
~ Queuing theory and  statistical  methods are used in this  paper  to 
derive formulas for determining average turnaround  time in tele- 
processing systems  that  handle  messages on a priority  basis.  This 
information  is needed to  ensure,  for  example,  that  messages  are 
processed within acceptable time  limits  and  that  eficient  use  is macle 
of system resources. 

Factors considered in arriving  at the formulas described here include 
waiting  time in message queues,  message  processing  time, I/O wait- 
ing time,  and  delays  for higher priority  processing.  Results  conform 
closehy with those  obtained from  simulation  studies. 

Turnaround time for messages of differing priorities 
by C. Hauth 

Average turnaround  time for processing messages of different , priorities has far-reaching implications in  the design of a tele- 
processing system. Low average turnaround  time for some types 
of messages may be highly desirable or even critical. For example, 
in  an insurance  application, the processing of claims, endorse- 
ments, and cancellations might  each be done a t  different priori- 
ties. Moreover, a claims analyst  might  want cIaims to be proc- 
essed within five minutes, so that he could assure an insurance 
agent that a  claimant is covered. But  thought  must also be given 
to  the kind of processing required by each priority class of mes- 
sage. If the kind of processing is not considered, system  through- 
put  may suffer. For example, if the processing required for higher 
priority messages involves little I/O activity  and  the messages are 
received a t  a sufficiently high rate, lower priority messages may 
never be processed. 

Thus,  many of the basic decisions that must be made in de- 
signing a useful and efficient teleprocessing system  require  a means 
of determining average turnaround  time for processing messages 
of each  priority in a given installation. The purpose of this  paper 
is to assist in determining average message turnaround time-the 
interval between the  time  that a message is received and  the com- 
pletion of its processing in  the computer. 

The system assumed permits up  to four separate jobs to be operating 
run  concurrently  within  a single computing  system  having only environment 
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one central processing unit (cPu).' The separately scheduled jobs 
reside within  their own predefined partitions  in  main  storage,  and 
the work done within each partition  is assigned a different pri- 
ority. While one job awaits completion of an event,  such  as an I/O 

operation, processing is switched to a lower priority  job to  take 
advantage of the  temporary processing delay. 

Figure 1 illustrates  the main  storage  layout of a  two-partition 

partition is Pz. R'loreover, the job in  partition PI has  preferential 
access to  the CPU; the job in partition 2 is given control of the 
CPU only when either  there  is no work to be done in  the higher- 
priority  partition or when the higher-priority job is  suspended  (in 
the wait  condition).  By  dividing  main  storage into  as  many  as 
four  partitions,  four  separate jobs can be executed concurrently, 
with Pq having the lowest priority. 

For teleprocessing, the highest priority  partition, PI ,  is nor- 
mally occupied by a telecommunications control  program,2 which 
handles  both the receiving and sending of messages. The remain- 
ing  three  partitions  are occupied by message processing programs. 
For example, in  the insurance  application  cited, one of the three 
partitions  might  handle claims, another  endorsements, and  the 
third cancellations. 

In  the system to be analyzed,  all messages are received in 
partition 1 (the telecommunications control  program). Then, mes- 
sages with  priority 1 are processed in  partition 2, and messages 
with  priority 2 are processed in  partition 3. In  general, 
messages with  priority j are received in  partition 1, processed in 
partition j + 1, and  sent from  partition 1. (An initial  wait  time 
precedes entry  into  any  partition.)  In  the  interest of generality, 
m partitions  are considered here, rather  than four.  Turnaround 
time is developed for each  priority class of messages. Note  that 
the higher the  number of the partition,  the lower t,he  priority. 

