
Discussed i s  a  method of drawing curues of arbitrary  shape on a 
graphic  display screen. 

An algorithm for the  design of free-form curues i s  developed by using 
rational  polynomials  and the notation of homogeneous  coordinates. 
With  this  algorithm,  spline-like curves can be generated through 
arbitrarily placed points in a plane or in space. 

INTERACTIVE GRAPHICS IN DATA PROCESSING 

An algorithm for generating spline-like  curves 
by D. V. Ahuja 

For a computer-aided design system to be  truly useful, it must be 
possible to do freehand  sketching and subsequent refining of arbi- 
trarily  shaped curves on a  display screen. Such  curves  are vital 
graphic elements in  the design of free-form surfaces. With a  light 
pen and a  graphic  display console, the designer should be able to 
delineate and modify at will the curves describing his surface. The 
mathematical model used to generate  such  curves should be simple 
and efficient. “Response  time” on the display console should  be 
minimum so that when the curve is bent  with  the light  pen the 
motion appears  continuous. To enhance the importance of such 
curves for numerically controlled machines, it must be possible to 
vary  the smoothness of the curve to suit  various “tolerances.” It 
should also be possible to define a  curve in many ways through  a 
set of points. 

Traditionally, conics and cubics have been used for the gen- 
eration of these curves.1t2 Coons and Herzog3  point out  the draw- 
backs of these  two families of curves for  generating free-form 
curves and suggest the use of rational polynomials instead. It is 
the  intent of this  paper  to develop a general algorithm  for  generat- 
ing spline-like curves  through  arbitrarily placed points  in  a  plane 
or in space using rational  polynomial^.^ 

The  notation for homogeneous coordinates previously estab- 
notation lished in  the paper by Ahuja  and Coons that appears in  this issue is 

used in  the following derivations, i.e., a  point  in  space ( X ,  Y ,  2) 
is written in homogeneous form  as WV = [wx wy  wz   w] ,  and a 

206 AHUJA IBM SYST J 



point in a plane is WV = [wx  wy  w]. The  actual coordinates are 
obtained  from wV by 

v = wv/w = [X Y 2 11. 

Curve development 
The ordinary  coordinates of a point ( X ,  Y ,  2) can  be  parametrized 
as follows 

z =  (a3u3 + b3u2 + c3u + d3) 
(au3 + bU2 + cu + d )  

where u is the  parameter  and a,  b, c, d,  all b1, c1, dl,  . e ,  a3, b3, c3, 
and d3 are  constant coefficients. 

Then combining Equations 1,2, and 3 and keeping in mind that 

X = -  Y = - - ,  and Z = - - ,  wx WY WX 
w ’  Y W 

we could write 

wv = [wx  wy W X  w] 

a2 a3 

= [ u 3  u u 
2 f: 1: l] 

dl  dz d3 d 

Also, since (wx) = alu3 + b1u2 + clu + dl then 

(wx)’ = 3alu2 + 2blu + c1 

similarly 

(wy) ’ = 3a2u2 + 2bzu + cz 

(wz)’ = 3a3u2 + 2b3u + cp 

(w)’ = 3au2 + 2bu + c 

Combining Equations 5 through 8 

(WV)’ = [(wx)’  (wy)’  (wz)’ w’] 

.1 
= [3u2 2u 1 

d 

(4) 



(Note  that  the 4 X 4 matrix  on the right sides of Equa.tions 4 and 
9 is the same.) 

In general, then, if X ,  Y ,  and 2 are  all of the form: 

where f(u), fl(u), fz(u), and f3(u) are cubic polynomials of the 
parameter u, we could write in matrix  form,  as in  Equations 4 
and 9 

WV = [u3 U’ u 1]A (loa) 

and 

(WV)’ = [3uZ 2u 1 O]A (lob) 

where A is a matrix of constant coefficients of f (u ) ,  fl(u), fz(u), and 
f3(u). A, a 4 x 3 matrix for planar  points or a 4 x 4 matrix for 
points in three-dimensional space,  is  determined  later. By similar 
techniques the reader may also prove that 

Flaure 1 The spline: a smooth curve (lUV)’’ = OIA (10c) 
assing through points The problem  is to fit a smooth  curve that must pass through 

n points V1, V z ,  V3,  . . . , V ,  in  the order in which they are given in 
Figure 1. The  author proposes to do so in a piecemeal fashion, i.e., 
we assume that  the curve consists of n - 1 segments of the form 
given by Equation 10a which when put together  result in  the desired 
curve. For computational  simplicity, we set  up  the restriction that 
the parameter u assumes values between 0 and 1 in each segment. 
We now proceed to show how to determine the  matrix A for each 
segment. 

