
A recent approach  to  representing  relations between entities in a 
graphics  data  structure  has been to store information  as  triples in the 
form  Attribute  (Object) = Value. 

This  paper describes a n  associative technique  for  holding a universe of 
triples  on  auxiliary storage and  then accessing  a triple in response 
to an  inquiry .  

The  paper also shows  how  relational  operations have  been  performed- 
on  an  experimental basis-with PL/I as the language  for the controlling 
program,  using  machine-language  subroutines  to  perform only the 
basic  functions on associative storage. 

INTERACTIVE  GRAPHICS IN  DATA  PROCESSING 

Auxiliary-storage  associative  data  structure for PL/I 
by A. J. Symonds 

Computer  graphics  is  usually  associated  with the interaction of a 
person  with  a complex data base  via  a  display console. The compu- 
tational problem  involved  is to devise a  method of representing  a 
set of related  items of information in such  a  way that, on  demand, 
any subset of related  items can  be transmitted  to  the user, and 
that  the user  can transmit  any desired modification to  the  data 
base. In  this respect, this  situation is common to all types of infor- 
mation  retrieval. The display console user, however, has  the addi- 
tional  demand of a  very  fast response. 

In  designing a data  structure for  computer  graphics, we must 
therefore pay much attention  to a  quick response to inquiries. Also, 
experience has  indicated that  the hierarchical data  structure  often 
used for  retrieval  systems  is  not  adequate to represent  complicated 
three-dimensional  geometry. For computer  graphics, we must  be 
able to represent a.generalieed directed  graph' in  the  data  structure. 

The  data  structure described here  attempts  to achieve these 
aims and was originally conceived for  graphics.  However, this  data 
structure could equally well be used for most  information  retrieval 
applications.  Clearly,  such  a  large, complex data  structure  must 
reside on direct-access storage and must be organized in such a 
way that related  items of information  can  be  extracted  with the 
minimum of disk accesses. 
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Previous  techniques  for modeling objects (for visual  display, 
for  instance)  have been based  on  list structures (including ring 
structures2),  an  item of information  such  as  a  line being represented 
by  a  storage block containing  some  descriptive  information and a 
number of pointers.  One  pointer  might  link the line into a  ring 
composed of all the lines in  the drawing;  others  might  link the line 
to blocks describing its  terminal  points which in  turn  are linked to 
other lines. Thus, we see how a  drawing could be described,  for the 
purposes of visual  display, by a ring-like structure residing in main 
storage.  Further research in graphics  has, however, indicated a 
number of defects in  the ring  technique, of which some important 
ones are: 

The size of the  structure  is limited  by the  amount of main 
storage  available. 
Transferring  a  ring  structure  to auxiliary  storage causes prob- 
lems when extensive  searching of a  ring is required in order 
to locate  a  particular  member.  The possibly large  number of 
auxiliary-storage accesses drastically  increases the search  time. 
The maximum  number of relations (i.e., rings)  for  a data  item 
is equal to  the number of pointers  in the information block. This 
number is often fixed when the system  is designed, thus severely 
limiting the facilities available to a user. Although blocks can 
be  rewritten  dynamically, this requires excessive storage. 

The work described in  this  paper represents the first  phase of a 
project to  evaluate  the possibilities of building  a complex data 
structure  and accessing it, all within the environment of P L / I . ~  As 
a  first step,  an experimental  system,  consisting of subroutines to 
be called from PL/I compiled code, has been built  and is discussed 
here. 

System concepts 

Before  presenting a detailed  account of the  system  implementation, 
we now give an outline of some of the underlying  system  concepts. 

The generalized associative  storage  can be represented  as 

;tructure Location (X) = F (Identifier (X)) (1) 
of data L W  = F(I(X)) 

base where X is a collection of information, I(X) is  a  unique  identifier 
associated  with X, L(X) is the physical  location of X, and F trans- 
forms I(X)  to  L(X). An  example of a hardware  associative  storage 
is found  on  paging  computers  (such  as the IBM SYSTEM/360 Model 
67), where the dynamic  relocation  hardware  converts  a virtual 
address, I, to a  real  address, L, in main  storage. The principal 
difference between  associative and conventional  storage  is that  in 
the former, the location of information is dependent  on the infor- 
mation itself. 