Arrival  rates to  the  partitions  are assumed to  have a Poisson 
distribution. Service time  in  the first partition is assumed to have 
an exponential  distribution.  The basic assumpt8ion  here  is that  the 
dist,ribution of all  departing  output messages from the  partitions 
is also Poisson. Service times in t,he 7n partitions  are assumed to 
be mutually  independent. The sum of the service time in a  par- 
ticular  partition  and  the  initial wait time  in  the message queue 
for that partit>ion is called queuing  time. (Initial  wait  time should 
not be confused with wait time for I/O operations  after processing 
in  the  partition has started.)  From Figures 2 and 3, it is clear that 
dat,a processing turnaround  time for a message with  priority j is 
equal to  the sum of the receiving and sending queuing  times for 
partition 1 and  the queuing  time for partition ,j + 1. Therefore, 
determining  turnaround  time  for  a message that will  be processed 
in a  particular  partition is reduced to finding the queuing  times 
for partition 1 and for that partition. 

Note that for a  system  with only one partition,  the  analysis is 
essentially simple. The service time is the sum of the execution 
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Figure 1 Storage  layout of a 
two-partitian system system. The higher-address partition  is PI, and  the lower-address 
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Service time 
In  general, the service time  for  a  partition consists of processing 
time,  wait  time  (nonoverlapped I/O time), and extensions of the 
service time  due to interruptions  from higher priority  partitions. 
For example, execution of the following sequence of macroinstruc- 
t i o n ~ ~  might take place in a partition: 
1. PROCESS (10 milliseconds) 
2.  GET TAPE FILE A (50 milliseconds) 
3. PROCESS (20 milliseconds) 
4. READ TAPE FILE B (60 milliseconds) 
5. PROCESS (35 milliseconds) 
6. WAIT (for READ to complete) 

where service time in milliseconds is 

10 + El + 50 + E, + 20 + Ea + 35 + E5 + 25 + Es 
The  time for the WAIT macroinstruction  equals the READ 

time (60 milliseconds) minus the  intervening processing time (35 
milliseconds) or 25 milliseconds. Ei represents the extensions due 
to interruptions  from higher priority  partitions.  Although de- 
termining processing time  presents  no  particular difficulty, wait' 
time  and extensions to service time  present  a total of five problems: 

1. Determining the extension of time for executing an  input/out- 
put instruction  due to requests for the same  channel  and/or 
device from other  partitions. 

2. Determining the WAIT macroinstruction time. 
3. Determining the extension of time for a WAIT macroinstruction. 
4. Determining the extension of time  for  a GET/PUT macroin- 

5 .  Determining the extension of time for a PROCESS macroin- 
struction. (A  GET/PUT has an embedded'wait.) 

struction. 

The extension of time for an  input/output  instruction  in  the 
I/O time partition  under consideration due to  input/output  instructions  in 

extensions other  partitions  requesting  the  same  channel  and/or device is the 
delay caused by  the channel and/or device being busy. The effect 
of I/O requests in higher priority  partitions, lower priority  parti- 
tions, and  the same  partition  must be considered. 

Each I/O instruction  must be examined separately to determine 
its effect. The  sum of the delays plus the  actual I/O time consti- 
tutes  the  total  time for this  request. The influence of READ, 
WRITE, or EXCP macroinstructions (involving the same  channel 
and/or device) in higher priority  partitions  can be seen from the 
example in  Table 1. 

Consider first the READ, WRITE, or EXCP requests in  parti- 
tion i (where i = 1, 2, . . ., j - 1) that refer to  the same  channel 
or device. First,  the difference between the I/O time  and  the inter- 
vening processing time (occurring before the corresponding WAIT) 
must be obtained. (If this difference is not positive, the request 
has no effect on READ,.) Call  this difference Dki.  If the request 
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The intervening processing time should then be subtracted 
from the mean of the maximum (a, b)  to  form the wait  time ior 
this I/O operation. The largest  positive  wait time of  a11 the I/O op- 
erations  waited  for  by  this WAIT macroinstruction  and  the asso- 
ciated  variance  then represent the mean and  variance of wait 
time  for the WAIT macroinstruction. If there  are  no positive  wait 
times  corresponding to  the I/O operations, the wait  time for this 
WAIT macroinstruction is zero. 

In  this  way,  the  wait  time for  each WAIT macroinstruction  in 
partition j can be obtained.  Thus,  the second problem has been 
solved. 

