
Present  considerations in interactive  display  activity  are  brought  into 
perspective. 

Emphasizing  programming  aspects,   varying  approaches  are  considered 
with  respect to system  concepts  and  peripheral  graphics  processors,  as 
well as  complex  data  structures,  high-level  languages,  and  image- 
generation  techniques. M a n y  sf the  problems  discussed  are  not  unique 
to  graphics  systems  but  are  common  to  interactive  systems in general. 

The  requirements   for  a conversational  system  to  support  programmers 
and  applicatim  users  are  l isted in the A p p e n d i x .  An extensive 
bibdioqraphy h,as been  added  as  basic  reference  for h i s  issue.  

INTERACTIVE GRAPHICS IN DATA  PROCESSING 

Principles of interactive systems 
by C. I. Johnson 

The man-computer  relationship  has been considerably  improved 
during the past few years  by new developments  in  graphic dis- 
play technology. Nonspecialists can now interact  directly  with 
large data processing systems  via  computer-generated  displays. 
Complex solutions  can be compared,  adjusted, or improved  directly 
on the graphic  display screen. Seen in perspective, however, we are 
still  in the early  stages of computer  graphics:  after  years of re- 
search,  interactive  graphics  techniques  are  just now becoming 
useful in  industrial  computing  applications.  The  programming 
support,  the main  topic of this  paper, is  no exception;  in  spite of the 
emphasis  recently placed on it, graphics  programming will un- 
doubtedly go through  many extensive changes in future years. 

ed term  to denote that set of computer  techniques and applications 
wherein data is either  presented  or  accepted by a  computer  in the 
form of line drawings  or  graphs.  Although the meaning of the 
word graphics  has been stretched, we shall use this popular term 
as just defined. Computer-aided  design is another  popular  bit of 
“computerese” that denotes the use of a  computer as an  assistant 
in the design of some entity. It is generally accepted that this 
term applies  to  a give-and-hke,  or  interactive, use of the computer; 
the designer describes part of his design, performs some analysis 
procedures, and  then, based on the results of the analysis, changes 
the design and reanalyzes it. We use the  term computer-aided 
design to describe this  iterative mode of operation and  intend  that 
it imply an  interactive  or conversational  approach to design. 

The  term computer  graphics, through use, has become an accept- definitions 

NOS. 3 & 4 . 1968 INTERACTIVE SYSTEMS 147 



versational mode described, it is obvious that  the device used for 
interpretation of graphic input or for the production of graphic 
output  must be  reasonably  fast. It must  be  able to present or 
accept data quickly to maintain  an efficient interplay  between 
designer and  computer. 

As this  paper  concentrates  rather  heavily  on the relationship 
of graphics to computer-aided design (or other  interactive applica- 
tions), the cathode-ray tube display  with its  attendant function 
keys, light  pen (or stylus  and  tablet25,85),  and  typewriter keyboard 
is  assumed as the device for the transfer of information  between 
user and  computer.  This device satisfies the  stated speed require- 
ments.  The t'echrliques pertaining solely to  the problem of picture 
description and  structuring of data, as presented in this issue on 
interactive  computer  graphics,  apply  equally well to programs  for 
the use of such  noninteractive devices as plotters  and  drafting 
machines. 

History of interactive  display 

For several  years the cathode-ray tube (CRT) display console, or ter- 
minal, has been used as a computer  output device, primarily for the 
display of curves and graphs. The early  Whirlwind  computer a t  
Massachusetts  Institute of Technology had such  terminals  for 
program debugging in 1956. The C I ~ T  display console has also been 
given moderate  input capabilities  as in the SAGE (Semi-Automatic 
Ground  Environment)  air defense system  through  the use of light 
guns or light  cannons (the forerunners of the current  light  pen) 
which were used to allow the  operator  to direct the computer  pro- 
gram to select specific displayed objects as targets. 

sole as an interactive  computer  input/output device for  applications 
related to computer-aided design was the SKETCHPAD programs2 
designed and implemented  by I.  E. Sutherland.  With  the SKETCH- 

PAD program,  Sutherland  demonstrated the use of a CRT display 
and a  light  pen to draw  pictures while the computer  monitored the 
operator's  motions  and  built  a  structured  set of data representing 
the pictures being drawn.  This  data  structure was used to repre- 
sent  the topological properties of the drawing. The elements of the 
drawing  displayed on the CRT served as names or labels of elements 
in  the  data  structure which could be chosen by pointing the light 
pen a t  them.  Through use of this labeling mechanism, the program 
allowed the user to extend the  data  structure  to include  numerical 
or other  nonpictorial attributes  by pointing at   the desired element 
and  typing  in  the  additional information desired. 

Similarly,  relations between elements of the system  represented 
by the drawing could be specified by selecting the elements  with 
the light  pen and indicating the relation.  These  relations could be as 
simple as (1) the implicit  relations involved in  the definition of a line 
in  terms of its end  points or ( 2 )  geometrical  constraints  such as 
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limitations of size, parallelism of two lines, or perpendicularity. It 
was through  the use of such  constraints that Sutherland  provided 
the user with the ability  to  draw  accurate pictures  despite the lack 
of precision inherent  in the use of the light  pen. 

T.  E. Johnson  extended this concept with SKETCHPAD 111,~~ 

which provided the user with the capability  to describe three- 
dimensional  objects  by  drawing them  in  any one of the  three orthog- 
onal views or in perspective  projection. Both systems  provided the 
ability  to modify the drawings  by the addition or deletion of ele- 
ments  and allowed the user to scalc, rotate,  and  translate  the whole 
picture  or  any  sets of elements which had been designated  as  sub- 
pictures. 

The series of SKETCHPAD programs  demonstrated the two func- 
tions of the interactive  display console. First, it was used as an in- 
put/output device that could accept or exhibit data in  both pictorial 
and alphanumeric  forms. Second, it was used to  control the sequence 
of the program.  This second function is not peculiar to graphics pro- 
grams but is common to on-line (or conversational)  programs in 
general;  however, the graphics console provides a more efficient 
means  for  directing the progress of the program than does the 
typical on-line typewriter. For example, at  any given point in  the 
program, the possible actions that can  be  requested of the program 
may  be  shown as a  list of words on  the display (referred to  as “light 
buttons” or “light  keys”)s1  providing some direction  to  the user 
of the program.  (The  list is sometimes referred to as  a  “menu.”) By 
pointing at  the desired action, the user may,  simply and quickly, 
notify the controlling  computer  program to perform that operation. 
Thus,  drawing or sketching  is not  the only use of the light  pen  and 
CRT combinat,ion. 

