This paper discusses a system designed for interactive problem solving
by use of a graphic display console. Existing application programs
can readily be modified for use with a graphic display device, and the
graphics programming can usually be done in a higher-level language.
Based on intermediate resulls, the order of execution of application
modules can be controlled from the console.

The system description emphasizes the struclture and generation of
display formats for displaying output, for accepting user-defined com-
mands, and for accepling data that is made accessible to the application
modules. Also described is a generalized data structure and a set of
experimental routines designed to adapt the structure to particular
needs.

INTERACTIVE GRAPHICS IN DATA PROCESSING

A system for implementing interactive applications
by F. C. Chen and R. L. Dougherty

Computer-aided design has evolved from batch processing through
keyboard-type conversational-mode operation to display-type
man-machine interaction.! So far, however, use of display console
interaction has been inhibited by the complexity of graphies pro-
gramming and the difficulty in some programming languages of
executing program segments in an arbitrary order.

The programming required to create a graphics interface for problem
a new or existing application program has been simplified by definition
general-purpose graphics support programs, such as that described
by Rully in this issue. However, creating the graphics interface
requires conventional programming, and the coding is specialized
for a particular application. In addition, display subroutines have
to be coded for the particular system (for example, 1BM 1130 versus
SYSTEM/360) on which they will be run. Thus, graphics programming
would be easier if basic display images and interactive controls
could be specified in high-level, user-oriented statements. Moreover,
the coding of graphics interfaces would be simpler if a program writ-
ten for one system could be made acceptable to another system
with only slight modifications.

In interactive problem solving, unanticipated situations fre-
quently arise that make complete preplanning difficult or impossi-
ble. It is therefore necessary to be able to perform functions as the
need for them becomes apparent during the problem-solving
process. Thus, execution-time control over the order of execution of
program modules is needed for interactive problem solving, because

NOS. 3 & 4 - 1968 AN IMPLEMENTATION SYSTEM

problem
solution

unanticipated computations must be performed. This capability is
provided, for example, in assembler language as implemented in
the 1BM sYSTEM /360 Operating System, a language unfamiliar to most
graphics users. However, it is not provided in some higher-level
programming languages. The ability to dynamically load program
modules is also desirable to conserve main storage space.

The approach to computer-aided design discussed here facili-
tates the use of graphies in several ways. The computational and
the graphics portions of application programs are separated, so
that libraries of existing programs can be modified and recompiled
for graphic interactive problem solving. Furthermore, standard
display program modules can be interfaced with application
programs by means of problem-oriented language statements. This
approach also facilitates the division of the computational portions
of application programs into segments or modules, even if they are
coded in programming languages that do not provide for dynamic
loading of program modules. Such modules can then be called and
executed in any order by the console operator.

The program discussed in this paper is called pLaN Graphics
Support (pes), which in turn is supported by the PLAN system.? PLAN
provides the capability for creating, interpreting, and executing
problem-oriented statements for requesting execution of modules,
manipulating data, ete. Instead of problem-oriented statements,
the primary communication media for pas are display formats
created at a particular installation for the 1BM 2250. This paper is
focused on those aspects of PLaN that enhance graphics and does
not discuss its capabilities for interactive computer-aided design
using nongraphics terminals.

pPLAN and pgs are executed under the systEm/360 Operating
System and under the 1BM 1130 Monitor, Version 2, using the
facilities of this programming support whenever appropriate. The
graphics subroutine package (Gsp), described by Rully in this
issue, 13 also used, although the functions performed by Gsp are
usually requested at a higher level not requiring conventional pro-
gramming.

This paper describes the overall design of praN-pGs, including
detailed descriptions of its major features. pLAN-Pas is designed to
provide a consistent user interface to the sysTem/360 and the 1130;
however,where internal differences exist, the implementation used
in sYsTEM/360 15 described. Data structures are also discussed, in-
cluding one possible approach for associating properties with data
entities, for model segmentation, and for dynamic loading of data
segments.

