A recent approach lo representing relations belween entities in a
graphics data structure has been to store information as triples in the
form Atiribute (Object) = Value.

This paper describes an associative technique for holding a universe of
triples on auziliary storage and then accessing a triple in response
to an inquiry.

The paper also shows how relational operations have been performed—
on an experimental basts—with PL/I as the language for the controlling
program, using machine-language subroutines to perform only the
basic functions on associative storage.

INTERACTIVE GRAPHICS IN DATA PROCESSING

Auxiliary-storage associative data structure for PL/I
by A. J. Symonds

Computer graphies is usually associated with the interaction of a
person with a complex data base via a display console. The compu-
tational problem involved is to devise a method of representing a
set of related items of information in such a way that, on demand,
any subset of related items can be transmitted to the user, and
that the user can transmit any desired modification to the data
base. In this respect, this situation is common to all types of infor-
mation retrieval. The display console user, however, has the addi-
tional demand of a very fast response.

In designing a data structure for computer graphics, we must
therefore pay much attention to a quick response to inquiries. Also,
experience has indicated that the hierarchical data structure often
used for retrieval systems is not adequate to represent complicated
three-dimensional geometry. For computer graphics, we must be
able to represent a generalized directed graph!in the data structure.

The data structure described here attempts to achieve these
aims and was originally conceived for graphics. However, this data
structure could equally well be used for most information retrieval
applications. Clearly, such a large, complex data structure must
reside on direct-access storage and must be organized in such a
way that related items of information can be extracted with the
minimum of disk accesses.

NOS. 3 & 4 - 1968 ASSOCIATIVE DATA STRUCTURE

structure
of data
base

Previous techniques for modeling objects (for visual display,
for instance) have been based on list structures (including ring
structures?), an item of information such as a line being represented
by a storage block containing some deseriptive information and a
number of pointers. One pointer might link the line into a ring
composed of all the lines in the drawing; others might link the line
to blocks describing its terminal points which in turn are linked to
other lines. Thus, we see how a drawing could be described, for the
purposes of visual display, by a ring-like structure residing in main
storage. Further research in graphics has, however, indicated a
number of defects in the ring technique, of which some important
ones are:

® The size of the structure is limited by the amount of main
storage available.
Transferring a ring structure to auxiliary storage causes prob-
lems when extensive searching of a ring is required in order
to locate a particular member. The possibly large number of
auxiliary-storage accesses drastically increases the search time.
The maximum number of relations (i.e., rings) for a data item
is equal to the number of pointers in the information block. This
number is often fixed when the system is designed, thus severely
limiting the facilities available to a user. Although blocks can
be rewritten dynamically, this requires excessive storage.

The work deseribed in this paper represents the first phase of a
project to evaluate the possibilities of building a complex data
structure and accessing it, all within the environment of pL/1.? As
a first step, an experimental system, consisting of subroutines to
be called from pL/1 compiled code, has been built and is discussed
here.

System concepts

Before presenting a detailed account of the system implementation,
we now give an outline of some of the underlying system concepts.
The generalized associative storage can be represented as

Location (X) = F (Identifier (X)) 4]
LX) = FAX)

where X is a collection of information, I(X) is a unique identifier
associated with X, L(X) is the physical location of X, and F trans-
forms I(X) to L(X). An example of a hardware associative storage
is found on paging computers (such as the 1BM sYSTEM/360 Model
67), where the dynamic relocation hardware converts a virtual
address, I, to a real address, L, in main storage. The principal
difference between associative and conventional storage is that in
the former, the location of information is dependent on the infor-
mation itself.

In 1965, Feldman* suggested that the information X should be
in the form of an ordered triple of binary numbers, each of which

SYMONDS IBM SYST J

identifies data associated with it, such that the meaning would be:

Attribute (Object) = Value
AO)=YV

The triple represents the basic unit of information and is stored in
associative storage. A typical triple which might be stored in a
graphics application is STARTPOINT (LINE1) = POINTS3, where the
two items LINEL and POINTS3 are related by the fact that POINT3
is the starting point of LINE1. The number of ways a triple can be
specified by one or more elements is seven, as shown in Table 1. A
question mark indicates that the particular element in the triple is
unspecified. The forms contained in Table 1 are known as Simple
Associative Forms (sAF¥’s) which represent the seven basic ways an
inquiry can be made of the store of triples. The result of an inquiry
can be a Boolean value indicating existence or nonexistence of a
triple satisfying the sAF in the associative storage. Alternatively,
the result can be a collection of items comprising the unknown ele-
ments in the sAr (except in the case where all elements are specified).
When two elements in an saF are specified, the address of the triple
in associative storage is found by performing an associative fune-
tion, ¥, on the specified elements, as in Equation 1.