Much  attention  has been focused on the sketching  function  in 
interactive  graphics,  emphasizing  the  drafting or computer- 
aided-design t’ype of application. The  range of applications imple- 
mented  with use of the graphic  display console is far wider than 
this, however, and includes such  disparate  functions  as  text-edit- 
ing,45*91  conversational  mathematics programs,23,24’27’48,71,72,*0 file up- 
dating  and r e t r i e ~ a l , ~  execution traces of programs  as  dynamic flow- 
c h a r t ~ , ~ *  input  to  system  simulators (such as  the General  Purpose 
Simulation  System and  the IBM 1130 Continuous  System Modeling 
Program7),  the monitoring of the actions of multiprogrammed ana 
time-shared  operating  systems (such as  done at  IBM, a t  Mas- 
sachusetts  Institute of Technology in  Project MAC, and  at  the 
Control Data  C~rporation’~), lens design (ITEK), and displays 
of the  structures of molecules55 and  crystal  structures,61  as well 
as the more predictable  applications  such  as  circuit l a y o ~ t , ~ ~ J ~ , ~ 7  
mechanical design,42 part description for numerical  control,”  car- 
tography,  and  structural analysis.28r62 

For some time, the major  deterrent  to the widespread accept- 
ance of interactive  graphics  as  a  standard  tool  in  “production,” or 
industrial,  computing  inst.allations  has been cost. The combination 
of terminal cost and  the necessity of dedicating  a rather powerful 
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from being economically justifiable. Because of the  nature of the 
interactive  operation, the computer  had to spend much of its  time 
waiting for the user of the display to designate what was to be done 
next. To make the operation economically feasible, it is necessary 
to share the computer’s power and  its auxiliary data storage  and 
program  storage resources among multiple-display consoles. The 
alternative, of course, is to have  a small, inexpensive computer 
dedicated to a single user. Unfort,unately,  many of the programs 

device require more computational power than is  provided  by small 
processors. Moreover, the programming  support  available  with 
small computers does not generally provide the more powerful 
language processors and extensive data file management  routines 
required. 

With  the  introduction of third-generation  equipment by com- 
puter  manufacturers,  a new class of operating  systems  has become 

shared  by more than one user concurrently.18~22.31~35~38~49J0J6 These 
operating  systems  have provided the means for more economical 
use of display consoles, and a  number of industrial  computer 
installations  have begun to experiment with  graphics data process- 
ing  techniques in a  production  environment. Thus,  interactive 
graphics is no longer to be found only in  the research laboratory. 
This  has  taken a  certain  amount of courage and vision on the  part 
of those mho are now evaluating graphics in  the “fly now-pay 
now” world of industrial  computer  installations. 

Although  graphic displays have become more versatile and less 
costly than were the experimental systems, the equipment  still seems 
to be expensive. Also, trained programmers with  graphics experi- 
ence are  not  easy to find. But, similar statements were made in rela- 
tion to computers themselves in  the early  days. It is being proved 
that when programmers, engineers, and management  learn which 
applications  can  actually benefit from the graphic  techniques, and 
when they avoid those applications that are merely glamorous 
versions of noninteractive problems, then  the cost of graphics data 
processing can be justified. 

The movement of graphics from the university  and  laboratory 
environment into  the  industrial computing  environment  has merely 
started.  The equipment will  go through  many  improvements in- 
cluding display size and precision, the use of video techniques, and 
color and three-dimensional displays. The programming  support, 
which is the major concern of this  paper, will also go through many 
changes. There  are  a  number of problems that are  the subject of 
current research and  development, the adequate solutions of which 
should improve the cost effectiveness and ease of implementation 
of applications using computer graphics. Among areas in which 
these problems arise are  systems, data structures,  and language. 

Much work remains to be done on  current  operating  systems  to 
provide  both local and remote  interactive  display capabilities and 
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to reduce the overhead (system loading) for each display enough to 
allow a significant number of displays to be driven  by the large 
“host”  computer. 

An extremely sophisticated data  structure facility is needed for 
the application of a SKETCHPAD-like approach to very large design 
problems.33 Generally, this should provide the ability to maintain 
this  structure on an auxiliary  storage device. 

Programming of graphic displays is difficult unless a  proper  set 
of support  is made available in  an easy-to-use form 
(hopefully, as part of-or accessible from-a high-level language). 

This  paper explores these problems and some of the possible 
solutions. 

System  concepts 
Many of the problems encountered in  the creation of a  proper  sup- 
port  system in which interactive graphics systems  may  operate  are 
not  unique to graphics  applications. Rather, these problems 
are common to all interactive (conversational) systems. They 
are, however, accentuated  by the graphic  display console which, 
because of its ability to display much information  rapidly, causes 
the user to become impatient  with  any  system that cannot  provide 
a response commensurate with its speed. He wants to be assured 
that  the system  has  not  “lost” his request  (attention  interrupt).  At 
least, the user expects some immediate feedback which tells him 
that, although the desired result  is  not yet, available, the  system has 
indeed noticed and recorded his  request. 

For  this reason, the time-slicingls approach to time-sharing is 
not  by itself a sufficient solution. Although the ideal graphics sys- 
tem must be time-sliced to ensure all users reasonably equitable and 
apparently corlcurrent service, it must also be attention-driven-at 
least to  the degree that no attentions  are lost and  an immediate 
acknowledgment is returned on the user’s display to indicate that 
the system  has received his request. To avoid the loss of interrupts, 
the system  must be able to record as many  interrupts  as  can 
possibly occur during the time  a user is waiting for his  next “turn” 
or “slice.” The application  program  may then process the signals 
when the machine resources are  again  available to  the user. 

In  addition, if at any  time the program (user) currently in 
control of a  sharable resource (e.g., CPU) cannot use the resource 
due to dependency on the completion of some requested service 
(e.g., I/o), then  the system  must be able to shift  control to some 
other  program (user) contending for the sharable resource. Most 
current time-sharing and multiprogramming systems  are deficient 
in the implementation of at least’ one of the above  facets of resource- 
sharing. 

Response time is usually stressed as a  major measure of the 
suitability of a conversational time-sharing  system. However, there 
are  many  other  criteria for judging such  systems.  These  criteria 
are  not discussed in detail  in  this  paper as they are well-covered in 
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the literature concerning time-sharing systerns.'s.22.31.49.50,56 The 
Appendix  lists some of the general requirements for a  conversational 
system  in which a  graphic  display console is used for  communication 
between the user (either an application  programmer  or  a  nonpro- 
grammer  such  as an engineer) and  the  system. 