In  1965, Feldman4 suggested that  the information X should  be 
in  the  form of an ordered  triple of binary  numbers,  each of which 
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identifies data associated with it, such that  the meaning would be: 

Attribute (Object) = Value 
A (0) = V 

The  triple represents the basic unit of information and is  stored  in 
associative storage.  A  typical  triple which might be stored in a 
graphics  application is STARTPOINT  (LINE1) = POINTY, where the 
two  items LINE1 and POINT3 are  related by  the fact that POINT3 
is the  starting point of LINE1. The  number of ways a  triple  can  be 
specified by one or more elements is seven, as shown in  Table 1. A 
question mark  indicates that  the particular element in  the triple is 
unspecified. The forms contained in  Table 1 are known as Simple 
Associative Forms (SAF’S) which represent the seven basic ways an 
inquiry  can be made of the store of triples. The result of an inquiry 
can be a Boolean value  indicating existence or nonexistence of a 
triple  satisfying the SAF in  the associative storage. Alternatively, 
the result  can be a collection of items comprising the unknown ele- 
ments in  the SAF (except in  the case where all elements  are specified). 
When two elements in  an SAF are specified, the address of the triple 
in associative storage is found by performing an associative func- 
tion, F, on the specified elements, as  in  Equation 1. 

The problem we face, then, is to map  ordered  pairs of numbers 
(the known elements of a  triple)  into the storage  area  containing the 
universe of triples. We could obviously reserve a cell for each ordered 
pair;  but  this would mean allocating an enormous amount of 
storage, which would then probably be very  sparsely  populated  with 
triples.  A useful mapping  function  must  therefore effectively 

accommodate only the number of triples likely to be encountered in 
real  applications. A suggested method of achieving this is to per- 
form a  binary  operation on the ordered  pair,  generating an address 
that falls inside the associative storage;  this is known as hushing. 
Hashing the two specified elements of a  triple makes it possible to 
locate the triple  immediately. 

A consequence of “compressing” the triples in  this way is that 
more than one pair of items  can  hash to  the same  address, causing 
a situation known as conjiict. In  this case, one triple  can be situated 
at  the hashed address,  and conflicting triples  must occupy spare 
cells in associative storage. In  order to identify conflicting triples, 
all conflicts must be linked  together in a conflict list. 

We have  thus  far considered a  situation where a  pair of known 
items generates only one triple. Suppose the  Attribute  and Object 
are known: obviously there  can  be more than one Value, as  in  the 
following example: 

CHILD  (BILL) = MARY 
CHILD (BILL) = JOHN etc. 

The triples CHILD  (BILL) = MARY, JOHN, etc.,  are called multiple 
hits, and we again have  a  situation where more than one triple  is 
contending for the same cell, whether it be  a cell located at a  hashed 

(1 compress” all possible triples into a smaller space, designed to 
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address or a conflict cell. Multiple  hits are allocated to spare cells in 
associative storage and  are also organized in a list;  thus every hit 
can  be accessed in answer to  an SAF. 

As a further complication, some SAF'S only specify one element, 
A, for example, of a  triple.  Given A, we must  locate all triples con- 
taining this value of A and  extract all the ordered  pairs (0, V). To 
be able to do this, all triples  with  a common element,  whether it be 
A, 0, or V, must be linked together  in  a  ring. 

We  thus see that,  in reality, an associative collection of triples 
can be quite a complicated structure. Also, if the conflict lists 
become too large, this technique  shares  one of the disadvantages of 
list processing, namely, the necessity for  a long search before 
a triple  can  be  found.  The associative storage  must,  therefore, be 
large enough to prevent the buildup of too  many conflicts. 

Suppose we have an associative storage  with N A  cells address- 
able  by  hashing,  containing N T  triples. Then  the probability P of a 
cell having at least one conflict cell attached to it is given by 

P = 1 - [1 + (NT " 1 / N A ) ] [ 1  - ( l / N A ) I N T "  

This  equation  can be used-as an aid in designing associative 
s t o r a g e t o  decide on  the best  values  for the following parameters: 

Ratio of conflict cells to addressable cells 
Number of available  addressable cells 
Number of triples that can be stored before the value of P be- 
comes intolerably  high 

The initial hashing to  1ocat)e an addressable cell in an associative 
storage  can  be achieved by  hardware or programming. Clearly, the 
hashing could be achieved much faster by using hardware. But 
since the likelihood of conflicts exists, it would be necessary to 
execute code to resolve such conflicts. The time required to execute 
this code obscures the  advantage gained by performing the initial 
hashing in a few machine cycles. For this reason, all  implementa- 
tions of this  type of associative storage  have thus  far used program- 
ming to achieve the hashing. We  therefore talk  about "program- 
simulated associative storage." 