The  third problem  deals  with finding the extension  of time  for 
extensions a WAIT macroinstruction due  to interruptions  from  higher pri- 

to wait time ority  partitions. If the WAIT macroinstruction is in  partition 1, 
this extension  is zero. However, if the WAIT macroinstruction is 
in  a  lower-priority partition,  the  wait  time  may be  extended  by 
interruptions  from higher priority  partitions.  For example, if a 
WAIT macroinstruction  takes 40 milliseconds but is interrupted 
for 50 milliseconds beginning after  the first 10 milliseconds, the 
extension of the  wait  time  is 20 milliseconds. Note  that  the ex- 
tension is not 50 milliseconds, because use of the central processor 
by a  higher  priority partition while a lower priority  partition is 
waiting  has no effect on the lower priority  partition. 

Consider an  interval of CPU time, x .  Let bi be the  total CPU 

processing time (excluding I/O time  and  wait  time) for partition i. 
Let X i  be the arrival  rate  to  partition i (assumed to  have a  Poisson 
distribution). Therefore,  during an  interval of CPU time, x milli- 
seconds, partition i requires on the average Xibiz milliseconds. 
Therefore, partition i used the CPU a fraction of time  equal  to 

(Note  that Xibi must  be less than 1, or the system is over-utilized 
and lower-priority processing will not be done). Therefore, during 
an  interval of CPU time, x milliseconds, partitions 1 through j - 1 
will use on  the  average 

i-1 

Xibiz milliseconds , 
i=l 

leaving 

( z  - 2 Xibiz) milliseconds 
i= 1 

for  partition j .  Therefore,  for  every y milliseconds required by 
partition j ,  
I 



Figure 4 Extended  wait  time 
W. 

/ , 

will be required by partitions 1 through j - 1. Let 

Therefore, p represents the fraction (which could be  greater  than 
1) of CPU time  taken  from  partition j by higher  priority  partitions. 
Note  that for the first partition p = 0, and  there is no  extension 
of the wait  time. 

Let x: be the value of the unextended  wait time  just calculated. 
The extended  wait time  can be thought of as broken up  into por- 
tions y j  (as  shown  in  Figure 4), where the  computer  is idle, and 
portions pyi, where the computer  is  being  used  by  higher  priority 
partitions. As an illustration,  during  the first 10 milliseconds of a 
40-millisecond WAIT, the computer  is  idle;  then, an  interruption 
of 5 milliseconds occurs, followed by  a 20-millisecond idle period 
and  another  interruption of 10 milliseconds. The extended  wait 
time is therefore 45 milliseconds. 

Thus,  the extended  wait time, W e ,  can  be  represented  as  a 
sum of idle periods and  interruptions  as follows: 

where 
n c ( Y i  + PYi) 2 3 and c (Yi  + PYJ < 

n-1 

j=1 j=  1 

However, it is only the last  interruption  that really affects the 
wait  time. The  interruptions  that  are overlapped with  wait  time 
have  no effect on  the  time of the WAIT macroinstruction. For 
example, if the CPU were used by  another  partition for 5 milli- 
seconds after 10 milliseconds of a 40-millisecond wait  had  passed, 
the WAIT macroinstruction would not  be affected.  However, if 
this  interruption occurred after 37 milliseconds of the wait  had 
passed, the wait  time would be  increased  by 2 milliseconds. 

Therefore, the extended  wait time  can be thought of as  the 
sum of the last  interruption  time  and  the  wait  time occurring  prior 
to  the last  interruption. If the wait is completed during  an idle 
period, the last  interruption is denoted  as zero. Therefore,  all 
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possibilities for the extended  wait  time  can  be  represented as 
follows : 

Y + Pz  

where 

In  this equation, p z  represents the  last  interruption  and y rep- 
resents the wait  time  prior to  the  last  interruption. Since y + p z  
2 x ,  y must be greater  than or equal to x / ( l  + p ) .  But y cannot 
be great,er than x, because the wait would be ended at  that point. 
Time x is actually  the  last idle period occurring before the final 
interruption, which is of length pz .  Since y + p z  >_ x ,  z must be 
greater than or equal  to (x - y ) / p .  Since y is the wait  time  prior 
to  the  last  interruption, x cannot be greater than y. 