The problem we face, then, is to map ordered pairs of numbers
(the known elements of a triple) into the storage area containing the
universe of triples. We could obviously reserve a cell for each ordered
pair; but this would mean allocating an enormous amount of
storage, which would then probably be very sparsely populated with
triples. A useful mapping function must therefore effectively
“compress” all possible triples into a smaller space, designed to
accommodate only the number of triples likely to be encountered in
real applications. A suggested method of achieving this is to per-
form a binary operation on the ordered pair, generating an address
that falls inside the associative storage; this is known as hashing.
Hashing the two specified elements of a triple makes it possible to
locate the triple immediately.

A consequence of ‘“compressing’’ the triples in this way is that
more than one pair of items can hash to the same address, causing
a situation known as conflict. In this case, one triple can be situated
at the hashed address, and conflicting triples must ocecupy spare
cells in associative storage. In order to identify conflicting triples,
all conflicts must be linked together in a conflict list.

We have thus far considered a situation where a pair of known
items generates only one triple. Suppose the Attribute and Object
are known: obviously there can be more than one Value, as in the
following example:

CHILD (BILL) = MARY
CHILD (BILL) = JOHN etc.

The triples CHILD (BILL) = MARY, JOHN, etc., are called multiple
hits, and we again have a situation where more than one triple is
contending for the same cell, whether it be a cell located at a hashed

NOos. 3 & 4 - 1968 ASSOCIATIVE DATA STRUCTURE

Table 1

Specifying triples

AO)=V
A@®) =V
A@®)y =17
AO)=1
7(?)y =V
P(0)=V
7(0) =1

methods of
interrogation

address or a conflict cell. Multiple hits are allocated to spare cells in
associative storage and are also organized in a list; thus every hit
can be accessed in answer to an SAF.

As a further complication, some saF’s only specify one element,
A, for example, of a triple. Given A, we must locate all triples con-
taining this value of A and extract all the ordered pairs (O, V). To
be able to do this, all triples with a common element, whether it be
A, O, or V, must be linked together in a ring.

We thus see that, in reality, an associative collection of triples
can be quite a complicated structure. Also, if the conflict lists
become too large, this technique shares one of the disadvantages of
list processing, namely, the necessity for a long search before
a triple can be found. The associative storage must, therefore, be
large enough to prevent the buildup of too many conflicts.

Suppose we have an associative storage with N4 cells address-
able by hashing, containing N » triples. Then the probability P of a
cell having at least one conflict cell attached to it is given by

P=1—[1+4 \Nr —1/N)I1 — (/N7

This equation can be used—as an aid in designing associative
storage—to decide on the best values for the following parameters:

Ratio of conflict cells to addressable cells

Number of available addressable cells

Number of triples that can be stored before the value of P be-
comes intolerably high

The initial hashing to locate an addressable cell in an associative
storage can be achieved by hardware or programming. Clearly, the
hashing could be achieved much faster by using hardware. But
since the likelihood of conflicts exists, it would be necessary to
execute code to resolve such conflicts. The time required to execute
this code obscures the advantage gained by performing the initial
hashing in a few machine cycles. For this reason, all implementa-
tions of this type of associative storage have thus far used program-
ming to achieve the hashing. We therefore talk about “program-
simulated associative storage.”

Thus far we have considered a collection of triples which is
interrogated by specifying a simple associative form; Feldman,*:5
Rovner,* ¢ and Johnson” have all made contributions towards the
development of an associative language in which inquiries to the
data base are made via the associative FOR statement. For ex-
ample,

FOR (A(0) = #X),
BEGIN;
(procedure-1);
END;

ELSE BEGIN;
(procedure-2);
END;

SYMONDS IBM SYST J

where #X indicates that the items satisfying the “value” ele-
ment of the sAF be successively allocated to the previously free
variable X; procedure-1 is then executed once for each X value.
Should there be no hits, the ELSE clause is invoked.

