Matric notation is used to develop geometric concepts for computer-
controlled graphics.

This natural form of geomelric expression leads to homogeneous co-
ordinates which form the basis of an algorithm used for geometric
construction. In this way, three-dimensional objects and other pictures
can be displayed on a graphics console.

The paper also briefly discusses the motation and development of
Sfunctions for the construction of surfaces.

INTERACTIVE GRAPHICS IN DATA PROCESSING

Geometry for construction and display
by D. V. Ahuja and S. A. Coons

The design and delineation of arbitrary shapes, and the display
of these shapes from arbitrarily chosen viewpoints are more easily
accomplished if done on the graphie display console of a computer
rather than by pencil and paper methods. In this paper, we show
modern methods for geometry, so constructed and organized that
geometric manipulations can be performed in a way natural to
the computer, and can yield results that are natural to man.

We discuss three major ideas: matric methods for algebra,
homogeneous coordinates, and curves and surfaces from a para-
metric standpoint. First, we introduce matric methods for algebra,
because matrices exhibit in a very transparent way the nature of
geometric entities. They are also natural forms for computer im-
plementation, since matrix manipulations are already programmed,
and routines exist that are easily exploited.

Matrices lead naturally to the notion of coordinate transfor-
mations, and this notion leads into homogeneous coordinates. On
this basis, we are able to show that all possible pictures, or dis-
plays, of three-dimensional objects, including the projections em-
ployed by draftsmen, so-called ‘“axonometric pictorials,” and pie-
tures in full perspective can be constructed on the display console
of the computer by a single, simple algorithm.

Finally, we briefly discuss curves and surfaces from a para-
metric standpoint. This form of curve and surface equations is
used in “differential” geometry, and it lends itself to computer
implementation in a very natural way.
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Matric notation

We begin with a very elementary discussion of matric notation. In
the plane, a line can be represented by the equation:

Ax+ By =C

In matrie notation, this equation becomes

[+ y][“i}c
B

The brackets enclose two matrices, and their entries are the quan-
tities that appear in the ordinary algebraic equation. The bracketed
matrices are juxtaposed, which suggests that they are to be multi-
plied together; the “produet” of the matrices is just Az 4+ By.

Now assume there are two lines in the plane, given by the linear
equations:

Az+ By =C
Dx+Ey=F

In matric notation, these equations become the single matric
equation

[z y][A D:|=[c Fl
B FE

Ordinarily, there exists a point of intersection of these lines. This
is to say that provided the lines are not parallel (we dispose of
this case later, and show that it is not exceptional), it is possible,
for A B D E C F given numbers, to choose a pair of numbers « and
y that ‘“satisfy” both equations simultaneously. This algebraic
process is very elementary and well-known, but it is interesting
to see how it is done with matrices.

We can illustrate this process by an example. We wish to find
the intersection of the lines:

z+y=1

y =3
The last equation can be written as
2r — 3y =0

In matrie form, we have

o y][l 2]=[1 0]
1 -3

If we multiply both sides of this equation by the ¢nverse of  matrix
matrix E _ﬂ we get without destroying its validity operators

I R

or
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coordinates

[z mF ﬂ=@ 7]
01

The matrix [:, l:] is called the identity matriz. Any matrix multi-
plied by the identity matrix is unchanged. Hence, [x y] =[¢ 2],
which is the point of intersection of these lines. However, not all
matrices have inverses. For instance, the matrix [; Z:I has no
inverse. It is called a singular matriz. Tts determinant 1s equal to
zero, and indeed, the vanishing of the determinant of a matrix is
a necessary and sufficient condition to test singularity. But even
when matrices do not have inverses, we can obtain solutions to
equations.
The equation for a line,

mm[A]=c
B

can be written

4
[x vy 1]1] B
-C

without destroying the equality. When we multiply the matrices,
we obtain

Az +By—-C=0

Now forgetting the sign of C, consider the expression

4
[ y 1]| B [=0

C
The matrix [x % 1] consists of the coordinates of points that
lie on a line; any pair of numbers & and y that satisfy this equa-
tion lie on this line. For this reason, we call [x ¥ 1] point coordi-
nates. But suppose we were to fix x and y; then any set of numbers
A B C, properly chosen, would represent lines passing through the
fixed 2-y point. For this reason, [A B C] are called line coordi-

nates. There are only two coordinates for the point, x and y, but
there are apparently three coordinates for the line. We are already

