Present considerations in interactive display actiity are brought into
perspective.

Emphasizing programming aspects, varying approaches are considered
with respect to system concepts and peripheral graphics processors, as
well as complex data structures, high-level languages, and image-
generation techniques. Many of the problems discussed are not unigue
to graphics systems bul are common to interactive systems in general.

The requirements for a conversational system to support programmers
and application users are listed in the Appendix. An exlensive
bibliography has been added as basic reference for this issue.

INTERACTIVE GRAPHICS IN DATA PROCESSING

Principles of interactive systems
by C. I. Johnson

The man-computer relationship has been considerably improved
during the past few years by new developments in graphic dis-
play technology. Nonspecialists can now interact directly with
large data processing systems via computer-generated displays.
Complex solutions can be compared, adjusted, or improved directly
on the graphic display screen. Seen in perspective, however, we are
still in the early stages of computer graphies: after years of re-
search, interactive graphics techniques are just now becoming
useful in industrial computing applications. The programming
support, the main topic of this paper, is no exception;in spite of the
emphasis recently placed on it, graphies programming will un-
doubtedly go through many extensive changes in future years.
The term computer graphics, through use, has become an aceept- definitions

ed term to denote that set of computer techniques and applications
wherein data is either presented or accepted by a computer in the
form of line drawings or graphs. Although the meaning of the
word graphics has been stretched, we shall use this popular term
as just defined. Computer-aided design is another popular bit of
“computerese”’ that denotes the use of a computer as an assistant
in the design of some entity. It is generally accepted that this
term applies to a give-and-take, or interactive, use of the computer;
the designer describes part of his design, performs some analysis
procedures, and then, based on the results of the analysis, changes
the design and reanalyzes it. We use the term computer-aided
design to describe this iterative mode of operation and intend that
it imply an interactive or conversational approach to design.

NOS. 3 & 4 - 1968 INTERACTIVE SYSTEMS

To use computer graphics in computer-aided design in the con-
versational mode deseribed, it is obvious that the device used for
interpretation of graphic input or for the production of graphic
output must be reasonably fast. It must be able to present or
accept data quickly to maintain an efficient interplay between
designer and computer.

As this paper concentrates rather heavily on the relationship
of graphics to computer-aided design (or other interactive applica-
tions), the cathode-ray tube display with its attendant function
keys, light pen (or stylus and tablet® #), and typewriter keyboard
is assumed as the device for the transfer of information between
user and computer. This device satisfies the stated speed require-
ments. The techniques pertaining solely to the problem of picture
description and structuring of data, as presented in this issue on
interactive computer graphics, apply equally well to programs for
the use of such noninteractive devices as plotters and drafting
machines.

History of interactive display

For several years the cathode-ray tube (crr) display console, or ter-
minal, has been used as a computer output device, primarily for the
display of curves and graphs. The early Whirlwind computer at
Massachusetts Institute of Technology had such terminals for
program debugging in 1956. The crT display console has also been
given moderate input capabilities as in the saGE (Semi-Automatic
Ground Environment) air defense system through the use of light
guns or light cannons (the forerunners of the current light pen)
which were used to allow the operator to direct the computer pro-
gram to select specific displayed objects as targets.

The first significant demonstration of the use of a display con-
sole as an interactive computer input/output device for applications
related to computer-aided design was the SKETCHPAD program®?
designed and implemented by I. E. Sutherland. With the skrrca-
PAD program, Sutherland demonstrated the use of a crr display
and a light pen to draw pictures while the computer monitored the
operator’s motions and built a structured set of data representing
the pictures being drawn. This data structure was used to repre-
sent the topological properties of the drawing. The elements of the
drawing displayed on the ¢RT served as names or labels of elements
in the data structure which could be chosen by pointing the light
pen at them. Through use of this labeling mechanism, the program
allowed the user to extend the data structure to include numerical
or other nonpictorial attributes by pointing at the desired element
and typing in the additional information desired.

Similarly, relations between elements of the system represented
by the drawing could be specified by selecting the elements with
the light pen and indicating the relation. These relations could be as
simple as (1) the implicit relations involved in the definition of a line
in terms of its end points or (2) geometrical constraints such as

JOHNSON IBM SYST J

limitations of size, parallelism of two lines, or perpendicularity. It
was through the use of such constraints that Sutherland provided
the user with the ability to draw accurate pictures despite the lack
of precision inherent in the use of the light pen.

T. E. Johnson extended this concept with SKETCHPAD 111,
which provided the user with the ecapability to deseribe three-
dimensional objects by drawing them in any one of the three orthog-
onal views or in perspective projection. Both systems provided the
ability to modify the drawings by the addition or deletion of ele-
ments and allowed the user to scale, rotate, and translate the whole
picture or any sets of elements which had been designated as sub-
pictures.

The series of SKETCHPAD programs demonstrated the two fune-
tions of the interactive display console. First, it was used as an in-
put/output device that could accept or exhibit data in both pictorial
and alphanumeric forms. Second, it was used to control the sequence
of the program. This second function is not peculiar to graphics pro-
grams but is common to on-line (or conversational) programs in
general; however, the graphics console provides a more efficient
means for directing the progress of the program than does the
typical on-line typewriter. For example, at any given point in the
program, the possible actions that can be requested of the program
may be shown as a list of words on the display (referred to as “light
buttons” or “light keys'')®! providing some direction to the user
of the program. (The list is sometimes referred to as a “‘menu.”) By
pointing at the desired action, the user may, simply and quickly,
notify the controlling computer program to perform that operation.
Thus, drawing or sketching is not the only use of the light pen and
CRT combination.

Much attention has been focused on the sketching function in
interactive graphics, emphasizing the drafting or computer-
aided-design type of application. The range of applications imple-
mented with use of the graphic display console is far wider than
this, however, and includes such disparate functions as text-edit-
ing,*-*! conversational mathematics programs,23.24:27.48,71,72,80 fjlg yp-
dating and retrieval,® execution traces of programs as dynamic flow-
charts,™ input to system simulators (such as the General Purpose
Simulation System and the 1BM 1130 Continuous System Modeling
Program?), the monitoring of the actions of multiprogrammed ana
time-shared operating systems (such as done at 1BMm, at Mas-
sachusetts Institute of Technology in Project mac, and at the
Control Data Corporation'?), lens design (1Tex), and displays
of the structures of molecules®® and crystal structures,® as well
as the more predictable applications such as circuit layout,32.51.87
mechanical design,*? part description for numerical control,! car-
tography, and structural analysis. 25,62

For some time, the major deterrent to the widespread accept-
ance of interactive graphics as a standard tool in “production,” or
industrial, computing installations has been cost. The combination
of terminal cost and the necessity of dedicating a rather powerful

NOS. 3 & 4 - 1968 INTERACTIVE SYSTEMS

display
console
function

applications

resource
sharing

computer to control a single display prevented computer graphics
from being economically justifiable. Because of the nature of the
interactive operation, the computer had to spend much of its time
waiting for the user of the display to designate what was to be done
next. To make the operation economically feasible, it is necessary
to share the computer’s power and its auxiliary data storage and
program storage resources among multiple-display consoles. The
alternative, of course, is to have a small, inexpensive computer
dedicated to a single user. Unfortunately, many of the programs
for which the display console is being used as an input/output
device require more computational power than is provided by small
processors. Moreover, the programming support available with
small computers does not generally provide the more powerful
language processors and extensive data file management routines
required.

With the introduction of third-generation equipment by com-
puter manufacturers, a new class of operating systems has become
available, which allows the resources of a large computer to be
shared by more than one user concurrently.!8.22.31.%,3.49.50,56 Thege
operating systems have provided the means for more economical
use of display consoles, and a number of industrial computer
installations have begun to experiment with graphies data process-
ing techniques in a production environment. Thus, interactive
graphies is no longer to be found only in the research laboratory.
This has taken a certain amount of courage and vision on the part
of those who are now evaluating graphies in the “fly now—pay
now’” world of industrial computer installations.