Thus  far we have considered a collection of triples which is 
methods of interrogated  by specifying a simple associative form;  Feldman,4J 

interrogation R ~ v n e r , ~ ~ ~  and Johnson' have  all  made  contributions  towards the 
development of an associative language in which inquiries to  the 
data base are made via  the associative FOR statement. For ex- 
ample, 

FOR (A(0) = #X), 
BEGIN; 
(procedure-1) ; 
END ; 
ELSE  BEGIN; 
(procedure-2) ; 
E N D  ; 



where #X indicates that  the items  satisfying the “value” ele- 
ment of the SAF be successively allocated to  the previously free 
variable X; procedure-1 is then executed once for each X value. 
Should there be no hits,  the ELSE clause is invoked. 

An obvious extension is to link FOR statements  together,  the 
output of one being part of the  input  to  the next: 

FOR (A (0) = #x), 
AND FOR (A” (Y) = #z), 
BEGIN; (procedure-1) ; END; 
ELSE BEGIN; (procedure-2) ; END: 

The second FOR statement has a bound  variable X, as one of the 
elements in  its  argument.  This means that all the  items allocated 
to X are successively substituted for X in  the  argument,  and  the 
FOR statement is executed for each resulting SAF. The results of 
the successive iterations of the second FOR statement  are all 
allocated to  the unbound  variable #Y, but a  link  is preserved be- 
tween each item Xi in X, and  all the Y items  generated  by the SAF 

A’ (Xi) = #Y. In other words, we keep t,rack of the X value corre- 
sponding to each Y value. Similarly, the  third FOR statement pro- 
duces a  number of Z values corresponding to each Y value, which 
in turn corresponds to  an X value. The result of executing the 
linked FOR statements is the creation of a set of correspondences, 
where a correspondence is defined as a unique  value of the ordered 
list (X, Y, Z) in this example. Procedure-1 is then executed once for 
each correspondence. 

Having  established the idea of extracting  information  from the 
associative storage in  the form of a set of correspondences, features 
to improve the sophistication of the inquiry  can be added.  A few 
examples are given below. 

The  argument of a FOR statement can be a number of SAF’S 

linked by Boolean connectives, e.g., 

FOR  (A (0) = #X OR A’ (0) = #X AND L (x) = M), BEGIN;. . . 
Also, by giving a triple a unique identifier and by  nesting SAF’S, 

information  can be stored in associative storage  as an ordered n- 
tuple. For example, 

DATE (SPOUSE (BILL) = MARY) = 1948 

Here the relation SPOUSE (BILL) = MARY can be considered to 
represent an  item of information,  namely  a  marriage, and  the 
5-tuple  indicates the  date BILL and MARY were married. 

It is possible to process more than one set of correspondences 
simultaneously. Suppose we have  two  sets A and B of correspond- 
ences,  whose elements are ai (i = 1 to N A )  and bj  ( j  = 1 to N B )  
respectively; then we can  enter  the specified procedure once for 
each combination (ui, bi) of correspondences in  the sets A and B. 
For example, if  we wish to display all the lines and points in a 
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drawing in several different windows, we would have: 

FOR (WINDOW (DRAWING) = #w), 
F1: BEGIN; 
FOR  (LINE  (DRAWING) = #L), 
AND  FOR  (STARTPOINT (L) = #P OR ENDPOINT (L) = #I?), 
F2: BEGIN; 
(display-procedure) ; 
END F2; 
END 3’1; 

The display  procedure  is iterated for  each  pair of correspondences 
(W) and (L, P) by executing FOR statements recursively. 

Above, we considered a  set of correspondences as a  set of 
ordered  n-tuples ; we can  alternatively consider the collection of all 
the different values of a  particular  element  in  a correspondence as 
a  set in  its own right. In  the above example, we can consider all the 
different values of L  as  a  set, and for some problems this is  a  fruitful 
approach. It is  interesting to note that Childs* has  approached the 
entire  problem of relations in terms of set-theoretic  operations. 
This  approach  represents all triples  with  a  particular attribute as a 
set of ordered  pairs, but does not explicitly define the correspond- 
ence between elements of two or more such  sets. 

