In the past, a common data structure, or model, has been used for all
phases of a computer graphics design system. This has meant thal the
model used during conversational interaction was the same as the
model used in the subsequent analysis operations, usually resulting in
poor overall performance. This paper suggests the use of separate
models for each phase, providing a general model for the conversational
drawing phase which is suitable as a front end in many different
application areas.

Described are data structures and programs for both phases: a conver-
sational display image manipulation program (DIM) and its inler-
connections with an existing analysis application program (IBM 1130
Continuous System Modeling Program). Examples of the use of this
particular multilevel modeling design facility are included.

INTERACTIVE GRAPHICS IN DATA PROCESSING
A multilevel modeling structure for

interactive graphic design
by H. B. Baskin and S. P. Morse

One approach to implementing a graphics application program for
computer-aided design consists of both defining a set of functions
for the particular application and developing a sufficiently com-
prehensive data structure within which these functions can be
executed. Examples of such facilities are ctrcar! for electrical cir-
cuit design, capic? for integrated eircuit design, and capp? for logic
circuit synthesis. Typically, the functions in such systems are de-
signed for specific purposes and are not readily usable for other
applications. Therefore, developing a facility for a new application
often requires nearly as great an effort as the original development.

This paper describes an approach to the problem by partition-
ing the total set of functions so that an application-independent
subset can be defined and need not be repeated for each applica-
tion. The remaining application-dependent functions can be per-
formed by a separate noninteractive, nongraphies program. The de-
sign and implementation of the nongraphies program is significantly
simpler than the creation of a complete graphics application pack-
age.

Such an experimental partitioning, or multilevel graphics pro-
gram structure, is the subject of this paper. Discussed first are
general characteristics of the application-independent graphic
functions and of the application-dependent nongraphic functions.
As a result of this partitioning, separate data structures can be
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used for each subset of functions. The paper illustrates this principle
by means of example data structures and discusses the transforming
from one data structure to the other. The interrelations among the
programs and data structures deseribed in this paper are shown
in Figure 1. The paper concludes with a brief review of implementa-
tion and results. The funectional division discussed here leads to a
bilevel modeling structure. However, the principle of separate
data structures is general and fundamental, and it is applicable to
more than two modeling levels.

General characteristics

The complete application package for use with a graphies console
contains a set of functions for creating and modifying displayed
drawings and a set of functions for analyzing or operating upon
completed drawings to produce meaningful and useful results. The
drawing manipulation functions are called conversational func-
tions, and the functions for operating on the completed drawings
are called analysis funciions. Some examples of conversational
functions are light-pen tracking, line drawing, and picture copy-
ing. Examples of analysis functions are determining the current
in a circuit, caleulating the stress in a beam, and minimizing wire
length.

The choice of conversational functions is based on the charac-
teristics of the drawing medium (such as paper and pencil, or dis-
play console and light pen) and on human factors. For example, a
conversational function such as ROTATE cannot be implemented
with penecil and paper, whereas it can be performed by a display
console. The application and interpretation of the symbols, on the
other hand, do not play a role in the choice of conversational
functions. Hence, conversational functions are application-inde-
pendent and merely provide the user with a simple language for de-
scribing a pictorial representation of his problem to the computer.

The conversational functions must provide rapid responses if
they are to help the user overcome the “boundary problems” be-
tween man and machine. Intervals between executions of these
functions are of the order of seconds, and many might be called
for consecutively. They generally involve simple data processing
and, thus, the rapid-response requirement can usually be met sat-
isfactorily, providing the conversational functions are performed
in the machine in which the necessary data resides.

In contrast to conversational functions, analysis functions are
oriented toward the particular application, and are usually tailored
for each application or application class. They are nongraphic in
nature and not required to be interactive. Analysis functions are
executed much less frequently than conversational functions.
Usually a single analysis function is executed after the execution
of many conversational functions. Rapid responses to analysis
functions are not essential because most users do not expect re-
sults of a complex operation without a noticeable delay. Analysis
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functions generally perform numerical caleulations and can be
well-defined and specified in such conventional noninteractive,
nongraphic languages as FORTRAN or ALGOL.