System design

Interactive problem solving using PLAN-PGs is illustrated by the
closed-loop system in Iigure 1. Problem input is interpreted, and
the execution sequence of the application program modules is
determined. After the appropriate modules have been executed,

CHEN AND DOUGHERTY IBM SYST J

Figure 1 Computer-aided design environment

PROBLEM INPUT

INTERPRETATION

LIBRARY
SEQUENCING

C EXECUTION OF

[I SEGMENTED

APPLICATION PROGRAM
MODULES CONVERSATIONAL
INTERACTION

DATA
J STRUCTURES

N’
STRUCTURED
GRAPHICS
DATA

DISPLAY PRINTED OR
QUTPUT PLOTTED OUTPUT

PROBLEM REFINEMENT

intermediate results are made available for review and possible
refinement. At this time, the console operator may decide that
other computations are needed or that different data should be
displayed. If the computation modules have been previously coded
and exist in his library and if appropriate provisions for display
and interaction have been defined, he can proceed in this inter-
active fashion to his problem solution.

PLAN provides a dynamic loading capability that eliminates
most of the programming effort connected with preplanning the
sequences for executing program modules. For example, FORTRAN
source program modules designed to perform diserete functions
can be written in conformance with established conventions. Appli-
cation modules written for use under pLAN make extensive use of
a common data area, to enable communication among separately
executed application modules. After each module has been com-
piled and processed for loading, the modules can be loaded and
executed in any meaningful sequence by the console operator
without help from a programmer.

In this environment, the scope of an application program is not
rigidly defined; thus it does not have to be redefined for every
addition or change of logic. Modules can be added to libraries
without requiring an existing program to be rewritten, recompiled,
and reprocessed for loading.

To gain acecess to these functional modules, dictionary entries
are created that name library modules, supply default data, and
define a language devised at the installation and based on the

NOS. 3 & 4 - 1968 AN IMPLEMENTATION SYSTEM

dynamic
program
control

PLAN graphics
support

panels

nature of the applications. For any given application, the sequence
of execution of program modules may be predefined or it may be
specified during the course of the analysis.

The display formats of pas are similar to the problem-oriented
language of pLAN. Under PLAN, each computation step definition in-
cludes a phrase, a data list, and a program sequence. A phrase is
defined as a unique group of words that identifies a command. A
data list defines data items, values, and output. A program sequence
identifies one or more program modules to be executed when the
defined phrase is specified.

PGS supplements PLAN for graphics applications, primarily by
facilitating development of the graphics portions of interactive
graphics applications, usually without conventional programming.
The flow of operation of PLAN-PGS is shown in Figure 2. Several
conditions are required for operation of the system.

The state of the entire 2250 console must have been predefined.
Thus, one condition for operation of the system is that the data
needed to control the state of the 2250 must be available either on
specification files (i.e., in a form independent of display devices) or
on panel files (i.e., in 2250 graphics order format). Another require-
ment is that the appropriate compiled program modules needed to
perform computation functions are available in a library.

To initiate an application, PLAN itself must be loaded, of course.
For example, in the sysTEM/360 Operating System environment, the
job control statements needed to describe PLAN as a job are re-
quired. Because the system resources needed for application pro-
grams run under PLAN are allocated at this time, the console
operator need not concern himself with job control statements for
each application.

PGS is then initialized to run under PLAN. PGS sets up a control
table in main storage. Data stored in this table is used to interpret
light pen and keyboard actions to satisfy such requests as: to
transfer control to a program module already in main storage, to
place a program name in a last-in-first-out stack so that the pro-
gram can be dynamically loaded by PLAN, or to place input data
in a common data area so that it is accessible to the application

program.