To date,  two versions of an associative language  have been 
implemented using hashing  techniques to access a collection of 
triples.  Feldman and  Rovner5  have designed the LEAP language 
involving associative extensions to ALGOL, using the VITAL compiler- 
compiler on the T X ~  at MIT Lincoln Laboratories;  Johnson7  has 
used the S Y S T E M / ~ ~ O  macro assembler as a preprocessor to  build a 
Relational Processing Language (RPL) for  a  SYSTEM/^^ version 

Thus  far we have discussed ways of manipulating  a  relational 
auxiliary data  structure residing in program-simulated associative storage, 
storage without concerning ourselves with the details of its implementation. 

considerations Rovner6  made the first investigations into  putting  the universe 
of triples  on an auxiliary  storage device, when he considered the 
operation of such a system in a  paged  environment, and Johnson 
has  extended  his work7 to propose a design for a system that does 
its own paging. The ideas of these  authors  have been taken  as a 
basis for the system discussed in  this paper, and a  summary of their 
conclusions is now given. 

The collection of triples  is  segmented into fixed-size blocks on 
the auxiliary  storage device, and  the algorithm to decide where a 
given triple  is  stored  is  as follows. Consider the  triple (A, 0, V); the 
attribute (or access-word) determines the cell that holds the triple, 
and  the block can  then be brought into main storage.  A is then 
hashed  with 0 (check-word) to find the address  within the block in 
which the triple resides (assuming no conflicts or multiple  hits). 
Thus, we see that all triples  with the same access-word  will be 
found in  the same block. However, this scheme only allows speedy 
access to a  triple if the following SAF’S are specified: 

Of SKETCHPAD 111. 
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A (0) = V 
A (0) = ? 
A (?) = ? 

To satisfy  a  request specifying any of the  other SAF'S might  require 
many  auxiliary-storage accesses to search the associative  storage 
before the required  triple could be  located.  Rovner's  solution was 
to  represent the universe of triples in  three different ways: 

Access-word  Check-word 
A-space A 0 
O-space 0 V 
V-space V A 

A  typical  triple (A, 0, V) thus resides at  three different locations 
in associative  storage. It can  be  located  either  by using A as  the 
access-word and  hashing A  with 0, or using 0 as access-word and 
hashing  with V, or V as access-word and hashing  with A. The 
answer to  any SAF can  be  found  in  one access to  a block in  the 
appropriate  representation of the  store of triples. 

System implementation 

Using the concepts discussed thus  far, we now consider the imple- 
mentation of the  data structure. 

A  schematic  diagram of the auxiliary  storage  organization as 
currently  implemented  on the IBM 2311 disk  storage  unit is shown in 
Figure 1. It should  be  noted  that-although the items A, 0, and V 
represent  Attribute, Object, and Value respectively in  the  figure" 
there is in  fact no  restriction  on the use of an  item  in  the associative 
map. 0 could occupy the Value  position in  another  triple, for 
example. The associative  storage is segmented into fixed-length 
blocks which can  be  any multiple of 4096 bytes up  to a maximum 
of 32,768. A brief description of the logical sections of the storage 
follows. 

The associative  map  contains the collection of triples,  which is 
triplicated  for the reasons  given  above. Each block is divided up 
into  32-byte cycles, which are  formatted  as shown in Figure 2. 
Addresses generated by hashing will address  only the leading cell 
of the cycle. The second  10-byte cell is reserved  for conflicts, and 
the 6-byte cells are reserved  for  multiple  hits.  A  description of the 
cells, as  formatted  in  Figure 2, follows. 

Cell 1. This is an addressable cell that has been assigned to a  triple. 
Twenty-one  bits  are  reserved  for the elements of a  triple,  which 
means that  there is,  theoretically, a capacity  for  two million unique 
items  and  attributes  in associative  storage. The 2-byte  link  pointer 
chains  triples  with the same access word. The head of this ring is 
found at  a  location, L, in  the block where 

L = R (A/[2**N]) * [2** (NB - N)] + 16 

NOS. 3 L 4 . 1968 ASSOCIATIVE DATA STRUCTURE 



Figure 1 Relational structure on auxiliary  storage 
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Therefore, 2**N 32-byte cycles have a slightly different format 
from that shown in Figure 2, namely 

bytes 0 - 9: addressable cell 
bytes 10 - 15: six byte cell 
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Figure 2 Format of 32-byte cycle in associative map 
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Cell 2. This  is  a  free  6-byte cell which is  chained into  the free  list of 
6-byte cells. When  a  multiple-hit situation arises due to  the addition 
of a  triple, the first cell on  the free  list  is  removed and given the 
format shown in Cell 4 to represent the addition of the triple. 

