
Matric  notation i s  used  to develop  geometric concepts for  computer- 
controlled graphics. 

This   na tura l   form of geometric expression  leads  to  homogeneous co- 
ordinates  which  form the basis of a n  algorithm  used  for geometric 
construction. I n  this  way,  three-dimensional objects and other pictures 
can be displayed  on a graphics console. 

The  paper  also  briefly  discusses the notation  and  development of 
junctions  for the  construction of surfaces. 

INTERACTIVE GRAPHICS IN DATA PROCESSING 

Geometry for construction and display 
by D. V. Ahuja  and S. A. Coons 

The design and delineation of arbitrary shapes, and  the display 
of these  shapes  from  arbitrarily chosen viewpoints are more easily 
accomplished if done  on the graphic  display console of a computer 
rather  than by pencil and  paper methods. In  this  paper, we show 
modern  methods  for  geometry, so constructed and organized that 
geometric  manipulations  can  be  performed  in a way natural  to 
the computer, and can yield results that  are  natural  to man. 

We discuss three major  ideas:  matric  methods  for  algebra, 
homogeneous coordinates, and curves and surfaces  from  a  para- 
metric  standpoint.  First, we introduce  matric  methods  for  algebra, 
because matrices  exhibit in a very  transparent way the  nature of 
geometric  entities. They  are also natural forms for computer im- 
plementation, since matrix  manipulations  are  already  programmed, 
and  routines exist that  are easily exploited. 

Matrices  lead  naturally  to  the notion of coordinate  transfor- 
mations, and  this  notion leads into homogeneous coordinates. On 
this basis, we are  able  to show that all possible pictures, or dis- 
plays, of three-dimensional  objects,  including the projections em- 
ployed by draftsmen, so-called “axonometric  pictorials,” and pic- 
tures  in full  perspective  can  be  constructed on  the display console 
of the computer  by a single, simple  algorithm. 

Finally, we briefly discuss curves and surfaces  from  a  para- 
metric  standpoint.  This  form of curve  and surface  equations is 
used in “differential”  geometry, and it lends itself to computer 
implementation in a very  natural way. 
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Matric notation 
We begin with  a  very  elementary discussion of matric  notation. In  
the pIane, a line can be represented  by the equation: 

A X  + By  = C 

In  matric  notation,  this  equation becomes 
r - l  

The brackets enclose two  matrices, and  their  entries  are  the  quan- 
tities that appear  in  the  ordinary algebraic equation.  The  bracketed 
matrices are juxtaposed, which suggests that  they  are  to be multi- 
plied together; the “product” of the matrices is just A z  + By. 

Now assume there  are two lines in  the plane,  given by the linear 
equations : 

A z + B y = C  
DX + E y  = F 

In  matric  notation,  these  equations become the single matric 
equation 

Ordinarily, there exists a  point of intersection of these lines. This 
is to say  that provided the lines are  not parallel (we dispose of 
this case later,  and show that  it  is not exceptional), it is possible, 
for A B D E’ C F given numbers, to  choose a  pair of numbers x and 
y t’hat “satisfy”  both  equations  simultaneously.  This  algebraic 
process is very  elementary and well-known, but it is  interesting 
to see how i t  is  done witjh matrices. 

We  can  illustrate  this process by  an example.  We wish to find 
the intersection of the lines: 

x + y = l  
y = 22 

The last  equation  can be written  as 

2x - 3y = 0 

In matric form, we have 

If we multiply both sides of this  equation  by  the inverse of 
we get  without  destroying its validity 

[x Yl[’ 2 
1 -3. 

matrix 
operators 
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[x Y l [  1 0  ] = [6 31 
0 1  

The matrix [: :] is called the identity  matrix. Any  matrix  multi- 
plied by  the  identity  matrix  is unchanged.  Hence, [x  y] = [$ $1, 
which is the point of intersection of these lines. However, not all 
matrices  have inverses. For instance, the matrix [i :] has  no 
inverse. It is called a singular  matrix. Its determinant is equal to  
zero, and indeed, the vanishing of the determinant of a  matrix is 
a  necessary and sufficient condition to test singularity. But even 
when matrices  do not  have inverses, we can  obtain solutions to 
equations. 

