
In the  past,  a  common  data  structure, or model,  has been used  for  all 
phases of a  computer  graphics  design  system. This  has  meant  that  the 
model  used  during  conversational  interaction  was  the  same as  the 
model  used in the  subsequent  analysis  operations,  usually  resulting in 
poor overall performance. This  paper suggests the  use of separate 
models for each phase,  providing  a general model for  the conversational 
drawing  phase  which i s  suitable as a  front  end in many  different 
application  areas. 

Described are data  structures  and  programs for  both phases: a conver- 
sational  display  image  manipulation  program (DIM) and  its  inter- 
connections  with a n  existing  analysis  application  program (IBM 1130 
Continuous  System  Modeling  Program).  Examples of the use of this 
particular  multilevel  modeling  design  facility are included. 
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One approach to implementing  a  graphics  application  program for 
computer-aided design consists of both defining a set of functions 
for the  particular application  and developing a sufficiently com- 
prehensive data  structure within which these  functions can  be 
executed. Examples of such facilities are CIRCAL' for electrical cir- 
cuit design, CADI? for integrated  circuit design, and C A D D ~  for logic 
circuit  synthesis.  Typically, the functions in such  systems are de- 
signed for specific purposes and  are  not readily usable for other 
applications. Therefore, developing a  facility for a new application 
often requires nearly  as  great an effort as the original development. 

This  paper describes an approach  to  the problem by  partition- 
ing the  total  set of functions so that  an application-independent 
subset  can be defined and need not be repeated  for  each applica- 
tion. The remaining application-dependent  functions  can  be per- 
formed  by a  separate  noninteractive, nongraphics program. The de- 
sign and  implementation of the nongraphics program is significantly 
simpler than  the creation of a complete graphics  application pack- 
age. 

Such an experimental  partitioning, or multilevel graphics pro- 
gram  structure,  is the subject of this paper. Discussed first are 
general characteristics of the application-independent  graphic 
functions  and of the application-dependent  nongraphic  functions. 



used for each subset of functions. The paper  illustrates  this principle 
by means of example data structures  and discusses the transforming 
from one data  structure  to  the  other.  The interrelations  among the 
programs and  data  structures described in  this paper  are shown 
in Figure 1. The  paper concludes with  a brief review of implementa- 
tion and results. The functional division discussed here  leads to a 
bilevel modeling structure. However, the principle of separate 
data structures  is general and  fundamental,  and it is applicable to 
more than two modeling levels. 

General characteristics 
The complete application  package for use with  a graphics console 
contains  a  set of functions for creating and modifying displayed 
drawings and a set of functions for analyzing or operating  upon 
completed drawings to produce meaningful and useful results. The 
drawing  manipulation  functions  are called conversational func- 
tions, and  the functions for operating  on the completed drawings 
are called analysis  functions. Some examples of conversational 
functions are light-pen  tracking, line drawing, and picture copy- 
ing. Examples of analysis functions  are  determining the  current 
in a  circuit, calculating the stress in a beam, and minimizing wire 
length. 

The choice of conversational  functions is based on  the charac- 
teristics of the drawing medium (such as  paper  and pencil, or dis- 
play console and light pen) and  on  human factors. For example, a 
conversational  function  such as ROTATE cannot be implemented 
with pencil and  paper, whereas it can be performed by a  display 
console. The application  and  interpretation of the symbols, on the 
other  hand, do not play  a role in  the choice of conversational 
functions. Hence, conversational  functions  are  application-inde- 
pendent  and merely provide the user with  a simple language for de- 
scribing a  pictorial  representation of his problem to  the computer. 

The conversational  functions must provide  rapid responses if 
they  are  to help the user overcome the  “boundary problems” be- 
tween man  and machine. Intervals between executions of these 
functions  are of the order of seconds, and  many might be called 
for consecutively. They generally involve simple data processing 
and,  thus,  the rapid-response requirement can usually be met  sat- 
isfactorily, providing the conversational  functions  are performed 
in  the machine in which the necessary data resides. 

In contrast to conversational  functions,  analysis  functions  are 
oriented  toward the particular  application, and a.re usually tailored 
for each  application or application class. They  are nongraphic in 
nature  and  not required to be interactive. Analysis functions are 
executed much less frequently than conversational  functions. 
Usually a single analysis function is executed after  the execution 
of many  conversational  functions.  Rapid responses to analysis 
functions are  not essential because most users do not expect re- 
sults of a complex operation  without  a noticeable delay. Analysis 
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functions generally perform numerical  calculations and  can be 
well-defined and specified in such  conventional  noninteractive, 
nongraphic languages as FORTRAN or ALGOL. 