Cell 3. This cell is  not directly  addressable by  hashing  and  is re- 
served  for a triple that hashes to  the address of an already  occupied 
cell. This conflict cell is  then inserted in a  list that links all triples 
hashing to  the same  address. The particular conflict cell shown in 
Figure 2 is also the head of a  multiple-hit  list. This serves to  identify 
the access-word and check-word, and points to  the list of 6-byte cells 
containing the multiple  semantic words. 

Cell 4. This  is a  member of a  multiple-hit  list which is chained  from 
a 10-byte cell at   i ts  head. 

A free  10-byte cell is a member of the 10-byte free list and  is 
similar to  the 6-byte  free cell. Each  distinct block on auxiliary 
storage  contains its own free  list of 10-byte and 6-byte cells. All 
conflicts and multiple hits  are  then  stored  in  the  same block as the 
cell located at  the original hashed  address.  Initially, the associative 
map  is  formatted  by  constructing completely empty blocks and 
writing them  out  to disk. At  this time, the number of access-words 
to  be  allocated to each block is defined, usually  larger  for A-blocks 
than for 0- or V-blocks. Adding a  triple  then requires accessing all 
three  parts of the associative  map to  store  it.  The scheme described 
is based on  the  assumption  that  it  is preferable to  have a t  worst six 
disk accesses for updating the associative  map in  order  to be  able to 
satisfy an SAP with only one access. 
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The hashing scheme is based on exclusive ORing  of the access- 
word and check-word, and  then masking and shifting the result to 
lie on  a 32-byte boundary  within  a block. 

The main  problem arising from  this  implementation of the 
associative map occurs when the  number of triples  involving a 
particular access-word becomes so large that  the block is filled. 
Clearly, there  must  be  an overflow procedure.  Johnsong  has sug- 
gested that  the associative map be completely unstructured in- 
itially,  and that-as triples  are created-access-words are allocated 
to blocks depending on the observed density of triples. Also, when 
the conflict population increases in a  particular block beyond a 
certain  limit,  triples  are  automatically  redistributed between the 
original block and  an additional block, which is  dynamically allo- 
cated.  This  system is obviously attractive, because a user does not 
have to make a  prediction as  to  what  the  triple  density  is likely to 
be before setting  up  the associative storage. However, the system 
adds considerably to  the  task of correlating the value of an access- 
word with  the address of the block to which it is allocated. 

An alternative  approach would be to devise a means to distribute 
triples as uniformly as possible over the  entire associative map, 
and  to  handle overflow more crudely  as an exception condition. As 
yet,  the overflow problem has  not been approached,  although it is 
recognized that a useful system  must  handle it. However, some 
of Johnson’s proposals have been incorporated in  the design of the 
present  system, so that a more open-ended associative map  can  be 
constructed in  the  future. As the allocation of access-words to 
blocks becomes more random,  a table-lookup procedure is required 
to correlate an access-word value  with the location of a block on  a 
disk. Also, as  the number of access-words per block becomes 
variable, so do the hashing  parameters.  Thus, each block must 
carry  information  within itself to determine the hashing  procedure 
needed to calculate the address of a triple. 

The semantic table contains  pointers to  the PL/I data aggregates 
corresponding to  the  item  in  the associative map. Each  entry also 
has a type field which can be used to  indicate  the generic class to 
which an  item belongs. The  value of the identifier describing an 
item  in  the associative map  is used to index the semantic table  in 
order to find the appropriate  entry. 

The  data  table is  regarded  as  a contiguous store  segmented into 
fixed-length blocks. There is provision in  the semantic  table for 
addressing up to sixteen million words of data. Storage in  the  data 
table is allocated to items  as required, and  standard  garbage 
collection techniques are used when necessary. 