Although graphic displays have become more versatile and less
costly than were the experimental systems, the equipment still seems
to be expensive. Also, trained programmers with graphics experi-
ence are not easy to find. But, similar statements were made in rela-
tion to computers themselves in the early days. It is being proved
that when programmers, engineers, and management learn which
applications can actually benefit from the graphic techniques, and
when they avoid those applications that are merely glamorous
versions of noninteractive problems, then the cost of graphics data
processing can be justified.

The movement of graphies from the university and laboratory
environment into the industrial computing environment has merely
started. The equipment will go through many improvements in-
cluding display size and precision, the use of video techniques, and
color and three-dimensional displays. The programming support,
which is the major conecern of this paper, will also go through many
changes. There are a number of problems that are the subject of
current research and development, the adequate solutions of which
should improve the cost effectiveness and ease of implementation
of applications using computer graphics. Among areas in which
these problems arise are systems, data structures, and language.

Much work remains to be done on current operating systems to
provide both loeal and remote interactive display capabilities and

JOHNSON IBM SYST J

to reduce the overhead (system loading) for each display enough to
allow a significant number of displays to be driven by the large
“host”’ computer.

An extremely sophisticated data structure facility is needed for
the application of a skErTcHPAD-like approach to very large design
problems.3® Generally, this should provide the ability to maintain
this structure on an auxiliary storage device.

Programming of graphic displays is difficult unless a proper set
of support programs'.'® is made available in an easy-to-use form
(hopefully, as part of—or accessible from—a high-level language).

This paper explores these problems and some of the possible
solutions.

System concepts

Many of the problems encountered in the creation of a proper sup-
port system in which interactive graphies systems may operate are
not unique to graphics applications. Rather, these problems
are common to all interactive (conversational) systems. They
are, however, accentuated by the graphic display console which,
because of its ability to display much information rapidly, causes
the user to become impatient with any system that cannot provide
a response commensurate with its speed. He wants to be assured
that the system has not “lost’” his request (attention interrupt). At
least, the user expects some immediate feedback which tells him
that, although the desired result is not yet available, the system has
indeed noticed and recorded his request.

For this reason, the time-slicing!® approach to time-sharing is
not by itself a sufficient solution. Although the ideal graphies sys-
tem must be time-sliced to ensure all users reasonably equitable and
apparently concurrent service, it must also be attention-driven—at
least to the degree that no attentions are lost and an immediate
acknowledgment is returned on the user’s display to indicate that
the system has received his request. To avoid the loss of interrupts,
the system must be able to record as many interrupts as can
possibly occur during the time a user is waiting for his next “turn”
or “slice.” The application program may then process the signals
when the machine resources are again available to the user.

In addition, if at any time the program (user) currently in
control of a sharable resource (e.g., cPU) cannot use the resource
due to dependency on the completion of some requested service
(e.g., 1/0), then the system must be able to shift control to some
other program (user) contending for the sharable resource. Most
current time-sharing and multiprogramming systems are deficient
in the implementation of at least one of the above facets of resource-
sharing.

Response time is usually stressed as a major measure of the
suitability of a conversational time-sharing system. However, there
are many other criteria for judging such systems. These eriteria
are not discussed in detail in this paper as they are well-covered in

NOS. 3 & 4 - 1968 INTERACTIVE SYSTEMS

multi-access
operation

multiple
processor
approach

the literature concerning time-sharing systems.!8.22.3149.50,5 The
Appendix lists some of the general requirements for a conversational
system in which a graphic display console is used for communication
between the user (either an application programmer or a nonpro-
grammer such as an engineer) and the system.

Since we are discussing systems concepts per se, it would be
useful to consider one of the more recent approaches that provides
reasonable response to an individual display console user while
avoiding the sort of machine loading that degrades the response to
other users. As stated previously, an alternative to time-sharing
might be the use of a smaller, less expensive, dedicated, general-
purpose computer to drive the crT display. A compromise solution
has been proposed®-%7-*? in which such a small computer controls the
display console for drawing and other fast response functions. This
computer is connected via communication links {or possibly con-
nected directly through an 1/0 channel) to a larger host system
which can access large data structures and community files and
execute powerful analysis programs. The system problems involved
now become more complex in that the problems of multiple-
processor computing must be solved.

A special “graphics problem’” oceurs with use of this configura-
tion. A massive transfer between processors may be required for
radical changes of the picture on the display although the response
to requests must remain rapid. To satisfy these requirements, trans-
mission rates must be high or some exceptionally clever program
partitioning between processors must be done to minimize the
amount of data transferred. Of course, problems also arise with
processor-to-processor protocol'® and machine-independent data
formats.

We shall return to the multiple-processor problem later in the
paper. It might be stated at this point that the author has pro-
grammed an 18M 2250 Model 1 display for interactive graphics in a
time-sliced, time-sharing system. The experiment indicated that
a small, general-purpose processor or ‘‘intelligent-terminal” ap-
proach may be the only practicable way of supporting a large num-
ber of display consoles if complex computer-aided design applica-
tions are to be performed in such a system. Otherwise, with only a
small number of graphic displays, system overhead for such func-
tions as three-dimensional pen tracking, dynamic rotation, and
translation of three-dimensional images becomes prohibitive. It
should also be stated that there are some who disagree with this
conclusion.

Data structures

In many of the simpler applications of graphic display terminals
with minimal man-machine interaction, the few important entities
in the display which the user may detect may be kept in a simple
form, such as a two-dimensional array. The purpose of such an
array is to correlate the name of the entity with its representation

JOHNSON IBM SYST J

on the crT. As the picture is created from a string of display orders

in the computer memory or on an auxiliary buffer, the normal

means of identification of an image is the location of the order being
executed at the instant when the light pen detects the cRT beam.
Thus the array correlates some arbitrary name given to the image
by the user with the location of the display orders that create the
image. The correlation list or table and the list of display orders
constitute the display data structure. This simple structure pro-
vides a means by which the user may refer to images by name and
by which the name of an item detected with the light pen may be
retrieved.

In more complex applications of the skETCHPAD Variety, where
the user is allowed to define subpietures, modify (delete or add to)
the picture, and manipulate (rotate or translate, ete.) its elements
or subpictures, there is a need for a more powerful data struc-
ture.1.19.33.86 To use such a structure, the programmer must have
access to a mechanism for the previously deseribed correlation
function. In addition to the identification of entities (low-level
elements of pictures) as provided by the correlation mechanism,
the structure must provide for the specification of hierarchical
classes. An example of such qualification is “line 1 in image A in the
front view of picture 100"’ as shown in Figure 1, where each qualifi-
cation except ‘‘line 1” indicates class membership. This is similar in
concept to a PL/T structure declaration:

1 PICTURE_100,
2 FRONT_VIEW,
3 IMAGE_A,
4 LINE_1;

except that it is dynamically declared (in the graphics system) dur-
ing execution, a facility not currently defined in the pL/1 language.
Thus, a picture on the display screen and the structure deseribing
it can be thought of as a dynamic tree structure. In some display
data structures and in problem data structures, the relationships
are not expressed as simply, and the data structures must be repre-
sented as a directed graph (of which the tree structure is a special
case).

In addition to facilities for the correlation and classification of
graphic entities, a means for describing the topology of images was
provided in the data structure of the SkETcHPAD and SKETCHPAD I1I
systems. This feature has historically been implemented via list
structure techniques, the most popular of which use a special case of
circular linked lists that are called rings—originally popularized by
I. E. Sutherland and D. T. Ross.%8:82:3 A ring is entered at any
element of the ring, whereas a list must be entered at the list head.
The use of lists also allows the collection of data into sets. Member-
ship in a list denotes membership in the respective set. In this
fashion, the use of lists allows the programmer to specify very
powerful functions (such as the delete or erase functions) which
are performed on all the members of a set—e.g., the set of all ele-

NOS. 3 & 4 - 1968 INTERACTIVE SYSTEMS

Figure 1

PICTURE 100

display
data
structure

Figure 2 List concept
HEADER

ELEMENT

ELEMENT ELEMENT SUBRING HEADER

ELEMENT ELEMENT ELEMENT

ments in the front-view subpicture or all resistor symbols in the
picture. The same concept may be used in the analysis programs
once the facilities for the manipulation of lists are provided. The
list concept is illustrated in Figure 2.