The average  value of the  function y + p z  over the region 

[ d ( l  + p )  i y i x ; (x - y ) / p  I z i Y1 
can be determined as follows. (Note that it is the average  value 
of the extended  wait  time that is being represented  by this func- 
tion.) 

where 

average  value = [ p 3  + 5 p 2  + 7 p  + 31 X 

3(1 + P I 2  

Thus  the average  value of the extended  wait  time  can be ob- 
tained. The mean of the extension is the average  value  minus x. 
The moment of extension of wait  time is 

Thus,  the second moment is 

L 6(1 + P I 3  

The variance of the extension is  equal  to  the second moment  minus 
the mean  squared. 

The average  value of the extended  wait  time  can be determined, 
and  the variance of the extension of the wait  time  can be ob- 
tained.  This  variance  can be added  to  the variance of the unex- 
tended  wait  time  to give the  total variance for this  wait. 

A GET/PUT macroinstruction  has an imbedded WAIT macro- 
extensions to instruction. That is, no intervening processing is allowed between 

GET/PUT time the  start of the  input/output operation and  the WAIT. Therefore, 



the  input/output time of this macroinstruction  is the same  as the 
wait  time for a WAIT macroinstruction. The  computer is idle, 
waiting  for the  input/output operation to be completed. There- 
fore, the extension of this  time  due to interruptions from higher 
priority  partitions  can be determined in  exactly  the same way as 
the extension of the wait  time. 

The  last problem encountered in finding t,he service time  for 
partition j is finding the extension of the  time for  a PROCESS 
macroinstruction  due to  interruptions from higher priority  parti- 
tions. For example, if the  computer is interrupted for a total of 5 
milliseconds during execution of a PROCESS macroinstruction re- 
quiring 10 milliseconds, the effective time  for  the PROCESS macro- 
instruction is 15 milliseconds and  the extension is 5 milliseconds. 
Note that for  partition 1, a PROCESS macroinstruction  cannot be 
extended, since there  are no higher priority  partitions.  Let bi be 
the  mean of the  total processing time for partition i (b; excludes 
nonoverlapped I/O time  and wait  time).  Let Xi be the  arrival  rate 
(assumed to have Poisson distribution) a t  partition i. Therefore, 
CPU utilization  for  partition i is That is,  during  a  time span 
of x milliseconds, partition i will use the CPU an average of Xibix 
milliseconds. Therefore, the  fraction of CPU time used by  partition 
i is Xibix/x or Xibi. Therefore, the fraction of CPU time used by 
partitions 1 through j - 1 equals 

i=l 

and  partition j has the CPU available to it only a  fraction of the 
time  equaling 

j- 1 

Assume that a PROCESS macroinstruction in  partition j re- 
quires b j k  milliseconds. The extended processing time, bjk*, is 
equal  to  the  sum of b j k  plus the average total  interruption  time 
from higher priority  partitions. (The asterisk  indicates that  the 
time extension has been included.) But,  during a  time  span of 
bik* milliseconds, partitions 1 through j - 1 use the CPU for an 
average of 
i-1 

X i b i b j k *  milliseconds 
i=l 

i- 1 

.'. b jk*  = b j k  + X i b i b i k *  = b j k  milliseconds . 
*=1 i- 1 

i= 1 

Note  that for partition 1, b j k *  = b j k ,  since there  are no higher 
priority  partitions.  The extension of time  for  a PROCESS macro- 
instruction  in  partition j requiring b j k  milliseconds can be de- 
termined as b j k *  - b j k ,  where b j k *  is given above. 
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So far we have shown how to find the extensions of the time 
needed  for input/output, PROCESS, and WAIT macroinstructions. 
The service time, si, for  partition j is equal  to  the  sum of the times 
for  each  macroinstruction  plus  the  extension of time  for  each 
macroinstruction.  The  variance, vj, is equal to  the  sum of the 
variances for each WAIT macroinstruction. Consider a partition 
containing the following instructions: 

1 PROCESS (30 milliseconds) 
2 READ TAPE FILE A (40 milliseconds) 
3 PROCESS (15 milliseconds) 
4 WAIT (25 milliseconds) 
The  mean service time is equal  to  the  sum of 30 milliseconds, plus 
15 milliseconds, plus 25 milliseconds, plus the extension of PIZO- 
CESS #1, and  the extension of WAIT. The variance of the service 
time, vi, is  equal  to  the  variance of the  wait  time plus the variance 
of the extension of the  time  wait. (PROCESS times are assumed to 
be  constant.) 