. aware of the two statements, “two lines determine a point” and

“¢wo points determine a line.”” These statements are in a sense
symmetric (in geometry, they are known as ‘“‘dual” statements),
and it would be more satisfying if we could observe a similar sym-
metry in the equation. We might write:

A4/C P
[+ y 11| B/C [y 1]| @ =0
1 1
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This representation would be acceptable, except that it would not
permit us to write an equation for a line passing through the
origin, Such a line is:

4
Az + By =0 [z y 1] B |=0
0
Since we need A B C, three coordinates for the line, it appears

that perhaps we really need three coordinates for the point as well:

A
[t v w]| B|=0
c

For ordinary points we can set w = 1, and for lines not through
the origin, we can set C' = 1 also. When C' = 0, we have an equa-
tion for lines through the origin. When w = 1, z and y are the
ordinary coordinates of points in the plane. When w = 1, we can
obtain the ordinary coordinates by putting [x y w] into the
form [z, ¥, 1] where x,, y, are the ordinary coordinates. Ob-
viously we can do this without destroying the validity of the
equation by multiplying by 1/w provided w is not zero, i.e., if

A
[t vy w]{ B |=0
C

then
A
1wy wlBl=
w y -
C

Then z/w = z, and y/w = y., the sought-for ordinary coordi-
nates. Since the ordinary coordinates are obtained by z, = z/w
and y, = y/w, we modify the notation slightly. We can thus write
[wx wy w]insteadof [x y w].

In this way, we are able to keep track of the ordinary coordi-
nates of a point; we consider wzx and wy as biliteral symbols
throughout all calculations and perform the division wz/w and
wy/w only at the end. With this notation, we can retain z, y
as ordinary coordinates instead of z,, y,. But if w = 0, we cannot
perform the division. What does the set of numbers [wz wy w]
then mean?

To experiment with this question, let us try a specific example.
Let wx and wy be 2 and 3, but let w vary, and calculate the ordinary
z and y coordinates. The results appear in Table 1.

From this table, it is clear that as w decreases to 0, « and y
increase without bound, but always in the ratio 2 : 3. Evidently
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[2 3 0] represents a point at infinity. The ordinary coordinates
of such a point are of no use to us, because they are [0 o« 1],
and the infinity signs cannot be manipulated algebraically.

Homogeneous coordinates

The set of numbers [2 3 0] is a matrix of coordinates for a point
at infinity that is not algebraically exceptional, as is shown later.
The set of coordinates

A
B
C¢

and the set of eoordinates [wx wy w] are called the homogeneous
coordinates of line and point, respectively. Homogeneous refers
to the algebraic forms that they constitute; all entries are of the
same dimension. Indeed, it is appropriate to think of [wx wy w]
as a three-dimensional matrix.

We return to the two lines in the plane, which give the ho-
mogeneous equations:

1 2
fwr wy w]{ 1 ~=3|=][0 0]
-1 0

We cannot solve this equation for wa and wy by finding the inverse
of the 3 X 2 matrix because it is not a square matrix and has no
ordinary inverse. However, we can arrange it so that the matrix
does have an inverse by adjoining a column to it:

1 2 0
[we wy w]{ 1 =3 0}=[0 0 w]

-1 0 1

This step is harmless and does not violate the equality. The in-
verse of this new square matrix can be found and is the matrix

3 2 0

1

= 83w 2w 5w]
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Dividing both sides by w to obtain the ordinary coordinates of the
point of intersection, we have [x y 1] = [ 2 1] as before.

Consider the following two parallel lines. (In ordinary alge-
braie notation, they are: 2z + y = landy = — z.)