Historically, there has been a tendency to use the same data
structure for the previously deseribed display information and for
problem data. The ability to colleet data into sets which can be
dynamically expanded is a very convenient facility in many appli-
cation programs. As an example, in a circuit analysis program,
where the user is allowed to operate an interactive display console
to define the ecircuit, the list facility allows the collection of all
resistors and all capacitors into lists as the eircuit is defined. In
this way, these elements can be easily modified by the user during
the process of the analysis program. Unfortunately this approach
requires a rather complex list structure system for the require-
ments of both the display and analysis programs. Generally, it
requires the use of variable-length data blocks as elements of the
lists. Many analysis programs require a complete representation
of sets—intersecting sets, etc.—whereas the display function can be
performed using a simple tree representation.

Recently, it has been stressed that two models really exist in
such a system—one for the displayed representation and another
for the actual problem or system being represented. Several sys-
tems, SYSTEM/360 SKETCHPAD 111 (currently being implemented by
T. E. Johnson at Massachusetts Institute of Technology), apL 1,
LEAP,”® provide two separate data structures in recognition of this
fact. These systems use a simplified tree structure to represent the
image on the display, with the problem data stored in a separate
data structure. This simplification allows a much more efficient
manipulation of the display such as blank delete, add, and the cor-
relate function. The problem data structure can then be specially
constructed for the particular application, or a more sophisticated
generalized model structure may be used.

JOHNSON IBM SYST J

In the implementation of the double data structure, the
identifiers used for access to elements should be symbolie, inde-
pendent of the mechanisms of the data structure utilities, and
should not be addresses (pointers) used within either structure. If
this rule is followed, either structure may be rearranged (as in the
garbage collection operations) without necessitating any change in
its companion data structure. This econdition is especially important
if the two structures reside in separate machines, i.e., the display
structure in the graphics computer and the problem data structure
in the “host” computer, as shown in Figure 3.

Evans and van Dam? argue that for efficiency, most applica-
tions should use a data structure specifically designed for the
application. An example of such a “tailored” data structure is used
by Negroponte and Groisser” in their implementation of UrRBANS
(a conversational graphic design aid for the urban designer). Their
data structure records the attributes of urban space modules such
as privacy, access, purpose, etc. Thus, the modules may belong to
sets of modules, the name of the set indicating that the modules
within it have a certain property. These are recorded in an ex-
tremely simple data structure consisting of a string of Boolean
variables (bits) whose value if true indicates membership in the
set represented by this variable. The processing of these Boolean
variables is extremely rapid; their system is simple, and the re-
sponse of URBANS is quite pleasing.

Evans and van Dam propose a system—bsps (Data Structure
Programming System), and a language—bspL (Data Structure
Programming Language), for the declaration and manipulation of
tailored data structures including arbitrary list and ring structures.
A similar facility is available in the AEp (aLcoL Extended for De-
sign) language,®® thus providing the high-level language program-
mer with the ability to pursue a similar approach. The corawL lan-
guage provides a comparable facility, although it is restricted to a
specific ring-structure approach to provide a library of standard
ring-manipulation operations for the user.

Counter to the plea for data structure declaration and manipula-
tion languages is the argument that the application programmer is
primarily concerned with the application and should not have to be
cognizant of the implementation of the data structure. (The prob-
lems encountered in implementing a powerful data structure are
frequently greater than those involved in the application itself.)
Thus, if he must be concerned with a special data structure for
each problem, the application programmer’s job may be twice as
hard. This is especially true if the problem is of such a size and en-
compasses such a scope that the data structure must reside on
auxiliary storage for want of enough main storage.

A general data structure can be provided that allows the pro-
grammer to specify the data and its relationship to other data in
the data base. He may subsequently access data from this data
base not only by name but, in addition, through reference to
relationships between the desired information and other data in the

NOS. 3 & 4 - 1968 INTERACTIVE SYSTEMS

Figure 3 Two data structures

_

DATA STRUCTURE
MANAGEMENT ROUTINES

ANALYSIS

COMMUNICATIONS

COMMUNICATIONS

DRAWING PROGRAM

DISPLAY DATA STRUCTURE

list structures

PROBLEM DATA
STRUCTURE

HOST
COMPUTER

GRAPHICS
COMPUTER

DISPLAY
TUBE

hashed
structures

file. As previously stated, the traditional data structure for this sort
of operation is the ring structure, which is a special case of list
structure. Other types of list structure have also been used for this
purpose. However, the list-searching involved may be uneconomi-
cal when the data structure is on auxiliary storage rather than in
main storage. Until recently, little had been done to address this
trait in list-processing languages.

In their paper on psps, Evans and van Dam have described
techniques which they are currently evaluating for automatic
swapping of data structures between a disk or drum and main
storage. Here the user is allowed to view the combination of
main storage and auxiliary storage as one continuous ‘‘virtual”
main storage, the system bringing the addressed data into main
storage as it is addressed. Very large ‘‘pages” (the units of data
swapped) are brought in when an element within that page is re-
quested. This increases the probability that related data will be
available in the main storage without a second access. A ‘‘look-
ahead’’ scheme brings in associated pages if there is available space
in main storage. An inverted-file approach is used to reduce the
disk-seek overhead by providing direct access to a list element on
auxiliary storage. The article by Chen and Dougherty'? in this issue
also discusses a data structure whose implementation includes some
similar techniques.

Another recent development is the appearance of a possible
replacement for a ring structure used as a generalized associative
data structure. This data structure is the work of Feldman®® and
has been extended by Rovner,® T. Johnson,*® and Symonds.?
Similar data structures have been developed at the University of
Michigan.?®% It is known variously as a hashed data structure, a
software-simulated paged associative memory, or a relational store.
As with the list and ring structures, the objective is to provide a re-
lational data structure capable of the storage and retrieval of infor-
mation based on relations between problem model components. An
example of the use of this data structure is the retrieval of names
and lengths of all the lines connected to a given point in a drawing.
In large computer-aided design applications, this information
structure consists of so many associations that it is necessary to
place it on an auxiliary storage deviee such as a magnetic disk. The
hashed associative store approach is one attempt to speed up re-
trieval from such a disk-resident store by eliminating list-searching.
List-searching on disk devices is extremely time-consuming if the
lists are long and their elements are scattered widely over the
address space of the disk. This technique is being used in LEAP,
SYSTEM /360 SKETCHPAD I11, and GPL1 as the standard problem data
structure.

Hashing is a standard operation, normally used in commercial
data processing to transform a reference to a large, sparsely popu-
lated address space into a reference to a smaller address space in a
manner that minimizes the probability of conflicts (two symbolic
addresses which “‘hash’’ to refer to the same actual storage cell). This

JOHNSON IBM SYST J

operation is common to such applications as inventory control
where the part numbers which may be long must be mapped into
disk addresses referring to the record for that part (e.g., the part
number may be ten digits, whereas five digits would suffice to
address all the space needed to contain the file).

In the implementation of the relational data structure on disk,
one may think of a relation as a triple A, O, V, or attribute of object
equals value, such as the SON of TOM is FRED. The file space may
be thought of as a two-dimensional array of cells containing names
(values) such as FRED, the rows and columns representing attri-
butes (SON) and objects (TOM) such that the FORTRAN statement

ARRAY (SON, TOM) = FRED

might be one way of establishing the above relationship. The hash-
ing operation, as depicted in Figure 4, maps this large, sparsely
populated name space into a reference to a smaller, more highly
populated one-dimensional array called DISK such that the hashed
assignment might be referred to by the FORTRAN statement

DISK (H(SON, TOM)) = FRED

where H represents a single-valued hashing function. In the case
of the multiple-valued relation— SON of TOM = FRED, SAM,
DON, the cell DISK (H(SON, TOM)) would contain not the value
but a pointer to a chained list of elements—FRED, SAM, DON.

A similar solution exists for other relations @ of b = ¢ that
hash to the same cell and where sufficient information is provided
to differentiate between the two relations. Data may be associated
with the values of the stated relations and may be retrieved from
the store via reference to the desired relation. Redundant storage
techniques are used to reduce accesses to disk for permutations of
the accessing triple (@ of ? = ¢, a of b = ?, etec.).

