Discussed is a method of drawing curves of arbitrary shape on a
graphic display screen.

An algorithm for the design of free-form curves is developed by using
rational polynomials and the notation of homogeneous coordinates.
With this algorithm, spline-like curves can be generated through
arbitrarily placed points in a plane or in space.

INTERACTIVE GRAPHICS IN DATA PROCESSING
An algorithm for generating spline-like curves

notation

by D. V. Ahuja

For a computer-aided design system to be truly useful, it must be
possible to do freehand sketching and subsequent refining of arbi-
trarily shaped curves on a display sereen. Such curves are vital
graphic elements in the design of free-form surfaces. With a light
pen and a graphic display console, the designer should be able to
delineate and modify at will the curves describing his surface. The
mathematical model used to generate such curves should be simple
and efficient. “Response time’’ on the display console should be
minimum so that when the curve is bent with the light pen the
motion appears continuous. To enhance the importance of such
curves for numerically controlled machines, it must be possible to
vary the smoothness of the curve to suit various “tolerances.” It
should also be possible to define a curve in many ways through a
set of points.

Traditionally, conics and cubics have been used for the gen-
eration of these curves.'? Coons and Herzog® point out the draw-
backs of these two families of curves for generating free-form
curves and suggest the use of rational polynomials instead. It is
the intent of this paper to develop a general algorithm for generat-
ing spline-like curves through arbitrarily placed points in a plane
or in space using rational polynomials.t

The notation for homogeneous coordinates previously estab-
lished in the paper by Ahuja and Coons that appears in this issue is
used in the following derivations, i.e., a point in space (X, Y, Z)
is written in homogeneous form as wV = [wx wy wz w], and a
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point in a plane is wV = [wz wy w]. The actual coordinates are
obtained from wV by

V=wV/w=I[X Y Z 1]

Curve development

The ordinary coordinates of a point (X, ¥, Z) can be parametrized
as follows

¥ = (a1u’® + b’ + cou + dy)
(au® 4+ bu’ + cu + d)
Y = (a2’ + bou® + cou + do)
(au *+ bu *+ cu + d)
7 = (asu’ + bsu’” + csu + ds)
(au® + bu® + cu +d)
where % is the parameter and a, b, ¢, d, a1, by, &1, dy, - - -, as, bs, c3,

and d; are constant coefficients.
Then combining Equations 1, 2, and 3 and keeping in mind that

1)

(2)

®3)

=%, and Z=%,
y w

we could write
wV = [wr wy wz w]

a; a3
w 1] by b; b
1 cs ¢
dy ds d
Also, since (wz) = a;u® 4+ b2 + cu + dy then
(wz) = 3a1u? + 2bwu +
similarly
(wy)' = 3au® + 2bu + ¢
(wz)" = 3azu® + 2bu + ¢
(w)”" = 3au® + 2bu + ¢
Combining Equations 5 through 8
V) = [(wz) (wy)' (we) w']
a; as
=B’ 2 1 0|0 %
€1 C2

di d»
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Figure 1

The spline: a smooth curve
passing through points

determination of
the A matrix

(Note that the 4 X 4 matrix on the right sides of Equations 4 and
9 is the same.)
In general, then, if X, Y, and Z are all of the form:

_ i) ) 1))
T YT w7
where f(u), fi(u), fo(u), and fs(w) are cubic polynomials of the

parameter %, we could write in matrix form, as in Equations 4
and 9

wV = w uw 1]4 (10a)
and
(wV) =1[3u? 2u 1 0]4 (10b)

where 4 is a matrix of constant coefficients of f(u), fi(u), f2(u), and
fs(w). A, a 4 X 3 matrix for planar points or a 4 X 4 matrix for
points in three-dimensional space, is determined later. By similar
techniques the reader may also prove that

WV =6u 2 0 04 (10c)

The problem is to fit a smooth curve that must pass through
n points Vi, Vs, V3, - -+, V, in the order in which they are given in
Figure 1. The author proposes to do so in a piecemeal fashion, i.e.,
we assume that the curve consists of n — 1 segments of the form
given by Equation 10a which when put together result in the desired
curve. For computational simplicity, we set up the restriction that
the parameter % assumes values between 0 and 1 in each segment.
We now proceed to show how to determine the matrix A for each
segment.