1 1
[wex wy w]| 1 1|=1][0 0]
-1 0

We can now proceed to determine their point of intersection.
We prepare the matrix to read

1 1 0
fwx wy w]| 1 1 0j=[0 0 w]
-1 0 1

The matrix on the left is still singular, and we cannot invert it.
(It is singular because two rows are identical, and its determinant
still vanishes.) We change the modification of the matrix, so that
it reads

1 11
lwer wy wl]}] 1 1 0|=1[0 0 wz]
-1 00

Now one of the unknowns, wz, appears on the right side of the
equation.
The matrix has an inverse, and we obtain the solution:

0 0 —1
[wr wy w]=1[0 0 wz]| 0O 1 1 {=[wr —wz 0]

1 -1 0
Consider the point represented by the matrix [wz —wz 0]. This
matrix is the same as wz [I —1 0], where wz is any number
whatever. It is, as we have seen, a point at infinity.

The preceding elementary discussion indicates that homoge-
neous coordinates are useful as well as aesthetically satisfying.
They make equations more symmetrie in form, which appeals to
our sense of structure and completeness; they permit us to deal
with infinitely distant points in the plane as easily as we deal with
local points; and they permit us to remove the exceptional cases.
In the following discussion of projective transformations, we see
that they have even greater value.

Let us first consider the perspective projections of a plane on
to a plane by taking an example. From the theory of conic sections,
we know that the circle, ellipse, hyperbola, and parabola are per-
spective projections of one another as shown in Figure 1.! We ac-
complish this transformation mathematically using homogeneous
coordinates and the matric notation.
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Figure 1 Perspective projections of a circle™®

*USED BY PERMISSION OF
McGRAW-HILL BOOK COMPANY

Figure 2 Perspective transformation
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For simplicity, let us consider a parabola z = %2 shown in
Figure 2, as our starting curve, and transform this parabola into
any other conic section. The parabola z = %2 may be expressed
parametrically as x = u? where y = w.

Any point [z y 1] on this parabola is given in matric notation
by:

1 00
w 1110 1 0|=[u" u 1]
0 0 1

2

[y 1] = [u

We transform this base parabola into any other conic section (in-
cluding another parabola) by transforming four arbitrarily chosen
points from the plane “R” of the parabola into four points in
another plane “C”” of any conic section. Let us choose points Py
(w = 0), P2 (u = 1), Ps (u = %), and Pr (the point of intersec-
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tion of tangents at Py and Ps) which transform into corresponding
points C, Cs, (3, and Cy in the plane C. We use the previously
established homogeneous coordinate notation for the general point
in plane C — for example, 'y = [ww1 w1 wi] which corre-
sponds to the ordinary point [z, ¥ 1]

We state that there exists a matrix A that accomplishes the
previously deseribed transformation as follows:

PA=C(C

or

W' w 114 = [wr wy w]

Evidently 4 is a 3 X 3 matrix. Let us proceed to evaluate 4. For
the transformation of Py into ', the above equation is

[0 0 l]A = [w1x1 wiY1 'wl] (1)
Similarly for points P, and Pr

[]. 1 1]A = [U)zfz WalY2 ’U)Z] (2)
[0 1A = [wrzr wryr wr] 3)

We can combine Equations 1, 2, and 3 and write

—

0 WiT1 wiy; Wy
0 wrlr Wryr Wr

1 L Wols2 WaY2 We

0 0
wr 0
0 We (4)

where matrix D is the inverse of B.

The homogeneous coordinates wi, wr, and w: are unknown.
We utilize the fourth point transformation P; — (5 to determine
these quantities for a particular transformation. Let us illustrate
this unique determination of w1, wr, ws by transforming the base
parabola into a unit circle, shown in Figure 2, such that there is the
correspondence

Z1 1 1 1 0 1
xrr Yr 1|=1 0 1 0 and Cs=w3[0 1 1]
T2 y2 1 -1 0 1
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(Note the correspondence [z7 yr 1] = [0 1 0], the point of
intersection of tangents at C; and C,, which is at infinity in the y

direction.)
Now

C3 = PgA or
ws0 1 1)

which on solution yields
’LUT=2’U)3=’UJ1=’LU2

We arbitrarily set ws = 3. (Reader may verify that this is
harmless in homogeneous coordinates because w; is a common
factor and could have any value.) Substitution of these values in
Equation 4 yields

which transforms the base parabola into the unit circle (center at
origin).