An advantage of the  partitioning of the  set of functions is that 
it makes possible the use of two  separate  data  structures, each  ap- 
propriately designed to support a particular  subset of system func- 
tions. Such partitioning,  in  conjunction  with the use of more than 
one data  structure  to represent the same problem, is referred to  as 
multilevel modeling. Neither  individual data  structure need be as 
complex as a single data  structure designed to support  both con- 
versational and analysis functions. Also, the design and implemen- 
tation of both conversational and analysis  functions  are  greatly 
simplified if separate  data  structures  are used. The conversational 
functions  with their own data  structure can then be application- 
independent. 

Because conversational  functions  involve the creation and 
manipulation of drawings, a display-list type of data  structure 
seems most  suitable for these functions. The  type of data  struc- 
ture used for analysis functions depends on the  particular analysis 
being performed. For example, a simplified ring-type structure is 
often the best type of data  structure for the analysis of topological 
networks. 

Another  advantage of separate  data  structures is that conver- 
sational and analysis functions  can be performed in different ma- 
chines without requiring a wide bandwidth (high speed) intercon- 
nection. Conversational  functions  are best performed interactively 
in real time at  the console, whereas analysis functions  are best 
performed by batch processing. Both can  be accomplished through 
the use of an interactive  intelligent  terminal (small processor) at- 
tached to a large  shared  central processor, thereby removing a 
large  portion of the real-time load from the  central processor. 

Another  merit of the  partitioning idea is that  the specification 
and implementation of the analysis functions are no more compli- 
cated  in  an  interactive design facility than  in a noninteractive 
batch-processing computer, because real-time and graphic  aspects 
need not  be considered. Thus,  many existing noninteractive  ap- 
plication programs can be incorporated in  an  interactive design 
environment  by coupling them to a facility that provides a set of 
conversational  graphic  functions. 

The use of multilevel models may  create  such  requirements as 
the  ability  to reflect a change in one model as a change in  another 
model, or the ability to generate one model from  another.  Such 
requirements  might be unidirectional or bidirectional, depending 
upon the application. To  study possible problems, we have im- 
plemented a system that couples a conversational  program, which 
we call Display  Image  Manipulator E DIM),^ to  an application pro- 
gram called the IBM 1130 Continuous  System Modeling Program 
(CSMP).~  The DIM program was written  in assembler language  and 
designed to be application-independent. The CSMP program was 
written in FORTRAN and was not  intended for use in a graphic en- 
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vironment. The result of DIM plus CSMP is a responsive real-time 
graphics facility. 

The CSMP program simulates the response of an analog com- 
puter on a digital computer. Its data  structure is a list of the  inter- 
connections between the analog elements. Such a data  structure 
can be used by any  other application program concerned wit,h 
topology. For example, a circuit analysis program can use the 
same data  structure  to specify the interconnections between cir- 
cuit elements. Thus,  there is little loss of generality in selecting 
CSMP as a research vehicle. 

Data structures 
A  representation of a line drawing suitable for graphic display 
usually consists of a list of instructions that control the movement 
of a pen or electron beam. Such a  list of instructions is called a 
display list and is illustrated  in  Figure 2. A structured display list 
is one that contains, in  addition to pen- and beam-movement in- 
structions, branches to  and  returns from display sublists. (Sub- 
lists  are similar to subroutines  in  a computer program.) By storing 
the  return address in the sublists, nesting of sublists is possible. 
An example of a  structured display list and  its accompanying 
drawing are shown in Figure 3. 

A  structured display list allows for the extraction of topological 
relationships from a line drawing without having to resort to  pat- 
tern recognition techniques. For example,  consider a  structured 
display list for  an electrical circuit. The shape of each type of 
component (resistor, capacitor, etc.) is contained in a display sub- 
list. The sublist corresponding to each component type is known 
in advance. The display list for  the circuit contains (1) instruc- 
tions for drawing the circuit wiring and (2) the branches to sub- 
lists for drawing the circuit components. Thus,  the presence of a 
resistor at  a particular circuit location is indicated  by  the presence 
of a  branch  instruction properly located in  the display list  and 
pointing to  the resistor sublist. 