An obvious extension is to link FOR statements together, the
output of one being part of the input to the next:

FOR (A (0) = #X),

AND FOR (A’ (X) = #Y),

AND FOR (A" (YY) = #Z),
BEGIN; (procedure-1); END;

ELSE BEGIN; (procedure-2); END:

The second FOR statement has a bound variable X, as one of the
elements in its argument. This means that all the items allocated
to X are successively substituted for X in the argument, and the
FOR statement is executed for each resulting sar. The results of
the successive iterations of the second FOR statement are all
allocated to the unbound variable #Y, but a link is preserved be-
tween each item X ; in X, and all the Y items generated by the sar
A’ (X,) = #Y. In other words, we keep track of the X value corre-
sponding to each Y value. Similarly, the third FOR statement pro-
duces a number of Z values corresponding to each Y value, which
‘in turn corresponds to an X value. The result of executing the
linked FOR statements is the creation of a set of correspondences,
where a correspondence is defined as a unique value of the ordered
list (X, Y, Z) in this example. Procedure-1 is then executed once for
each correspondence.

Having established the idea of extracting information from the
associative storage in the form of a set of correspondences, features
to improve the sophistication of the inquiry can be added. A few
examples are given below.

The argument of a FOR statement can be a number of sAF’s
linked by Boolean connectives, e.g.,

FOR (A (O) = #X OR A’ (0) = #X AND L (X) = M), BEGIN;...

Also, by giving a triple a unique identifier and by nesting sA¥’s,
information can be stored in associative storage as an ordered n-
tuple. For example,

DATE (SPOUSE (BILL) = MARY) = 1948

Here the relation SPOUSE (BILL) = MARY can be considered to
represent an item of information, namely a marriage, and the
5-tuple indicates the date BILL and MARY were married.

It is possible to process more than one set of correspondences
simultaneously. Suppose we have two sets A and B of correspond-
ences, whose elements are a; (# = 1 to N4) and b; (f = 1 to Np)
respectively; then we can enter the specified procedure once for
each combination (a;, b;) of correspondences in the sets 4 and B.
For example, if we wish to display all the lines and points in a

NOS. 3 & 4 - 1968 ASSOCIATIVE DATA STRUCTURE

auxiliary
storage
considerations

drawing in several different windows, we would have:

FOR (WINDOW (DRAWING) = #W),

F1: BEGIN;

FOR (LINE (DRAWING) = #L),

AND FOR (STARTPOINT (L) = #P OR ENDPOINT (L) = #P),
F2: BEGIN;

(display-procedure);

END F2;

END F1;

The display procedure is iterated for each pair of correspondences
(W) and (L, P) by executing FOR statements recursively.

Above, we considered a set of correspondences as a set of
ordered n-tuples; we can alternatively consider the collection of all
the different values of a particular element in a correspondence as
a set in its own right. In the above example, we can consider all the
different values of L as a set, and for some problems this is a fruitful
approach. It is interesting to note that Childs® has approached the
entire problem of relations in terms of set-theoretic operations.
This approach represents all triples with a particular attribute as a
set of ordered pairs, but does not explicitly define the correspond-
ence between elements of two or more such sets.

To date, two versions of an associative language have been
implemented using hashing techniques to access a collection of
triples. Feldman and Rovner® have designed the LEap language
involving associative extensions to ALGOL, using the VITAL compiler-
compiler on the Tx2 at mrr Lincoln Laboratories; Johnson” has
used the sYSTEM/360 macro assembler as a preprocessor to build a
Relational Processing Language (rrr) for a sYSTEM/360 version
of SKETCHPAD III.

Thus far we have discussed ways of manipulating a relational
data structure residing in program-simulated associative storage,
without concerning ourselves with the details of its implementation.

Rovner® made the first investigations into putting the universe
of triples on an auxiliary storage device, when he considered the
operation of such a system in a paged environment, and Johnson
has extended his work?” to propose a design for a system that does
its own paging. The ideas of these authors have been taken as a
basis for the system discussed in this paper, and a summary of their
conclusions is now given.