An advantage of the partitioning of the set of functions is that
it makes possible the use of two separate data structures, each ap-
propriately designed to support a particular subset of system func-
tions. Such partitioning, in conjunction with the use of more than
one data structure to represent the same problem, is referred to as
multilevel modeling. Neither individual data structure need be as
complex as a single data structure designed to support both con-
versational and analysis functions. Also, the design and implemen-
tation of both conversational and analysis functions are greatly
simplified if separate data structures are used. The conversational
functions with their own data structure can then be applieation-
independent.

Because conversational funections involve the creation and
manipulation of drawings, a display-list type of data structure
seems most suitable for these functions. The type of data struc-
ture used for analysis functions depends on the particular analysis
being performed. For example, a simplified ring-type structure is
often the best type of data structure for the analysis of topological
networks.

Another advantage of separate data structures is that conver-
sational and analysis functions can be performed in different ma-
chines without requiring a wide bandwidth (high speed) intercon-
nection. Conversational functions are best performed interactively
in real time at the console, whereas analysis functions are best
performed by batch processing. Both can be accomplished through
the use of an interactive intelligent terminal (small processor) at-
tached to a large shared central processor, thereby removing a
large portion of the real-time load from the central processor.

Another merit of the partitioning idea is that the specification
and implementation of the analysis functions are no more compli-
cated in an interactive design facility than in a noninteractive
batch-processing computer, because real-time and graphic aspects
need not be considered. Thus, many existing noninteractive ap-
plication programs can be incorporated in an interactive design
environment by coupling them to a facility that provides a set of
conversational graphie functions.

The use of multilevel models may create such requirements as
the ability to reflect a change in one model as a change in another
model, or the ability to generate one model from another. Such
requirements might be unidirectional or bidirectional, depending
upon the application. To study possible problems, we have im-
plemented a system that couples a conversational program, which
we call Display Image Manipulator (pim),* to an application pro-
gram called the M 1130 Continuous System Modeling Program
(csmp).® The piM program was written in assembler language and
designed to be application-independent. The csmMp program was
written in FORTRAN and was not intended for use in a graphic en-
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vironment. The result of pim plus csmp is a responsive real-time
graphies facility.

The csmp program simulates the response of an analog com-
puter on a digital computer. Its data structure is a list of the inter-
connections between the analog elements. Such a data structure
can be used by any other application program concerned with
topology. For example, a circuit analysis program can use the
same data structure to specify the interconnections between cir-
cuit elements. Thus, there is little loss of generality in selecting
CSMP as a research vehicle.

Data structures

A representation of a line drawing suitable for graphic display
usually consists of a list of instructions that control the movement
of a pen or electron beam. Such a list of instructions is called a
display list and is illustrated in Figure 2. A structured display list
is one that contains, in addition to pen- and beam-movement in-
structions, branches to and returns from display sublists. (Sub-
lists are similar to subroutines in a computer program.) By storing
the return address in the sublists, nesting of sublists is possible.
An example of a structured display list and its accompanying
drawing are shown in Figure 3.

A structured display list allows for the extraction of topological
relationships from a line drawing without having to resort to pat-
tern recognition techniques. For example, consider a structured
display list for an electrical circuit. The shape of each type of
component (resistor, capacitor, ete.) is contained in a display sub-
list. The sublist corresponding to each component type is known
in advance. The display list for the circuit contains (1) instrue-
tions for drawing the circuit wiring and (2) the branches to sub-
lists for drawing the circuit components. Thus, the presence of a
resistor at a particular circuit location is indicated by the presence
of a branch instruction properly located in the display list and
pointing to the resistor sublist.