The  fact  that a structured display list can support conversa- 
tional functions is illustrated  by examples that follow. Each conver- 

Figure 3 Structured display list 
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Figure 4 Structured display list for  square  and  triangle 
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Figure 5 Sharing  a subpicture 

DISPLAY LIST DRAWING. I 
sational  function to be described corresponds to a single button de- 
pression on  an IBM 2250 function  keyboard.  Figure 4 shows a 
structured display  list  for  drawings of a  square  and a triangle. The 
A or R following each  pair of coordinates  indicates  whether the 
coordinates are  absolute (X, Y) or relative (AX, AY). A pair of 
absolute  coordinates  corresponds to a point whose origin lies a t  
the lower left  corner of the display screen. A pair of relative co- 
ordinates  corresponds to a  point whose origin is the most  recently 
encountered  point in  the display  list. 

. Another copy of the triangle  can  be  added to  the picture  by 
inserting in  the display  list another positioning  instruction and 
another  branch to  the triangle  sublist  as shown in  Figure 5. 
This is accomplished by the SHARE function. The SHARE 
function  has  the  property  that  any  change  to  one copy is 
reflected in  the  other copy.  Another  function, called DUPLI- 
CATE, does not  have  this  property,  but  creates a new copy of the 
sublist  for  a  particular  subpicture.  Figure 6 shows another copy 
of the square that  has been added  by  the DUPLICATE function. 
Subsequent  changes  made to one copy of the square  are  not re- 
flected in  the  other copy. 

A  subpicture  can  be  moved  by  changing the coordinates of a 
positioning  vector, as shown in  Figure 7, by  means of the TRANS- 
LATE function.  Because TRANSLATE is not executed on  the sub- 
list level, one  copy of a shared  subpicture  can  be  translated 
without  affecting the other  copy. With  our  system configura- 
tion,  functions  such  as ROTATE and SCALE must be  performed a t  
the sublist level. Thus,  the scaling of one  copy of a  shared  sub- 
picture causes a scaling of the  other copy as  shown in  Figure 8. 

A line can  be removed from  a  subpicture  by the ERASE or 
DELETE function. The ERASE function  (illustrated  in  Figure 9) 
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Figure 12 Subpictures, nets, and 
attacher points of a 
topological  network 
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Figure 10 Deleting a line 
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Figure 11 Deleting  a subpicture 
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Figure 13 Circuit and topological data structure 
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replaces a line with a blank line, and  the DELETE function (in 
Figure 10) removes the line from the sequence of lines forming the 
subpicture.  Both ERASE and DELETE are performed at  the sub- 
list level and are,  therefore, reflected in all copies of the subpicture. 
Also, a subpicture  can  be removed by  the DELETE function. As 
shown in Figure 11, the DELETE function removes the  branch to  
the subpicture. 

The DIM program uses the  structured display list as  its  data 
structure,  and provides a user with  such  conversational  functions as 
just described. Other  conversational  functions,  such  as  tracking, 
filing, and  retrieving  are also provided by DIM. 
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Many graphics  problems pertain  to  the analysis of topological 
networks, which are interconnections of elements where the posi- 
tion of the individual  elements  has  no relevance. Such  networks 
are completely specified by  the  types of elements and  their  inter- 
connections. Examples of topological networks are electrical cir- 
cuits,  program  flowcharts,  and logic diagrams. Also, designers fre- 
quently  abstract a  practical  problem  by  transforming it into a 
topological network. As an example,  a  mechanical  circuit may  be 
represented by a  spring-mass-damper  network. 

Drawings of topological networks consist of subpictures (re- 
peated where necessary) joined by connecting  lines, which join the 
subpictures only a t  specified points called attacher  points. The  set 
of all  connecting lines of a  picture  consists of disjointed  connected 
subsets of lines, called nets. Figure 12 shows the  nets  and subpic- 
tures of a topological network. The topology of a  picture is com- 
pletely specified by the  attacher points and  the  nets on which they 
lie. 

Such  information  can  be  stored  in a ring-type data  structure, 
called a topological  data  structure, which contains  a  group of words 
for each  subpicture. Each  group  has a  word, called a l ink  word, 
for  each attacher  point  in  the corresponding subpicture.  Link 
words for attacher  points lying on a common net  are  tied  together 
in a circularly  linked  list. In such  a  list,  each  link  word  contains a 
pointer to  the next  link word, and  the  last link word contains a 
pointer  back  to  the first.  An  example of a topological data  struc- 
ture is shown  in  Figure 13. 