The collection of triples is segmented into fixed-size blocks on
the auxiliary storage device, and the algorithm to decide where a
given triple is stored is as follows. Consider the triple (A, O, V); the
attribute (or access-word) determines the cell that holds the triple,
and the block can then be brought into main storage. A is then
hashed with O (check-word) to find the address within the block in
which the triple resides (assuming no conflicts or multiple hits).
Thus, we see that all triples with the same access-word will be
found in the same block. However, this scheme only allows speedy
access to a triple if the following sA¥’s are specified:

SYMONDS IBM SYST J

A©O) =V
A(Q) =2
A@) =2

To satisfy a request specifying any of the other sAF’s might require
many auxiliary-storage accesses to search the associative storage
before the required triple could be located. Rovner’s solution was
to represent the universe of triples in three different ways:

Access-word Check-word
A-space A 0
O-space 0] v
V-space v A

A typical triple (A, O, V) thus resides at three different locations
in associative storage. It can be located either by using A as the
aceess-word and hashing A with O, or using O as access-word and
hashing with V, or V as access-word and hashing with A. The
answer to any sAF can be found in one access to a block in the
appropriate representation of the store of triples.

System implementation

Using the concepts discussed thus far, we now consider the imple-
mentation of the data structure.

A schematic diagram of the auxiliary storage organization as
currently implemented on the 1BM 2311 disk storage unit is shown in
Figure 1. It should be noted that—although the items A, O, and V
represent Attribute, Object, and Value respectively in the figure—
there is in fact no restriction on the use of an item in the associative
map. O could occupy the Value position in another triple, for
example. The associative storage is segmented into fixed-length
blocks which can be any multiple of 4096 bytes up to a maximum
of 32,768. A brief description of the logical sections of the storage
follows.

The associative map contains the collection of triples, which is
triplicated for the reasons given above. Each block is divided up
into 32-byte cycles, which are formatted as shown in Figure 2.
Addresses generated by hashing will address only the leading cell
of the cycle. The second 10-byte cell is reserved for conflicts, and
the 6-byte cells are reserved for multiple hits. A deseription of the
cells, as formatted in Figure 2, follows.

Cell 1. This is an addressable cell that has been assigned to a triple.
Twenty-one bits are reserved for the elements of a triple, which
means that there is, theoretically, a capacity for two million unique
items and attributes in associative storage. The 2-byte link pointer
chains triples with the same access word. The head of this ring is
found at a location, L, in the block where

L = R (A/[2¥*N]) * [2** (NB — N)] + 16

NOS. 3 & 4 - 1968 ASSOCIATIVE DATA STRUCTURE

auxiliary
storage
design

associative
map

Figure 1 Relational structure on auxiliary storage

ASSOCIATIVE MAP

A- SPACE 0- SPACE V- SPACE

e

TRANSLATION TABLE

START OF A-SPACE

START OF O-SPACE

START OF V-SPACE

START OF SEM TABLE

START QF DATA TABLE

START OF HASH
DICTIONARY TABLE

NEXT FREE IDENTIFIER

SEMANTIC TABLE DATA TABLE HASH DICTIONARY TABLE

A-TYPE DATA POINTER A-DATA S=vV

O-TYPE DATA POINTER 0O-DATA

V-TYPE DATA POINTER V-DATA

S-STRING DATA

S-TYPE] POINTER

A = access-word

R (X/Y) = remainder after performing X/Y
2**N = no. of access-words/block

2**NB = no. of bytes/block

Therefore, 2**N 32-byte cycles have a slightly different format
from that shown in Figure 2, namely

bytes 0 — 9: addressable cell

bytes 10 — 15: six byte cell

bytes 16 — 17: number of cells in ring linking cells with same
access-word

bytes 18 — 19: points to head of ring linking cells with same
access-word

bytes 20 — 31: two 6-byte cells

SYMONDS IBM SYST J

Figure 2 Format of 32-byte cycle In associative map

4 BYTES

SEMANTIC WORD
A%%%S[)S~ (THIRD ELEMENT IN TRIPLE)
RING
(LINK) CHECK WORD
i
10 BYTES POINTER (SECOND ELEMENT IN TRIPLE)

CONFLICT LIST
POINTER NOT USED

POINTER TO POINTER TO
LAST FREE CELL NEXT FREE CELL

POINTER TO HEAD OF
ACCESS-
WORD MULTIPLE HIT LIST

RING
(LINK)

10 BYTES POINTER
__________ S,

CONFLICT-LIST SEMANTIC
POINTER WORD

@woOP -

SEMANTIC WORD
(CONTINUED)

Cell 2. This is a free 6-byte cell which is chained into the free list of
6-byte cells. When a multiple-hit situation arises due to the addition
of a triple, the first cell on the free list is removed and given the
format shown in Cell 4 to represent the addition of the triple.