The proponents of hashing techniques consider the major
attributes to be:

* Direct access to associations versus indirect references in list or
ring searches.
Explicit representation of associations or relations rather than
implicit representation via list structures provides for more
rapid response to queries.
Open-ended set of relations is provided as opposed to list
structures where possible relationships must be known when
the structure elements are defined.
Explicit relation representation allows relations to be referred
to by name enabling them in turn to be referred to as objects or
values of other relations.

The structure herein deseribed is very general; the user pays a
price: disk storage space requirements may be very large. It is
argued that if list structures were to be implemented to solve all
the same problems rapidly, the overhead entailed in terms of
storage space would at least equal that of the hashing approach.

NOs. 3 & 4 - 1968 INTERACTIVE SYSTEMS

HASH
OPERATOR

DISK FiLE

Thus there are three views of associative data structures:

Languages should be provided to allow the user to customize
the structure for his application.

A general structure can be provided using lists or rings on
auxiliary (disk) storage.

A hash-coded associative store is the best approach for the
general data structure.

The resolution of the three-way argument is the object of cur-
rent research. The papers referred to constitute reports on the cur-
rent state of that research. All of the approaches listed perform
swapping of data in and out of main storage via a programmed
“paging” scheme, with the exception of General Motors APL system
which takes advantage of the equipment of the sysTEM/360 Model
67 for dynamic relocation. Much more research is needed in the use
of this or similar equipment-assisted paging schemes.

None of the data structure systems described can be considered
complete unless facilities are available for reclaiming released
storage (caused by delete operations). This process is called gar-
bage collection. The facility may be provided as an automatic
function to be initiated by the data structure routines when space
is needed, or it can be provided as a utility operation which the
user may call when he wishes. However, it is necessary.

Graphics facilities in high-level languages

High-level languages can be segregated into two categories: prob-
lem-oriented, in which the problem is described, and procedural, in
which the procedure or algorithm for solution of the problem is
specified. In these two categories, graphies languages are separated
again into two forms: the written form and the pointing form.
All programmers are familiar with the first form where the input
to the compiler are statements consisting of strings of alphanumeric
characters. The second form provides a facility by which the display
programmer can, in the case of procedural language, specify pro-
gram operation by written statements (as in the written form)
combined with use of the function keys and light pen as additional
inputs.

Problem-oriented graphics languages are those in which the
user describes the picture he wishes to see rather than prescribing
the procedure by which the image is to be constructed. The exten-
sion to pL/1 proposed by Comba'® is thus, in part, a problem-
oriented language although some procedural statements are availa-
ble. The pLaN Graphic Support (Pas) system'? is also a problem-
oriented language.

Because a procedural language in written form is a necessity for
the construction of the other three types of languages specified, we
concern ourselves for the rest of this section with the requirements
of such a language.

A graphics procedural high-level language must provide the

JOHNSON IBM SYST J

facilities for the definition and management of the following:

Asynchronous events (attentions)!.3

Display device input/output and display data structures?®40
Images, views, and geometrical entities®

Problem (associative or relational) data structures
Processor-to-processor communication

There are several currently used techniques for the specification
of actions to be taken when an event, such as a function key de-
pression or light-pen detect, occurs at the display console. In general,
all of them are techniques for specifying a procedure to be executed
upon the occurrence of such an event. In each case, the system
generally collects certain information concerning the status of the
display and program when the attention signal occurred. As a
minimum, this information comprises the type of attention, the
name of the image detected, and the button depressed, as well as
the register and machine state. Some systems may record more
application-dependent data at this point. This information is made
available, by the system, to the user’s attention-handling routine.
The major differences in the attention-handling schemes known to
the author are the methods of specifying the procedures to be
executed upon occurrence of the attention and the means by which
these procedures are actually invoked after the attention event
oceurs.

Concerning the point of invoecation we only state here that
attentions are handled in one of two ways:

* Asynchronously, where the attention procedure is dynamically
invoked immediately upon receipt of the attention (or as soon
as the program attains an interruptible state)

Synchronously, where the programmer must poll (explicitly
test for an attention event)

In discussing specification of attention routines, we consider
four possible language forms:

® Program-flow modification specified by a FORTRAN- or PL/I-type
“IF” statement®
Tabular specification as in GPaK® and Gsp*
Dynamic deeclaration of attention-handling procedures as in
the PL/1 “ON”’ statement?
State diagram approaches®

With the “IF” statement, the following approach might be
used. Upon receipt of an attention, the system would record the
attention information from the display such as the name of the
item detected or the key which was depressed. One of several
system Boolean variables would be set to .TRUE. (i.e., LIGHTPEN
or KEY). A subsequent statement such as

IF LIGHTPEN THEN GO TO LABEL_1;
or
IF KEY THEN CALL ROUTINE;

NOS. 3 & 4 - 1968 INTERACTIVE SYSTEMS

attention-
handling
facilities

IF statement
approach

tabular
specification

PL/I ON
statement
approach

would cause a change in the program flow to a statement or pro-
cedure that would perform some action to reflect the fact that the
attention had occurred. This is an example of synchronous atten-
tion-handling.

The tabular approach is similar, except that it provides a
method for prespecifying the desired change in program flow which
is to oceur when each type of attention occurs. The method of pre-
specification i1s normally provided in the form of a subroutine call,
although the language could be extended to include a statement for
the same purpose. The subroutine form uses a parameter list of
ordered pairs to correlate each attention type with a specific action
routine.

CALL SETUP ((attntype(1), routine(1), . . .
., attntype (n), routine (n));

This form only sets up the dispatching mechanism, and in the
typical FORTRAN system (which is not designed for asynchronous
operation), the attention is stacked. Later, in the progress of the
program, another routine that will test (poll) for the occurrence
of an attention may be called. If an attention has occurred, the
call to the appropriate subroutine is dynamically generated and
executed. If not, the system waits until an attention does oceur. A
supplementary routine is needed which performs the call if an
attention has occurred but does not wait for one if it hasn’t oc-
curred. This again is an example of synchronous attention-handling,
although in a language allowing asynchronous invocation of rou-
tines, this technique could be used for asynchronous attention-
handling, and transfer to the appropriate routine could occur
immediately upon the receipt of the attention. With this approach,
the table may be redefined to change the dispatching for any or all
attentions. Care must be taken, however, to provide proper con-
ventions for saving and restoring the dispatching table when calling
subroutines that might in turn modify the table for their own
purpose.

The approach taken in the pL/1 language for specifying pro-
cedures to be executed upon the occurrence of such an event as
overflow, zero divide, ete., could be extended to specify graphic
attention-handling. Thus a sequence of statements such as:

ON LIGHTPEN BEGIN;
statement 1

statement n
END;

would define such a block. Execution of the ON statement in the
example is equivalent to changing a table entry containing the
transfer point for light-pen action. The technique differs from the
previous one in that the ON statements executed in a called pro-

JOHNSON IBM SYST J

cedure are in effect only for that procedure, and, upon return to
the dynamically encompassing procedure, the previous ‘“table’” is
reinstated. It should be pointed out here that in addition to specify-
ing the desired dispatching or program routing when an attention
oceurs, it should be possible to disable or enable specific attentions
for certain statement sequences. In an extension to pL/1, this could
be done by a statement or procedure ‘“‘prefix.” In the previously
mentioned tabular system, a subroutine call could set a disabled/
enabled indication in the table. The author has implemented both
synchronous and asynchronous versions of this approach.#

The previous two methods of attention specification require the
user to specify all attention states. (i.e., if only one attention type
is to be allowed, its action must be stated and all other attention
types must be disabled. This must be done each time the program
state definition changes.) W. R. Sutherland and W. M. Newman®
have independently proposed a more interesting state-transition
diagram notation adapted from automata theory in which all
that need be stated are the attention types that will be accepted
and the state transitions (program jumps or transfers) that will
be made when one of these attentions occurs. This technique pro-
vides a much more efficient language form and results in equally
more efficient generated code. The format of such a statement
might be:

statelabel: STATE ((attntype(l), statelbl(1)), . ..
. , (attntype(n), statelbl(n), (WAIT | LOOP));

With the LOOP option, the subsequent procedure statements would
be repeatedly executed. With the WAIT option, the program be-
comes dormant. In either case, when one of the specified attention
types occurs, a change of state occurs, and the program transfers to
the state (routine procedure or block) corresponding to that atten-
tion. This statement may have either a synchronous or an asyn-
chronous implementation.