The translation  table is  found a t  a predefined location  on 
auxiliary  storage,  is  read in before associative processing can  take 
place, and is  written  back before closing down the system.  This 
table  contains  the following housekeeping information necessary 
for  system  operatmion: 

Disk addresses of the  start of different storage  areas 
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Next available identifier to be allocated to a data  item 
Next  free location in  data table 
Tables linking access-words with block addresses when we have 
dynamic allocation of associative map blocks 

Up to  this point, we have described a data item  by  a 21-bit 
binary number, which is used to identify it in associative storage. 
This is an  adequate representation for operations within a com- 
puter or for communications from one  computer to another. How- 
ever, a  human being a t  a display terminal  may wish to access an 
item  in the associative storage  by specifying its identifier directly. A 
convenient way for him to do this would be to  activate  a  light-button 
containing a  character-string mnemonic for the  item or to  type  the 
mnemonic from the keyboard.  Thus, we need a  table to relate a 
character  string to  an internal identifier; this  table, called hash 
dictionary  table, functions as follows. The string is stored  in the 
data table, and an identifier is allocated to  it (string-id). The  hash 
dictionary  table resides on auxiliary storage, and the address of an 
8-byte cell within it is computed by hashing the character  string. 
The string-id  and the internal-id to which it corresponds are  stored 
in  this cell so that, given the string itself, we can find the  internal 
identifier to which it corresponds. The hashing technique used a t  
the moment is to add significant bytes of the string to an accumula- 
tor  (the number of bytes depending on the size of the hashed dic- 
tionary  table), mask nonsignificant bits  and use the result  as the 
hashed address. Conflict is handled in  an analogous fashion to  the 
associative map. 

Basic functions to enable the PL/I user to manipulate the  data 
structure  are now described. Before inquiries can be made of a data 
structure, it must first be built. The PL/I subroutine to store some 
information is 

CALL ALLOCID (id-variable, type,  data). 

The PL/I major structure specified by  “data” is stored  in  the  data 
table,  and  an identifier is allocated to  the  data  item  and  returned 
in “id-variable.” Having allocated identifiers to items of data, we 
can then insert  triples  into,  and delete them from, the associative 
map  by issuing respectively 

CALL A”AE(F: (A, 0, v) 
CALL AMDELTE (A, 0, v) 
Having put some data  into associative storage  and  stored  some 
triples that relate data items, we need to devise a  method  for 
extracting correspondences. At  the moment, this is accomplished 
entirely  by calls to subroutines  written in assembly language, 
which perform the primitive  functions  from which  complex logical 
inquiries can be built.  No effort has  yet been made to design a 
meta-language that can be translated  into PL/I source code by a 
preprocessor such  as M L / I , ~ ~  or interpreted a t  execution time  by a 
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syntax analyzer. It is hoped that experience with  this  system will 
give  some  insight into a  suitable  structure for  a meta-language 
based on FOR statements. For clarity, FOR statements will be used 
in  the following discussion. 

The execution of an associative FOR statement proceeds in  two 
separate phases. The first phase involves the construction of a set 
of correspondences in main  storage  by  repeated accesses to  the 
associative storage, and  the second phase is the iteration  through 
a processing routine  for each correspondence in  the  set.  The corre- 
spondences are  built in  an area called Correspondence  Storage. This 
is  similar to controlled storage in  the formal PL/I sense, with the 
difference that, once allocated, it expands  automatically  from 2048 
bytes, in steps of 2048, up  to a  maximum of 32,768 bytes, as more 
space is required for correspondences. The calls to allocate and 
delete Correspondence Storage  are CALL BUILDCS and CALL 
RELCS, respectively. 

A set of correspondences is a set of ordered  lists of elements. 
We shall define the  total  number of elements in a correspondence 
as  its depth, and  the position of an element within  a correspondence 
as the element’s level. 

Let us consider the  structure  that is built up  in Correspondence 
Storage  as a result of the following string of  FOR statements. 

1) FOR (A (0) = #x), 
2) AND FOR (A’ (#Y) = x), 
3) AND FOR (L (x) = Y OR L’ (x) = Y), 

BEGIN;  (proc-1) ; END : 
ELSE BEGIN; (proc-2) ; END ; 

The  structure is shown schematically in Figure 3. The SAF serving 
as  argument  for FOR statement 1 has Attribute  and Object as 
specified elements;  therefore we access A-space (using A as access- 
word) in  the associative map and hash  A and 0 to find the multiple 
hit list of all  triples  A (0) = ?. The three  hits X1, X,, X3 are allo- 
cated to level-1 of the correspondence structure.  They  are also 
linked in a level-list and ordered in ascending sequence of identifier 
value, for reasons which Kill become apparent  later. 