The state of the 2250 at a given time is called a panel. This
state includes more than the image on the 2250 screen; it ineludes,
for example, the significance of the funetion keys at the time the
image is being displayed. Panels fulfill the basic functions of aceept-
ing data from the user and of displaying data resulting from applica-
tion module execution. Depending on the alternatives, a panel
may provide the medium for accepting a command, which is
passed to PLAN for execution; a panel may also be designed to
accept data, which is stored in a common data area accessible to
application modules; and a panel may be the means of displaying
data.

The provisions in pas for designing panels enable panel contents
to be described in terms of text and graphics. Panels also allow the

CHEN AND DOUGHERTY IBM SYST J

Figure 2 PLAN-PGS program fiow

SPECIFICATION
FILE

STACK

2250 BUFFER =

LOADER

PGS

CONTROL COMMON

DATA
CONS TABLE OF
ACT|o?ql§E ACTION CODES AREA

LIBRARY

(DICTIONARY)

PROGRAM
AREA

A/N KEYBOARD FUNCTION
KEYS

START UP . .
// JOB

specification of system response to user interaction, such as panel
switching, data entry, and data display.

Aslong as the console operator is entering data on the same panel,
that panel remains on the screen after each console action, and the
data is placed in the common area shown in Figure 2. However, a
problem arose when we considered how to switch to a new panel as a
result of a console action. By storing panel data in graphies order
format, panels can be switched rapidly, avoiding uncomfortable
delays for the console operator and facilitating animated displays.
In contrast, device-independent data is more compact, more
flexible, and requires less external storage space. In the final design,
we decided to allow data to be stored in either form so that the
compromise between response time and storage space could be
made at the installation. Display information can be kept in
graphics order format in the panel file; raw data needed to con-
struct panels can be kept in the specification file.

When curves or graphs are to be displayed using data produced
by application program execution, the output data is normally
stored in an array on a disk file. These arrays can then be referred
to in a panel description on the specification file so that output
data can be displayed within the framework of predefined panels.

The arrows from the specification and panel files in Figure 2
show. the various ways that display output can be created on the
2250. Note that the arrows also show information flowing into the
control table; this is necessary since there must be an “action
code” reference for each display item, so that it can be detected
by the light pen or associated with a function key. (Action codes are
discussed in greater detail later.)

NOS. 3 & 4 - 1968 AN IMPLEMENTATION SYSTEM

panel
switching

Figure 3 Specification record

WORD

CONTENTS

W N O M P W N

NN R e o e e s e e e
N O © ® N O & W N~ OO

nN
w

APPEARANCE
DATA

APPEARANCE
AREA

TYPECODE

FILE (SWITCH)
RECORD

PACE AREA

records

program
action
codes

In addition to panel and specification files, display files are
needed for the actual display of an image. A 2250 display results
from graphics orders and must be continually regenerated. To
identify the elements of the image (for light-pen detection, for
example), control data is also required. In pas, this control data
is kept in control tables in main storage. The regenerating orders
together with these control tables constitute an activated display
file. When the 2250 is attached to the 1130, the display file is an
in-storage array. For the sysTeEM/360, the graphics orders for
regeneration are kept in the display unit buffer and the control
tables in main storage. For the 1130, the panel file is a disk file copy
of the display file. For the svysTEM/360, the panel file is kept in
main storage in the form of an equivalent graphies data set plus
control tables. There may be as many as fifty of these panel files,
each with a unique identification number from one to fifty.

Both panel and display files can be created from specification
files. Specifications include such information as the actual text
for a display, canonical-form data of graphics items, display screen
coordinates, light pen and function key action codes, and identifi-
cation data.

Specifications for each panel are contained in individual 23-
word records, as shown in Figure 3. Records may be formed from
each command statement pertaining to the creation of a panel,
and for every panel there may be as many as desired. Records are
grouped in a uniquely identified specification file.