An  application  program that can use such  a data  structure is 
the IBM 1130 Continuous  Systems  Modeling  Program (CSUP). This 
program uses a  digital  computer to simulate the response of an 
analog  computer. The analog  computer configuration is specified to 
csnw by a table containing  a  list of the analog blocks used. This is 
exemplified by  Figure 14. ltows in the  table  are labeled with block 
numbers. Each row contains the  name of the block type  and  the 
block numbers of other blocks whose outputs  are connected to  the 
inputs of the given block. For example, Row 2 in  Figure 14 indicates 
that there  is  an  integration block whose first input is the  output of 
Block 3, whose second input is the  output of Block 1, and which has 
no third  input.  (Note  that  the  table is only a  subset of the complete 
topological data structure.) 

The  structured display  list,  created  under  light-pen  control by 
DIM, contains  picture-drawing  instructions, but it does not con- 
tain explicit information  about topological block interconnections 
within the picture.  Although they  appear  on  the display screen, 
the computer does not “know” about interconnections until  it 
processes the display  list.  Next  is  described  a  method of extract- 
ing  information  about topological interconnections  from the dis- 
play  list,  thereby  generating  a data  structure  suitable for the 
CSMP program to analyze. 

One  method of producing  a topological data  structure  from a 
display  list  might be  to scan the display  list  one time for  each 
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relevant  point of the  picture (initial and  terminal  points of con- 
necting lines, and  attacher  points of subpictures) to determine if 
any  relevant  points  have the same  coordinates.  For  complicated 
pictures, the number of relevant  points (hence, the  number of re- 
quired scans) might become so large that processing time is pro- 
hibitive. Thus, a method of extracting topological data  by rela- 
tively few scans is needed. 

Such a method  has been developed by utilizing  certain  prop- 
erties of line drawings. Observe that a large percentage of the pic- 
ture  area of a line drawing is not used. Thus, if the  picture  area 
is finely divided,  many of the divisions (uni ts)  are blank. If the 
area of each unit is decreased, the  number of units  and  the per- 
centage of blank  units is increased. (A useful unit size was found 
to be one sixty-fourth of the area of the display screen.) If units 
containing no relevant  points are also considered as blank  units, 
the percentage of blank  units is further increased. Because  all in- 
formation  (i.e.,  relevant points) is in  the non-blank units,  picture 
processing time  can be reduced by examining only those  units. 

It is desirable to set up a table for each non-blank unit  in  the 
picture. An initial  pass is made  through the display  list to de- 
termine which are  the non-blank  units.  When a relevant  point is 
encountered, a check is made to determine  whether the  unit con- 
taining that point was previously encountered. The check is made 
by consulting a table, called a table of headcells, containing one 
word for each  unit.  (The headcell word contains  all zeros if the 
unit was not previously encountered.)  When a unit is  encountered 
for the first time, a fixed-length group of words (called a directory) 
is reserved for that unit,  and  the address of the directory is en- 
tered  into  the corresponding word in  the  table of headcells. In- 
formation  about  relevant  points lying within each non-blank unit 
is  entered into  the directories during the first pass. Included  in 
the information are  the relative coordinates of the point  (measured 
from the lower left corner of the  unit).  The remaining informa- 
tion for endpoints of connecting lines is the display  list  address of 
the connecting line containing the endpoint. The remaining infor- 
mation  for  attacher points is the address of the link word of the 
attacher point. For attacher points, a pointer  to  the directory 
entry is entered  into  the link word of the  attacher point. The 
pointers to directories must  be replaced by pointers to other  at- 
tacher  points to  put  the topological data  structure  in final form. 

Each connecting line requires two entries in  the directories- 
one corresponding to  the  initial  point of the line, and  the  other 
corresponding to  the terminal  point.  However, if the preceding 
instruction  in  the display  list also corresponds to a connecting 
line, the  terminal  point of the first line is the same as the initial 
point of the second line. In  this case, no  directory entry need be 
made for the initial  point of the second line. 