Execution of the second FOR statement involves values of X; 
we thus proceed through  the ring of X’s, substituting the values of 
Xi (i = 1, 2, 3) in  turn.  Starting  with  the first item  in level-1, 
namely X1, we first satisfy the SAF A’ (?) = X,. Here the specified 
elements occupy the Value and  Attribute positions in  the  triple 
so that we access V-space with X1 as access-word. The multiple hit 
list in  the relevant block is found  by hashing as before. YI1,  Y12, and 
Y1, are obtained  from  this  multiple  hit list and allocated to  the 
level-2 list  in  the correspondence structure. The above  procedure 
is then repeated  for X, and X, using these values to locate the 
appropriate block in V-space. We can see immediately that ordering 
the  items  in level-list 1 will tend to reduce the  number of disk- 



Figure 3 Correspondence structure 
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The resulting  set of correspondences is a  linear  graph that can be 
viewed in two  distinct u'ays.  We can consider the tree  formed by 
links between different levels, where each branch  in  the  tree forms 
a correspondence. Alternatively, we can consider a particular level 
as a  separate  set  in  its own right  and ignore correspondence links 
between levels. In  the following discussion, we  confine ourselves to 
the correspondence viewpoint, because this  is  the only approach to 
relational processing that has thus  far been investigated in  this work. 

Once constructed,  a  set of correspondences can become the 
argument of a  function which operates successively on  each ele- 
ment of the set.  The algorithm for executing a processing routine 
once for each set member is  as follows. The  set of correspondences 
is accessed at  the lowest level, starting  at  the element at  the head 
of the lowest level-list. The  structure is designed so that we can 
back up through successive levels of each branch  in  the tree, as 
far  as level-1; thus  by backing up  in  this way, we can  extract  an 
individual correspondence from  the set in  the form of an ordered 
list,  starting from the lowest level. By traversing the lowest level- 
list,  each correspondence can be extracted  in  turn  and made 
available to a processing routine. 

In  the example, the first operation  on the correspondence struc- 
ture consists of two existence tests connected by a Boolean OR. 
Each correspondence is processed in  turn;  the appropriate  elements 
are  inserted  into each SAF, and  the associative map  is  tested for  the 
existence of the resulting  triples. We see in Figure 3 that  the corre- 
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spondence terminating  in Y12 does not meet the specified conditions 
and is  therefore  deleted  from the structure.  After the Boolean 
operations, a test is made to see if any correspondences are  left in 
the  set; if there  had been none in  the example, the ELSE clause 
would have been executed. In  fact, correspondences are  still 
present, so proc-1 is then performed on  each correspondence in 
turn. 

The logic described above  can be effected from a PL/I main pro- 
gram, using subroutines to perform the primitive  functions on  the 
associative storage  and correspondence structure. A controlling pro- 
gram  written  in PL/I is used to  traverse  the level lists  in the corre- 
spondence structure  and pass control to  the processing routine. 
Let  us first consider the operation of the controlling program. 

A single controller (FOREACH) called from the main PL/I pro- 
gram schedules entry  to  the program (RTN, say) designed to  operate 
on  each correspondence in  the structure,  and  the flow of control 
from one routine  to  another is shown in Figure 4. The controller 
extracts correspondences individually from the set,  and calls RTN 
once for each correspondence. The elements of the particular 
correspondence are made available to RTN, as well as further infor- 
mation which may  have been passed from the main PL/I program. 
When the end of the set of correspondences is detected  (i.e., the 
end of the lowest level-list is found), the controller checks that  at 
least one member of the set  remains and relays the result  back to 
the main  program.  This is to enable an ELSE procedure to be in- 
voked (proc-2 in  the example) when the  set is null. 