Cell 3. This cell is not directly addressable by hashing and is re-
served for a triple that hashes to the address of an already occupied
cell. This conflict cell is then inserted in a list that links all triples
hashing to the same address. The particular conflict cell shown in
Figure 2 is also the head of a multiple-hit list. This serves to identify
the access-word and echeck-word, and points to the list of 6-byte cells
containing the multiple semantic words.

Cell 4. This is a member of a multiple-hit list which is chained from
a 10-byte cell at its head.

A free 10-byte cell is a member of the 10-byte free list and is
similar to the 6-byte free cell. Each distinet block on auxiliary
storage contains its own free list of 10-byte and 6-byte cells. All
conflicts and multiple hits are then stored in the same block as the
cell located at the original hashed address. Initially, the associative
map is formatted by constructing completely empty blocks and
writing them out to disk. At this time, the number of access-words
to be allocated to each block is defined, usually larger for A-blocks
than for O- or V-blocks. Adding a triple then requires accessing all
three parts of the associative map to store it. The scheme described
is based on the assumption that it is preferable to have at worst six
disk accesses for updating the associative map in order to be able to
satisfy an sAF with only one access.

NOS. 3 & 4 - 1968 ASSOCIATIVE DATA STRUCTURE

semantic
table

translation
table

The hashing scheme is based on exclusive ORing of the access-
word and check-word, and then masking and shifting the result to
lie on a 32-byte boundary within a block.

The main problem arising from this implementation of the
associative map occurs when the number of triples involving a
particular access-word becomes so large that the block is filled.
Clearly, there must be an overflow procedure. Johnson® has sug-
gested that the associative map be completely unstructured in-
itially, and that—asg triples are created—access-words are allocated
to blocks depending on the observed density of triples. Also, when
the conflict population increases in a particular block beyond a
certain limit, triples are automatically redistributed between the
original block and an additional block, which is dynamically allo-
cated. This system is obviously attractive, because a user does not
have to make a prediction as to what the triple density is likely to
be before setting up the associative storage. However, the system
adds considerably to the task of correlating the value of an access-
word with the address of the block to which it is allocated.

An alternative approach would be to devise a means to distribute
triples as uniformly as possible over the entire associative map,
and to handle overflow more crudely as an exception condition. As
yet, the overflow problem has not been approached, although it is
recognized that a useful system must handle it. However, some
of Johnson’s proposals have been incorporated in the design of the
present system, so that a more open-ended associative map can be
constructed in the future. As the allocation of access-words to
blocks becomes more random, a table-lookup procedure is required
to correlate an access-word value with the location of a block on a
disk. Also, as the number of access-words per block becomes
variable, so do the hashing parameters. Thus, each block must
carry information within itself to determine the hashing procedure
needed to calculate the address of a triple.

The semantic table contains pointers to the pL/1 data aggregates
corresponding to the items in the associative map. Each entry also
has a type field which can be used to indicate the generic class to
which an item belongs. The value of the identifier deseribing an
item in the associative map is used to index the semantic table in
order to find the appropriate entry.

The data table is regarded as a contiguous store segmented into
fixed-length blocks. There is provision in the semantic table for
addressing up to sixteen million words of data. Storage in the data
table is allocated to items as required, and standard garbage
collection techniques are used when necessary.

The translation table is found at a predefined location on
auxiliary storage, is read in before associative processing can take
place, and is written back before closing down the system. This
table contains the following housekeeping information necessary
for system operation:

¢ Disk addresses of the start of different storage areas

SYMONDS IBM SYST J

Next available identifier to be allocated to a data item

Next free location in data table

Tables linking access-words with block addresses when we have
dynamie allocation of associative map blocks

Up to this point, we have described a data item by a 21-bit,
binary number, which is used to identify it in associative storage.
This is an adequate representation for operations within a com-
puter or for communiecations from one computer to another. How-
ever, a human being at a display terminal may wish to access an
item in the associative storage by specifying its identifier directly. A
convenient way for him to do this would be to activate alight-button
containing a character-string mnemonic for the item or to type the
mnemonic from the keyboard. Thus, we need a table to relate a
character string to an internal identifier; this table, called hash
dictionary table, functions as follows. The string is stored in the
data table, and an identifier is allocated to it (string-id). The hash
dictionary table resides on auxiliary storage, and the address of an
8-byte cell within it is computed by hashing the character string.
The string-id and the internal-id to which it corresponds are stored
in this cell so that, given the string itself, we can find the internal
identifier to which it corresponds. The hashing technique used at
the moment is to add significant bytes of the string to an accumula-
tor (the number of bytes depending on the size of the hashed dic-
tionary table), mask nonsignificant bits and use the result as the
hashed address. Conflict is handled in an analogous fashion to the
associative map.