An example of a picture  with  its associated directories is shown 
in Figure 15. Note  that a directory  is not reserved for a unit  until 
a relevant  point  lying in  the  unit is  encountered. Since most units 
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Figure 15 Picture and associated  directories 
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The topological data  structure assumes its final form  when 
link-word pointers to directories are replaced  with  pointers to  
other  link words. This is done  by  tracing  out  the  net for  each at- 
tacher  point. The first attacher  point  is selected, and  the  directory 
containing it is obtained  from  its  link word. That  directory is 
searched  for other  relevant  points  having  the  same  relative co- 
ordinates;  such  relevant  points  all lie on  the  same  net  as  the orig- 
inal  attacher  point. If one  endpoint of a  connecting  line is found 
to  have  the required  relative  coordinates, the opposite  endpoint 
also lies on  the  net.  This opposite  endpoint  provides  a new pair of 
coordinates  for which another directory  search  for  relevant  points 
is performed. The search is repeated  for  each new pair of coordi- 
nates  until no new relevant  points lying on the  net  are obtained. 
This procedure, which is repeated once for each  net,  traces  out  the 
entire  net and-at the same tim-btains the link  words of all 
attacher  points on the  net.  The link words are  then  tied  together 
to  form a  circular  linked  list of attacher  points on a common net. 

Concluding remarks 
An experimental  graphic  facility  has been described as  an example 
of a multilevel modeling structure for  interactive  graphic design. 
The facility, consisting of the  Display  Image  Manipulator coupled 
to  the 1130 Continuous  System  Modeling  Program, has been im- 
plemented  on an IBM 1130 with 8K words of 16 bits each. The 
1130 is attached  to  an IBM 2250 that uses the 1130 main  storage  as 
a  display buffer.6 The implemented  facility allows a user to  draw 
a  configuration of analog  elements.  A  display  list is created  by DIM 

during the drawing  phase.  After the picture is completed,  a pro- 
gram  converts the display  list into a topological model, which 
CSMP then uses to  obtain  the response of the analog  circuit. 
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Figure 19 Computed response to 
first modification 

Figure 20 Second analog config- 
uration modification 

Figure 21 Computed response to 
second modification 

A picture of an analog  computer  configuration  drawn  with 
DIM is shown in  Figure 16, and  the response generated by CSMP 

is shown in  Figure 17. Figure 18 shows the configuration after a 
change  has been made,  and  the response of the changed con- 
figuration  is  shown in  Figure 19. A second analog  configuration 
modification is shown in  Figure 20, and  its computed  response  is 
shown in  Figure 21. 

In  the CSMP application, the interface  program is required to 
be unidirectional. That is, the program must be  able to generate 
the topological model from the display  list, but  not vice versa. I n  
the present  implementation, if the display  list is changed after 
generating  a topological model, a new topological model is gen- 
erated.  Future work  should consider the problem of having 
changes in  the display list reflected in  the topological model, 
thereby  making it unnecessary to generate new topological models 
after  each display  list  change. 

CITED REFERENCES  AND FOOTNOTE 

1. M.  L. Dertouzos, “CIRCAL: On-line circuit design,” Proceedings of the 
ZEEE 55, No. 5,  637-654 (May 1967). 

2. F. S. Preston, et. al., Development of Techniques for  Automatic  Manufacture 
of Integrated circuits, Technical Report AFML-TR-~~-W, Volumes 1 & 
11, Electronics  Branch, Air Force  Materials Laboratory, Wright-Patterson 
AFB, Ohio, (November 1965). Performed  under  contract by Norden 
Division of United Aircraft Corporation. 

3. M. L. Dertouzos and P. J. Santos, Jr., CADD: On-Line  Synthesis of Logic 
Circuits, Electronic  Systems Laboratory, Massachusetts Institute of Tech- 
nology, Report ESIm-253, Cambridge, Massachusetts  (December 1965). 

4. R. H. Riekert  and  D. V. Lieberman, DIM-A Low Level  Modeling  System 
for  Conversational  Graphics, IBM Research Report RC-1981, IBM T. J. Watson 
Research  Center,  Yorktown, New York (October 1967). 

5.  R. D. Brennan,  “Digital  simulation for control  system design,” Pro- 
ceedings of the SHARE Design  Automation  Workshop, New Orleans, Louisi- 
ana,  (May 1966). 

6. The work described in  this  paper was implemented on a prototype IBM 

1130/2250 system. Therefore, these  programs are  not currently  available 
for the IBM 2250 Model 4. 

228 BASKIN  AND MORSE 