Associated with every record is a program action code (Pac).
The pac determines program flow and function. Each pac specifies
control information to be associated with display specifications or
attention signal sources (program function keys and the END key on

the alphanumeric keyboard). Program action codes are classified ac-
cording to the functions with which they are associated:

PLAN monitor functions

Panel switching and display control functions

Logical functions

Functions related to the entry, manipulation, and display of
data values

Each program action code is a four-digit number. The first
digit specifies when the action is to be performed, which may be at
display generation time, at console attention signal time, or at
both times. The second digit specifies the type of function, and the
last two digits specify the particular program action. The program
action code is also designed to allow an alternative type of function
at display generation time. If certain digits are specified as the first
digit, such a digit replaces the second digit at display generation
time.

A program action code extension (PacE) is a field added fo a
pac and used to specify additional information that may be re-
quired with some program action codes. A PAcE is divided into

CHEN AND DOUGHERTY IBM SYST J

a pointer used to specify a particular common data location and a
subfield used to specify the information.

A record also contains an appearance code, which specifies the
information to be displayed on the screen. Appearance specifica-
tions may include text, lines or line sets, points or point sets, and
geometric entities such as circles, arcs, ellipses, hyperbolas, and
parabolas. The display item specification is identified by a type
code.

In some cases, the area allocated for appearance data within
the specification record may not be adequate. For this reason, a
pointer is provided (words 15 and 16 in Figure 3), in which is
specified an external disk file and record identification. Thus, the
appearance data can be obtained when the panel associated with
the record is to be displayed.

Whenever a specification file is to be activated, i.e., either to
be displayed or to be made into a panel file, the pes monitor
processes each record and generates graphics orders that are placed
into the specified graphics data set. The pac/PACE information is
retained in a control table for the particular panel. (The rac is also
analyzed to determine whether any activity is to be done at this
time.)

When a panel is being displayed, the pac/pAcE table for the
panel is interrogated by the Pgs interruption analyzer, and the
appropriate actions are taken. (At present, about one hundred
PaC’s have been coded into pas.)

A set of command statements is provided so that a panel
designer can specify, generate, and maintain panels. These state-
ments conform with the rules for pLAN commands (mentioned
earlier). The general form of these statements is:

COMMAND NAME, DATA NAME AND VALUE, DATA NAME AND
VALUE, . . . ;

After the command name, several data names may be specified,
separated by commas. The statement ends with a semicolon. Data
names and values may be entered in any order.

Table 1 shows, by category, a representative set of commands.
The data associated with a particular command varies depending
on the function desired. In the case of specification statements,
the data can be of two types:

Appearance, which may include text, points, and other graphic
entities with their locations. Lines and conics may be specified
along with line types and smoothness factors.

Function, in which program control may be indicated via a pAc and
its PAcE. For example, a PAc might request a program to be called
as a result of a light-pen detect on an entity in the appearance
section, and the PACE might provide the name of the program to be
called. The system contains a predefined set of Pac’s for performing
various control and data management functions. Each of the com-

NOS. 3 & 4 - 1968 AN IMPLEMENTATION SYSTEM

appearance
codes

generating
panels

Table 1 Sample panel commands

Category Command name

Initialization INITIALIZE PGS
and termination TERMINATE PGS

Specification MENU ITEM

statements TEXT
COMMAND
DATA NAME
VARIABLE NAME
POINT
PLOT CHARACTER
POSITION BEAM
VECTOR
POLYSTRING
LINE
LINE SET
CIRCLE
ARC
HYPERBOLA
PARABOLA
ELLIPSE
FUNCTION KEY
END KEY

File generation READ SPECIFICATION CARDS
BEGIN SPECIFICATION STATEMENTS
END SPECIFICATION STATEMENTS
CREATE
CREATE HIGH SPEED
DISPLAY HIGH SPEED
DISPLAY
READ COORDINATE SET

Maintenance LIST SPECIFICATIONS
DELETE SPECIFICATIONS
ADD SPECIFICATIONS
DELETE PANEL

mands grouped under specification statements in Table 1 causes
the system to create a specification record. All of the specification
records created for an entire panel are grouped into a specification
file.