Basic functions to enable the PL/1 user to manipulate the data
structure are now described. Before inquiries can be made of a data
structure, it must first be built. The pL/1 subroutine to store some
information is

CALL ALLOCID (id-variable, type, data).

The PL/1 major structure specified by ‘““‘data’ is stored in the data
table, and an identifier is allocated to the data item and returned
in “id-variable.” Having allocated identifiers to items of data, we
can then insert triples into, and delete them from, the associative
map by issuing respectively

CALL AMMAKE (A, O, V)
CALL AMDELTE (A, O, V)

Having put some data into associative storage and stored some
triples that relate data items, we need to devise a method for
extracting correspondences. At the moment, this is accomplished
entirely by calls to subroutines written in assembly language,
which perform the primitive functions from which complex logical
inquiries can be built. No effort has yet been made to design a
meta-language that can be translated into pL/1I source code by a
preprocessor such as ML/I,'° or interpreted at execution time by a

NOS. 3 & 4 - 1968 ASSOCIATIVE DATA STRUCTURE

hash
dictionary
table

data
structure
manipulation

syntax analyzer. It is hoped that experience with this system will
give some insight into a suitable structure for a meta-language
based on FOR statements. For clarity, FOR statements will be used
in the following discussion.

The execution of an associative FOR statement proceeds in two
separate phases. The first phase involves the construction of a set
of correspondences in main storage by repeated accesses to the
associative storage, and the second phase is the iteration through
a processing routine for each correspondence in the set. The corre-
spondences are built in an area called Correspondence Storage. This
is similar to controlled storage in the formal pL/1 sense, with the
difference that, once allocated, it expands automatically from 2048
bytes, in steps of 2048, up to a maximum of 32,768 bytes, as more
space is required for correspondences. The calls to allocate and
delete Correspondence Storage are CALL BUILDCS and CALL
RELCS, respectively.

A set of correspondences is a set of ordered lists of elements.
We shall define the total number of elements in a correspondence
as its depth, and the position of an element within a correspondence
as the element’s level.

Let us consider the structure that is built up in Correspondence
Storage as a result of the following string of FOR statements.

1) FOR (A (0) = #X),

2) AND FOR (A’ (#Y) = X)),

3) ANDFOR(LX) = YORL' (X) =Y),
BEGIN; (proc-1); END;
ELSE BEGIN; (proc-2); END;

The structure is shown schematically in Figure 3. The sAF serving
as argument for FOR statement 1 has Attribute and Object as
specified elements; therefore we access A-space (using A as access-
word) in the associative map and hash A and O to find the multiple
hit list of all triples A (O) = ?. The three hits X, X,, X; are allo-
cated to level-1 of the correspondence structure. They are also
linked in a level-list and ordered in ascending sequence of identifier
value, for reasons which will become apparent later.

Execution of the second FOR statement involves values of X;
we thus proceed through the ring of X’s, substituting the values of
X; (¢ = 1, 2, 3) in turn. Starting with the first item in level-1,
namely X, we first satisfy the SAF A’ (?) = X,. Here the specified
elements occupy the Value and Attribute positions in the triple
so that we access V-space with X; as access-word. The multiple hit
list in the relevant block is found by hashing as before. Y, Y1, and
Y135 are obtained from this multiple hit list and allocated to the
level-2 list in the correspondence structure. The above procedure
is then repeated for X, and X; using these values to locate the
appropriate block in V-space. We can see immediately that ordering
the items in level-list 1 will tend to reduce the number of disk-
accesses required to process the list.

SYMONDS IBM SYST J

Figure 3 Correspondence structure

CORRESPONDENCE
STORAGE

DATA STORAGE

IDENTIFIER

TYPE

USAGE COUNT j

CORRESPONDENCE LINKAGE DATA
- — = — L{INKAGE IN LEVEL-LIST

The resulting set of correspondences is a linear graph that can be
viewed in two distinct ways. We can consider the tree formed by
links between different levels, where each branch in the tree forms
a correspondence. Alternatively, we can consider a particular level
as a separate set in its own right and ignore correspondence links
between levels. In the following discussion, we confine ourselves to
the correspondence viewpoint, because this is the only approach to
relational processing that has thus far been investigated in this work.