We assume that for the curve to be “smooth,” the first and
second derivative vectors at the “junctions” (Vi, Vs, ---, V,) be-
tween simple segments should be single-valued. The single-valued
property of the first derivative vectors ensures slope continuity
at the junctions, and the single-valued property of the second
derivative vectors ensures curvature continuity at the junctions.
Thus at the junction V5,

Ve, =V$ and Vi, =TVi. (11)

where superseripts refer to the segments, and subseripts « and uu
represent 6V /du and 3%V /du

In general, we can determine the A matrix in the following
manner. Consider the first segment V1V, at v = 0. Then from
Equations 10a and 10b we have

wV,=[0 0 0 114
(wVy)' =[0 0 1 0]A

and similarly at 4 = 1

(U)2V2)' = [3 21 0] A

AHUJA IBM SYST J




or we can write in matric form
w1V, 1
weVe | _ 1
(wiVy) 0
(weV3)’ 0
E

A

or
1 wVy
3 -2 -1 we Vo
0 0 1 0 ([ w!/Vi+ wVy
1 0 0 0 ALwd'Vy+ wVy

The square matrix B! is constant for all segments because it is
dependent on values of w at endpoints of each simple segment
which are 0 and 1, and we denote it by M. Then

A=B"'E=

wy 0 0 O V1
0 O Ve
0 V)

0 w' 0 wdlLVY (12)

The matrix 4, as such, is too general for all practical purposes.
Any arbitrary choice of w’s results in one curve. So we restrict
our studies to

fwr we w w']=1[1 1 a b]

where a and b are independent quantities. For this arbitrary sim-
plification, Equation 10a still contains ordinary parametric cubics
(fora = b = 0), conies, and a family of rational parametric cubics
for values other than @ = b = 0. A second arbitrary simplification
of the problem consists in making (w.f)’ = (w)’, i.e., w’ is single-
valued at each junction.

Typieally for two adjacent simple segments, the first might be
defined by [w: w: w) wy] =[1 1 a1 a2, and the second
would then be defined by [wy ws we’ ws]=[1 1 a2 a4

With these arbitrary simplifications for each simple segment,
matrix A ecan be evaluated by Equation 12 if the “junction tangent
vectors” Vo', V', ---, Va_i' are known. For the present, we as-
sume that the “end” tangent vectors V1’ and V," are known. (The
case where they are unknown is disposed of later.) However, in
evaluating V', Vo', ---, V.’, we must satisfy the conditions im-
posed by Equation 11. We now show how this can be done.

First consider only two simple segments as shown in Figure 2.
Since w1 = w: = wz = 1, we can evaluate V)" for the two seg-
ments S; and S, and equate these expressions. V' for segment S,
at w = 1 is determined as follows:*® From Equation 10c, we have
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(w:Vo)"' =[6u 2 0 0]4

w,Vy

we Vs
w'Vyi+ w VY
wy'Va + woVy

=[6u 2 0 0]M

However
(UJ2V2) "= QL‘z, ’Vz + 21.02/ Vzl + szg”
Therefore

szz” = (’LU2V2)” — ll)z”Vz — 2102IV2l

From 13a, on simplifying
(’U)sz)” = 6V1 + 2(11V1 —_ 6V2 + 4(12V2 + 2V1, + 4V2I

Also wy’’ is the last component of the vector (w:Vs)’’ and therefore

w' ' =[4+6 —6 2 4]

(because the last components of Vi, V,, and V’ and V,' are 1, 1,0,
and 0 respectively).

Wy’ =06 — 6 4 2w/ + 4w’ = 2a; + 4a,
Now from Equation 13b
weVy' = 6V 4 2a,Vy — 6V, + 4a.Vs + 2V 4 4V, — 24,V
— 40,V — 20,V (13¢)

for w, = 1, writing Equation 13¢ in matric form, we have

6(Vy— Vo) +2V/
4V
2V, — Va)
-2V

Vi'=[1 1 ay as

which may be written as

(14)
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Similarly, at the beginning of segment S, we can write?®?

Vs

—6 Vs

0 v
2 o lLvy (15)

Vz”=[1 1 s as]

Note the V,’ entries (those underscored) in Equations 14 and 15.
These entries ensure tangent vector continuity at the ‘‘junction”
V.. We equate these two expressions to make V.’ single-valued,
thus ensuring curvature continuity at V.

Vi
Ve
vy
vy

[6+2a1 —6‘—2(11 2 4:'—2(12]

=[—64+2a3 6— 2a; —4 — 2a

The equation can be rearranged to read:

Vi

[6 4+ 2a; —2a; — 2as —6 4+ 2as]| V.
Vs

| 8%
[-2 —8 -2]

simplifying
Vll Vl
[1 4 1] Vzl = [—3 — a1 a;+ a; 3 — as] V2
Vi Vs (16)
Now let us extend Equation 16 for four points. We may write
VY
Vz’ l:—?) - a1 ay + asz 3 — az 0 ]

0 —3—02 a2+a4 3'—0,4

vV
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We could extend this pattern to n points as follows:

- r -

100 - - - -0 vy
4100 - - -0 Ve

1410 - - -0 vV

1]

V'
[ —3— a4, aita:s 3—as 0

0 —3—as asta: 3—a,
0 0 —3—a;3 aztas 3—as

0 —3—ap2 Ar2ta. 3—anl

F
which may be simplified to

[ vy 4 i VJ [ Vlﬂ
Ve Vs 0
Vs 0

LVn,_J

Vil

We can evaluate V', V3, - - -, V/,_; from this equation and, hence,
the A matrix for each segment from Equation 12.