By similar methods we can evaluate A for any conie section.
Hence, any conic section could be generated by the equation

fwe wy w]l=1[ wu 1],:3 X 3:|

matrix

5)

Specifically, we have evaluated the matrix that transforms four
points from the plane of the parabola into the plane of the cirele.

According to the fundamental theorem of plane perspectivity,
four points in one coordinate system and four corresponding points
in a transformed coordinate system completely define a projective
transformation. Let us see if our matrix 4, just obtained from the
correspondence of four points, does indeed completely define the
transformation of curves.

According to Equation 5, a general point on the circle should
be

-2 2
[we wy w]=[4 u 1][—-2 2 =2
1 0 1

or the ordinary coordinates z, y are given by
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—2u +1 —2u® + 2u
L= T S . 1 Yy=_— 7
2" — 2u+1 2u” — 2u + 1

(Reader may verify that 22 4 y? = 1.) Thus our Equation 5 is
in conformance with the fundamental theorem of perspectivity.

A general affine transformation can be defined as one in which
a space coordinate frame 0 x y 2 is transformed into some other
frame 0’ 2’ y’ 2/, generally speaking, with a different “metric,”
i.e., with unit segments of different lengths and with different
angles between them, and in which a point M is sent into point
M’ having the same coordinates relative to the new frame as those
of the point 3 relative to the old frame?® as illustrated in Figure
3. It can be shown that under an affine transformation every
straight line is sent into a straight line, parallel lines are mapped
into parallel lines, and if a point divides a segment in a given ratio,
its image divides the image of this segment in the same ratio.

It follows from this definition that all circles and ellipses are
affinely related to one another, i.e., one can be obtained from
another by an affine transformation. In the last section, we ob-
tained the parametric equation for a unit circle with its center at
the origin. Now let us write the affine transformation to generate
any circle of radius r and center (k, k) from the unit circle.

o -2 2 r 0 0

2

[we wy wl=[u u -2 2 =20 r 0
1 0 1 h k1

The last matrix describes the scale change to radius r followed
by translation of the center to (h, k). The reader may verify the

result by performing the multiplication so that (x — 4)® —
(y — k)2 = r% (z, y) being the ordinary coordinates of a point
on the circle. Furthermore, we can write the equation of any
ellipse whose major axis is 2a, whose minor axis is 2b, whose
center is at (b, k), and whose major axis makes an angle © with
the z axis:

[wr wy w]
0 -2 2 a 0 0 cos® sin® 0
-2 2 —=21]0 b 0] —sin® cos6 O

1 0 1 0 0 1 h k 1
unit circle scale rotate-translate

We can show by similar methods that all hyperbolas are affine to
one another, and so are all parabolas.

In passing, we remark that using the aforementioned methods
for the generation of vectors for curves (conics in this case) elimi-
nates the use of trigonometric funections and, hence, improves the
“response time’’ for display.

Intersections of conic sections using these methods are dis-
cussed elsewhere.?
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Figure 4 Coordinate system
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Figure 5 Top view by rotation
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Figure 6 Right-side view

x

by rotation

X

Projection of three-dimensional objects into
two-dimensional pictures

An important aspect of computer graphics is the projection of ob-
jects onto image planes.* All drawings and pictures are examples
of special cases of projection. The orthographie, isometric, cavalier,
and cabinet projections employed by draftsmen fall into this
category, as do the perspective pictures used by architects. We
can show that all of these two-dimensional images can be produced
by a single 4 X 4 matrix, whose 16 elements are easy to determine,

Before we examine the general case, let us look briefly at the
orthographic projections of an object as used by draftsmen—the
ordinary top, front, and side views of an object. We establish a
coordinate system such as in Figure 4 where « is horizontal and
increases to the right, ¥ is vertical and increases upward, and 2 is
horizontal and increases as indicated.

