
~ Queuing theory and statistical methods are used in this paper to
derive formulas for determining average turnaround time in tele-
processing systems that handle messages on a priority basis. This
information is needed to ensure, for example, that messages are
processed within acceptable time limits and that eficient use is macle
of system resources.

Factors considered in arriving at the formulas described here include
waiting time in message queues, message processing time, I/O wait-
ing time, and delays for higher priority processing. Results conform
closehy with those obtained from simulation studies.

Turnaround time for messages of differing priorities
by C. Hauth

Average turnaround time for processing messages of different , priorities has far-reaching implications in the design of a tele-
processing system. Low average turnaround time for some types
of messages may be highly desirable or even critical. For example,
in an insurance application, the processing of claims, endorse-
ments, and cancellations might each be done a t different priori-
ties. Moreover, a claims analyst might want cIaims to be proc-
essed within five minutes, so that he could assure an insurance
agent that a claimant is covered. But thought must also be given
to the kind of processing required by each priority class of mes-
sage. If the kind of processing is not considered, system through-
put may suffer. For example, if the processing required for higher
priority messages involves little I/O activity and the messages are
received a t a sufficiently high rate, lower priority messages may
never be processed.

Thus, many of the basic decisions that must be made in de-
signing a useful and efficient teleprocessing system require a means
of determining average turnaround time for processing messages
of each priority in a given installation. The purpose of this paper
is to assist in determining average message turnaround time-the
interval between the time that a message is received and the com-
pletion of its processing in the computer.

The system assumed permits up to four separate jobs to be operating
run concurrently within a single computing system having only environment

NO. 2 . 1968 MESSAGE TURNAIlOUND TIMI.: 103

one central processing unit (cPu).' The separately scheduled jobs
reside within their own predefined partitions in main storage, and
the work done within each partition is assigned a different pri-
ority. While one job awaits completion of an event, such as an I/O

operation, processing is switched to a lower priority job to take
advantage of the temporary processing delay.

Figure 1 illustrates the main storage layout of a two-partition

partition is Pz. R'loreover, the job in partition PI has preferential
access to the CPU; the job in partition 2 is given control of the
CPU only when either there is no work to be done in the higher-
priority partition or when the higher-priority job is suspended (in
the wait condition). By dividing main storage into as many as
four partitions, four separate jobs can be executed concurrently,
with Pq having the lowest priority.

For teleprocessing, the highest priority partition, PI , is nor-
mally occupied by a telecommunications control program,2 which
handles both the receiving and sending of messages. The remain-
ing three partitions are occupied by message processing programs.
For example, in the insurance application cited, one of the three
partitions might handle claims, another endorsements, and the
third cancellations.

In the system to be analyzed, all messages are received in
partition 1 (the telecommunications control program). Then, mes-
sages with priority 1 are processed in partition 2, and messages
with priority 2 are processed in partition 3. In general,
messages with priority j are received in partition 1, processed in
partition j + 1, and sent from partition 1. (An initial wait time
precedes entry into any partition.) In the interest of generality,
m partitions are considered here, rather than four. Turnaround
time is developed for each priority class of messages. Note that
the higher the number of the partition, the lower t,he priority.

Arrival rates to the partitions are assumed to have a Poisson
distribution. Service time in the first partition is assumed to have
an exponential distribution. The basic assumpt8ion here is that the
dist,ribution of all departing output messages from the partitions
is also Poisson. Service times in t,he 7n partitions are assumed to
be mutually independent. The sum of the service time in a par-
ticular partition and the initial wait time in the message queue
for that partit>ion is called queuing time. (Initial wait time should
not be confused with wait time for I/O operations after processing
in the partition has started.) From Figures 2 and 3, it is clear that
dat,a processing turnaround time for a message with priority j is
equal to the sum of the receiving and sending queuing times for
partition 1 and the queuing time for partition ,j + 1. Therefore,
determining turnaround time for a message that will be processed
in a particular partition is reduced to finding the queuing times
for partition 1 and for that partition.