The equation for a line, 
” 

can  be  written 

without  destroying the equality.  When we multiply the matrices, 
we obtain 

A x + B y - C = O  

Now forgetting the sign of C, consider the expression 

coordinates The matrix [x y I] consists of the coordinates of points that 
lie  on  a  line;  any  pair of numbers x and y that satisfy  this equa- 
tion lie on  this line. For  this reason, we call [x  y l] point coordi- 
nates. But  suppose we were to fix x and y; then  any  set of numbers 
A B C, properly chosen, would represent lines passing through  the 
fixed x-y point. For this reason, [A B C] are called line coordi- 
nates. There  are only  two  coordinates for the point, x and y ,  but 
there  are  apparently  three coordinates for the line. We  are  already 
aware of the two  statements,  “two lines determine  a  point”  and 
“two  points  determine  a  line.”  These  statements  are in a sense 
symmetric (in geometry, they  are known as “dual” statements), 
and it would be more satisfying if we could observe  a  similar  sym- 
metry  in  the equation.  We  might  write: 
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This  representation would be  acceptable, except that   i t  would not 
permit us  to write an equation for a 
origin. Such a line is: 

A x + B y = O  or [x Y 11 

line  passing through  the 

A 

Since we need A B C, three coordinates  for the line, it appears 
that perhaps we really  need three coordinates  for the  point as well: 

For ordinary  points we can  set w = 1, and for lines not  through 
the origin, we can  set C = 1 also. When C = 0, we have  an equa- 
tion  for lines through the origin. When w = l, x and y are  the 
ordinary coordinates of points  in the plane. When w # I, we can 
obtain  the  ordinary coordinates  by putting [x y w] into  the 
form [x, yo 11 where xu, yo are  the  ordinary coordinates. Ob- 
viously we can do this  without destroying the validity of the 
equation  by  multiplying by 1/20 provided w is not zero, i.e., if 

[X y w ]  / I /  B = O  

then 

-[x W 1 y w ] [ # [ 2  ;- l][ij=o 
Then x/w = x, and y/w = yo, the sought-for  ordinary coordi- 
nates. Since the ordinary  coordinates  are  obtained  by x, = x/w 
and yo  = y/w, we modify the notation  slightly. We can  thus  write 
[wx wy w] instead of [x y w]. 

In this way, we are able to  keep track of the ordinary coordi- 
nates of a point; we consider wx and wy as biliteral  symbols 
throughout all calculations and perform the division wx/w and 
wy/w only at  the end. With  this  notation, we can  retain x, y 
as ordinary  coordinates  instead of x,, yo. But if w = 0, we cannot 
perform the division. What does the  set of numbers [wx  wy w] 
then mean? 

To experiment  with  this  question,  let us try a specific example. 
Let wx and wy be 2 and 3, but  let w vary,  and calculate the ordinary 
x and y coordinates. The results appear  in  Table 1. 

From  this table, it is clear that as w decreases to 0, x and y 
increase  without  bound, but always in  the  ratio 2 : 3. Evidently 

Table 1 x and y coordinates 

W I x  Y 

1 2 3 + 4 6 
6 9 1 - 

1 
10 
- 

1 
100 
- 

20 30 

200 300 

NOS. 3 & 4 . 1968 DISPLAY GEOMETRY 191 



[2 3 01 represents a point at  infinity. The ordinary coordinates 
of such a point are of no  use to us, because they  are [ Q, Q, 11, 
and  the infinity signs cannot be manipulated algebraically. 

Homogeneous  coordinates 

The set of numbers [2 3 01 is a  matrix of coordinates for a  point 
at  infinity that is not algebraically exceptional, as is shown later. 
The  set of coordinates 

and  the  set of coordinates [wz  wy w] are called the homogeneous 
coordinates of line and  point, respectively. Homogeneous  refers 
to  the algebraic forms that  they constitute; all entries are of the 
same dimension. Indeed, it is appropriate to  think of [wx wy w] 
as  a three-dimensional matrix. 