Initial wait time 
Since the service time  for  each  partition  can be  found,  the remain- 
ing  problem is to determine the initial  waiting  time for each  par- 
tition.  The  initial waiting time for partition j is the  time a message 
must  wait before being processed in  this  partition.  After de- 
termining  the service time  and  the  initial  waiting  time,  the queuing 
time  can be determined  as  their  sum. 

Note  that  the  initial waiting  time for t,he first partition  can 
be  found by  the Pollaczek-Khintchine  equation: 

The size of the waiting line is X1wl. It will soon be shown that  the 
initial  waiting  time for partition j is dependent  on the initial  wait- 
ing times for partitions 1 through j - 1. Therefore, the initial 
waiting  time must be solved for  partitions 1 through j - 1 before 
it can  be solved for partition j .  Since the value of the  initial n-ait- 
ing  time  for  partition 1 can  be  found  as  shown  above,  this  presents 
no  problem. 

In  addition  to  the service time, si, a message arriving a t  par- 
tition j and finding it free encounters an additional  delay, W31, 
caused by  the CPU being used by the higher  priority  partitions 1 
through j - 1. For example, if a message arrives a t  partition 2 
and  no  other messages are  in  the  queue,  but  the CPU is  currently 
processing in  partition 1, the initiation of service for this message 
is delayed until processing in  partition 1 is  suspended. Note  that 
the delay  for partition 1 is zero, since there  are no higher priority 
partitions. 
' We first develop the  mean  and second moment of this delay. 
Then we use the moments of this delay, the moments of the 
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Table 2 Illustration of process blocks 

Partition 

PROCESS 10 msec 
READ FILE A 
WAIT 
READ FILE B 
PROCESS 30 msec 
WAIT 
PROCESS 20 msec 

} PROCESS BLOCK #2 = 30 msec 

PROCESS BLOCK #3 = 20 msec 

I service time, and  the  arrival  rate  to  determine  the  initial  waiting 
time. 

In  order  to  determine  the  moments of XI, it is necessary to 
examine the processing in  the higher  priority  partitions.  Any  par- 
tition  can be  broken up  into processing blocks. A processing block 
is the  total CPU processing time  and GET/PUT time that occurs: 
between 2 WAIT macroinstructions,  prior to  the first WAIT macro- 
instruction  in the partition, or after  the  last WAIT macroinstruc- 
tion  in  the  partition,  as shown in  Table 2 .  

Only processing blocks affect the delay in  the lower priority 
partition. If the higher  priority  partition  is  in a  wait state,  there 
is no  delay to processing in the lower priority  partition. 

In  partition i, call the first process block il and  the  kth process 
block ik. Let  the  number of process blocks in  partition i be ni. Let 
pik* represent the time  for processing block ik, which is  extended 
to reflect interruptions  from  higher  priority  partitions. 

Let X i  be the  arrival  rate  to  partition i (where i = 1, 2,  . e ,  

j - 1). When  a new message arrives a t  partition j and  there  are 
no prior messages being served or in  the  queue for this  partition, 
a  delay may be  encountered because a process block in a higher 
priority  partition  is being  executed. If all  higher  priority  partitions 
are  in a  wait  condition or are  not busy, they do not affect the new 
arrival.  The  probability  that  partition i (where i = 1,2 ,  . . , j - 1) 
is handling  a message is Xisi, where si represents the service time 
for  partition i. Since processing block ik represents  a  fraction of 
the service time  equal  to pik*, the probability that processing 
block ik is being executed  is 

Xisi(pik*/si) = kipik* 

Assuming that,  on  the average, half of the processing block re- 
mains to be processed, the average total  delay, D i k ,  caused  by the 
CPU being busy processing this block is 0.5p;k*. 