Languages exist for the declaration and manipulation of list
and ring structures. It is the author’s contention that for graphics,
however, the programmer should only be concerned with the de-
scription of the graphic entities to be added to the current display
structure to create the desired image. A knowledge of the data
structure implementation should not be necessary. Thus, the pro-
grammer should be required to specify only the type of graphic
elements to be added to the picture, data for its construction, the
name by which it is to be known, and its hierarchical qualification.
In the PL/1 syntax, examples of two possible ways of stating this
follow. In the first example, it might be

CALL LINE (startpt, endpt, name, qualif-list);

where “startpt,” “endpt,” and “name,” are implementation-de-
fined array or structure variables containing graphic or naming
information, and ‘“‘qualif-list” is an array containing names of
hierarchical classes such as crass1 and crass2. In a second example,

NOs. 3 & 4 - 1968 INTERACTIVE SYSTEMS

state
diagram
approach

display
data structure
management

image generation,
geometric utilities

if graphic variables can be declared, then it might be
CLASS1.CLASS2.NAME = LINE(STARTPT,ENDPT);

where LINE is a function, and where STARTPT, ENDPT, and
CLASS1.CLASS2.NAME are graphic variables.

Either of the previous two examples should ecause the
orders for a line from STARTPT to ENDPT to be placed into
the display file and an entry made in the display data structure
to correlate this line with the name CLASS1.CLASS2.NAME. If
CLASS1.CLASS2.NAME already exists, then the statement should
reassign these values and recorrelate the line.

Other operations for the modification of the display and its
data structure are required, but they too should not require knowl-
edge of the implementation. Such operations are the deletion or
erasure of items or classes, dynamic class structure declaration, and
structure reconfiguration. This would be similar to the addition to
pL/I of the ability to dynamically declare and redeclare structures.
Further details can be found in a report by the author.*

Two approaches to causing the actual display of images are
possible. Either the display of data on the ¢rRT can occur as a side-
effect of the routine that manipulates the display data structure or
graphic variables, or the assignment to an internal variable may
be required along with a WRITE or DRAW statement for the actual
output operation. It is the author’s opinion that the display device
should be looked upon as a window through which the application
user sees the change in his problem dynamically. The display, then,
should not be thought of as just an input/output device; there
should be available a mode of operation in which the output is im-
plicit with the manipulation of the data structure that represents
the display. The only overt act that the programmer should have to
perform is the manipulation of the display data structure. In some
applications where this approach would present a continuously
changing and possibly unaesthetic display, it should be possible
for the programmer to state that automatic display should not
occur. Another statement later in the program could reactivate
automatic display, allowing the previously “delayed’” items to be
displayed in one complete picture change. But, this should be the
override method provided and not the default. The default
(dynamic window) mode is similar to the “movie”” mode described
by Smith.”®

A graphic programming language must provide a facility for
deseribing pictures.®-16.39:40,53,74.88 Pictures used in the wide range of
graphic applications are composed of many different types of
images which include alphanumerie characters, schematic symbols,
geometrical entities, and images not thought of as geometrical (such
as plots of arithmetic functions, bar charts, and flowcharts). Thus,
it is important that the language provide not only a facility for
describing the “nongeometrical’” entities in a simple form, but also,
a system for describing two-dimensional and three-dimensional
geometric entities as well as the routines for constructing these

JOHNSON IBM SYST J

entities. Routines should also be available to perform geometric
transformations upon these entities, i.e., it should be possible to
rotate, translate, and scale the image.!.39.%5.66 This paper will not
attempt to deseribe the techniques for these geometrical duties;
however, the following statements are within the scope of the
discussion.

An extremely systematic approach to manipulation of geo-
metric constructs can be developed by using the homogeneous
coordinates?.21.95.66 of projective geometry. It amounts to the de-
seription of n-dimensional shapes in terms of n + 1 dimensions.
This technique provides for a simple set of matrix operations for
rotation, scaling, translation, perspective projections, and the
“clipping” operation.

For all except the “clipping” operation, simple matrix multipli-
cations can be used to perform the desired transformation. The
“clipping,” or ‘‘scissoring,” operation, shown in Figure 5, is the
name given to the algorithm chosen to select the elements that ap-
pear within a specified “window’” that defines a portion of a larger
space that is to be mapped onto the face of the crr. In this opera-
tion, a matrix defining the rectangular window is used. This matrix
and the matrix describing each line in the total image are multiplied,
and the sign of the result indicates if all or any of the line lies within
the desired window. A subsequent computation can determine the
point at which any line crosses the edge of the window. Although
normally performed by programming, the transformation opera-
tions have been performed by special-purpose display devices™
based on the homogeneous coordinate system. It is the simplicity of
the matrix approach, used with homogeneous coordinates, that
makes it possible to build equipment for these operations. It might
be pointed out that many factors must be considered in deciding
whether an equipment approach is sufficiently general for the
graphics application.

Since most of the displays currently available do not contain
general-purpose curve generators, it is necessary to provide routines
for approximating complex eurved shapes, using connected short
line segments. A technique that provides for reasonably rapid
computation of these line segments uses parametric cubics or ra-
tional polynomials.?1%:20 With the use of rational polynomials, a
spline-like curve? ean be computed to provide a smooth approxima-
tion to the desired curve. For further information on homogeneous
coordinates and parametric surfaces, see the paper by Ahuja and
Coons? in this issue. Coons and Herzog!?-?® also present a technique
for specifying three-dimensional surfaces which can be patched
together for approximating such complex shapes as airframes and
auto bodies.

The previous discussion has assumed that the representation
presented on the display is of the form of a wire frame where all
edges in the object are visible at all times. Techniques have been
developed for the elimination of the normally hidden lines giving
an impression of a three-dimensional solid rather than a wire frame

NOS. 3 & 4 - 1968 INTERACTIVE SYSTEMS

Figure 5 Scissoring operation

/

Figure 6 Removing hidden lines

WIRE FRAME 1LLUSTRATION

/
/J]

SOLID IMPRESSION WITH
HIDDEN LINES REMOVED

i

&

problem
data
structure

outline. Figure 6 illustrates the result of employing such a tech-
nique. Current research consists mainly of improving the speed
and generality of these techniques. This is beyond the scope of this
discussion, and the reader is referred to the literature.t.5.6,17,66,88

Currently, at the University of Utah, an approach to half-tone
rendering is being explored.®® Computer-generated holograms are
also being considered to provide a more accurate representation of
three-dimensional images.*

As a minimum, a graphics language must provide either strong
matrix facilities or built-in routines for performing the previously
described geometric calculations, but preferably both. It is im-
portant that the matrix arithmetic be extremely efficient if dynamic
rotations and translations are to be performed smoothly.

Since not all applications need these sophisticated two- and
three-dimensional facilities, a graphies language must provide for
easy specification of simple pictures such as schematics and plots.
A user should not have to perform his own data scaling and axis
layout but should be able to pass his data to a plotting routine and
have these operations performed automatically. It should be
possible to describe a flowchart or schematic by providing the
names of the block types, location, and the connection information.
Once the block types and their representations have been described
(or retrieved from a library) in the form of named “macros,” the
representation can be duplicated each time that block type (name)
is used again. Depending on the exact nature of the “macros,”’ the
subsequent use of the “macro’ name creates an instance, or copy.

Implementations of problem data structures were discussed in
a previous section. Here we are concerned only with the language
for specifying and manipulating them. If it is desired to provide
the ability to create special data structures, then special statements
for the declaration and manipulation of lists, rings, hashed tables,
and “plexes” must be provided as in APL (Associative Programming
Language?), pspr,? PL/1, AED,® and coraL.®? If the approach is to
provide built-in, generalized data structures, then the programmer
must be able to create and access data on the basis of the inter-
relations between the data elements. Despite the implementation
techniques used, it should be possible to access data and then use
it via a statement sequence such as:

FOREACH LINE SUCH THAT POINTA IS END OF LINE OR POINTB
IS START OF LINE DO;
statement 1

statement n
END;

The FOREACH and END statements form the beginning and
end of a loop such that statements 1 through n are executed once
for each value of the variable LINE which starts at point POINTB
or ends at point POINTA. LINE, POINTA, and POINTB can be
referred to as variables within the loop.