Since we are discussing systems  concepts per se, it would be 
multiple useful to consider one of the more recent  approaches that provides 

processor reasonable response to  an  individual display console user while 
approach avoiding the  sort of machine  loading that degrades the response to 

other users. As stated previously, an alternative  to time-sharing 
might  be the use of a smaller, less expensive, dedicated,  general- 
purpose  computer to drive the CRT display.  A compromise solution 
has been proposed5"67~92 in which such a small  computer  controls the 
display console for drawing and  other  fast response functions.  This 
computer is connected  via  communication  links (or possibly con- 
nected  directly  through an I /O channel) to a  larger  host  system 
which can access large data  structures  and  community files and 
execute powerful analysis  programs. The  system problems involved 
now become more complex in  that  the problems of multiple- 
processor computing  must  be solved. 

A special "graphics problem" occurs with use of this configura- 
tion. A massive transfer  between Drocessors mav be  required for 

to requests  must  remain  rapid. To satisfy  these  requirements,  trans- 
mission rates  must be high or some exceptionally clever program 
partitioning  between processors must  be done to minimize the 
amount of data transferred. Of course, problems also arise  with 
processor-to-processor protocol10 and machine-independent data 
formats. 

We shall return  to  the multiple-processor problem later  in  the 
paper. It might  be stated  at  this point that  the  author has pro- 
grammed an IBM 2250 Model 1 display  for  interactive  graphics in a 
time-sliced, time-sharing  system. The experiment  indicated that 
a small, general-purpose processor or "intelligent-terminal"  ap- 
proach may be the only  practicable  way of supporting  a large num- 
ber of display consoles if complex computer-aided design applica- 
tions  are to  be  performed in such  a  system. Otherwise, with only a 
small  number of graphic  displays,  system  overhead  for  such  func- 
tions  as  three-dimensional  pen  tracking,  dynamic  rotation, and 
translation of three-dimensional images becomes prohibitive. It 1 

should also be stated  that  there  are some who disagree with  this 
conclusion. 

Data structures 
In  many of the simpler  applications of graphic  display  terminals 
with  minimal  man-machine  interaction, the few important  entities 
in  the display which the user may  detect  may  be  kept  in  a  simple 
form,  such  as  a two-dimensional array. The purpose of such an 
array  is  to correlate the name of the  entity  with  its representation 
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on the CRT. As the picture is created  from  a  string of display  orders 
in  the computer memory or on  an auxiliary buffer, the normal 
means of identification of an image is the location of the order  being 
executed at  the  instant when the light  pen  detects the CRT beam. 
Thus  the  array correlates  some arbitrary  name given to  the image 
by the user with the location of the display  orders that create the 
image. The correlation  list  or table  and  the list of display  orders 
constitute  the display data  structure.  This simple structure pro- 
vides a  means by which the user may refer to images by  name  and 
by which the name of an  item  detected  with  the light  pen  may  be 
retrieved. 

In  more complex applications of the SKETCHPAD variety, where 
the user is allowed to define subpictures, modify (delete or add  to) 
the picture,  and  manipulate  (rotate or translate,  etc.)  its elements 
or subpictures, there is a need for  a more powerful data struc- 
ture.1.19.33.s6  To use such  a structure,  the programmer  must  have 
access to a mechanism for the previously described correlation 
function. In  addition  to  the identification of entities (low-level 
elements of pictures)  as  provided by the correlation mechanism, 
tmhe  structure  must provide  for the specification of hierarchical 
classes. An example of such qualification is “line 1 in image A in  the 
front view of picture 100” as shown in Figure 1, where each qualifi- 
cation except “line 1” indicates class membership. This  is similar  in 
concept to a PL/I structure  de~laration:~’ 

1 PICTURE-100, 
2 FRONT-VIEW, 

3 IMAGE-A, 
4 LINE-1; 

except that  it  is  dynamically declared (in the graphics  system)  dur- 
ing execution, a  facility not  currently defined in  the m / I  language. 
Thus,  a  picture  on the display  screen and  the  structure describing 
it  can be  thought of as  a  dynamic  tree  structure. In  some  display 
data  structures  and  in problem data  structures,  the relationships 
are  not expressed as  simply, and  the  data  structures must  be repre- 
sented  as  a  directed  graph (of which the  tree  structure is a special 
case). 

In  addition  to facilities for the correlation and classification of 
graphic  entities,  a  means for describing the topology of images was 
provided in  the  data  structure of the SKETCHPAD and SKETCHPAD 111 

systems.  This feature  has historically been implemented via list 
structure techniques, the most  popular of which use a special case of 
circular linked lists that  are called ringsoriginally popularized by 
I. E. Sutherland  and D. T. R o ~ s . 6 8 ~ 8 ~ ~ ~ ~  A  ring  is  entered at  any 
element of the ring, whereas a list  must  be  entered at  the list  head. 
The use of lists also allows the collection of data  into sets.  Member- 
ship  in a  list  denotes  membership in  the respective  set. In  this 
fashion, the use of lists allows the programmer to specify very 
powerful functions (such as  the delete  or  erase  functions) which 
are performed on all the members of a set-e.g., the set of all ele- 
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Figure 2 List concept 
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he ments  in  the front-view subpicture or all  resistor  symbols in t' 
picture. The same  concept  may be used in  the analysis  programs 
once the facilities for the manipulation of lists are provided. The 
list  concept is illustrated  in  Figure 2.  

Historically,  there  has been a  tendency to use the same data 
structure for the previously described display  information and for 
problem data.  The  ability  to collect data  into  sets which can be 
dynamically  expanded is a  very  convenient  facility  in  many  appli- 
cation  programs. As an example, in a circuit  analysis  program, 
where the user is allowed to  operate  an  interactive display console 
to define the circuit, the list  facility allows the collection of all 
resistors and all  capacitors into lists  as the circuit  is defined. In  
this way,  these  elements  can be easily modified by  the user during 
the process of the analysis  program.  Unfortunately this  approach 
requires  a rather complex list structure  system for the require- 
ments of both  the display and analysis  programs.  Generally, it 
requires the use of variable-length data blocks as elements of the 
lists. Many analysis  programs  require  a  complete  representation 
of sets-intersecting sets, etc.-whereas the display  function  can  be 
performed  using  a  simple  tree  representation. 