If the CPU is busy  executing the  last process block of partition 
i, a further delay d jz  may  result if there is another message wait- 
ing to be  served in  partition i. The CPU executes the first process 

NO. 2 * 1968 MESSAGE TURNAROUND TIME 115 



Table 3 Partition states 

eik(1 5 k 2 (ni - 1) 
Block k is being processed in 
partition i. 

0.5pik* 

eini 0.5pini* 
Last block is being processed in 
partition i, and nothing is in  the 
waiting line for this partition. 

ei,(ni+l) Xipini*[l - e-’i(’i+wi)] 0.5pini* + pil* 
Last block is being processed in 
partition i, and  there  are one or 
more messages in the waiting line 
for this  partition. 

ei ,  (ni+Z) 

Probability that  partition i is free 

(I - Xiy)Ai~i for i > 1 j 

0 f o r i  = 1 

with a message(s) in  the waiting 
line. 

block il in  the  partition for the new message after  it has exe- 
cuted  the  last block for the previous message. The probability 
that  the  last block in  partition i, (ini), is being executed is Xibin;*. 
The probability of a t  least one arrival for this  partition during 
the initial  waiting  time and service time of the prior message is 
1 - e-) i i (wi+si)  

where wi represents the  initial wait  time for partition i and si 
represents the service time  for  partition i. (With a Poisson ar- 
rival rate, Xi, the probability of no new arrivals  during  time t is 
e-’it.) Therefore, the delay, djz, caused when the CPU is busy 
executing the last process block in  partition i and when there  is 
another message waiting to be served  by  partition i, is  equal  to 

If the CPU is  busy  executing a process block for partition h, 
(where h = 1, 2 ,  . . ., j - a ) ,  and  partition h + 1 is free with a 
new arrival  waiting to be served, an additional  delay  results  for 
the newly arriving message for  partition j .  Processing in  partition 
j cannot be initiated  until processing in  partition h + 1 has been 
initiated  and suspended. The probability that partition h + 1 
is free is 1 - Xh+l~h, . l ,  since the utilization  for  this  partition  is 
Xh+l~h+l, i.e., the  product of the arrival  rate  and  the service time. 
The probability that there  is a message in  the waiting line for this 
partition is h h + l ~ h + l ,  where w h + l  represents the  initial waiting 
time  for  this  partition. Therefore, the  probability of this occur- 
rence is (1 - Xh+lsh+l)(Xh+lwh+l), and  the associated  delay is 
ph+l,I* (the  length of the first processing block). 

Pil*. 
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Therefore, when a message for partition j arrives and  parti- 
tion j is  free,  partition i (where i = 1, 2, . . . , j - 1) can be in 
any of ni + 2 states, which results in a  delay in  the processing 

, of the message for  partition j .  The  states, eik,  and  the associated 
probability and delay associated with  each  are shown in  Table 3. 

Therefore, the mean of the delay (wjl) encountered by a mes- 
sage arriving a t  partition j and finding it free is equal to  the sum- 
mation of all  permutations  and  combinations of the probabilities, 
P i k ,  multiplied  by the sum of the associated delays. (Note that 
il # i2 and if # i, in  the summations below.) 

.'. wjl (mean of wjl) = 

(if # i, for f # g )  

mfl (2nd  moment of Wjl) = 

(if # i, for f # g )  

At this  point,  the mean si and variance of the service time  for 
partition j (where j = 1, 2,  . . . , m) have been found in  addition 
to  the  mean wil and second moment Tilz of the delay of a message 
that arrives at partition j and finds it idle. Note  that a message 
that arrives at partition j when it is busy must wait  for  all of the 
previous services for  partition j to be completed. However, as 
soon as  the preceding message has been processed, the newly ar- 
rived message is immediately processed. In this case, there is no 
possibility of interruptions from higher priority  partitions.  The 
interval between the  termination of one message and  the  initiation 
of processing of the  next message in a  partition is considered to 
be  zero for  this analysis. Therefore, since the CPU belongs to parti- 
tion j at  the termination of processing of a message, partition j 
can  immediately begin processing the next message in  the  queue. 