JOHNSON IBM SYST J

As an example, if COORD is a vector specifying coordinates of
a point and COORD is mapped into a structure by a pL/1 declara-
tion statement, then the statements

LOOP: FOREACH LINE;
FOREACH PT SUCH THAT PT IS STARTPOINT LINE:
CALL DRAW (PT — COORD);
END LOOP;

might plot all line start points (where each value of PT is returned
by the access routines in the form of a pointer to the structure
containing COORD). Similar language features must be provided
for the entry of data into the data structure based on relational
information. Statements are also required for deleting data and
relations from the store or for modifying data associated with a
relation.

A comparison of the literature deseribing the syntaxes of LEAP
and APL should indicate that this language form can be used for
accessing data from data structures implemented with either ring-
manipulation or hashing techniques (see Symonds?t). Based on
similar implementation techniques, Childs® has implemented a
set-theoretic language. (LEAP includes sets and set operations in
addition to relations and relational operations.)

The use of a small computer to drive the graphic display console
provides a solution to two problems:

® Reduction of the conversational overhead on the host (multi-
access) system.
Localizing the interactive functions at the console providing
more rapid response when the console is remotely located from
the host system.

The approach taken in providing programs for this multi-
processor configuration is dependent on the speed of the communi-
cations link between the two processors. At one end of the spectrum
of possible programming-support approaches is the use of the small
computer as a super controller which can dynamically allocate its
own main storage and is able to perform some additional functions
such as image generation and attention stacking. This approach,
however, does not take full advantage of the power of the small
computer. It also puts a heavy load on the communication channel
as the number of executions for these low-level facilities is rather
high.

At the opposite end of the spectrum is the use of the small com-
puter to execute all interactive graphic operations plus much of the
analysis program, using the host computer as merely a facility for
access to the problem data base. This approach would work quite
well for simple applications but would probably require the applica-
tion programmer to write each application specially to fit all the
application and graphics routines into such a small machine.

An approach currently being considered would provide a fairly
constant base of conversational facilities upon which new applica-

NOS. 3 & 4 - 1968 INTERACTIVE SYSTEMS

processor-
to-processor
communication

tions could be constructed. Figure 7 illustrates this approach. The
small computer would contain all the geometry, attention-handling,
image-generation, and display control routines and a subset of the
assoclative data structure facilities. Subsets of the data structure
called data destillates would be passed between the host and remote
computers. The small remote computer would then contain most of
the interactive drawing functions and could be used for creating and
modifying the data structure. The host computer would perform the
analysis, data structure storage, and data structure retrieval pro-
grams.

The implications to the language at this time appear unclear and
will be the subject of future research. It appears now that the
language extensions proposed in an earlier section of this paper
reduce to attention-handling, data structure statements, and addi-
tional statements for passing data distillates between the two
machines, coupled with the corresponding control information to
specify the operation to be performed by the receiving processor.
The “attentions” mentioned here would not be at the level of those
mentioned before, such as light-pen detect or function key depres-
sion. In this case, they would signify the asynchronous request of
one processor for services to be performed by the other and a cor-
responding “interrupt”’ to indicate completion or failure of an
assigned task. The functions of, and programming language for,
the remote graphics processor configuration are currently the
subject of research in the university and laboratory environments.

Summary

In summary, it should be mentioned once again that most of the
problems stated in this paper are not exclusively graphics problems
but are general problems of interactive systems and data base
systems. The speed of the graphic display console merely empha-
sizes these problems.

Although our thesis has been the nongraphical nature of so-
called graphics problems, we have discussed some problems which
are to be considered graphical in nature, and we do not mean to
under-emphasize their importance. Certainly attention-handling
and the topological data structures used for picture modeling are
also used in areas other than graphies data processing. They are,
however, fundamental to the interactive graphics application.
Geometrical routines for image construction, image manipula-
tion, and image clipping are inherently graphic. No large graphics
system can exist without a comprehensive problem data structure
and its data manipulation routines. Some of the more appealing
(because they are general) approaches to these problems were dis-
cussed. A final thought we might leave is that no existing graphics
system commercially available in data processing has, to date,
included a complete set of the indicated generalized routines. As
a result, each application programmer must program much that is
not directly a function of his application when a graphics approach

JOHNSON IBM SYST J

Figure 7 Two-computer approach

HOST COMPUTER

OPERATING
SYSTEM

ASSOCIATIVE

DATA HOST STATE COMMUNICATION
STRUCTURE CONTROLLER ROUTINES

MANAGER

f
TN Y
N

DATA ANALYSIS

GRAPHICS COMPUTER

la— | — e = —]

DATA COMMUNICATION
DISTILLATE ROUTINES

]
4

DATA STRUCTURE
UPDATE AND
FETCH ROUTINES

DISPLAY
DATA
STRUCTURE

IMAGE-
GENERATION
ROUTINES GRAPHIC

STATE
CONTROLLER

.

T

GEOMETRY
PACKAGE

TRANSIENT
ATTENTION ROUTINE TRANSIENT

HANDLER LOADER ROUTINES

DATA FLOW

CONTROL FLOW

[

is used. This method is costly and may be the most valid reason for
the slow evolution of graphics techniques in production use.

Much research remains to be done in the sharing of resources
among many consoles, in design of data bases for associative re-
trieval, in processor-to-processor communication, and the specifica-
tion of high-level languages for programming applications which
use these facilities. Some of the other papers in this issue describe
various approaches to some of the stated problems, others describe
interactive applications using graphic display consoles. The bibli-
ography included in this paper lists some of the literature on time-
sharing and graphics data processing.

NOS. 3 & 4 - 1968 INTERACTIVE SYSTEMS

Appendix

Requirements for a conversational system in which a graphic dis-
play terminal is used for communication between the man and
the system—the man being the application programmer or the
engineer (user):

® Communication with the system should be simple—employing
an easy-to-use command language!?.4:4 gsimple enough for use
by application users who have no knowledge of computer pro-
gramming.
The command language should be “forgiving,” allowing the
terminal user to restate any command in error.
Errors should only activate the diagnostie routines and never
force termination of the job at hand; certainly, never affecting
another user running concurrently on the system.
Facilities should be provided for diagnosing program errors
from the terminal—the application programmer should be
permitted to correct the perceived errors, on line, or change the
source code, recompile it, and run it again.
The command language should provide the basic functions for
the creation and maintenance of source program files, program
libraries, and data files.
It should be possible for the application programmer, using the
display console, to assemble or compile object code from the
source files and then link together the resultant object files into a
program and execute it.
Although it should be possible for the programmer or applica-
tion user to protect his files from others, it must also be possible
for him to designate files as ‘“shared” to allow several users to
work on a joint project using a common file as a data base.
Backup and recovery facilities (especially for files) are ex-
tremely important.
It must be possible for the application programmer, or the
application user, to extend the system by defining new com-
mands from the display console.?
A special requirement of display-oriented systems is the ability
to produce a printed history of the user commands and the
resulting computer actions, as the display device produces no
“hard copy” audit trail (trace) by itself.
Because a conversational system should allow the user to define
data and call programs as they are needed, the system must
contain a facility for the dynamic allocation of main storage.
This facility should be easy for the programmer to use and
should be “transparent” to the application user—at least until
all the resources have been exhausted. The programs must be
linked dynamically as they are called into the system.

These requirements may not seem extraordinary if considered
in relation to the teletype or typewriter terminals normally used in
conversational systems. However, it should be stressed again: the

168 JOHNSON IBM SYST J

display console has greater abilities, and its inherent speed causes
the user to be more demanding. Thus the implementation of all the
facilities just discussed must be extremely efficient to provide an
acceptable response.

BIBLIOGRAPHY

1. Adams Associates, Inc., “Computer display fundamentals—software
techniques,” Computer Display Review 1, 11.66.0-11.118.0.