Once constructed, a set of correspondences can become the
argument of a function which operates successively on each ele-
ment of the set. The algorithm for executing a processing routine
once for each set member is as follows. The set of correspondences
is accessed at the lowest level, starting at the element at the head
of the lowest level-list. The structure is designed so that we can
back up through successive levels of each branch in the tree, as
far as level-1; thus by backing up in this way, we can extract an
individual correspondence from the set in the form of an ordered
list, starting from the lowest level. By traversing the lowest level-
list, each correspondence can be extracted in turn and made
available to a processing routine.

In the example, the first operation on the correspondence struc-
ture consists of two existence tests connected by a Boolean OR.
Each correspondence is processed in turn; the appropriate elements
are inserted into each sar, and the associative map is tested for the
existence of the resulting triples. We see in Figure 3 that the corre-

NOS. 3 & 4 - 1968 ASSOCIATIVE DATA STRUCTURE

spondence terminating in Y;; does not meet the specified conditions
and is therefore deleted from the structure. After the Boolean
operations, a test is made to see if any correspondences are left in
the set; if there had been none in the example, the ELSE clause
would have been executed. In fact, correspondences are still
present, so proc-1 is then performed on each correspondence in
turn.

The logic deseribed above can be effected from a pL/1 main pro-
gram, using subroutines to perform the primitive functions on the
associative storage and correspondence structure. A controlling pro-
gram written in pL/T is used to traverse the level lists in the corre-
spondence structure and pass control to the processing routine.
Let us first consider the operation of the controlling program.

A single controller (FOREACH) called from the main PL/I pro-
gram schedules entry to the program (RTN, say) designed to operate
on each correspondence in the structure, and the flow of control
from one routine to another is shown in Figure 4. The controller
extracts correspondences individually from the set, and calls RTN
once for each correspondence. The elements of the particular
correspondence are made available to RTN, as well as further infor-
mation which may have been passed from the main pL/1 program.
When the end of the set of correspondences is detected (i.e., the
end of the lowest level-list is found), the controller checks that at
least one member of the set remains and relays the result back to
the main program. This is to enable an ELSE procedure to be in-
voked (proc-2 in the example) when the set is null.

The user’s processing routine (RTN) is written with only one
correspondence in mind and can perform a number of different
functions. First, it can access the associative storage or correspond-
ence structure using the primitives provided. The latter have been
defined as follows:

® One element of a triple is specified. The function is to extract
the unspecified items from the associative map in the form of
ordered pairs, and then to add one member of each pair to the
set of correspondences at a specified level. The second member
of the pair is added to the correspondence structure at the next
level down.
Two elements of a triple are specified. The unknown element
(several elements in the case of multiple hits) is extracted from
the associative map and added to the correspondence structure
at a specified level.
Test existence of a triple in the associative map when all three
elements are specified. The result is Boolean depending on the
result of the test.
Test existence of a triple when one element is unspecified.
Test existence of a triple when two elements are unspecified.

A standard routine decides the section of the associative map to be
accessed (A, O, or V) on the basis of which items in a triple are
specified and which are not. Once the access-word, check-word, and

SYMONDS IBM SYST J

Figure 4 Flow of control to process a FOR statement

PL/1 PROGRAM CONTROLLER

(CAN BE CALLED RECURSIVELY)

ITERATE THROUGH SET OF
CORRESPONDENCES
AND CALL PROCESSING ROUTINE

CALL FOR EACH

USER SPECIFIED
ROUTINE—RTN

WHEN ALL MEMBERS OF OR
SYSTEM FUNCTION

THE SET ARE PROCESSED,
CHECK FOR EXISTENCE OF SET

IR T R

semantic-word are known, and the appropriate block brought into
main storage, operation of the primitives is independent of which
section of the associative map is being accessed. A final primitive,
which can be called by RTN, deletes the correspondence under con-
sideration from the set. This might be called when certain Boolean
operations indicate that the particular correspondence does not
meet the conditions defined in a FOR statement. Results of exist-
ence tests can be combined, using the Boolean facilities of PL/1, to
create logical tests of any complexity whatever.