We return to  the two lines in the plane, which give the ho- 
mogeneous equations : 

[wz  wy : q =  [O 01 

[wx wy w][ : -3  [O 0 w] 

:[1 ;' o j  

[: 1 3 

-1 0 
We cannot solve this  equation for wx and wy by finding the inverse 
of the 3 X 2 matrix because it is not a square  matrix  and  has no 
ordinary inverse. However, we can arrange it so that  the matrix 
does have an inverse by adjoining a column to it: 

2 0  

- 1  0 1 
This  step is harmless and does not violate the equality. The in- 
verse of this new square  matrix can be found and is the matrix 

3 2 0  

Then 

[wx wy w] = * [ O  0 w] 1 -1 0 = &[3w  2w 5w] 

= [T 5 WI 
3w 2w 
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Dividing both sides by w to  obtain  the  ordinary coordinates of the 
point of intersection, we have [x y 11 = [g 5 11 as before. 

Consider the following two  parallel lines. (In  ordinary alge- 
braic notation,  they are: x + y = 1 and y = - x.) 

[wx wy : :]- [O 01 

- 1  0 
We can now proceed to determine  their  point of intersection. 

We prepare  the  matrix  to  read 

The matrix  on the left is still  singular, and we cannot  invert  it. 
(It is singular because two rows are identical, and its determinant 
still  vanishes.) We change the modification of the matrix, so that 
it reads 

1-1 0 o l  
Now one of the unknowns, wx, appears  on the right  side of the 
equation. 

The  matrix  has  an inverse, and we obtain the solution: 

0 -1  

[wx  wy w] = [0 0 wx] [: 1 1 ] = [wx  -wx 01 

Consider the point  represented  by the matrix [zvx - wx 01. This 
matrix  is the same  as wx [I "I 01, where wx is  any  number 
whatever. It is, as we have seen, a  point at infinity. 

The preceding elementary discussion indicates that homoge- 
neous coordinates are useful as well as  aesthetically satisfying. 
They  make  equations more symmetric  in  form, which appeals to 
our sense of structure  and completeness; they  permit us to deal 
with  infinitely distant  points  in  the  plane  as easily as we deal  with 
local points;  and  they  permit us to remove the exceptional cases. 
In the following discussion of projective  transformations, we see 
that  they have  even  greater  value. 

Let us first consider the perspective  projections of a  plane  on 
to  a  plane  by  taking an example. From  the  theory of conic sections, 
we know that  the circle, ellipse, hyperbola, and parabola  are per- 
spective  projections of one  another  as  shown  in  Figure 1.' We ac- 
complish this  transformation  mathematically using homogeneous 
coordinates and  the  matric  notation. 

1 -1  0 
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tion of tangents  at PI and P2) which transform  into corresponding 
points C1, Cz, Ca, and CT in  the plane C. We use the previously 
established homogeneous coordinate  notation for the general  point 
in  plane C - for example, C1 = [wlxl  wlyl wl] which corre- 
sponds to  the ordinary  point [x1  y1 I]. 

We  state  that  there exists a  matrix A that accomplishes the 
previously described transformation  as follows : 

P A  = C 
or 

[u2 u 1]A = [wx wy w] 
Evidently A is a 3 x 3 matrix.  Let  us proceed to  evaluate A. For 
the transformation of P1 into C1, the above  equation is 

[l 1 1]A = [ W ~ Q  ~ 2 ~ 2   ~ 2 1  ( 2 )  

[0 3 1]A = [WTZT WTYT WT] (3 1 
We  can combine Equations 1, 2,  and 3 and write 

B 

or 

D 
where matrix D is the inverse of B. 

The homogeneous coordinates wl, wT, and wz are unknown. 
We  utilize the  fourth point  transformation Pa --$ Ca to  determine 
these  quantities for  a  particular  transformation.  Let us illustrate 
this  unique  determination of w1, wT, w 2  by transforming the base 
parabola  into a unit circle, shown in Figure 2, such that there is the 
correspondence 

NOS. 3 & 4 . 1968 DISPLAY GEOMETRY 195 



(Note  the correspondence [ZT YT I] =+. [O 1 01, the point of 
intersection of tangents a t  C1 and C2, which  is at infinit'y  in the y 
direction.) 
Now 

= [$ a 11 [ - 2  1 - 2  2 0 l][; :T '"I[: : "1 
0 0  0 w2 -1 0 1 

which on solution yields 

W T  = 2w3 = w1 = w2 

We  arbit'rarily  set w3 = 3. (Reader  may verify that this  is 
harmless in homogeneous coordinates because wa is  a common 
factor  and could have  any value.)  Substitution of these  values in 
Equation 4 yields 

which transforms  the base parabola  into  the  unit circle (center at 
origin). 