2. D. V. Ahuja, “An algorithm for generating spline-like curves,
issue.

. D. V. Ahuja and S. A. Coons, “Geometry for construction and display,”
in this issue.

. A. Appel, “Some techniques for shading machine renderings of solids,”
AFIPS Conference Proceedings, Spring Joint Computer Conference 32,
37-45 (1968).

. A. Appel, “The notion of quantitative invisibility and the machine
rendering of solids,” Proceedings of the 22nd National Conference of the
Association for Computing Machinery P-67, 387-394 (1967).

. A, Appel, “Modeling in three dimensions,” in this issue.

. H. B. Baskin and S. P. Morse, “A multi-level modeling structure for inter-
active graphic design,” in this issue.

. C. G. Beatty, “Graphic approach to numerical information processing,”
Proceedings of the Society for Information Display Sympostum (1967).

. E. Bennett, E. Haines, and J. E. Summers, “aEsop: A prototype for
on-line user control of organizational data storage, retrieval and process-
ing,”” AFIPS Conference Proceedings, Fall Joint Computer Conference 27,
Part I, 435-456 (1965).

. A. L. Bhushan and R. J. Stotz, “Procedures and standards for inter-
computer communications,” AFIPS Conference Proceedings, Spring Joint
Computer Conference 32, 95-104 (1968).

. 8. H. Chasen, “The introduction of man-computer graphics into the aero-
space industry,” AFIPS Conference Proceedings, Fall Joint Computer
Computer Conference 27, 883-892 (1965).

. F. C. Chen and R. L. Dougherty, “A system for implementing interactive
applications,” in this issue.

. D. L. Childs, Description of a Set-Theoretic Data Siructure, Technical
Report 3, concomp Project, University of Michigan (1968).

. B. B. Clayton, E. K. Dorff, and R. E. Fagen, ‘“An operating system and
programming systems for the 6600,”” AFIPS Conference Proceedings, Fall
Joint Computer Conference 26, Part II, 41-57 (1964).

. M. P. Cole, P. H. Dorn, and C. R. Lewis, “Operational software in a disc-
oriented system,” AFIPS Conference Proceedings, Fall Joint Computer
Conference 26, Part 1, 351-362 (1964).

. P. G. Comba, “A language for three-dimensional geometry,”” in this issue.

. P. G. Comba, A Procedure for Detecling Intersections of Three-Dimensional
Objects, IBM New York Scientific Center Report 320-2924, International
Business Machines Corporation, Branch Office (1968).

. W. T. Comfort, “A computing system design for user service,” AFIPS
Conference Proceedings, Fall Joint Computer Conference 27, Part I, 619-626
(1965).

. 8. A. Coons, “An outline of the requirements for a computer-aided design
system,”” AFIPS Conference Proceedings, Spring Joint Compuler Con-
ference 23, 299-304 (1963).

. S. A. Coons and B. Herzog, Surfaces for Computer-Aided Aircraft Design,
American Institute of Aeronautics and Astronautics, New York, New York
(October 25, 1967).

. 8. A. Coons, Surfaces for Computer-Aided Design of Space Forms MAC-TR41,
Clearinghouse for Federal Scientific and Technical Information, Spring-
field, Virginia (1967).

” in this

NOS. 3 & 4 - 1968 INTERACTIVE SYSTEMS

169

. F. J. Corbato et al.,, “Session 6: A new remote-accessed man-machine
system,” AFIPS Conference Proceedings, Fall Joini Computer Conference
27, Part 1, 185247 (1965).

. G. J. Culler and B. D. Fried, “The tew two-station on-line scientific
computer,” Computer Augmentation of Human Reasoning, 65-88 (1965).

. G. J. Culler and R. W. Hurr, “Solution of non-linear integral equations
using on-line computer control,” AFIPS Conference Proceedings, Spring
Joint Computer Conference 21, 129-138 (1962).

. M. R. Davis and T. O. Ellis, ‘““The ranp Tablet: A man-machine communi-
cation device,”” AFIPS Conference Proceedings, Fall Joint Computer Con-
ference 26, Part I, 325-331 (1964).

. G. G. Dodd, “apL—A language for associative data handling in pL/1,”
AFIPS Conference Proceedings, Fall Joint Computer Conference 29, 677-684
(1966).

. C. Engleman, “maTHLAB: A program for on-line machine assistance in
symbolic computations,”” AFIPS Conference Proceedings, Fall Joint
Computer Conference 27, Part I, 413-421 (1965).

. A. L. Eshlemap and H. B. Meriwether, “Graphic applications to aerospace
structural design problems,” Proceedings of the sHARE Design Automa-
tion Workshop (1967).

. D. Evans and A. van Dam, Data Structure Programming System, accepted
for IFIP Congress in Edinburgh (1968).

. J. Feldman, Aspects of Associative Processing, mit Lincoln Laboratory
Technical Note 1965-13, Cambridge, Massachusetts (April 1965).

. J. W. Forgie, “A time- and memory-sharing executive program for quick-
response on-line applications,”” AFIPS Conference Proceedings, Fall Joint
Computer Conference 27, Part I, 599-609 (1965).

. M. J. Goldberg, R. H. Shroeder et al., Development of On-Line System
for Computer-Aided Design of Integrated Circuits, Technical Report AFML~
TR-342, Volumes I and II, Norden Division, United Aircraft.

. J. C. Gray, “Compound data structures for computer-aided design,” Pro-
ceedings of the 22nd National Conference of the Association for Compuling
Machinery P-67, 355-365 (1967).

. B. Hargreaves et al., “Image processing hardware for a man-machine
graphical communication system,” AFIPS Conference Proceedings, Fall
Joint Computer Conference 26, Part I, 363-386 (1964).

. 0s/360 Concepts and Facilities, sYsTEmM/360 Reference Library, C28-6535,
International Business Machines, Data Processing Division, White Plains,
New York.

. 08,360 Graphic Programming Services—Basic, syYsTEM/360 Reference
Library, C27-6912, International Business Machines Corporation, Data
Processing Division, White Plains, New York.

. pL/1 Language Specificalions, systEm/360 Reference Library, C28-6571,
International Business Machines Corporation, Data Processing Division,
White Plains, New York.

. T88/360 Concepts and Facilities, systEM/360 Reference Library, C28-2003,
International Business Machines Corporation, Data Processing Division,
White Plains, New York.

. GPAK—An On-Line systeEm/360 Graphic Data Processing Subroutine
Package with Real Time 2250 Input and Display, Version 11, sYSTEM/360
General Program Library, International Business Machines Corporation,
Data Processing Division, White Plains, New York.

. IBM SYSTEM/360 Operating System Graphic Programming Services for
FORTRAN 1v, C27-6932-1, International Business Machines Corporation,
Data Processing Division, White Plains, New York.

. CP/CMS8 User’'s Guide, 1BM Cambridge Scientific Center Report 320-2015,
International Business Machines Corporation, Branch Office.

. E. L. Jacks, “A laboratory for the study of graphical man-machine com-
munication,”” AFIPS Conference Proceedings, Fall Joint Computer Con-
ference 26, Part I, 343-350 (1964).

JOHNSON IBM SYST J

. M. J. Jacobs, “Geometric constraint satisfaction for a computer-display
system,” Proceedings of the sHARE Design Automation Workshop (1965).

. C. 1. Johnson, An Experimental pL/1 Extension for Graphic Programming,
1B Cambridge Scientific Center Report 320-2025, International Business
Machines Corporation, Branch Office (1968).

. C. I. Johnson and R. M. Mitchell, A Conversational Partition Monitor for
0s/360 MFT, 1BM Cambridge Scientific Center Report 320-2020, Inter-
national Business Machines Corporation, Branch Office (March 1968).

. T. E. Johnson, A Mass Storage Relational Data Structure for Computer
Graphics and Other Arbitrary Data Stores, mit Preprint 866, Cambridge,
Massachusetts.

. T. E. Johnson, “sKETCHPAD 111: A computer program for drawing in three-
dimensions,” AFIPS Conference Proceedings, Spring Joint Computer Con-
ference 23, 347-353 (1963).