The user routine can itself contain relational statements, as the
controller is a pL/1 procedure with the attribute RECURSIVE.

Finally, the user routine can perform an application-dependent
function on a set of correspondences. An example of this might
occur in a graphies environment where a set of correspondences
defines a drawing, each individual correspondence defining a line
and its terminal points. To display the drawing, a user would
simply write the code necessary to convert the coordinates of two
points, and the parameters of the line connecting them, to display
orders for a cathode-ray tube. Retrieving all the interconnected
elements of the drawing and entering the display program for each
element would be accomplished by relational statements.

The processing routine just described performs calculations on
point coordinates and line parameters; but in our discussion of
correspondences, we have thus far only considered accesses to the
associative map of triples. Here an item of data is represented
simply by a binary identifier, and this is also its only representation
in the correspondence structure. Thus, before processing can take
place, the data corresponding to each node in the current corre-
spondence must be made available to the processing program.

Such data are stored in data storage, which is analagous to
correspondence storage, and the data .are brought into main
storage, a level at a time, in two stages. First, the level-list is tra-
versed and semantic table look-ups are performed for each member
to obtain the pointer to the appropriate location in the data table.

NOS. 3 & 4 - 1968 ASSOCIATIVE DATA STRUCTURE

The list is then traversed again, and the items of data are trans-
ferred from the data table to data storage. Duplication of identifier-
values in different members of a level-list does not result in dupli-
cation of the data in data storage. We see again that ordering the
identifiers in each level-list tends to reduce the number of disk
accesses to the semantic and data tables.

Figure 3 shows how the node Y3; in the correspondence structure
relates to its binary identifier, its type, and the data it represents.

Summary

A data structure to enable relational operations to be performed
from pL/1 has been implemented under the systEm/360 Operating
System (0s/360) using a 2311 disk unit as the storage medium for
associative storage. At present, a user manipulates the data strue-
ture by means of subroutine calls, using a well-defined algorithm
to construct them from a number of high-level FOR statements.
They also enable him to access an auxiliary-storage-based data
aggregation without explicitly requesting disk input/output. This
work represents the first phase of an investigation into relational
extensions to PL/I.

Future work could include the design of a command language
which would enable the user to execute, via a display console, on-
line relational statements of the type described. An attempt could
be made to solve a real problem involving the manipulation of a
large data base with complex relations between its components; the
objective being to test feasibility of this approach to information
retrieval. In addition, operation of the present system could be im-~
proved, particularly with regard to T. E. Johnson’s proposals for
handling the overflow problem. It would also be desirable to extend
the facilities offered in the present system to include set-theoretic
operations and the ability to store information in the form of n-
tuples.

CITED REFERENCES AND FOOTNOTES

1. A hierarchical tree structure is a particular example of a graph, where there
is one and only one path between two vertices.

2. A list is characterized by the requirement that access to its elements re-
quires traversal of the list to obtain addressing information. A list structure
occurs when we have a set of lists in which information from one set is re-
lated to another set by the header function of the second set. A ring struc-
ture exists if the information can be related—in general—through any
member of either set.

. PL;1 Compiler under the sysTEM /360 Operating System, 1BM Systems Refer-
ence Library S360-29, C28-6571, rL/1 Language, International Business
Machines Corporation, Branech Office.

. J. A, Feldman, “Aspects of associative processing,”’ miT Lincoln Labora-
tory Technical Note 1965-13, Cambridge, Massachusetts (1965).

. P. D. Rovner and J. A. Feldman, “rear language and data structure,”
to be published in Information Processing 1968, Proceedings of IFIP Con-
gress 1968.

244 SYMONDS IBM SYST J

. P. D. Rovner, Investigation into Paging a Software-Simulated Associative
Memory System, Master of Science Degree thesis at University of California
at Berkeley, 1966.

. T. E. Johnson, Mass Storage Relational Data Structure for Computer
Graphics and Other Arbitrary Data Stores, mit Department of Archi-
tecture Report, Cambridge, Massachusetts (1967).

. D. L. Childs, Description of a Set-Theoretic Data Structure, University of
Michigan Technical Report, 3, (March 1968).

. T. E. Johnson, private communication.

. P. J. Brown, “The ML/1 macro processor,” Communications of the ACM
10, No. 10, 618-623 (1967).

NOS. 3 & 4 - 1968 ASSOCIATIVE DATA STRUCTURE 245