Having parametrized each simple segment as in Equation 10a,
we must break it into a suitable number of vectors to be able to
draw it smoothly by means of the image-generation routines of the
IBM 2250 or similar routines provided for the CalComp plotter and
other digital machines. Evidently this is done by varying » between
0 and 1 for each segment. However, we have observed (e.g., Figure
3) that for a specified change (Au) in the value of the parameter, a
larger vector is obtained in the region of small curvature (where
the rate of bending is low and a small step is not desired) and a small
vector in the region of sharp curvature (where bending is sharp and
a small step is desired). Thus a value of Au, which is suitable for a
region of maximum curvature in each segment, is suitable for the
rest of the segment. This eliminates the iterative techniques to step
along the curve. It may also be noted that if the elements of the
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Figure 3 A relative step along the curve for the same u increment (Au) = 0.1

RELATIVE STEP ALONG THE CURVE
FOR THE SAME u INC.(NOTE LARGE
STEP NEAR POINTS 1 AND 4)

first two rows of the matrix A for the segment are all zero, then no
vectors are to be computed as the actual curve in that region is a
straight line (discussed by Ahuja and Coons in another paper in
this issue).

Thus we have developed a general algorithm for generating
spline-like curves, But thus far, we have not considered the effect
of varying a, as, * - -, @, on the behavior of the curve. This effect
can be predicted mathematically. We proceed to do so and then
suggest a scheme for implementing this algorithm, thereby point-
ing out its notable features. Let us consider the equation of the
curve through one simple segment

1 0 Vi
0 1 Ve
a O vy
0 a VY

Differentiating with respect to a,

wV =[u® « uw 1M

dwV) _ dw oV
6a1 - aal v + w 6a1

which gives

w V. _dwV) ow
aal é)al aa1

V.
Now

(18)
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implementing
the algorithm

which after simplification is equal to
[’ —24° + u]V,
Also dw/da, is the third column of Equation 18 which is

WP—2u4+u 0 0 0] ut— '+ u

v
Wil = (W’ — 2u® + ][V, — V]

or

14
6a1

= -%1; W — 2 + ][V, — V]

Thus, a general point V corresponding to a value u moves
along the vector (Vi — V) as ai is changed. The scalar
(1/w)(u®* — 2u® + u) describes the magnitude of this motion. By
a similar procedure, we can show that the point ¥V moves along
(Vo — V) as as is changed. Quantities ay, as, - - -, a, have a pre-
dictable effect on the shape of the curve. Their adjustment can
modify the curve segment shape so as to remove or introduce in-
flection points at will, without disturbing the end conditions or
other constraints (input points) of the curve.

The following scheme is suggested for implementing this algo-~
rithm. We start by making ai, as, - -, @ = 0, thus generating
the curve by piecemeal parametric eubics (if end tangent vectors
are also unknown, we can assume them to be equal to [0 0 0]).
We shall then modify the curve by changing the quantities
a1, as, -, @, as desired. The effect of the end tangent vectors on
curve shape and the utilization of the a factors to modify the shape
of the curve is illustrated in Figures 4 and 5. In Figure 4, for a slope
of 90°, the end tangent vector at point 1 is varied from [0 1 0]
(eurve 2) to [0 3 O] (curve3) to [0 5 0] (curve 4). The tangent
vector [0 O 0] at both ends results in a straight line (curve 1). In
Figure 5, an extreme case of cusp is picked deliberately to illustrate
the usefulness of rational polynomials where parametric cubics
gave a cusp; & is changed from 0 to 5 to eliminate the cusp at point
2 (dotted curve).

Looking back at Equation 17, we notice that the inverse of
matrix

4 1
1 41
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Figure 4 Effect of end tangent vector variation

CHANGE IN CURVE SHAPE DUE T0
TANGENT VECTOR VARTATION

Figure 5 Effect of changing a’s on curve shape

USEFULNESS OF 'a' FACTORS IN
REMOVING SINGULARITIES IN
CURVE
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Figure 6 An “ill-conditioned” spline through numbered points

ILL-CONDITIONED SPLINE
TANGENT VECTORS AT 1 AND 5
(=25 50 0),(500 25 0)

Figure 7 Closed curve through numbered points

CLOSED CURVE: POINT O IS BOTH
THE FIRST AS WELL AS LAST
POINT IN THE INPUT LIST
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will have to be computed only once; the changes in curve shape
would be computed with a minimum of computer time. We
also notice the absence of trigonometric functions, which should
further improve the ‘‘response time.”

Summary comments

We have developed an efficient method for generating spline-like
curves. It is an easy matter to compute shape changes. Further-
more, curve shape can be defined in a number of ways such that
we can have conic segments, cubic segments, and rational para-
metric cubic segments as part of one curve, all generated by the
same equation. It is also possible to construct closed curves (and/or
ill-conditioned splines) by this method as in Figures 6 and 7. We
conclude this diseussion by stating that further studies should be
directed at the effect of ai, as, - - -, @, on second derivatives and an
attempt should be made to predict these changes so as to minimize
the “stored energy’’ in the spline.
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