An example of a specification statement with its associated
data is:
MENU ITEM, LETTERS ‘PROGRAM A’, LOCATION 300, 400, CHAR-
SIZE LARGE, ACTION CODE 313, DATA ‘PROGA’;
This statement, as interpreted by pas, would display in large
characters

PROGRAM A

on the screen commencing at location (x,y) = (300,400) when the
associated panel is displayed. The word DATA indicates that

CHEN AND DOUGHERTY IBM SYST J

Table 2 Sample commands

INITIALIZE PGS
BEGIN SPECIFICATION STATEMENTS, NUMBER 6;

TEXT, LOCATION 18, 32, LETTERS ‘Z COMPUTATION’,

VARIABLE NAME, LETTERS ‘A =’, LOCATION 7, 26,
LARGE, ACTION CODE 4422, DATA 0,
POINTER 51;

VARIABLE NAME, LETTERS ‘B =’, LOCATION 7, 22,
LARGE, ACTION CODE 4422, DATA 0,
POINTER 52,

VARIABLE NAME, LETTERS ‘C =’, LOCATION 7, 18,
LARGE, ACTION CODE 4422, DATA 0,
POINTER 53;

VARIABLE NAME, LETTERS ‘Z =’, LOCATION 12, 13,
LARGE, ACTION CODE 4602, DATA 0,
POINTER 60;

MENU ITEM, LETTERS ‘COMPUTE Z’, LOCATION 5, 4,
LARGE, ACTION CODE 0313,
DATA “ZCMP’;

MENU ITEM, LETTERS ‘CONTINUE’, LOCATION 34, 4
LARGE, ACTION CODE 0318; '

END SPECIFICATION STATEMENTS, NUMBER 6;

CREATE, PANEL 8, FROM FILE 6, WITH BOUNDS 0, 0, 49, 35;
DISPLAY, PANEL 8§;

PROGA is the PACE associated with the action code (pac). The rac
of 313 specifies that when a light-pen detect is made on the menu
item PROGRAM A, the system will call the application program
named PROGA. When PROGA has been executed, control is to be
returned to the panel to wait for another action (interruption) by
the console operator. PROGA is a computational module coded in
accordance with PLAN rules. Table 2 shows an example in which
PGS commands are used.

Graphics data structure

The need for a dynamic and flexible data structure arises when a
console operator creates or modifies the shape and deseription of a
geometric object on the display screen. All geometric relationships
of surfaces, lines, and curves must be preserved as the structure is
rapidly updated in response to light-pen actions at the display
console. A complete set of routines was designed experimentally
to permit the programmer to readily organize a particular data
structure and tailor the elements within the structure to individual
needs. These routines are based upon a dynamic storage allocation
scheme (discussed later) so that the actual amount of data may
outgrow the size of main storage.

NOS. 3 & 4 - 1968 AN IMPLEMENTATION SYSTEM

Figure 4 Group of objects

block
format

rings and
links

266

Some of the requirements for a viable data structure are best
illustrated by a simple picture drawn on a graphic display. A
square, for example, has different features of interest: for some, the
coordinates of the square may be significant; for others, the con-
nectivity of the lines or the area may be of interest. The data
strueture should be general enough to take all these individual
requirements into account.

When a console operator points to, or detects, an object on the
display screen with the light pen, an interruption occurs in the pro-
gram, and the program is given the address of the data that generated
the detected graphic object. From this information, the program
must deduce various properties of the object. IFor example, if a line
has been selected, not only the identity of the line and its location
must be made available, but also the fact that the line may be part
of a square, and that a circle may be associated with the square,
as indicated in Figure 4. Objects can be associated by grouping.
In Figure 4, the combination of the square and circle are considered
a group.

This example illustrates a few problems that a generalized
structure must be able to resolve: (1) an individual graphie object
must be identifiable, (2) relationships, hierarchical or otherwise,
between objects must be established, (3) properties must be shared
by different objects, and objects must be allowed to have multiple
properties. Since drawings may be modified, deleted, or expanded
in interactive problem solving, data structures must allow for
dynamice growth and dynamic association.