We shall think of the plane of ay, or the 2z = 0 plane, as the
picture plane. Now imagine some objeet related to this coordinate
system, and imagine that points on the objeet are represented by
matrices of the form [x » z]. We might consider in particular
a rectangular box with edges parallel to the three coordinate axes
and with one corner at the origin of coordinates. There will be one
corner of this box that lies in none of the three coordinate planes;
let it be at [1 2 3]. Evidently the projection of this point on
the picture plane is given by the point whose coordinates are
[T 2 0]; that is, the 2z coordinate after projection has become
zero. The projection is given by the matric product

100
2 3/lo1ol=p 2 0

0 00

Now imagine that we wish to obtain a “top view’ of this box.
If 2y remains the picture plane, we must rotate the object with
respect to this picture plane, and afier the rotation we must pro-
ject it into the picture plane.

Let us assume that rotation takes place as shown in Figure 5.
The rotation is given by the matric product

10 0
1 2 3]|]0 0 —1|=[1L 3 =2

01 O

It consists of an interchange of the y and z coordinates, together
with a sign change. We can also obtain a right-side view of the
object by the rotation shown in Figure 6. Here the matric trans-
formation is

00 —1
1 2 3o 1 o0 |=[3 2 —1]
10 0
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Again note the interchange of coordinates and the change of sign.

It works out that the determinants of both these rotation
matrices are equal to +1. Without the change of sign, the de-
terminants would be —1, which would be equivalent to producing
a ‘“‘reflection” of the object as well as a rotation. Right-hand ob-
jects would turn into left-hand objects. Indeed, it can be shown
in general that the determinant of any rigid-rotation matrix has a
value of 41, and this is a necessary (although not sufficient) con-
dition on the matrix.

Finally, after either of the rotations, we obtain the projection
on the z-y plane by multiplying by the projection matrix:

1 00
010
0 0O

Now a general projection of an object can, as is well known,
be obtained by drawing two auxiliary views of the object. This is
essentially equivalent to making two arbitrary rotations in se-
quence, and then projecting the figure into the picture plane after
the two rotations have been performed. The result will be an
“axonometric pictorial”’ of the object.

Suppose we wish to produce a picture of an object in a gen-
eral projection, but in addition, we wish to make vertical edges
appear vertical after the transformation. We wish to achieve a
picture of the box that looks like the one in Figure 7A and not
like the one in Figure 7B.

We achieve the desired result by first rotating about the ver-
tical y axis. The rotation matrix is, in part,

0
010
0

since y dimensions do not change. But x and z locations change,
and we need to examine the rotation to determine the appropriate
matric entries.

Looking down the y axis, we see the x and z axes as illus~
trated in Figure 8. Consider points P and R on each of these
axes. If these points rotate rigidly about the origin O, they arrive
at points P’ and R’. If the triangle OPR is rigid, it is congruent to
triangle OP’R’, and the right angle at O is preserved, as well as
the lengths. Let us say that the coordinates (z and 2) of point R’
after the rotation are [a b]. If the coordinates of R before rota-
tion are [0 1], and the length OR = the length OR’, then a? + b?
= 1; (b can be the cosine of the angle of rotation, and a can be the
sine of this angle).

Again, the coordinates of P before rotation can be [L 0], and
after rotation, the coordinates of P’ are necessarily [b —a] in
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order to preserve the right angle. When we examine this plane

]

rotation, we have:

=[1 0]
r] lo 1

and the rotation transformation matrix 7 is then simply the ma-

trix [Z —b“] . Note that the determinant of this matrix is +1, since

o+ b = 1.
We introduce this result into the three-dimensional transfor-
mation to obtain

b 0 —a
01 1
a 0 b

We now rotate the resulting figure about the z axis; the z co-
ordinates do not change this time, and so the rotation matrix, in
part, is

1 00

0

0

The missing partition is obtained as before and is equivalent to
the plane rotation represented by the matrix j .| where again
¢ + @ = 1, and ¢ and d can be cosine and sine of the rotation
angle. The complete three-dimensional rotation matrix is

The combination of rotations can be represented by the matric
product of the separate primitive rotations taken in their proper
order, and we evaluate it:

b 0 —all]l 0 O b —ac —ad
01 0 0 —d ¢|=10 -—d c
a 0 b 0 ¢ d a be bd

Observe the occurrence of the zero in the first (or new z-gen-
erating) columan of the matrix. This zero occurs in the position
that w2l be multiplied by the y coordinate of the original point;
it tells us that = coordinates are independent of the heights of
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points on the object. A moment’s reflection confirms that this
statement is equivalent to saying that vertical lines appear verti-
cal after the rotation, although they are certainly foreshortened.
This is exactly what we want.