The fact that a structured display list ean support conversa-
tional functions is illustrated by examples that follow. Each conver-

Figure 3 Structured display list

DISPLAY LIST DRAWING

% POSITION AT Xar Y

DRAW LINE TO (X, Yg) ~

=
BRANCH TO SUBLIST Fon// SUBLIST FOR
DRAWING RECTANGLE —a—____ 7o, [ RECTANGLE

POSITION AT (X, Y)
DRAW LINE TO (X;, Y,) -
BRANCH TO SUBLIST FOR " ~ BLIST FOR
DRAWING TRIANGLE —g_ ~ TRIANGLE
POSITION AT (X, Y) RETURN

ORAW LINE TO (X, Y,)

BRANCH TO SUBLIST FOR _— "~

DRAWING DIAMOND ———_____ ~~  \ SUBLIST FOR
POSITION AT (X, Y, - N DIAMOND

o RETUR
DRAW LINE TO (X, .Y,))

— REPEAT

NOs. 3 & 4 - 1968 MULTILEVEL MODELING

display
lists

Figure 2 Display list and drawing

DISPLAY LIST DRAWING
POSITION AT (X,,Y,)
DRAW LINE (Xg. Yg)
DRAW LINE (X Y
DRAW LINE (X, Y)
REPEAT

]

conversationai
functions

221




Figure 4 Structured display list for square and triangle
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Figure 5 Sharing a subpicture
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sational function to be described corresponds to a single button de-
pression on an 1BM 2250 function keyboard. Figure 4 shows a
structured display list for drawings of a square and a triangle. The
A or R following each pair of coordinates indicates whether the
coordinates are absolute (X, Y) or relative (AX, AY). A pair of
absolute coordinates corresponds to a point whose origin lies at
the lower left corner of the display screen. A pair of relative co-
ordinates corresponds to a point whose origin is the most recently
encountered point in the display list.

. .Another copy of the triangle can be added to the picture by
ingerting in the display list another positioning instruction and
another branch to the triangle sublist as shown in Figure 5.
This is accomplished by the SHARE function. The SHARE
function has the property that any change to one copy is
reflected in the other copy. Another function, called DUPLI-
CATE, does not have this property, but creates a new copy of the
sublist for a particular subpicture. Figure 6 shows another copy
of the square that has been added by the DUPLICATE function.
Subsequent changes made to one copy of the square are not re-
flected in the other copy.

A subpicture can be moved by changing the coordinates of a
positioning vector, as shown in Figure 7, by means of the TRANS-
LATE function. Because TRANSLATE is not executed on the sub-
list level, one copy of a shared subpicture can be translated
without affecting the other copy. With our system configura-
tion, functions such as ROTATE and SCALE must be performed at
the sublist level. Thus, the scaling of one copy of a shared sub-
picture causes a scaling of the other copy as shown in Figure 8.

A line can be removed from a subpicture by the ERASE or
DELETE function. The ERASE function (illustrated in Figure 9)
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Figure 6 Duplicating a subpicture

DISPLAY LIST

—» POSITION AT 250, 750 A
BRANCH TO /
SQUARE SUBLIST

POSITION AT 250, 2;N

BRANCH TO
TRIANGLE SUBLIST

POSITION AT 750, 250 A

BRANCH TO -
TRIANGLE SUBLIST ~ < — —

POSITION AT 750, 750A
BRANCH TO
L SQUARE 2 SUBLIST \

REPEAT

Figure 7 Translating a subpicture
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Figure 8 Scaling a subpicture
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Figure 9 Erasing a line
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Figure 12 Subpictures, nefs, and
attacher points of a
topological network
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Figure 10 Deleting a line
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Figure 11 Deleting a subpicture
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Figure 13  Circuit and topological data structure

CIRCUIT TOPOLOGICAL DATA STRUCTURE

CAPACITOR RESISTOR TRANSISTOR

A, B, C, REPRESENT ATTACHER POINTS

replaces a line with a blank line, and the DELETE function (in
Figure 10) removes the line from the sequence of lines forming the
subpicture. Both ERASE and DELETE are performed at the sub-
list level and are, therefore, reflected in all copies of the subpicture.
Also, a subpicture can be removed by the DELETE function. As
shown in Figure 11, the DELETE function removes the branch to
the subpicture.