Note that for a system with only one partition, the analysis is
essentially simple. The service time is the sum of the execution

104 HAUTH IBM SYST J I

Figure 1 Storage layout of a
two-partitian system system. The higher-address partition is PI, and the lower-address

ADDRESS
LOW HIGH

FIXED
AREA

ADDRESS

p2 P I

Service time
In general, the service time for a partition consists of processing
time, wait time (nonoverlapped I/O time), and extensions of the
service time due to interruptions from higher priority partitions.
For example, execution of the following sequence of macroinstruc-
t i o n ~ ~ might take place in a partition:
1. PROCESS (10 milliseconds)
2. GET TAPE FILE A (50 milliseconds)
3. PROCESS (20 milliseconds)
4. READ TAPE FILE B (60 milliseconds)
5. PROCESS (35 milliseconds)
6. WAIT (for READ to complete)

where service time in milliseconds is

10 + El + 50 + E, + 20 + Ea + 35 + E5 + 25 + Es
The time for the WAIT macroinstruction equals the READ

time (60 milliseconds) minus the intervening processing time (35
milliseconds) or 25 milliseconds. Ei represents the extensions due
to interruptions from higher priority partitions. Although de-
termining processing time presents no particular difficulty, wait'
time and extensions to service time present a total of five problems:

1. Determining the extension of time for executing an input/out-
put instruction due to requests for the same channel and/or
device from other partitions.

2. Determining the WAIT macroinstruction time.
3. Determining the extension of time for a WAIT macroinstruction.
4. Determining the extension of time for a GET/PUT macroin-

5 . Determining the extension of time for a PROCESS macroin-
struction. (A GET/PUT has an embedded'wait.)

struction.

The extension of time for an input/output instruction in the
I/O time partition under consideration due to input/output instructions in

extensions other partitions requesting the same channel and/or device is the
delay caused by the channel and/or device being busy. The effect
of I/O requests in higher priority partitions, lower priority parti-
tions, and the same partition must be considered.

Each I/O instruction must be examined separately to determine
its effect. The sum of the delays plus the actual I/O time consti-
tutes the total time for this request. The influence of READ,
WRITE, or EXCP macroinstructions (involving the same channel
and/or device) in higher priority partitions can be seen from the
example in Table 1.

Consider first the READ, WRITE, or EXCP requests in parti-
tion i (where i = 1, 2, . . ., j - 1) that refer to the same channel
or device. First, the difference between the I/O time and the inter-
vening processing time (occurring before the corresponding WAIT)
must be obtained. (If this difference is not positive, the request
has no effect on READ,.) Call this difference Dki. If the request

106 HAUTH IBM SYST J

108 HAUTH

The intervening processing time should then be subtracted
from the mean of the maximum (a, b) to form the wait time ior
this I/O operation. The largest positive wait time of a11 the I/O op-
erations waited for by this WAIT macroinstruction and the asso-
ciated variance then represent the mean and variance of wait
time for the WAIT macroinstruction. If there are no positive wait
times corresponding to the I/O operations, the wait time for this
WAIT macroinstruction is zero.

In this way, the wait time for each WAIT macroinstruction in
partition j can be obtained. Thus, the second problem has been
solved.

The third problem deals with finding the extension of time for
extensions a WAIT macroinstruction due to interruptions from higher pri-

to wait time ority partitions. If the WAIT macroinstruction is in partition 1,
this extension is zero. However, if the WAIT macroinstruction is
in a lower-priority partition, the wait time may be extended by
interruptions from higher priority partitions. For example, if a
WAIT macroinstruction takes 40 milliseconds but is interrupted
for 50 milliseconds beginning after the first 10 milliseconds, the
extension of the wait time is 20 milliseconds. Note that the ex-
tension is not 50 milliseconds, because use of the central processor
by a higher priority partition while a lower priority partition is
waiting has no effect on the lower priority partition.