We now can achieve the projection, as before, by post-multi-
plication with the matrix:

100
010
0 00

The foregoing procedure has left the corner of the object still
attached to the origin. We wish to examine next the translation
of the object to some new position in space. We now need homoge-
neous coordinates. If we wish to slide the object e units to the
right (in the x direction), f units upward (in the y direction), and g
units back from the picture plane (in the z direction), we can ac-
complish this by the transformation:

00

00

0 1 0

fg1

The new point coordinates exhibit the translation. We can

again compound the pure rotation transformation with this transla-
tion transformation, and we obtain the matric product

=[z+e G+H G+9 1]

b —ac —ad 0
0 —d ¢ 0
a b bd 0
e f g 1

Notice that the rotation matrix and the translation matrix essen-
tially appear in the compound matrix. The projection matrix is
now

00

Incidentally, the projection matrix is trivial; it represents a
mathematical way of saying that we simply ignore the z coordi-
nates of the rotated and translated object when we construct the
picture. But we see next that this matrix is nontrivial when we
consider perspective pictorials, of which the preceding axonomet-
ric pictorials are a subclass.
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Figure 9 Projection on plane z =0
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We next consider the projection of an object on the plane
z = 0, but from a local point, say the point [0 0 —A] in or-
dinary coordinates. The situation can be pictured as in Figure 9.
In this figure, the y axis rises vertically out of the page.

We can write, by similar triangles, that

where 2’ is the picture plane coordinate of P’, the image of P.
This equation leads to

y _ _xh z
T e+ b @R +1

A similar expression can be written for the

Z

) = y
/R + 1

Now consider the matric product:

1 0

0 0

0 1/h

00 1

[z y = 1] =[z y 0 (/M) +1)]

Obviously this matrix can be interpreted as equal to the homoge-
neous coordinate matrix

[wzx wy 0 wl]

where w = (¢/h) 4+ 1, and

[ v 0 1]= Q/w)wzx wy 0 w]
This relationship shows that the matrix

0 0
1 0
0 1/h
0 1

serves to project the object by rays from the center of projection,
and the sectioning of this bundle of rays by the plane z = 0 pro-
duces the picture, which is accomplished by dividing the matrix
[wr wy O w]by the quantity w.

We now see the nontrivial nature of the projection matrix and
the need for homogeneous coordinates. Incidentally, if the dis-
tance h from the center of projection to the picture plane is in-
creased in the limit as & approaches infinity, then 1/h approaches
zero, and we obtain axonometric projection as a special case since
the matrix becomes the trivial one already described.
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The point [0 0 —5], the center of projection, is also the
point from which the picture should be viewed. Any other viewing
position yields more or less “distortion of perspective.”” This fact
is very imperfectly understood, particularly by nontechnical artists
and architects; this is obvious in much that has been written about
distortion of perspectives and what empirical measures to take to
avoid it. However, any perspective picture looks distorted unless
viewed from this single point in space—but conversely any picture
appears undistorted if this point is known and the picture is viewed
from there.

If, in the construction of the picture, this point is, say, three
inches from the picture, but the picture is viewed from a normal
distance of, say, 15 inches, the perspective picture of necessity
appears distorted, and violently so. It is difficult for most people
to accommodate (or focus) the eye on a picture held three inches
from the eye; however, if a person looks at the picture through a
three-inch focal length magnifying glass, the picture will appear
undistorted.