The prm program uses the structured display list as its data
structure, and provides a user with such conversational functions as
just described. Other conversational functions, such as tracking,
filing, and retrieving are also provided by pim.
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Many graphics problems pertain to the analysis of topological  topological
networks, which are interconnections of elements where the posi-  networks
tion of the individual elements has no relevance. Such networks
are completely specified by the types of elements and their inter-
connections. Examples of topological networks are electrical cir-
cuits, program flowcharts, and logic diagrams. Also, designers fre-
quently abstract a practical problem by transforming it into a
topological network. As an example, a mechanical circuit may be
represented by a spring-mass-damper network.

Drawings of topological networks consist of subpictures (re-
peated where necessary) joined by connecting lines, which join the
subpictures only at specified points called attacher points. The set
of all connecting lines of a picture consists of disjointed connected
subsets of lines, called nefs. Figure 12 shows the nets and subpic-
tures of a topological network. The topology of a picture is" com-
pletely specified by the attacher points and the nets on which they
lie.

Such information can be stored in a ring-type data structure,  topological
called a fopological dala structure, which contains a group of words  data structure
for each subpicture. Each group has a word, called a link word,
for each attacher point in the corresponding subpicture. Link
words for attacher points lying on a common net are tied together
in a circularly linked list. In such a list, each link word contains a
pointer to the next link word, and the last link word contains a
pointer back to the first. An example of a topological data strue-
ture is shown in Figure 13.

An application program that can use such a data structure is  analysis
the 1BM 1130 Continuous Systems Modeling Program (csmp). This  functions
program uses a digital computer to simulate the response of an
analog computer. The analog computer configuration is specified to
csMP by a table containing a list of the analog blocks used. This is
exemplified by Figure 14. Rows In the table are labeled with block
numbers. Bach row contains the name of the block type and the  figure 14 Specifying an analog
block numbers of other blocks whose outputs are connected to the circuit to 1130 CSMP
inputs of the given block. For example, Row 2 in Figure 14 indicates ~ “~ "
that there is an integration block whose first input is the output of
Block 3, whose second input is the output of Block 1, and which has
no third input. (Note that the table is only a subset of the complete
topological data structure.)

The structured display list, created under light-pen control by
DIM, contains picture-drawing instructions, but it does not con- BLOCK | BLOCK INPUTS
tain explicit information about topological block interconnections NUMTER 'LYTZ >
within the picture. Although they appear on the display screen, 2| e :
the computer does not “know’” about interconnections until it
processes the display list. Next is described a method of extract-
ing information about topological interconnections from the dis-
play list, thereby generating a data structure suitable for the
¢sMP program to analyze.

One method of producing a topological data structure from a  transforming
display list might be to scan the display list one time for each  data structures
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relevant point of the picture (initial and terminal points of con-
necting lines, and attacher points of subpictures) to determine if
any relevant points have the same coordinates. For complicated
pictures, the number of relevant points (hence, the number of re-
quired scans) might become so large that processing time is pro-
hibitive. Thus, a method of extracting topological data by rela-
tively few scans is needed.

Such a method has been developed by utilizing certain prop-
erties of line drawings. Observe that a large percentage of the pic-
ture area of a line drawing is not used. Thus, if the picture area
is finely divided, many of the divisions (units) are blank. If the
area of each unit is decreased, the number of units and the per-
centage of blank units is increased. (A useful unit size was found
to be one sixty-fourth of the area of the display screen.) If units
containing no relevant points are also considered as blank units,
the percentage of blank units is further increased. Because all in-
formation (i.e., relevant points) is in the non-blank units, picture
processing time can be reduced by examining only those units.

