines is designed specifically for the FORTRAN programmer. They 

c1. 
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Figure 6 Data structure  system 
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nected via links. Given the identification of a particular  panel file, 
the file could then be retrieved  together  with any  number of its 
associated specification files. A specification file could be  part of 
several panels, and a  panel could contain  several specification files. 

Figure 6 shows, at  an overview level, the functions of the 
system  and  their relationship to application-dependent  programs. 
The programmer  wants to build a specific model, modify it, retrieve 
information from it, and process particular  elements or sets of ele- 
ments in accordance with  his  graphics  application program. The 
model-processing subroutines  depend  on the application  and the 
kind of data being placed into  the  structure.  Model-traversing  sub- 
routines  can be considered totally  independent of block formats  and 
contents. Model-building subroutines are almost  independent. A 
construction  subroutine  can  automatically access a generic block, 
find a  suitable place in storage, and initialize the specific block. 
However, higher-level programs must  provide the information 
about  the relationships  among blocks, so that automatic  ties be- 
tween hierarchical levels can  be  embedded in  the blocks. These 
higher-level programs should also interface  with console procedure 
programs when any action at   the graphic  display console affects the 
model structure. 

Summary 
A system  intended for interactive  problem solving (PLAN) with 
added  support  for  graphics  applications (PGS) may overcome some 
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of the  fundamental problems  confronting  graphics users. The in- 
herent  separation of the graphics  portion of application  programs 
simplifies the  adapting of existing  application  programs  for use 
with graphics devices. The modularizing of the computational 
portions of application  programs encourages development of open- 
ended user libraries of modules that can  be  executed  dynamically 
as required. In  most cases, graphics  programming is done at  a  high 
level, and previously coded display  formats  can  be used as needed. 

An  experimental set of routines was designed to enable a 
programmer to organize  a generalized data  structure  to  suit  par- 
ticular needs. Such a system would allow a model to  be segmented, 
and a paging  scheme could be used to load the segments as  they  are 
needed. 
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