Consider an interval of CPU time, x . Let bi be the total CPU

processing time (excluding I/O time and wait time) for partition i.
Let X i be the arrival rate to partition i (assumed to have a Poisson
distribution). Therefore, during an interval of CPU time, x milli-
seconds, partition i requires on the average Xibiz milliseconds.
Therefore, partition i used the CPU a fraction of time equal to

(Note that Xibi must be less than 1, or the system is over-utilized
and lower-priority processing will not be done). Therefore, during
an interval of CPU time, x milliseconds, partitions 1 through j - 1
will use on the average

i-1

Xibiz milliseconds ,
i=l

leaving

(z - 2 Xibiz) milliseconds
i= 1

for partition j . Therefore, for every y milliseconds required by
partition j ,
I

Figure 4 Extended wait time
W.

/ ,

will be required by partitions 1 through j - 1. Let

Therefore, p represents the fraction (which could be greater than
1) of CPU time taken from partition j by higher priority partitions.
Note that for the first partition p = 0, and there is no extension
of the wait time.

Let x: be the value of the unextended wait time just calculated.
The extended wait time can be thought of as broken up into por-
tions y j (as shown in Figure 4), where the computer is idle, and
portions pyi, where the computer is being used by higher priority
partitions. As an illustration, during the first 10 milliseconds of a
40-millisecond WAIT, the computer is idle; then, an interruption
of 5 milliseconds occurs, followed by a 20-millisecond idle period
and another interruption of 10 milliseconds. The extended wait
time is therefore 45 milliseconds.

Thus, the extended wait time, W e , can be represented as a
sum of idle periods and interruptions as follows:

where
n c (Y i + PYi) 2 3 and c (Yi + PYJ <

n-1

j=1 j= 1

However, it is only the last interruption that really affects the
wait time. The interruptions that are overlapped with wait time
have no effect on the time of the WAIT macroinstruction. For
example, if the CPU were used by another partition for 5 milli-
seconds after 10 milliseconds of a 40-millisecond wait had passed,
the WAIT macroinstruction would not be affected. However, if
this interruption occurred after 37 milliseconds of the wait had
passed, the wait time would be increased by 2 milliseconds.

Therefore, the extended wait time can be thought of as the
sum of the last interruption time and the wait time occurring prior
to the last interruption. If the wait is completed during an idle
period, the last interruption is denoted as zero. Therefore, all

NO. 2 . 1968 MESSAGE TURNAROUND TIME

possibilities for the extended wait time can be represented as
follows :

Y + Pz

where

In this equation, p z represents the last interruption and y rep-
resents the wait time prior to the last interruption. Since y + p z
2 x , y must be greater than or equal to x / (l + p) . But y cannot
be great,er than x, because the wait would be ended at that point.
Time x is actually the last idle period occurring before the final
interruption, which is of length pz . Since y + p z >_ x , z must be
greater than or equal to (x - y) / p . Since y is the wait time prior
to the last interruption, x cannot be greater than y.

The average value of the function y + p z over the region

[d (l + p) i y i x ; (x - y) / p I z i Y1
can be determined as follows. (Note that it is the average value
of the extended wait time that is being represented by this func-
tion.)

where

average value = [p 3 + 5 p 2 + 7 p + 31 X

3(1 + P I 2

Thus the average value of the extended wait time can be ob-
tained. The mean of the extension is the average value minus x.
The moment of extension of wait time is

Thus, the second moment is

L 6(1 + P I 3

The variance of the extension is equal to the second moment minus
the mean squared.

The average value of the extended wait time can be determined,
and the variance of the extension of the wait time can be ob-
tained. This variance can be added to the variance of the unex-
tended wait time to give the total variance for this wait.

A GET/PUT macroinstruction has an imbedded WAIT macro-
extensions to instruction. That is, no intervening processing is allowed between

GET/PUT time the start of the input/output operation and the WAIT. Therefore,

the input/output time of this macroinstruction is the same as the
wait time for a WAIT macroinstruction. The computer is idle,
waiting for the input/output operation to be completed. There-
fore, the extension of this time due to interruptions from higher
priority partitions can be determined in exactly the same way as
the extension of the wait time.