We have seen that all eonics can be generated by a transforma-
tion of a simple base conic by the formula, in homogeneous co-
ordinates:

we wy w]l=[" u 114,
where A i1s 2 3 X 3 matrix. Then
wr

z = and y=%ﬂ
w w

Since wz, wy, and w are each quadratic in u, we could call the co-
ordinates z and y “rational quadratic functions” of u. Similarly,
we can write®

fwe wy we wl=[® « v 114

where 4 is a 4 X 4 matrix.

In this case, the coordinates z, ¥, and z are rational cubic func-
tions of u. If the top row of A consists of zeros, we have rational
quadratics, or ordinary conics, a special case.

If the A matrix is chosen so that its last column is

1

the curve is [+ y 2 1], and the denominator is always 1. This
matrix represents an ordinary parametric cubic curve. Thus,
conics and cubies are special cases of rational cubic functions, and
a computer can generate cireles, ellipses, hyperbolas, parabolas,
and cubics, as well as more general curves, simply by proper choice
of the A matrix, without the necessity for having special and dis-
tinet routines for these curve forms. A specific application for
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patches

Figure 10 Surface patch
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generating spline-like curves utilizing this formula is discussed in
this issue in a paper by Ahuja.

Surfaces

A surface is the locus of a point that moves in space with two
degrees of freedom. A point V on a surface may be written in
maftric notation as:

[x Y 2] = [f(u: S) g(u} S) h(“’) 8)]

where % and s are independent parameters. Before proceeding
further we shall compact the notation. We write

A (us)

ou '’
2 2
for 9 Qﬁ) us for 9" (us)

uds ’ u ou’

us for [f(u,s) ¢g(u,s) h(u,s)], us, for

3 (us)
for 95’

USs us
and likewise for other derivatives.

We build complicated surfaces by adjoining small surface
“patches.” Accordingly, we focus our attention on one such sur-
face pateh. For computational simplicity, we restrict the variation
of parameters in the range 0 to 1 for each patch, ie., 0 < u, s < 1.
With this notation in mind, a surface patch can be considered to
be a surface segment bounded by four space curves, 0Os, 1s, 40, ul
as shown in I'igure 10. (Note that symbol 0 stands for the vector
describing the (x ¥ 2) coordinates of points along the curve
generated by holding s = 0 constant and varying u.) We wish to
blend such patches (for example, A1 and A2 in Figure 11) into
one surface with any desired characteristics at common boundaries.
The surface equation for a slope-matching, slope-continuous sur-
face patch with entirely arbitrary boundaries and entirely arbi-
trary slopes across these boundaries may be written in matric
notation 5

us = —[—1 Fou Fiu G Gy

[0 | w0 Wl | w0, wl, ~1
Os 00 01 00, 01, Fos
1s 10 11 10, 11, Fis
Os, 00, 01, | 00,, Ol Gos
1s, 10, 11, 10, 11, JL G5 6)
where Fo, Fy, Go, G4, are scalar functions of a single variable with
the following end conditions:

Fo(0) = Fi(1) =1,

Fo(1) = F1(0) = Go(0) = G1(0) = G1(1) = Go(1) =0,

Fi(0) = F/(0) = FY(1) = F/(1) = G/(1) = G/(0) =0,

G/ (0) = G/(1) =1
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Figure 11 Surface patches to be blended

These functions serve to blend the aforementioned characteristics
in the surface patch and are hence called blending functions. Equa-
tion 6 can be easily expanded for higher derivatives continuity.®
Blending functions with the previously described stipulations can
be used to define curves in terms of their end points and end-
point tangent vectors, e.g.,

ul = [Fgu Fru Gou G1u]

Furthermore, we can relate the blending function vector to a
so-called basis veclor [ur %2 us w4 in the following way:

[Fou Flu Gou Glu] = [u1 Ug U U4] M
With an appropriate choice of the basis vector, Equation 6 can

be used to generate a very wide class of surfaces. Specifically, if the
basis vector is chosen to be [u? w2« 1], if w0, ul, u0,, ul,, 0,, 1s,
0Os,, 1s, are linear combinations of the elements of the basis vector,
and if the expression is written in homogeneous form, then we ob-
tain a 4 X 4 X 4 tensor as descriptive of the boundary conditions.
As a special case, this tensor leads to a parametric description of
quadric surfaces.
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