It is desirable to set up a table for each non-blank unit in the
picture. An initial pass is made through the display list to de-
termine which are the non-blank units. When a relevant point is
encountered, a check is made to determine whether the unit con-
taining that point was previously encountered. The check is made
by consulting a table, called a table of headcells, containing one
word for each unit. (The headcell word contains all zeros if the
unit was not previously encountered.) When a unit is encountered
for the first time, a fixed-length group of words (called a directory)
is reserved for that unit, and the address of the directory is en-
tered into the corresponding word in the table of headcells. In-
formation about relevant points lying within each non-blank unit
is entered into the directories during the first pass. Included in
the information are the relative coordinates of the point (measured
from the lower left corner of the unit). The remaining informa-
tion for endpoints of connecting lines is the display list address of
the connecting line containing the endpoint. The remaining infor-
mation for attacher points is the address of the link word of the
attacher point. For attacher points, a pointer to the directory
entry is entered into the link word of the attacher point. The
pointers to directories must be replaced by pointers to other at-
tacher points to put the topological data structure in final form.

Each connecting line requires two entries in the directories—
one corresponding to the initial point of the line, and the other
corresponding to the terminal point. However, if the preceding
instruction in the display list also corresponds to a connecting
line, the terminal point of the first line is the same as the initial
point of the second line. In this case, no directory entry need be
made for the initial point of the second line.

An example of a picture with its associated directories is shown
in Figure 15. Note that a directory is not reserved for a unit until
a relevant point lying in the unit is encountered. Since most units
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Figure 15 Picture and associated directories
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are blank, relatively few directories are needed; hence, storage is
not wasted on unused picture areas.

The topological data structure assumes its final form when
link-word pointers to directories are replaced with pointers to
other link words. This is done by traecing out the net for each at-
tacher point. The first attacher point is selected, and the directory
containing it is obtained from its link word. That directory is
searched for other relevant points having the same relative co-
ordinates; such relevant points all lie on the same net as the orig-
inal attacher point. If one endpoint of a connecting line is found
to have the required relative coordinates, the opposite endpoint
also lies on the net. This opposite endpoint provides a new pair of
coordinates for which another directory search for relevant points
is performed. The search is repeated for each new pair of coordi-
nates until no new relevant points lying on the net are obtained.
This procedure, which is repeated once for each net, traces out the
entire net and—at the same time—obtains the link words of all
attacher points on the net. The link words are then tied together
to form a circular linked list of attacher points on a common net.

Concluding remarks

An experimental graphic facility has been described as an example
of a multilevel modeling structure for interactive graphic design.
The facility, consisting of the Display Image Manipulator coupled
to the 1130 Continuous System Modeling Program, has been im-
plemented on an M 1130 with 8K words of 16 bits each. The
1130 is attached to an 1BM 2250 that uses the 1130 main storage as
a display buffer.® The implemented facility allows a user to draw
a configuration of analog elements. A display list is created by pim
during the drawing phase. After the picture is completed, a pro-
gram converts the display list into a topological model, which
csmp then uses to obtain the response of the analog circuit.
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A picture of an analog computer configuration drawn with
pIM is shown in Figure 16, and the response generated by csmp
is shown in Figure 17. Figure 18 shows the configuration after a
change has been made, and the response of the changed con-
figuration is shown in Figure 19. A second analog configuration
modification is shown in Figure 20, and its computed response is
shown in Figure 21.

In the csmp application, the interface program is required to
be unidirectional. That is, the program must be able to generate
the topological model from the display list, but not vice versa. In
the present implementation, if the display list is changed after
generating a topological model, a new topological model is gen-
erated. Future work should consider the problem of having
changes in the display list reflected in the topological model,
thereby making it unnecessary to generate new topological models
after each display list change.
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