Recently, it has been stressed that two models really exist in 
display such  a system-one for the displayed  representation  and  another 

data for the  actual problem or system being represented.  Several sys- 
structure tems, SYSTEM/XO SKETCHPAD 111 (currently being implemented  by 

T. E. Johnson a t  Massachusetts  Institute of Technology), GPL 1,44 

 LEAP,^^ provide  two separate  data  structures  in recognition of this 
fact. These  systems use a simplified tree  structure  to represent the 
image on the display,  with the problem data stored  in  a  separate 
data  structure.  This simplification allows a  much  more efficient 
manipulation of the display  such  as  blank  delete,  add, and  the cor- 
relate  function. The problem data  structure  can  then be specially 
constructed  for the particular  application, or a  more  sophisticated 
generalized model structure  may be used. 
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In  the implementation of the double data  structure,  the 
identifiers used for access to elements should be symbolic, inde- 
pendent of the mechanisms of the  data  structure utilities, and 
should not be addresses (pointers) used within  either  structure. If 
this rule  is followed, either structure may be  rearranged (as in  the 
garbage collection operations)  without necessitating any change in 
its companion data structure.  This condition is especially important 
if the two  structures reside in separate machines, i.e., the display 
structure  in  the graphics  computer and  the problem data  structure 
in  the  “host” computer, as shown in  Figure 3. 

Evans  and  van  Damz9 argue that for efficiency, most applica- 
tions should use a data  structure specifically designed for the 
application. An example of such  a  “tailored” data  structure is used 
by  Negroponte and Groisser57 in  their implementation of URBAN5 

(a conversational  graphic design aid for the urban designer). Their 
data  structure records the  attributes of urban space modules such 
as  privacy, access, purpose,  etc. Thus,  the modules may belong to 
sets of modules, the name of the set  indicating that  the modules 
within it have a certain  property. These are recorded in an ex- 
tremely simple data  structure consisting of a  string of Boolean 
variables (bit.s) whose value if true indicates membership in  the 
set  represented  by  this variable. The processing of these Boolean 
variables  is extremely rapid;  their system is simple, and  the re- 
sponse of  URBAN^ is quite pleasing. 

Evans  and  van  Dam propose a system-DsPs (Data  Structure 
Programming  System),  and  a language-DsPL (Data  Structure 
Programming  Language), for the declaration and manipulation of 
tailored data structures including arbitrary list and ring structures. 
A  similar facility is available  in the AED (ALGOL  Extended for De- 
sign) language,68 thus providing the high-level language program- 
mer  with the ability to pursue  a similar approach. The CORAL Ian- 
guage provides a  comparable  facility,  although it is restricted to a 
specific ring-structure  approach to provide a  library of standard 
ring-manipulation operations for the user. 

Counter to  the plea for data  structure declaration  and manipula- 
tion languages is the argument that  the application  programmer  is 
primarily concerned with the application and should not  have to be 
cognizant of the implementation of the  data structure.  (The prob- 
lems encountered  in  implementing  a powerful data  structure  are 
frequently  greater than those involved in the application itself.) 
Thus, if he must be concerned with  a special data  structure for 
each problem, the application programmer’s job may be twice as 
hard.  This is especially true if the problem is of such  a size and en- 
compasses such a scope that  the  data  structure  must reside on 
auxiliary  storage for want of enough main  storage. 

A general data  structure  can be provided that allows the pro- 
grammer to specify the  data  and  its relationship to  other  data  in 
the  data base. He may  subsequently access data from this  data 
base not only by  name  but,  in  addition,  through reference to 
relationships between the desired information and  other  data  in  the 
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file. As previously stated,  the  traditional  data  structure for this  sort 
of operation is the ring  structure, which is a special case of list 
structure.  Other  types of list structure have also been used for this 
purpose. However, the list-searching involved may be uneconomi- 
cal when the  data  structure is on auxiliary storage rather  than in 
main  storage.  Until  recently,  little  had been done to address this 
trait  in list-processing languages. 

In  their  paper on DSPS, Evans  and  van  Dam  have described 
techniques  which they  are currently  evaluating for automatic 
swapping of data structures between a  disk or drum  and main 
storage. Here the user is allowed to view the combination of 
main  storage  and  auxiliary  storage  as one continuous  “virtual” 
main  storage, the system  bringing the addressed data  into main 
storage as it is addressed. Very large “pages” (the  units of data 
swapped) are  brought  in when an element within that page is re- 
quested.  This increases the probability that related data will be 
available in  the main  storage  without  a second access. A “look- 
ahead” scheme brings in associated pages if there  is  available space 
in main  storage. An inverted-file approach  is used to reduce the 
disk-seek overhead by providing direct access to a list element on 
auxiliary storage. The article by Chen and Dougherty12 in  this issue 
also discusses a data  structure whose implementation includes some 
similar techniques. 

Another recent development is the appearance of a possible 
hashed replacement for a ring structure used as  a generalized associative 

structures data structure.  This  data  structure is the work of Feldman30 and 
has been extended  by R o ~ n e r , ~ ~ ’ ~ ~  T. and S y m ~ n d s . ~ ~  
Similar data structures  have been developed at  the University of 
M i ~ h i g a n . ~ “ , ~ ~  It is known variously as a hashed data structure, a 
software-simulated paged associative memory, or  a  relational  store. 
As with the list and ring  structures,  the objective is to provide  a re- 
lational data  structure capable of the storage and retrieval of infor- 
mation based on  relations between problem model components. An 
example of the use of this data  structure is the retrieval of names 
and  lengths of all the lines connected to a given point in a drawing. 
In large computer-aided design applications,  this  information 
structure consists of so many associations that  it is necessary to  
place it on an auxiliary  storage device such  as  a magnetic disk. The 
hashed associative store  approach is one attempt  to speed up re- 
trieval  from  such  a disk-resident store  by eliminating list-searching. 
List-searching on disk devices is extremely time-consuming if the 
lists  are long and  their elements are  scattered widely over the 
address  space of the disk. This  technique is being used in LEAP, 

SYSTEM/~BO SKETCHPAD 111, and GPLl as  the  standard problem data 
structure. 

Hashing is a standard operation,  normally used in commercial 
data processing to transform a reference to a  large, sparsely popu- 
lated address space into  a reference to a smaller address space in a 
manner that minimizes the probability of conflicts (two symbolic 
addresses which “hash” to refer to  the same actual storage cell). This 



operation  is common to such  applications as  inventory control 
where the  part  numbers which may be  long  must  be  mapped into 
disk  addresses  referring to  the record  for that  part (e.g., the  part 
number  may  be  ten digits,  whereas five digits would suffice to 
address  all the space needed to contain the file). 

In  the implementation of the relational data  structure  on disk, 
one  may think of a  relation as a  triple A, 0, V, or attribute of object 
equals value, such as  the SON of TOM is FRED. The file space  may Figure 4 

be thought of as  a two-dimensional array of cells containing  names SON TOM 

(values)  such  as FRED, the rows and columns  representing attri- 
butes (SON) and  objects (TOM) such that  the FORTRAN statement 

ARRAY  (SON, TOM) = FRED 

might be one way of establishing the above  relationship. The hash- 
ing  operation,  as  depicted  in  Figure 4, maps  this large, sparsely 
populated  name  space  into  a reference to a  smaller,  more  highly 
populated one-dimensional array called DISK such that  the hashed 
assignment might be referred to by the FORTRAN statement 

DISK (H(SON,  TOM)) = FRED 

where H represents  a single-valued hashing  function. In  the case 7 

of the multiple-valued relation- SON of TOM = FRED, SAM, 
DON, the cell DISK (H(SON, TOM)) would contain  not  the  value 
but a  pointer  to a  chained  list of elements-FRED, SAM,  DON. 