An implementation that meets this basic objective includes
pointers with the data (such as in a list structure), and ties together
—in a closed ring structure—objects sharing a common property.

The use of multiple address pointers within a block of data allows
many properties to be associated with the block. The power of
the multiple ring structure was demonstrated by Ivan Sutherland.?+

Physically, a block 1s a set of contiguous words. A typical block
contains the following items:

® Tink area
TYPE word
® Data area

Link areas contain address pointers that tie together blocks and
by which blocks can be related. The TYPE word is actually a
pointer to a generic block, a block that contains information
relevant to all the blocks of a particular type. The data area may
contain any information about the element that the block repre-
sents. For example, data words can contain coded information
(flags, formats), values of variables, or text. Normally, blocks are
fixed in size, but the system does support blocks having variable-
size data areas.

Rings are closed chains that string together all the data ele-
ments that are associated with each other. The ring pointers are
called links. A link in one block points to a link in another, and

CHEN AND DOUGHERTY ' IBM SYST J

Figure 5 Ring structure of a model

P1 L1

START POINT
END POINT

L

80 on until the last link points back to the first. Every ring has a
ring start called master-link; the rest of the members of the ring
are slave-links. Rings are formed according to certain rules:

* A ring must have one and only one master link, but it may have
any number of slave links.
A link cannot be a member of more than one ring.
A block may be a part of as many rings as it has links.

A block may have any combination of master links and slave
links.

In Figure 5, a data representation (or model) for the square
(sQ1) and circle (c1) of Figure 4 is shown using the ring structure.
A Dblock, called “group,” associates the square and the circle. For
easier readability, the rings in Figure 5 are not connected back to
the starting point. All blocks may be reached from any given block.
The end points of a line are defined in separate point blocks (p1
through p4). The lines (L1 through 14) are actually subordinate to
these points. Thus, if a point is relocated, all connected lines move
with it. The location and radius of the circle are described in block
Cl1.

The system in which this data structure is used contains a set of
subroutines that allows the programmer to build a model, retrieve
information by name from it, modify it, and process this informa-
tion with an application program. This set of data structure sub-
routines is designed specifically for the FORTRAN programmer. They

NOs. 3 & 4 - 1968 AN IMPLEMENTATION SYSTEM

data
structure
system

model
segmentation

can be used to implement any kind of element blocks (programmer-
defined entities), provided structural guidelines are followed.

The system approach discussed in this paper allows the seg-
menting of data and provides a programmed paging technique to
automatically transfer segments between main storage (in a
SYSTEM/360 or 1130) and secondary storage. This feature is required
to handle large quantities of data, which places demands on main
storage far exceeding that available in any general computer sys-
tem.

Address pointers or links must necessarily be symbolic when
the model structure grows in size so that portions of the model are
forced to reside in secondary storage. Under such ecircumstances,
the model structure may be divided into fixed-size segments. Under
the control of the system, one or several segments from different
areas of the model may be in main storage simultaneously.

A “virtual memory” concept® for addressing within the model
structure is used, and access to information is made via simple
address translation using an index register. This concept, in a
SYSTEM/360, for example, using 24 bits as an address pointer, permits
a model to be as large as 16,777,216 bytes, regardless of actual main
storage size.

To support a large data base using the virtual memory con-
cept outlined, disks and drums must be allocated for that purpose
at system initialization time. At that time, the size of a segment is
also specified (or the data structure is segmented by the system
automatically by default).

The segmentation of the model follows these rules:

The data set (or a model structure) resides in a virtual memory.
A data set may not refer to any data outside of this virtual
memory.

At any time, main storage contains at least one segment.

All segments within one model are of the same size.

A segment is relocatable to any part of working main storage.

A block is read into main storage on demand, together with all
other blocks within the same segment. After use, a segment may
be overlaid by another segment. Before the segment is overlaid,
it is written back into secondary storage, so that the copy in
secondary storage is always an updated version.