We assume that for the curve to be “smooth,” the first and 
second derivative  vectors at  the “junctions”  (VI, Vz,  . . , V,) be- 
tween simple segments  should be single-valued. The single-valued 
property of the first derivative  vectors ensures slope continuity 
at  the junctions, and  the single-valued property of the second 
derivative  vectors ensures curvature continuit,y at  the junctions. 
Thus  at  the junction V3,  

Vfu  = V,&, and Vauu = Vfuu 
where superscripts refer to  the segments, and subscripts u and uu 
represent dV/du and dzV/du2. 

In general, we can  determine the A matrix  in the following 
determination of manner. Consider the first segment VIVz  at u = 0. Then from 

P 
(11) 

the A matrix Equations  loa  and 10b we have 

WlVl = [O 0 0 11 A 
(WlV1)’ = [O 0 1 01 A 
and similarly at u = 1 

I 
WZVZ = [ l  1 1 11 A 

(w2V2)’ = [3 2 1 01 A 
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or we can  write  in  matric  form 

E B 
or 

2 - 2 1  1 

-3 3 -2 -1 

0 0 1 0  

1 0 0 0  

A = B”E = 

WlVl 

w2v2 

Wl’Vl+  WlVl 

WZ’VI + w2v2 1 
The  square  matrix B-’ is constant  for all segments because it is 
dependent  on  values of u a t  endpoints of each  simple  segment 
which are 0 and 1, and we denote it by M .  Then 

The matrix A ,  as  such, is too  general  for all practical purposes. 
Any arbitrary choice of w’s results in one curve. So we restrict 
our  studies to 

Lull w2  w:  WZ’] = [l 1 a b ]  
where a and b are  independent  quantities. For this  arbitrary sim- 
plification, Equation 10a still  contains  ordinary  parametric cubics 
(for a = b = O), conics, and a family of rational  parametric cubics 
for  values  other than a = b = 0. A second arbitrary simplification 
of the problem consists in making (wip)’ = (wiQ)’, i.e., w’ is single- 
valued at  each  junction. 

Typically for two  adjacent simple  segments, the first might be 
defined by [wl w 2  w: w2’] = [1 1 a1 a2], and  the second 
would then be defined by [wz  wa  wz’  wg’] = [l 1 a2 a3]. 

With  these  arbitrary simplifications for  each  simple  segment, 
matrix A can be evaluated  by  Equation 12 if the “junction  tangent 
vectors” V2’, V3’, . . . , V,-l’ are known. For  the present, we as- 
sume that  the “end”  tangent vectors VI’ and V,’ are known. (The 
case where they  are unknown is disposed of later.) However, in 
evaluating Vl’, V2’, . . ., V,’, we must  satisfy the conditions  im- 
posed by  Equation 11. We now show how this  can be  done. 

First consider only two simple  segments as shown  in  Figure 2. 
Since w1 = w2 = w3 = I, we can  evaluate 8 2 ”  for the  two seg- 
ments S1 and S2 and  equate  these expressions. V2” for  segment SI 
at  w = 1 is determined  as  follow^:^^^ From  Equation ~ O C ,  we have 
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(wzVZ)” = [ 6 ~  2 0 O]A 

= [6u 2 0 O]M 
Wl’V1 + WlV1’ 

wzlvz + wzv21 

However 

(W2VZ)” = 1cz11v2 + 22UZ1V2’ + WZV2“ 

Therefore 

WZVZl’ = (WZVZ)” - w2”Vz - 2w2‘Vz‘ U3b) 
From 13a, on simplifying 

(w2V2)II = 6V1f  2alV1 - 6V2 + 4azVz + 2V1’ 4- 4vz’ 

Also wZ’l is the last  component of the vector (W2Vz)I’ and therefore 

(because the last  components of VI, Vz, and VI’ and Vz‘ are  1,1,0, 
and 0 respectively). 

wz’’ = 6 - 6 + 2wl‘ + 4wz1 = 2al + 4a2 

Now from  Equation  13b 

wZVz” = 6V1 + 2alV1 - 6V2 + 4azVz + 2V1’ + 4V2’ - 2alV2 

- 4azVz - 2azVz‘ (13c) 

for wz = 1, writing Equation 13c in  matric form, we have 

which may be written  as 





We could extend  this pattern  to n points  as follows: 

r 1 4 1 0 0 * * *  
Y 

e o  

0 1 4 1 0 0 ~ * - 0  

0 0 1 4 1 0 * ~ * 0  
. . . . . . . . . .  
. . . . . . . . . .  

, 0 0 0 0 ~ * ~ 1 4 1 ,  

- 3 -  al al+aa 3-a3  0 0 0  

0 -3-a2 a2+a4 3-a4 

0 0 -3-a3  a3+as 3-a6 
- - 

0 0 0 -3-an-z 3-a, 

F 

which may be simplified to 

1 

4 

1 

1 

4 1 

1 

LvnJ (17) 
We can  evaluate VZ’, Va’, . . e ,  V’n-l from  this  equation  and, hence, 
the A matrix for each segment  from Equation 12. 