The last problem encountered in finding t,he service time for
partition j is finding the extension of the time for a PROCESS
macroinstruction due to interruptions from higher priority parti-
tions. For example, if the computer is interrupted for a total of 5
milliseconds during execution of a PROCESS macroinstruction re-
quiring 10 milliseconds, the effective time for the PROCESS macro-
instruction is 15 milliseconds and the extension is 5 milliseconds.
Note that for partition 1, a PROCESS macroinstruction cannot be
extended, since there are no higher priority partitions. Let bi be
the mean of the total processing time for partition i (b; excludes
nonoverlapped I/O time and wait time). Let Xi be the arrival rate
(assumed to have Poisson distribution) a t partition i. Therefore,
CPU utilization for partition i is That is, during a time span
of x milliseconds, partition i will use the CPU an average of Xibix
milliseconds. Therefore, the fraction of CPU time used by partition
i is Xibix/x or Xibi. Therefore, the fraction of CPU time used by
partitions 1 through j - 1 equals

i=l

and partition j has the CPU available to it only a fraction of the
time equaling

j- 1

Assume that a PROCESS macroinstruction in partition j re-
quires b j k milliseconds. The extended processing time, bjk*, is
equal to the sum of b j k plus the average total interruption time
from higher priority partitions. (The asterisk indicates that the
time extension has been included.) But, during a time span of
bik* milliseconds, partitions 1 through j - 1 use the CPU for an
average of
i-1

X i b i b j k * milliseconds
i=l

i- 1

.'. b jk* = b j k + X i b i b i k * = b j k milliseconds .
*=1 i- 1

i= 1

Note that for partition 1, b j k * = b j k , since there are no higher
priority partitions. The extension of time for a PROCESS macro-
instruction in partition j requiring b j k milliseconds can be de-
termined as b j k * - b j k , where b j k * is given above.

NO. 2 . 1968 MESSAGE TURNAROUND TIME

So far we have shown how to find the extensions of the time
needed for input/output, PROCESS, and WAIT macroinstructions.
The service time, si, for partition j is equal to the sum of the times
for each macroinstruction plus the extension of time for each
macroinstruction. The variance, vj, is equal to the sum of the
variances for each WAIT macroinstruction. Consider a partition
containing the following instructions:

1 PROCESS (30 milliseconds)
2 READ TAPE FILE A (40 milliseconds)
3 PROCESS (15 milliseconds)
4 WAIT (25 milliseconds)
The mean service time is equal to the sum of 30 milliseconds, plus
15 milliseconds, plus 25 milliseconds, plus the extension of PIZO-
CESS #1, and the extension of WAIT. The variance of the service
time, vi, is equal to the variance of the wait time plus the variance
of the extension of the time wait. (PROCESS times are assumed to
be constant.)

Initial wait time
Since the service time for each partition can be found, the remain-
ing problem is to determine the initial waiting time for each par-
tition. The initial waiting time for partition j is the time a message
must wait before being processed in this partition. After de-
termining the service time and the initial waiting time, the queuing
time can be determined as their sum.

Note that the initial waiting time for t,he first partition can
be found by the Pollaczek-Khintchine equation:

The size of the waiting line is X1wl. It will soon be shown that the
initial waiting time for partition j is dependent on the initial wait-
ing times for partitions 1 through j - 1. Therefore, the initial
waiting time must be solved for partitions 1 through j - 1 before
it can be solved for partition j . Since the value of the initial n-ait-
ing time for partition 1 can be found as shown above, this presents
no problem.