. R. Kaplow, J. Brackett, and S. Strong, “Man-machine communication
in on-line mathematical analysis,”” AFIPS Conference Proceedings, Fall
Joint Computer Conference 29, 465-477 (1966).

. J. R. Kennedy, “A system for time-sharing graphic consoles,”” AFIPS
Conference Proceedings, Fall Joint Computer Conference 29, 211-222 (1966).

. H. A. Kinslow, “The time-sharing monitor system,” AFIPS Conference
Proceedings, Fall Joint Compuler Conference 26, Part I, 443454 (1964).

. J. S. Koford et al., “Using a graphic data-processing system to design art-
work for manufacturing hybrid integrated circuits,” AFIPS Conference
Proceedings, Fall Joint Computer Conference 29, 229-246 (1966).

. F. N. Krull and J. E. Foote, “A line scanning system controlled from an
on-line console,” AFIPS Conference Proceedings, Fall Joint Computer
Conference 26, Part I, 397-410 (1964).

. H. E. Kulsrud, “A general purpose graphic language,”’ Communications
of the ACM 11, No. 4, 247-254 (1968).

. L. B. Lesem et al., Computer Synthesis of Holograms for 3-D Display, 1Bm
Houston Scientific Center Report 320-2327 (January 1968).

. C. Levinthal, “Molecular model-building by computer,” Scientific Ameri-
can 214, 42-52 (June 1966).

. R. W. Lichtenberger and M. W. Pertle, “A facility for experimentation in
man-machine interaction,” AFIPS Conference Proceedings, Fall Joint
Computer Conference 27, 589-598 (1965).

. N. Negropoute and L. Groisser, “URBANS5: An on-line urban design partner,”
Elkistics 24, No. 142, 289-291 (September 1967).

. W. M. Newman, “A system for interactive graphical programming,”’
AFIPS Conference Proceedings, Spring Joint Computer Conference 32,
47-54 (1968).

. W. H. Ninke, “Graphic I—A remote graphical display console system,”
AFIPS Conference Proceedings, Fall Joint Computer Conference 27, Part I,
839-846 (1965).

. Y. Okaya, “Interactive aspects of crystal structure analysis,”” in this issue.

. D. B. Parker, “Solving design problems in graphical dialogue,”” On-Line
Compuler Systems, McGraw-Hill Book Company, New York, New York.

. R. P. Parmalee, Three-Dimensional Siress Analysis for Computer-aided
Design, Ph.D. thesis, Department of Mechanical Engineering, wir,
51-58 (1966).

. D. E. Rippy, D. E. Humphries, and J. A. Cunningham, ‘“macic: machine
for automatic interface to a computer,” AFIPS Conference Proceedings,
Fall Joint Computer Conference 27, Part I, 819-830 (1965).

. L. G. Roberts, Graphical Communication and Control Languages, MIT
Reprints MSS 1173 (1964), Cambridge, Massachusetts.

. L. G. Roberts, “Homogeneous Matrix Representation and Manipulation
of N-Dimensional Constructs,” Notes for English Summer Conference
Course, University of Michigan (1965).

. L. G. Roberts, Machine Perception of Three-Dimensional Solids, Lincoln
Laboratory Technical Report 315, 22, Lexington, Mass. (May 1965).

NOS. 3 & 4 - 1968 INTERACTIVE SYSTEMS

. D. T. Ross et al., “The design and programming of a display interface
system integrating multi-access and satellite computers,” Proceedings of
the sHARE Design Automation Workshop (1967).

38. D. T. Ross and J. E. Rodriguez, ‘“Theoretical foundation for the computer-
aided design system,” AFIPS Conference Proceedings, Spring Joint Com~
puter Conference, 23, 305-322 (1963).

. P. D. Rovner and J. A. Feldman, An Associative Processing System for
Conventional Digital Computers, Technical Note 1967-19, Lincoln Labora-
tories, mrT, Lexington, Massachusetts (1967).

. P. D. Rovner and J. A. Feldman, The Leap Language and Data Structure,
accepted for IFIP Congress in Edinburgh (1968).

. A. Ruyle, “Development of systems for on-line mathematics at Harvard,”
Project Tact Memorandum 71, Aiken Computation Laboratory, Harvard
University, Cambridge, Massachusetts (1967).

. A. Ruyle, J. W. Brackett, and R. Kaplow, “The status of systems for
on-line mathematical assistance,” Proceedings of the 22nd National Con-
ference of the Association for Computing M achinery P-67, 151-167 (1967).

. P. M. Schwinn, “A problem-oriented graphic language,” Proceedings of the
22nd National Conference of the Association for Computing Machinery
P-67, 471-476 (1967).

. SICGRAPH, ‘“Bibliography of selected articles on computer graphies,” ACM
Special Interest Commillee on Computer Graphics Newsletter 1, No. 1 (1967).

. R. V. Smith, The Electronic Coding Pad, 1BM Thomas J. Watson Research
Report NC-731, Yorktown, New York (1967).

. O. D. Smith and H. R. Harris, “Autodraft,” Proceedings of the SHARE
Design Automation Workshop (1965).

. T. H. Spellman, T. R. Allen, and J. E. Foote, “Input/output software
capability for a man-machine communication and image-processing sys-
stem,” AFIPS Conference Proceedings, Fall Joint Computer Conference 26,
Part I, 387-396 (1964).

. T. G. Stockham, Jr., “Some method of graphical debugging,” Proceedings
of the IBM Scientific Computing Symposium on Man-Machine Communica-
tion, 57-72 (1965).

. R. H. Stotz, “Man-machine console facilities for computer-aided design,”
AFIPS Conference Proceedings, Spring Joint Computer Conference 23, 323—
328 (1963).

. A. N. Stowe et al., “The Lincolner Reckoner: An operation-oriented, on-
line facility with distributed control,” AFIPS Conference Proceedings,
Fall Joint Computer Conference 29, 433-444 (1966).

. L. E. Sutherland, “Computer graphies—ten unsolved problems,” Datama-
tion 12, No. 5, 22-27 (May 1966).

. I. E. Sutherland, “skercEpAD—A man-machine graphical communication
system,”” AFIPS Conference Proceedings, Spring Joint Computer Con-
Sference 23, 329-346 (1963).

. W. R. Sutherland, The Coral Language and Data Structure, Appendix C,
Lincoln Laboratory Technical Report 405 (1965).

. A. J. Symonds, “Auxiliary-storage associative data structure for pL/L”
in this issue.

. J. R. Teixeira and R. P. Sallen, “The Sylvania Data Tablet: A new ap-
proach to graphic data input,” AFIPS Conference Proceedings, Spring
Joint Computer Conference 32, 315-321 (1968).

. E. M. Thomas, “Grasp—A graphic service program,” Proceedings of the
22nd National Conference of the Association of Computing Machinery P-67,
395-402 (1967).

. J. 8. Waxman et al., “Automated logic design techniques applicable to
integrated circuit technology,” AFIPS Conference Proceedings, Fall Joint
Computer Conference 29, 247-265 (1966).

. R. A. Weiss, “Br VISION, a package of IBM 7090 FORTRAN programs to
draw orthographic views of plane and quadric surfaces,” Journal of the
Association for Computing Machinery 13, No. 2, 194-204 (1966).

JOHNSON IBM SYST J

89. C. Wylie et al., “Half-tone perspective drawings by computer,” AFIPS
Conference Proceedings, Fall Joint Computer Conference 31, 49-58 (1967).
90. W. Ash and E. H. Sibley, ‘Tramp: a relational memory with an associative
base,”” AFIPS Conference Proceedings, Fall Joint Computer Conference 33,
(1968).
. W. K. English, D. C. Engelbart, and M. L. Berman, “Display selection
techniques for text manipulation,” IEEE Transactions on Human Factors
in Electronics HFE-8, No. 1, 5-15 (March 1967).
. E. H. Sibley, R. W. Taylor, and D. C. Gordon, “Graphical systems com-
munication: an associative memory approach,” Proceedings of the 23rd
National Conference of the Assoctation for Computing M achinery (1968).

NOS. 3 & 4 - 1968 INTERACTIVE SYSTEMS 173