In  order to determine the initial  waiting  time,  including  delay 
(Wil), some previously developed results  have been used.6 
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Determining  initial  waiting  time  for the highest  priority  par- 
tition  is relatively simple. However, finding initial  waiting  time 
for lower priority  partitions is complicated by  the  fact  that  this 
time  may be  increased because of interruptions  by higher  priority 
processing. 

Service  time  is the  sum of the times  required to  execute in- 
structions  within  the  partition  and  the  times  spent  waiting for I/O 

operations that  are  not overlapped with  program execution. How- 
ever, both of these  times may also be  extended because of inter- 
ruptions  from  higher  priority  partitions. 

The  equations used here to determine  each of these  times  take 
account of factors  frequently  encountered  in  performing data 
processing tasks  on a  priority basis. Thus,  the  approach used to 
solve this problem  is  applicable to  many comparable problems. 
Moreover, many of the equations  can  be  applied  directly where 
identical  conditions  prevail. 
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Appendix 

Equations  for  the extension of time A for an  input/output in- 
struction  caused  by  other  requests  for the same  channel  and/or 
device are  stated below. 

j partition containing  request for which added  time is being 

ki request that is influencing the request  in  partition j .  
Uki input/output  time of request ki. 

The following notation applies in  the these  equations: 

calculated. 
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B k i  blocking factor for request ki. 
w k i  time  for WAIT macroinstruction  associated  with  request ki. 
T processing time  occurring  between the I/O macroinstruction 

R k i  data transfer  time for request ki 
T ,  processing time  occurring between I/O request k j  and  the 

I/O macroinstruction in  partition j .  
s k j  seek time  for  request lcj. 
I k j  index seek and  read  time for request k j .  
S , j  seek  time for request  in  partition j .  

in  partition j and  the prior WAIT macroinstruction. 

1. GET/PUT instructions  on  the same  channel and device- 
higher priority  partitions: 

I where 

I which is evaluated  first  and  the result is truncated. 

partitions: 

I 
~ 2.  GET/PUT instructions  on the same channel-higher priority 

A = u k i  - (0.5 + L ) B k i ( l / X i  + w k i )  

where 

which is  evaluated first and  the result is truncated. 

device-lower priority  partitions. 
3. READ/WRITE or EXCP instructions  on the same  channel  and 

I 4. READ/WRITE or EXCP instructions  on the same channel- 
lower priority  partitions. 

I 5. GET/PUT instructions  on the same  channel and device-lower 
I priority  partitions: 

I where 

which is  evaluated  first and  the result  is truncated. 
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6. GET/PUT instructions  on the same channel-lower priority 
partition: 

A = u k i  - Lk) 

where 

L =  

which is evaluated  first and  the result  is truncated. 

device-same partition  (with no  intervening  wait). 

u k  i 

B k i ( l / X i )  ’ 

7. READ/WRITE or EXCP instructions  on the same  channel and 

A = U k j  - T p  

8. READ/WRITE or EXCP instructions  on the same channel- 
same  partition  (with  no  intervening  wait). 

A = ukj - T for I k j  s k j  I Tp 
A = u k j  - Tp - S c j  for I k j  > T p ,  s k j  > Scj 

A = u k j  - Tp - Sci for u k j  5 Tp u k j  - I k j  I Tp S c j  

9. GET/PUT instruction  on the same  channel  and/or device- 
same  partition (occurring before the request being considered). 

A will be  calculated as  in 8 and divided  by the blocking 
factor. 

10. GET/PUT instruction  on the same  channel and/or device- 
same  partition  (occurring  after  the  request being considered). 

A will be calculated as  in 8 and decremented  by ( 1 / X i  - 2Tp).  
This result will be divided  by the blocking factor to form 
the added  time. 

8 
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