A similar  solution exists for other relations a of b = c that 
hash  to  the same cell and where sufficient information is provided 
to differentiate  between the two  relations. Data may  be associated 
with the values of the  stated relations and  may be  retrieved  from DISK FILE 

the store  via reference to  the desired relation. Redundant  storage 
techniques  are used to reduce accesses to  disk for  permutations of 
the accessing triple (a  of ? = c, a of b = ?, etc.). 

The proponents of hashing  techniques consider the major 
attributes  to be: 

Direct access to  associations versus  indirect references in list or 
ring searches. 
Explicit  representation of associations or relations rather  than 
implicit  representation  via list structures provides  for more 
rapid response to queries. 
Open-ended set of relations  is  provided  as opposed to list 
structures where possible relationships must be  known when 
the  structure elements are defined. 
Explicit  relation  representation allows relations to be referred 
to  by name  enabling them  in  turn  to  be referred to as  objects or 
values of other relations. 

The  structure herein described is  very  general; the user pays a 
price:  disk  storage  space  requirements  may  be  very  large. It is 
argued that if list  structures were to be  implemented to solve all 
the same  problems  rapidly, the overhead  entailed in  terms of 
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Thus  there  are  three views of associative data structures: 

Languages should be provided to allow the user to customize 

A general structure can be provided using lists or rings on 

A hash-coded associative store is the best  approach  for the 

the  structure for his  application. 

auxiliary (disk) storage. 

general data structure. 

The resolution of the three-way argument is the object of cur- 
rent research. The papers referred to constitute  reports on the cur- 
rent  state of that research. All of the approaches listed perform 
swapping of data  in  and  out of main  storage  via  a  programmed 
“paging” scheme, with  tthe exception of General  Motors APL system 
which takes  advantage of the equipment of the SYSTEM/36O Model 
67 for dynamic relocation. Much more research is needed in  the use 
of this or similar  equipment-assisted  paging schemes. 

None of the  data  structure systems described can be considered 
complete unless facilities are  available for reclaiming released 
storage (caused by delete  operations).  This process is called gur- 
bage collection. The facility  may  be  provided as  an automatic 
function to be initiated  by  the  data  structure routines when space 
is needed, or it can be provided  as  a  utility  operation which the 
user may  call when he wishes. However, it is necessary. 

Graphics facilities in high-level languages 

High-level languages can  be segregated into  two categories: prob- 
lem-oriented, in which the problem  is described, and procedural, in 
which the procedure or algorithm for solution of the problem is 
specified. In  these two categories, graphics  languages  are  separated 
again into two forms: the  written form and  the pointing form. 
All programmers are familiar  with the first form where the  input 
to  the compiler are  statements consisting of strings of alphanumeric 
characters. The second form provides a facility by which the display 
programmer  can,  in the case of procedural language, specify pro- 
gram  operation by written  statements (as in  the  written form) 
combined with use of the function keys and  light pen as  additional 
inputs. 

Problem-oriented graphics languages are those  in which the 
user describes the picture he wishes to see rather  than prescribing 
the procedure by which the image is to  be constructed. The exten- 
sion to PL/I proposed by Comba16 is thus,  in  part, a problem- 
oriented language although some procedural statements  are  availa- 
ble. The PLAN Graphic  Support (PGS) systernIz is also a problem- 
oriented language. 

Because a procedural language in  written  form is a necessity for 
the construction of the other  three  types of languages specified, we 
concern ourselves for the rest of this section with the requirements 
of such a language. 

A graphics procedural high-level language must provide the 
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facilities for the definition and management of the following: 

Asynchronous events  (attentions) 1 , 3 6  

Display device input/output  and display data  structure^^^^^^ 
Images, views, and geometrical entities40 
Problem (associative or relational) data  structures 
Processor-to-processor communication 

There  are several currently used techniques  for the specification attention- 
of actions to be taken when an event, such as a  function key de- handling 
pression or light-pen detect, occurs at the display console. In  general, facilities 
all of them are  techniques for specifying a procedure to  be executed 
upon the occurrence of such an event. In  each case, the system 
generally collects certain  information concerning the  status of the 
display and program when the  attention signal occurred. As a 
minimum, this  information comprises the  type of attention, the 
name of the image detected, and  the  button depressed, as well as 
the register  and machine state. Some systems may record more 
application-dependent data  at  this point.  This  information  is  made 
available,  by the system, to  the user’s attention-handling  routine. 
The major  differences in  the attention-handling schemes known to 
the  author  are  the methods of specifying the procedures to be 
executed upon occurrence of the  attention  and  the means by which 
tmhese procedures are  actually invoked after the  attention  event 
occurs. 

Concerning the point of invocation we only state here that 
attentions  are handled in one of two ways: 

Asynchronously, where the  attention procedure is dynamically 
invoked  immediately  upon  receipt of the  attention (or as soon 
as  the program attains  an  interruptible  state) 
Synchronously, where the programmer  must poll (explicitly 
test for an  attention  event) 

In discussing specification of attention routines, we consider 
four possible language forms: 

Program-flow modification specified by  a  FORTRAN- or m/I-type 

Tabular specification as in GPAK3’ and GSP4O 

Dynamic  declaration of attention-handling procedures as in 

State  diagram appro ache^^^ 

“IF” statement3’ 

the PL/I “ON” statement37 

With  the ‘LIF” statement,  the following approach  might be IF statement 
used. Upon receipt of an  attention,  the  system would record the approach 
attention information from the display  such as  the  name of the 
item detected or the key which was depressed. One of several 
system Boolean variables would be set  to .TRUE. (i.e., LIGHTPEN 
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would cause a change in  the program flow to a statement or pro- 
cedure that would perform some action to reflect the fact that  the 
attention  had occurred. This is an example of synchronous atten- 
tion-handling. 

The  tabular approach is similar, except that it provides a 
tabular method for prespecifying the desired change in program flow  which 

specification is to occur when each type of attention occurs. The method of pre- 
specification is normally provided in  the form of a  subroutine call, 
although the language could be extended to include a statement for 
the same  purpose. The subroutine form uses a  parameter list of 
ordered pairs to correlate each attention  type with  a specific action 
routine. 