By similar  methods we can  evaluate A for any conic section. 
Hence, any conic section could be  generated by  the  equation 

Specifically, we have  evaluated  the  matrix  that  transforms four 
points  from the plane of the parabola  into  the plane of the circle. 

According to  the  fundamental theorem of plane  perspectivity, 
four  points  in  one  coordinate  system  and  four corresponding points 
in a  transformed  coordinate  system completely define a projective 
transformation.  Let  us see if our  matrix A,  just obtained  from the 
correspondence of four  points, does indeed completely define the 
transformation of curves. 

According to  Equation 5, a general point on the circle should 
be 

or  the  ordinary coordinates x, y are given by 
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-2u + 1 - 2 2  + &  
2u2 - 2u + 1 

x =  
2u2 - 2u + 1 

Y =  

(Reader  may verify that x2 + y2 = 1.) Thus our Equation 5 is 
in conformance with the fundamental  theorem of perspectivity. 

A general affine transformation  can  be defined ns one in which 
a  space  coordinate  frame 0 x y z is  transformed into some other 
frame 0’ x’ y’ x’, generally speaking,  with  a different “metric,” 
i.e., with  unit segments of different  lengths and wit,h different 
angles between them,  and  in which a  point M is sent  into  point 
M’ having the same  coordinates  relative to  the new frame  as  those 
of the point M relative  to  the old frame2  as  illustrated in Figure 
3. It can  be  shown that under an affine transformation  every 
straight  line is sent  into a straight line, parallel lines are  mapped 
into parallel lines, and if a  point divides a  segment  in  a given ratio, 
its image divides the image of this segment in  the same ratio. 

It follows from  this definit’ion that all circles and ellipses are 
affinely related to one another,  i.e.,  one  can  be  obtained from 
another  by  an affine transformation. In  the last sect,ion, we ob- 
tained the parametric  equation  for  a  unit circle with its center a t  
the origin. Now let  us  write the affine transformation to  generate 
any circle of radius r and  center (h, k )  from the  unit circle. 

[wx:  wy w] = [u2 u f 2  ;I +I[- 41 -2  

The last  matrix describes the scale change to  radius r followed 
by  translation of the center to (h, k ) .  The reader  may  verify the 
result by performing the multiplication so that (x - h)2 - 
(y - k ) 2  = r2,  (x, y) being the ordinary  coordinates of a  point 
on the circle. Furthermore, we can  write the equation of any 
ellipse whose major axis is 2a, whose minor axis is 2b, whose 
center is a t  (h, k ) ,  and whose major axis makes an angle 0 with 
the x axis: 

[wx WY WI 
0 - 2  2 

1 0 1 .  
unit circle 

0 0 1. 
scale 

cos 8 sin 0 0 [ -s;e co;e j 
rotate-translate 

We  can show by similar  methods that all  hyperbolas are affine to 
one  another,  and so are all  parabolas. 

In  passing, we remark that using the aforementioned  methods 
for the generation of vectors  for  curves (conics in  this case) elimi- 
nates  the use of trigonometric  functions  and, hence, improves the 
“response  time” for display. 

Intersections of conic sections using these  methods are dis- 
cussed el~ewhere.~ 

affine 
transformation 

Figure 3 Affine  transformatiom 
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Figure 4 Coordinate system 

Y 

Figure 5 Top  view  by  rotation 

BEFORE ROTATION AFTER ROTATION 

Y Y 

rotation 

Figure 6 Right-side view 
by  rotation 

x 

Projection of three-dimensional objects into 
two-dimensional pictures 

An important aspect of computer  graphics is the projection of ob- 
jects  onto  image planes.* All drawings and pictures are examples 
of special cases of projection. The orthographic, isometric, cavalier, 
and cabinet  projections employed by  draftsmen fall into  this 
category, as do the perspective  pictures used by architects.  We 
can show that all of these two-dimensional images can  be  produced 
by a single 4 x 4 matrix, whose 16 elements are easy to determine. 