Having  parametrized  each simple segment as in  Equation  loa, 
we must  break it into  a  suitable  number of vectors to be able to 
draw it smoothly  by means of the image-generation routines of the 
IBM 2250 or similar routines provided for the CalComp  plotter and 
other  digital machines. Evidently  this is done by varying u between 
0 and 1 for each segment. However, we have observed (e.g., Figure 
3) that  for a specified change (Au) in  the value of the  parameter, a 
larger  vector is obtained in  the region of small curvature (where 
the  rate of bending is low and  a small step is not desired) and  asmall 
vector in  the region of sharp  curvature (where bending is sharp  and 
a  small step is desired). Thus a value of Au, which is suitable for a 
region of maximum  curvature  in each segment, is  suitable  for the 
rest of the segment. This  eliminates the  iterative techniques to  step 
along the curve. It may also be  noted that if the elements of the 
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Figure 3 A relative step along the  curve for the same u  increment  (Au) = 0.1 

first two rows of the matrix A for the segment  are all zero, then no 
vectors are  to be computed  as the  actual  curve  in  that region is a 
straight line (discussed by  Ahuja  and Coons in  another paper in 
this issue). 

Thus we have developed a general algorithm for generating 
spline-like curves. But  thus  far, we have  not considered the effect 
of varying al, a2, . . e ,  a, on the behavior of the curve.  This effect 
can be predicted  mathematically. We proceed to do so and  then 
suggest a scheme for implementing  this  algorithm,  thereby  point- 
ing out  its notable  features.  Let  us consider the equation of the 
curve  through one simple segment 

w v  = [u3 u2 u 1]2c 

Differentiating  with respect to al 

a ( w v >  aw av - v + w -  aal aal aa1 
"- 

which gives 

" 
0 0 0 0  

1 0 0 0  

to 0 0 0- 

1 
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implementing 
the algorithm 

which after simplification is  equal to 

[u3 - 2u2 + u]V1 

Also aw/aal is the  third column of Equation 18 which is 

[u3-2u+u  0 0 011 I = u 3 - 2 u 2 + u  

w- = [u3 - 2u2 + u][V1 - VI av 
aal 

or 

- - " 
aa, w aV - [u3 - 2u2 + u][V1 - VI 

Thus, a general point V corresponding to a value u moves 
along the vector (VI - V )  as a1 is changed. The scalar 
(l/w)(u3 - 2u2 + u) describes the magnitude of this motion. By 
a  similar procedure, we can show that  the point V moves along 
(V2 - V )  as a2 is changed. Quantities al, a2, . . . , a, have a pre- 
dictable effect on the shape of the curve. Their  adjustment  can 
modify the curve  segment  shape so as to remove or introduce in- 
flection points a t  will, without  disturbing the end  conditions or 
other  constraints  (input  points) of the curve. 

The following scheme is suggested for  implementing this algo- 
rithm. We start  by making al, az, * - e ,  a, = 0, thus generating 
the curve by piecemeal parametric cubics (if end  tangent vectors 
are also unknown, we can assume them  to be equal to [0 0 01). 
We  shall then modify the  curve by changing the  quantities 
al, a2, . . . , a, as desired. The effect of the end tangent vectors on 
curve  shape  and  the utilization of the a factors to modify the  shape 
of the curve is illustrated  in Figures 4 and 5 .  In  Figure 4, for a slope 
of go", the end  tangent  vector at point 1 is  varied  from [0 1 01 
(curve 2 )  to [0 3 01 (curve 3) to [0 5 01 (curve 4). The  tangent 
vector [0 0 01 at both ends results in a  straight line (curve 1). In  
Figure 5, an extreme case of cusp is picked deliberately to illustrate 
the usefulness of rational polynomials where parametric cubics 
gave  a  cusp; al is changed from 0 to 5 to eliminate the cusp a t  point 
2 (dotted  curve). 

Looking back at  Equation 17, we notice that  the inverse of 
matrix 

4 1  

1 4 1  
. . . .  
. . . .  

1 4- 
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will have to  be computed only once; the changes in  curve shape 
would be  computed  with a minimum of computer time. We 
also notice the absence of trigonometric  functions, which should 
further improve the ‘(response time.” 

Summary comments 
We have developed an efficient method  for  generating spline-like 
curves. It is an easy matter  to compute  shape changes. Further- 
more, curve  shape  can be defined in a number of ways such that 
we can  have conic segments, cubic segments, and rational  para- 
metric cubic segments as part of one curve,  all  generated by  the 
same  equation. It is also possible to construct closed curves  (and/or 
ill-conditioned splines) by  this method  as in Figures 6 and 7. We 
conclude this discussion by stating  that  further studies  should be 
directed at  the effect of all a2, . . , a, on second derivatives and  an 
attempt should be made to predict  these changes so as to minimize 
the “stored energy” in  the spline. 
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