CALL SETUP ((attntype(l),  routine(l), . . . 
. . . , attntype  (n),  routine  (n)) ; 

This form only sets  up  the dispatching mechanism, and  in  the 
typical FORTRAN system (which is not designed for asynchronous 
operation),  the  attention is stacked.  Later, in  the progress of the 
program,  another  routine that will test (poll) for the occurrence 
of an  attention  may be called. If an  attention has occurred, the 
call to  the  appropriate subroutine is dynamically  generated and 
executed. If not,  the system  waits  until an  attention does occur. A 
supplementary  routine  is needed which performs the call if an 
attention has occurred but does not wait for one if it hasn't oc- 
curred. This again is an example of synchronous  attention-handling, 
although in a  language allowing asynchronous invocation of rou- 
tines, this t'echnique could be used for asynchronous attention- 
handling,  and  transfer to  the  appropriate routine could occur 
immediately  upon the receipt of the  attention.  With  this  approach, 
the  table may be redefined to change the dispatching for any or all 
attentions.  Care  must be taken, however, to provide  proper con- 
ventions for saving  and restoring the  dispatching  table when calling 
subroutines that might in  turn modify the table for their own 
purpose. 

The approach taken  in  the PL/I language for specifying pro- 
PL/I ON cedures to  be executed upon the occurrence of such an  event  as 

statement overflow,  zero divide,  etc., could be extended to specify graphic 
approach attention-handling. Thus a sequence of statements  such  as: 

ON LIGHTPEN BEGIN; 
statement 1 

statement n 
END; 

would define such  a block. Execution of the ON statement in the 
example is  equivalent to changing a table  entry containing the 
transfer  point for light-pen  action. The technique differs from the 
previous one in  that  the ON statements executed in a called pro- 
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cedure are  in effect only  for that procedure, and,  upon  return  to 
the dynamically encompassing procedure, the previous  “table” is 
reinstated. It should  be  pointed out here that  in addition  to specify- 
ing the desired dispatching or program  routing when an  attention 
occurs, it should  be possible to disable or enable specific attentions 
for  certain  statement sequences. In   an extension to PL/I, this could 
be  done  by a statement or procedure “prefix.” In  the previously 
mentioned tabular  system, a subroutine call could set a  disabled/ 
enabled  indication in  the table. The  author  has implemented both 
synchronous and asynchronous versions of this approach.44 

The previous  two  methods of attention specification require the 
user to specify all attention  states. (i.e., if only  one attention  type 
is to  be allowed, its action  must  be  stated  and all other  attention 
types  must be  disabled. This  must  be  done each time  the  program 
state definition changes.) W. R. Sutherland  and W. R1. Newma@ 
have  independently proposed a more  interesting  state-transition 
diagram  notation  adapted from automata  theory  in which all 
that need be  stated  are  the  attention  types  that will be accepted 
and  the  state  transitions (program  jumps or transfers) that will 
be  made when one of these  attentions occurs. This  technique pro- 
vides  a  much  more efficient language  form and results in equally 
more efficient generated code. The format of such  a  statement 
might be: 

statelabel: STATE ((attntype(l),  statelbl(l)), . . . 
. . . , (attntype(n),  statelbl(n), (WAIT I LOOP)); 

With  the LOOP option, the subsequent  procedure  statements would 
be  repeatedly  executed.  With the WAIT option, the program be- 
comes dormant. I n  either case, when  one of the specified attention 
types occurs, a  change of state occurs, and  the  program  transfers  to 
the  state (routine  procedure or block) corresponding to  that  atten- 
tion.  This  statement  may  have  either a synchronous or an asyn- 
chronous  implementation. 

Languages  exist  for the declaration and  manipulation of list 
and ring  structures. It is the author’s  contention that for graphics, 
however, the programmer should only  be concerned with the de- 
scription of the graphic  entities to be added to  the current  display 
structure  to  create  the desired image. A knowledge of the  data 
structure  implementation should not  be necessary. Thus,  the pro- 
grammer  should  be  required to specify only the  type of graphic 
elements to be added to  the picture, data for its construction, the 
name by which it is to be known, and  its hierarchical qualification. 
In  the PL/I syntax, examples of two possible ways of stating  this 
follow. In  the first example, it might be 

CALL LINE (startpt,  endpt,  name, qualif-list) ; 

where “startpt,”  “endpt,”  and “name,” are implementation-de- 
fined array or structure variables  containing  graphic or naming 
information, and “qualif-list” is an  array containing  names of 
hierarchical classes such  as cuss1 and CLASSS. I n  a second example, 
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CLASSl.CLASS2.NAME = LINE(STARTPT,ENDPT) ; 

where LINE is a  function, and where STARTPT, ENDPT, and 
CLASSl.CLASS2.NAICIE are graphic  variables. 

Either of the previous  two examples should cause the 
orders  for  a  line  from STARTPT to ENDPT to be  placed into 
the display file and  an  entry made in  the display data  structure 
to correlate this line  with the name CLASSl.CLASS2.NAME. If 
CLASS1.CLASSB.NAME already  exists, then  the  statement should 
reassign these  values and recorrelate the line. 

Other operations for the modification of the display and its 
data  structure  are required, but  they too  should not require knowl- 
edge of the implementation.  Such  operations are  the deletion or 
erasure of items  or classes, dynamic class structure declaration, and 
structure reconfiguration. This would be  similar to  the addition to 
PL/I of the ability  to dynamically  declare and redeclare  structures. 
Further  details  can be  found in a report  by  the 

Two  approaches to causing the  actual display of images are 
possible. Either  the display of data on the CRT can occur as  a side- 
effect of the routine that manipulates the display data  structure or 
graphic  variables,  or the assignment to  an internal  variable  may 
be  required along with  a WRITE or DRAW statement for the  actual 
output operation. It is the author’s opinion that  the display device 
should  be looked upon  as  a window through which the application 
user sees the change in his problem  dynamically. The display, then, 
should not be thought of as  just  an  input/output  device;  there 
should be available  a  mode of operation  in which the  output is im- 
plicit  with the manipulation of the  data  structure  that represents 

perform is the manipulation of the display data structure. In  some 
applications where this  approach would present  a  continuously 
changing and possibly unaesthetic  display, it should  be possible 
for the programmer to  state  that  automatic display  should not 
occur. Another  statement  later  in  the  program could reactivate 
automatic display, allowing the previously “delayed”  items to  be 
displayed in one  complete  picture change. But,  this should be  the 
override  method provided and  not  the  default.  The  default 
(dynamic window) mode is similar to  the “movie” mode described 
by  Smith.75 

A graphic  programming  language  must  provide  a  facility for 
image  generation, describing pictures.6J6Jg~40~53~74~88 Pictures used in the wide range of 
geometric utilities graphic  applications are composed of many different types of 

images which include  alphanumeric  characters,  schematic  symbols, 
geometrical entities, and images not  thought of as geometrical (such 
as plots of arithmetic  functions,  bar  charts, and flowcharts). Thus, 
it is  important  that  the language  provide not only a  facility for 
describing the “nongeometrical” entities  in  a simple form,  but also, 
a  system for describing two-dimensional and three-dimensional 
geometric  entities  as well as the routines  for  constructing  these 
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entities.  Routines should also be available to perform geometric 
transformations  upon  these  entities, i.e., it should be possible to 
rotate,  translate,  and scale the  image.1839.65r66  This  paper will not 
attempt  to describe the techniques for these geometrical duties; 
however, the following statements  are within the scope of the 
discussion. 