The user’s processing routine (RTN) is written  with only one 
correspondence in mind and  can perform a number of different 
functions. First, it can access the associative storage or correspond- 
ence structure using the primitives  provided.  The  latter  have been 
defined as follows: 

One element of a triple  is specified. The  function is to extract 
the unspecified items  from the associative map in  the  form of 
ordered pairs, and  then  to  add one member of each  pair to  the 
set of correspondences at a specified level. The second member 
of the  pair is added to  the correspondence structure  at  the next 
level down. 
Two  elements of a  triple  are specified. The unknown element 
(several elements in  the case of multiple  hits)  is  extracted  from 
the associative map  and  added  to  the correspondence structure 
at a specified level. 
Test existence of a triple in  the associative map when all three 
elements  are specified. The result  is Boolean depending on the 
result of the  test. 
Test existence of a triple when one element  is unspecified. 
Test existence of a triple when two  elements are unspecified. 

A standard  routine decides the section of the associative map to be 
accessed (A, 0, or V) on  the basis of which items  in a triple  are 
specified and which are  not. Once the access-word, check-word, and 
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Figure 4 Flow of control  to process a FOR  statemenl 
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semantic-word  are  known, and  the  appropriate block brought  into 
main  storage,  operation of the primitives  is  independent of which 
section of the associative  map is being accessed. A final primitive, 
which can be called by ItTN, deletes the correspondence under con- 
sideration  from the set.  This  might  be called when certain Boolean 
operations  indicate that  the particular correspondence does not 
meet the conditions defined in a FOR statement.  Results of exist- 
ence tests  can be combined, using the Boolean facilities of PL/I, to  
create logical tests of any complexity  whatever. 

The user  routine  can itself contain  relational  statements,  as the 
controller is a PL/I procedure  with the  attribute RECURSIVE. 

Finally, the user routine  can  perform an application-dependent 
function on a set of correspondences. An example of this might 
occur in a  graphics  environment where a set of correspondences 
defines a  drawing,  each  individual correspondence defining a  line 
and  its  terminal points. To display the drawing, a user would 
simply  write  t'he code necessary to convert the coordinates of two 
points, and  the  parameters of the line  connecting them,  to display 
orders  for  a  cathode-ray tube.  Retrieving all the interconnected 
elements of the drawing and  entering  the display  program  for  each 
element would be accomplished by relational statements. 

The processing routine  just described performs  calculations on 
point  coordinates and line parameters;  but  in  our discussion of 
correspondences, we have  thus  far only considered accesses to  the 
associative map of triples. Here  an  item of data is  represented 
simply by a  binary  identifier, and  this is also its only  representation 
in  the correspondence structure.  Thus, before processing can take 
place, the  data corresponding to  each  node in  the current corre- 
spondence  must  be  made  available to  the processing program. 

Such data  are  stored  in data storage, which is  analagous to 
correspondence storage,  and  the  data  .are  brought  into main 
storage,  a level a t  a  time,  in  two  stages.  First, the level-list is tra- 
versed and  semantic  table look-ups are performed  for  each  member 
to  obtain  the  pointer  to  the  appropriate location in  the  data  table. 
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The list is then traversed again, and  the items of data are  trans- 
ferred from the  data  table  to  data storage. Duplication of identifier- 
values in different members of a level-list does not result in dupli- 
cation of the  data  in  data storage. We see again that ordering the 
identifiers in each level-list tends to reduce the number of disk 
accesses to  the semantic  and data tables. 

Figure 3 shows  how the node Y3, in the correspondence structure 
relates to  its binary identifier, its type,  and the  data  it represents. 

summary 
A data  structure  to enable relational operations to be performed 
from PL/I has been implemented under the SYSTEM/~W Operating 
System (os/aso) using a 2311 disk unit  as the storage medium for 
associative storage. At present, a user manipulates the  data struc- 
ture by means of subroutine calls,  using a well-defined algorithm 
to construct  them from a number of high-level FOR statements. 
They also enable him to access an auxiliary-storage-based data 
aggregation without explicitly requesting disk input/output. This 
work represents the first phase of an investigation into  relational 
extensions to  PL/I. 

Future work  could include the design of a command language 
which  would enable the user to execute, via  a display console,  on- 
line relational statements of the  type described. An attempt could 
be made to solve a  real problem involving the manipulation of a 
large data base with complex relations between its components; the 
objective being to  test feasibility of this  approach to information 
retrieval. In addition, operation of the present system could  be  im- 
proved, particularly with regard to  T. E. Johnson’s proposals for 
handling the overflow problem. It would  also  be desirable to extend 
the facilities offered in the present system to include set-theoretic 
operations and the ability to store information in  the form of n- 
tuples. 
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