Before we examine the general case, let  us look briefly at  the 
orthographic  projections of an object as used by draftsmen-the 
ordinary  top,  front,  and side views of an object. We establish  a 
coordinate  system  such as in  Figure 4 where x is horizontal and 
increases to  the right, y is  vertical  and increases upward,  and x is 
horizontal and increases as  indicated. 

We  shall think of the plane of xy, or the x = 0 plane, as  the 
picture  plane. Now imagine  some  object  related to  this coordinate 
system,  and imagine that points  on  the object are represented by 
matrices of the form [x y x ] .  We might consider in  particular 
a  rectangular box with edges parallel to  the three  coordinate axes 
and  with one  corner at   the origin of coordinates. There will be  one 
corner of this box that lies in  none of the  three coordinate  planes; 
let it be a t  [l 2 31. Evidently the projection of this  point  on 
the picture  plane is given by  the point whose coordinates are 
[I 2 01; that is, the x coordinate  after projection  has become 
zero. The projection is given by  the matric  product 

- - 

[I 2 31 l 1  0 O 1 0 O /  =[I 2 01 

Lo o OJ 
Now imagine that we wish to  obtain  a  “top view’’ of this box. 

If xy remains the picture  plane, we must  rotate  the object  with 
respect to  this  picture plane, and after the  rotation we must pro- 
ject it  into  the  picture plane. 

Let  us  assume that rotation  takes place as  shown in  Figure 5 .  
The  rotation is given by  the  matric  product 

- - 

[l 2 31 0 0 -1 = [l 3 ” 2 1  LI : :I 
It consists of an interchange of the y and x coordinates,  together 
with  a sign change. We  can also obtain  a  right-side view of the 
object  by  the  rotation shown in  Figure 6. Here the matric  trans- 
formation is 



Again note  the interchange of coordinates and  the change of sign. 
It works out that  the determinants of both these  rotation 

matzices are equal to + 1. Without  the change of sign, the de- 
terminants would be - l, which would be equivalent to producing 
a “reflection” of the object  as well as  a  rotation.  Right-hand ob- 
jects would turn  into left-hand objects. Indeed, it can be shown 
in general that  the determinant of any rigid-rotation  matrix  has  a 
value of +l, and  this is a necessary (although  not sufficient) con- 
dition on the matrix. 

Finally,  after  either of the  rotations, we obtain the projection 
on the x-y plane by multiplying by  the projection  matrix: 

Now a general projection of an object  can, as is well known, 
be obtained  by  drawing two auxiliary views of the object.  This is 
essentially equivalent to making  two arbitrary  rotations  in se- 
quence, and  then projecting the figure into  the  picture  plane  after 
the two  rotations  have been performed. The result will be an 
“axonometric pictorial” of the object. 

Suppose we wish to produce  a  picture of an object  in  a gen- 
eral projection, but in  addition, we  wish to make  vertical edges 
appear vertical  after the transformation. We wish to achieve a 
picture of the box that looks like the one in  Figure 7A and  not 
like the one in Figure 7B. 

We achieve the desired result by first rotating  about the ver- 
tical y axis. The rotation  matrix is, in part, 

since y dimensions do not change. But x and z locations change, 
and we need to examine the rotation to determine the appropriate 
matric entries. 

Looking down the y axis, we see the x and z axes as illus- 
trated in  Figure 8. Consider points P and R on each of these 
axes. If these  points rotate rigidly about the origin 0, they  arrive 
a t  points P’ and R’. If the triangle OPR is rigid, it is congruent to 
triangle OP‘R‘, and  the  right angle a t  0 is preserved, as well as 
the lengths.  Let us say that  the coordinates (x and x) of point R‘ 
after  the  rotation  are [a b] .  If the coordinates of R before  rota- 
tion  are [0 11, and  the length OR = the length OR’, then a2 + b2 
= 1; (b  can be the cosine of the angle of rotation,  and a can  be the 
sine of this angle). 