An extremely systematic  approach to manipulation of geo- 
metric  constructs  can be developed by using the homogeneous 
coordinate~3.~~.~~.66 of projective  geometry. It amounts to  the de- 
scription of n-dimensional shapes in  terms of n + l dimensions. 
This  technique provides for a simple set of matrix  operations for 
rotation, scaling, translation, perspective projections, and  the 
“clipping” operation. 

For all except the “clipping” operation, simple matrix  multipli- 
cations  can be used to perform the desired transformation. The 
“clipping,” or “scissoring,” operation, shown in Figure 5, is the 
name given to the algorithm chosen to select the elements that ap- 
pear  within  a specified “window” that defines a  portion of a  larger 
space that is to  be mapped onto  the face of the CRT. I n  this opera- 
tion,  a  matrix defining the rectangular window  is used. This  matrix 
and  the  matrix describing each line in  the  total image  are  multiplied, 
and  the sign of the result  indicates if all or any of the line lies within 
the desired window. A subsequent  computation  can  determine  the 
point a t  which any line crosses the edge of the window. Although 
normally performed by  programming, the transformation  opera- 
tions  have been performed by special-purpose display  device^'^ 
based on the homogeneous coordinate  system. It is the simplicity of 
the  matrix approach, used with homogeneous coordinates, that 
makes it possible to build equipment for these  operations. It might 
be pointed  out that many  factors  must  be considered in deciding 
whether an equipment  approach  is sufficiently general for  the 
graphics  application. 

Since most of the displays  currently  available do not  contain 
general-purpose curve  generators, it is necessary to provide  routines 
for approximating complex curved  shapes, using connected short 
line segments. A  technique that provides for reasonably rapid 
computation of these line segments uses parametric cubics or ra- 
tional  polynomial~.3J9-~0  With the use of rational polynomials, a 
spline-like curve2  can  be  computed to provide  a  smooth approxima- 
tion to  the desired curve. For further information on homogeneous 
coordinates and  parametric surfaces, see the paper  by  Ahuja  and 
Coons3 in  this issue. Coons and Herz0glg.2~ also present  a  technique 
for specifying three-dimensional surfaces which can be patched 
together for approximating  such complex shapes  as airframes and 
auto bodies. 

The previous discussion has assumed that  the representation 
presented on the display  is of the form of a wire frame where all 
edges in  the object  are visible at all times. Techniques have been 
developed for the elimination of the normally hidden lines giving 
an impression ~ of a three-dimensional solid rather  than a wire frame 
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Figure 6 Removing hidden lines 

WIRE FRAME ILLUSTRATION 

outline. Figure 6 illustrates the result of employing such  a  tech- 
nique. Current research consists mainly of improving the speed 
and  generality of these techniques. This is beyond the scope of t,his 
discussion, and  the reader is referred to  the l i t e r a t ~ r e . ~ , ~ . ~ , ~ ~ . ~ ~ , ~ ~  

Currently, at  the University of Utah,  an approach to half-tone 
rendering is being explored.8g Computer-generated holograms are 
also being considered to provide a more accurate  representation of 
three-dimensional images.54 

As a minimum, a graphics language  must provide either  strong 
matrix facilities or built-in routines  for performing the previously 
described geometric calculations, but preferably  both. It is im- 
portant  that  the matrix  arithmetic be extremely efficient if dynamic 

SOLID  IMPRESSION  WITH rotations  and  translations  are to be performed smoothly. 
HIDDEN  LINES  REMOVED Since not all applications need these  sophisticated two- and 

three-dimensional facilities, a graphics language  must  provide for 
easy specification of simple pictures  such  as schematics and plots. 
A user should not  have  to perform his own data scaling and axis 
layout  but should be able to pass his data  to a  plotting  routine and 
have  these  operations performed automatically. It should be 
possible to describe a flowchart or schematic by providing the 
names of the block types,  location,  and the connection information. 
Once the block types  and  their representations  have been described 
(or retrieved from a  library) in  the form of named  “macros,” the 
representation  can be duplicated each time that block type (name) 
is used again.  Depending on the exact nature of the “macros,” the 
subsequent use of the “macro”  name  creates an instance,  or copy.82 

Implementations of problem data  structures were discussed in 
problem a previous section. Here we are concerned only with the language 

data for specifying and manipulating  them. If it is desired to provide 
structure the ability to create special data structures,  then special statements 

for the declaration and manipulation of lists, rings, hashed  tables, 
and “plexes” must be provided as  in APL (Associative Programming 
Language26), D S P L , ~ ~  PL/I, A E D , ~ ~  and CORAL.83 If the approach is to 
provide built-in, generalized data structures,  then  the programmer 
must be able to create  and access data on the basis of the inter- 
relations between the  data elements. Despite  the implementation 
techniques used, it should  be possible to access data  and  then use 
it via a statement sequence such as: 

FOREACH  LINE SUCH THAT  POINTA IS E N D   O F   L I N E  OR POINTB 
IS START  OF  LINE  DO; 

statement 1 

statement n 
E N D ;  

The FOREACH and E N D  statements  form  the beginning and 
end of a loop such that statements 1 through  n  are executed once 
for each value of the variable LINE which starts  at point POINTB 
or ends at point POINTA.  LINE,  POINTA, and POINTB can be 
referred to  as variables  within the loop. 
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As an example, if COORD is a  vector specifying coordinates of 
a  point  and COORD is  mapped into a structure  by a PL/I declara- 
tion statement,  then  the  statements 

LOOP: FOREACH LINE; 
FOREACH PT SUCH THAT PT IS  STARTPOINT  LINE: 
CALL DRAW (PT "f COORD) ; 
END LOOP; 

might  plot  all line start points (where each value of PT is returned 
by  the access routines in  the form of a  pointer to  the  structure 
containing COORD). Similar language  features  must be provided 
for the  entry of data into  the  data  structure based on relational 
information.  Statements are also required for deleting data and 
relations  from the  store or for modifying data associated with a 
relation. 