The virtual memory is normally “transparent.” However, some
control over the segment to which blocks are allocated and the
placement of blocks in the segment is available through subroutine
parameters, so the experienced programmer can increase the
efficiency of the structure.

The use of the data structure and dynamic storage allocation
system relative to geometrical data is now apparent. However it
must be emphasized that the system may be used for other appli-
cations where a complicated file storage and retrieval mechanism
is required. For example, within the pLAN graphics support, panel
files and specification files could be treated as blocks that are con-

CHEN AND DOUGHERTY IBM SYST J

Figure 6 Data structure system

GENERIC
BLOCKS

MODEL
TRAVERSING speanc
SUBROUTINE

SEGMENTATION &
DYNAMIC STORAGE
ALLOCATION ROUTINES

MODEL CONSTRUCTION
& MODIFICATION
SUBROUTINES

- Ity S

MODEL
PROCESSING
SUBROUTINES

HIGH-LEVEL
PROGRAMS

CONSOLE
PROCEDURES

r
|
|
|
|
|
!
{
:
|
|
!
|
|
[

USER DEFINED ROUTINES & PROCEDURES

nected via links. Given the identification of a particular panel file,
the file could then be retrieved together with any number of its
associated specification files. A specification file could be part of
several panels, and a panel could contain several specification files.

Figure 6 shows, at an overview level, the functions of the
system and their relationship to application-dependent programs.
The programmer wants to build a specific model, modify it, retrieve
information from it, and process particular elements or sets of ele-
ments in accordance with his graphies application program. The
model-processing subroutines depend on the application and the
kind of data being placed into the structure. Model-traversing sub-
routines can be considered totally independent of block formats and
contents. Model-building subroutines are almost independent. A
construction subroutine can automatically access a generic block,
find a suitable place in storage, and initialize the specific block.
However, higher-level programs must provide the information
about the relationships among blocks, so that automatic ties be-
tween hierarchical levels can be embedded in the blocks. These
higher-level programs should also interface with console procedure
programs when any action at the graphie display console affects the
model structure.

Summary

A system intended for interactive problem solving (pLaAN) with
added support for graphics applications (pas) may overcome some

NOS. 3 & 4 - 1968 AN IMPLEMENTATION SYSTEM

system
overview

270

of the fundamental problems confronting graphics users. The in-
herent separation of the graphics portion of application programs
simplifies the adapting of existing application programs for use
with graphics devices. The modularizing of the computational
portions of application programs encourages development of open-
ended user libraries of modules that can be executed dynamically
as required. In most cases, graphics programming is done at a high
level, and previously coded display formats can be used as needed.

An experimental set of routines was designed to enable a
programmer to organize a generalized data structure to suit par-
ticular needs. Such a system would allow a model to be segmented,
and a paging scheme could be used to load the segments as they are
needed.

ACKNOWLEDGMENT

The authors wish to acknowledge the helpful contributions, com-
ments, and suggestions by C. B. Morrill and J. G. Sams during the
preparation of the manuscript.

CITED REFERENCES AND FOOTNOTE

1. D. Parker, “Solving design problems in graphical dialogue,” On-Line
Computer Systems, edited by W. J. Karplus, McGraw-Hill Book Company,
New York, New York (1966).

. PLAN (Program Language Analyzer) and pGs have been announced as TYPE
11 programs with full 1BM maintenance and support.

. I. E. Sutherland, “skETcHPAD: A man-machine graphical communication
system,”” Proceedings of the Spring Joint Computer Conference 23, 329-346
(1963).

. J. C. Gray, “Compound data structure for computer-aided design—a
survey,” Proceedings—1967 ACM National Conference, 355-365 (1967).

. L. A. Belady, “A study of replacement algorithms for a virtual storage
computer,” IBM Systems Journal 5, No. 2, 78-101 (1966).

CHEN AND DOUGHERTY IBM SYST J