Again, the coordinates of P before rotation  can  be [I 01, and 
after  rotation, the coordinates of P’ are necessarily [b -a] in 

Figure 7 General projection of boa 
A B 

axonometric 
pictorials 

Figure 8 View  from y axis 
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order to preserve the right angle. When we examine this plane 
rotation, we have: 

[ 3 IT1 = [; ;a] 

But 

and  the  rotation  transformation  matrix T is then simply the ma- 
trix [: ,.] . Note  that  the determinant of this  matrix is +1, since 
a2 + b2 = 1. 

We  introduce  this result into  the three-dimensional  transfor- 
mation to  obtain 

We now rotate  the resulting figure about  the x axis; the x co- 
ordinates  do  not  change  this  time,  and so the rotation  matrix,  in 
part, is 

The missing partition is obtained  as before and is equivalent to 
the plane  rotation  represented  by the matrix [-ca ;] where  again 
c2 + d2 = I, and c and d can be cosine and sine of the  rotation 
angle. The complete  three-dimensional rotation  matrix is 

The combination of rotations  can be represented by  the matric 
product of the  separate  primitive  rotations  taken  in  their  proper 
order, and we evaluate it: 

Observe the occurrence of the zero in the first (or new x-gen- 
erating) column of the matrix.  This zero occurs in  the position 
that will be  multiplied  by the y coordinate of the original point; 
it tells  us that x coordinates are  independent of the heights of 
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perspect ive 
pictorials 

We  next consider the projection of an object  on  the  plane 
x = 0, but from  a local point,  say the point [0 0 -h] in or- 
dinary coordinates. The situation  can  be  pictured  as  in  Figure 9. 
I n  this figure, the y axis rises vertically out of the page. 

We  can  write,  by  similar  triangles, that 

Figure 9 Projection  on plane z = O  
z 

t 

4 X  

where x' is the picture  plane  coordinate of P', the image of P. 
This  equation  leads t9 

A similar expression can be  written for the 

Now consider the matric  product: 

c ' o o  0 1 

Obviously this  matrix  can  be  interpreted  as  equal  to  the homoge- 
neous coordinate  matrix 

[wx wy 0 w] 
where w = (z/h) + 1, and 

[x y 0 11 = (l/w>[wz  wy 0 w] 
This relationship shows that  the matrix 

1 0 0  0 

0 1 0  0 

0 0 0 l / h  

0 0 0  1 .  

serves to project the object  by  rays  from  the  center of projection, 
and  the sectioning of this  bundle of rays  by  the plane x = 0 pro- 
duces the picture, which is accomplished by dividing the matrix 
[wx wy 0 w] by  the  quantity w. 

We now see the nontrivial  nature of the projection  matrix and 
the need  for homogeneous coordinates.  Incidentally, if the dis- 
tance h from the center of projection to  the picture  plane is in- 
creased in  the  limit as h approaches  infinity, then l /h  approaches 
zero, and we obtain axonometric  projection as a special case since 
the matrix becomes the trivial one already described. 
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The point [0 0 -h], the center of projection, is also the 
point  from which the picture  should  be viewed. Any  other viewing 
position yields more or less “distortion of perspective.” This  fact 
is very  imperfectly  understood,  particularly by nontechnical artists 
and  architects;  this is obvious in much that has been written  about 
distortion of perspectives and  what empirical measures to  take  to 
avoid it. However, any perspective  picture Iooks distorted unless 
viewed from  this single point in space-but conversely any  picture 
appears  undistorted if this  point is known and  the  picture is viewed 
from  there. 

If, in  the  construction of the picture,  this  point is, say,  three 
inches from the picture,  but  the  picture is viewed from a normal 
distance of, say, 15 inches, the perspective  picture of necessity 
appears  distorted, and violently so. It is difficult for  most  people 
to accommodate (or focus) the eye on a  picture  held  three inches 
from the eye; however, if a  person looks at  the picture  through a 
three-inch focal length  magnifying glass, the  picture will appear 
undistorted. 

We  have seen that all conics can  be  generated  by a transforma- 
tion of a simple  base conic by  the formula, in homogeneous CO- 

ordinates: 

[WX wy W] = [u2 u 11 A , 
where A is a 3 X 3 matrix.  Then 

x = -  wx 
W 

and y = -  WY 
W 

Since wx, wy, and w are each quadratic  in u, we could call the CO- 

ordinates X and y “rational  quadratic functions” of u. Similarly, 
we can  write5 

[wx wy wz w] = [u3 u2 u 11 A 
where A is a 4 x 4 matrix. 