A comparison of the  literature describing the syntaxes of LEAP 

and APL should  indicate that this language form can be used for 
accessing data from data structures  implemented  with  either ring- 
manipulation or hashing  techniques (see Symondss4).  Based on 
similar implementation  techniques, Childs13 has  implemented  a 
set-theoretic language. (LEAP includes sets  and  set operations in 
addition to relations and relational operations.) 

The use of a  small  computer to  drive  the graphic display console 
provides  a solution to two problems: 

Reduction of the conversational  overhead  on the host (multi- 
access) system. 
Localizing the interactive  functions at  the console providing 
more rapid response when the console is remotely located from 
the host  system. 

The approach taken  in providing  programs for this multi- 
processor configuration is  dependent  on the speed of the communi- 
cations  link between the two processors. At one end of the  spectrum 
of possible programming-support approaches  is the use of the small 
computer  as  a  super controller which can dynamically allocate its 
own main  storage and  is able to perform some additional  functions 
such  as  image generation  and attention stacking.  This  approach, 
however, does not  take full advantage of the power of the small 
computer. It also puts a  heavy load on  the communication channel 
as the  number of executions for these low-level facilities is rather 
high. 

At  the opposite  end of the  spectrum is the use of the small com- 
puter  to execute all  interactive  graphic  operations plus much of the 
analysis program, using the host  computer  as merely a  facility for 
access to  the problem data base. This  approach would work quite 
well for simple applications but would probably  require the applica- 
tion  programmer to write  each  application specially to fit all the 
application and graphics  routines into such  a small machine. 

An approach  currently being considered would provide a  fairly 
constant  base of conversational facilities upon which  new applica- 
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tions could be constructed.  Figure 7 illustrates  this  approach. The 
small  computer would contain  all the geometry,  attention-handling, 
image-generation, and  display  control  routines  and  a subset of the 
associative data  structure facilities. Subsets of the  data  structure 
called data  distillates would be passed between the host and remote 
computers. The small remote  computer would then contain most of 
the  interactive drawing functions and could be used for creating  and 
modifying the  data structure.  The host  computer would perform the 
analysis, data  structure storage, and  data  structure retrieval pro- 
grams. 

The implications to  the language at this  time  appear unclear and 
will be the subject of future research. It appears now that  the 
language extensions proposed in  an earlier section of this  paper 
reduce to attention-handling, data  structure  statements,  and addi- 
tional  statements for passing data distillates between the two 
machines, coupled with the corresponding control  information to 
specify the operation to be performed by  the receiving processor. 
The  [‘attentions” mentioned  here would not  be  at  the level of those 
mentioned before, such  as  light-pen  detect or function key depres- 
sion. In  this case, they would signify the asynchronous request of 
one processor for services to be performed by  the  other  and a cor- 
responding “interrupt”  to indicate completion or failure of an 
assigned task.  The functions of, and programming language for, 
the remote  graphics processor configuration are  currently the 
subject of research in  the university and  laboratory environments. 

Summary 
In  summary, it should be mentioned once again that most of the 
problems stated  in  this  paper  are  not exclusively graphics problems 
but  are general problems of interactive  systems  and data base 
systems. The speed of the graphic display console merely empha- 
sizes these problems. 

Although our  thesis  has been the nongraphical nature of so- 
called graphics problems, we have discussed some problems which 
are  to be considered graphical in  nature,  and we do not mean to 
under-emphasize their importance.  Certainly  attention-handling 
and  the topological data structures used for picture modeling are 
also used in areas  other than graphics data processing. They are, 
however,  fundamental t o  the  interactive graphics application. 
Geometrical  routines for image construction, image manipula- 
tion,  and image clipping are inherently  graphic. No large graphics 
system  can exist without  a comprehensive problem data  structure 
and its data manipulation  routines. Some of the more appealing 
(because t’hey  are general) approaches to these problems were dis- 
cussed. A final thought we might leave is that no existing graphics 
system commercially available  in data processing has, to  date, 
included  a  complete  set of the indicated generalized routines. As 
a result,  each  application  programmer must program  much that is 
not directly  a  function of his application when a  graphics  approach 
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Figure 7 Two-computer  approach 
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Appendix 

Requirements for a conversational system in which a  graphic dis- 
play terminal  is used for communication between the man and 
the system-the man being the application  programmer or the 
engineer (user) : 

Communication with  the system should be simple-employing 
an easy-to-use command l a n g ~ a g e ~ ~ ~ ~ ’ ~ ~ ~  simple enough for use 
by application users who have no knowledge of computer pro- 
gramming. 
The command language  should be “forgiving,” allowing the 
terminal user to restate  any command in error. 
Errors should only activate  the diagnostic routines and never 
force termination of the job at  hand; certainly,  never affecting 
another user running  concurrently on the system. 
Facilities should be provided for diagnosing program  errors 
from the terminal-the application  programmer  should be 
permitted  to correct the perceived errors, on line, or change the 
source code, recompile it, and  run  it again. 
The command language should provide the basic functions for 
the creation and maintenance of source program files, program 
libraries,  and data files. 
It should be possible for the application  programmer, using the 
display console, to assemble or compile object code from the 
source files and  then link together the  resultant object files into a 
program and execute it. 
Although it should be possible for the programmer or applica- 
tion user to  protect his files from others, it must also be possible 
for  him to designate files as “shared” to allow several users to 
work on a  joint  project using a common file as  a data base. 
Backup  and recovery facilities (especially for files) are ex- 
tremely important. 
It must be possible for the application  programmer, or the 
application user, to extend the system  by defining new  com- 
mands from the display console.*2 
A special requirement of display-oriented systems  is the ability 
to produce a  printed  history of the user commands and  the 
resulting  computer  actions, as  the display device produces no 
“hard copy” audit  trail  (trace)  by itself. 
Because a conversational system should allow the user to define 
data  and call programs as they  are needed, the  system must 
contain  a  facility for the dynamic allocation of main storage. 
This  facility should be easy  for the programmer to use and 
should be “transparent” to  the application user-at least until 
all the resources have been exhausted. The programs  must be 
linked dynamically as  they  are called into  the system. 

These  requirements may not seem extraordinary if considered 
in  relation to  the teletype or typewriter  terminals normally used in 
conversational systems. However, it should be stressed  again: the 

I 
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I 
display console has  greater abilities, and  its inherent speed causes 
the user to be more demanding. Thus  the implementation of all the 
facilities just discussed must be extremely efficient to provide an 
acceptable response. 
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