In  this case, the coordinates x, y, and x are  rational cubic  func- 
tions of u. If the  top row of A consists of zeros, we have  rational 
quadratics, or ordinary conics, a special case. 

If the A matrix is chosen so that its last  column  is 

the curve  is [x y z 11, and  the  denominator  is always 1. This 
matrix  represents an ordinary  parametric cubic curve. Thus, 
conics and cubics are special cases of rational cubic functions, and 
a  computer  can  generate circles, ellipses, hyperbolas,  parabolas, 
and cubics, as well as more general curves, simply by proper choice 
of the A matrix,  without the necessity for  having special and dis- 
tinct  routines for these  curve  forms. A specific application for 

distortion 

rational 
functions 
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patches 

Figure 10 Surface patch 

01 
11 

generating spline-like curves utilizing this formula  is discussed in 
this issue in a  paper  by  Ahuja. 

Surfaces 

A surface is the locus of a  point that moves in  space with two 
degrees of freedom. A point V on  a  surface  may  be  written in 
matric  notation  as: 

where u and s are  independent  parameters. Before proceeding 
further we shall  compact the notation.  We  write 

us for [f(u, s) q(u, s) h(u, s)] , us, for - (us) 
au ’ 

a (us) a2(us) a2(us) us. for -- , us,, for 
dS auas ’ for “-, 

a U 2  

and likewise for  other  derivatives. 
We build  complicated surfaces by adjoining small surface 

“patches.” Accordingly, we focus our attention on one such  sur- 
face  patch.  For  computational simplicity, we restrict the variation 
of parameters  in the range 0 to 1 for  each patch, i.e., 0 5 u, s 5 1. 
With  this  notation  in mind,  a  surface patch  can be considered to 
be a  surface  segment  bounded  by  four  space  curves, Os, Is, u0, u l  
as shown  in  Figure 10. (Note  that symbol u0 stands for the vector 
describing the (x y x) coordinates of points along the curve 
generated by holding s = 0 constant  and  varying u.) We wish to 
blend  such  patches (for example, A 1  and A2 in  Figure 11) into 
one surface  with any desired characteristics a t  common boundaries. 
The surface  equation  for  a slope-matching, slope-continuous  sur- 
face  patch  with entirely arbitrary boundaries and  entirely arbi- 
trary slopes across these  boundaries  may  be written  in  matric 
notation:5 

U S  = - [ “1 FOU Flu Gou Glu] 

X 

uo u l  uo, 
00 01 00, 

10 11 10, 

00, 01, oo,, 
10, 11, lo,, 

where Fo, FI, GO, GI, are  scalar functions of a single variable  with 
the following end  conditions: 

Fo(0) = Fl(1) = 1 ,  
Fo(1) = Fl(0) = Go(0) = Gl(0) = Gl(1) = Go(1) = 0 ,  
Fo’(0) = Fl’(0) = Fl’(1) = F d  (1) = Gd(1) = Gl’(0) = 0 , 
G{(O) = Gi’(1) = 1 
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Figure 11 Surface patches to be blended 

These  functions  serve to blend the aforementioned characteristics 
in  the surface patch  and  are hence called blending functions.  Equa- 
tion 6 can be easily expanded  for higher derivatives  continuity.6 
Blending functions  with the previously described stipulations  can 
be used to define curves  in  terms of their  end  points  and end- 
point tangent vectors, e.g., 

Furthermore, we can  relate the blending function  vector to a 
so-called basis vector [ul u2 us uq] in the following way: 

With  an  appropriate choice of the basis vector, Equation 6 can 
be used to generate  a  very wide class of surfaces. Specifically, if the 
basis vector is chosen to be [u3 u2 u 11, if u0, ul,  uOs, ul,, Os, Is, 
Os,, Is, are linear combinations of the elements of the basis vector, 
and if the expression is written  in homogeneous form, then we ob- 
tain a 4 X 4 X 4 tensor as descriptive of the  boundary conditions. 
As a special case, this  tensor leads to a parametric description of 
quadric surfaces. 
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