In addition to the service time, si, a message arriving a t par-
tition j and finding it free encounters an additional delay, W31,
caused by the CPU being used by the higher priority partitions 1
through j - 1. For example, if a message arrives a t partition 2
and no other messages are in the queue, but the CPU is currently
processing in partition 1, the initiation of service for this message
is delayed until processing in partition 1 is suspended. Note that
the delay for partition 1 is zero, since there are no higher priority
partitions.
' We first develop the mean and second moment of this delay.
Then we use the moments of this delay, the moments of the

114 HAUTH IBM SYST J

Table 2 Illustration of process blocks

Partition

PROCESS 10 msec
READ FILE A
WAIT
READ FILE B
PROCESS 30 msec
WAIT
PROCESS 20 msec

} PROCESS BLOCK #2 = 30 msec

PROCESS BLOCK #3 = 20 msec

I service time, and the arrival rate to determine the initial waiting
time.

In order to determine the moments of XI, it is necessary to
examine the processing in the higher priority partitions. Any par-
tition can be broken up into processing blocks. A processing block
is the total CPU processing time and GET/PUT time that occurs:
between 2 WAIT macroinstructions, prior to the first WAIT macro-
instruction in the partition, or after the last WAIT macroinstruc-
tion in the partition, as shown in Table 2 .

Only processing blocks affect the delay in the lower priority
partition. If the higher priority partition is in a wait state, there
is no delay to processing in the lower priority partition.

In partition i, call the first process block il and the kth process
block ik. Let the number of process blocks in partition i be ni. Let
pik* represent the time for processing block ik, which is extended
to reflect interruptions from higher priority partitions.

Let X i be the arrival rate to partition i (where i = 1, 2, . e ,

j - 1). When a new message arrives a t partition j and there are
no prior messages being served or in the queue for this partition,
a delay may be encountered because a process block in a higher
priority partition is being executed. If all higher priority partitions
are in a wait condition or are not busy, they do not affect the new
arrival. The probability that partition i (where i = 1,2 , . . , j - 1)
is handling a message is Xisi, where si represents the service time
for partition i. Since processing block ik represents a fraction of
the service time equal to pik*, the probability that processing
block ik is being executed is

Xisi(pik*/si) = kipik*

Assuming that, on the average, half of the processing block re-
mains to be processed, the average total delay, D i k , caused by the
CPU being busy processing this block is 0.5p;k*.

If the CPU is busy executing the last process block of partition
i, a further delay d jz may result if there is another message wait-
ing to be served in partition i. The CPU executes the first process

NO. 2 * 1968 MESSAGE TURNAROUND TIME 115

Table 3 Partition states

eik(1 5 k 2 (ni - 1)
Block k is being processed in
partition i.

0.5pik*

eini 0.5pini*
Last block is being processed in
partition i, and nothing is in the
waiting line for this partition.

ei,(ni+l) Xipini*[l - e-’i(’i+wi)] 0.5pini* + pil*
Last block is being processed in
partition i, and there are one or
more messages in the waiting line
for this partition.

ei , (ni+Z)

Probability that partition i is free

(I - Xiy)Ai~i for i > 1 j

0 f o r i = 1

with a message(s) in the waiting
line.

block il in the partition for the new message after it has exe-
cuted the last block for the previous message. The probability
that the last block in partition i, (ini), is being executed is Xibin;*.
The probability of a t least one arrival for this partition during
the initial waiting time and service time of the prior message is
1 - e-) i i (wi+si)

where wi represents the initial wait time for partition i and si
represents the service time for partition i. (With a Poisson ar-
rival rate, Xi, the probability of no new arrivals during time t is
e-’it.) Therefore, the delay, djz, caused when the CPU is busy
executing the last process block in partition i and when there is
another message waiting to be served by partition i, is equal to

If the CPU is busy executing a process block for partition h,
(where h = 1, 2 , . . ., j - a) , and partition h + 1 is free with a
new arrival waiting to be served, an additional delay results for
the newly arriving message for partition j . Processing in partition
j cannot be initiated until processing in partition h + 1 has been
initiated and suspended. The probability that partition h + 1
is free is 1 - Xh+l~h, . l , since the utilization for this partition is
Xh+l~h+l, i.e., the product of the arrival rate and the service time.
The probability that there is a message in the waiting line for this
partition is h h + l ~ h + l , where w h + l represents the initial waiting
time for this partition. Therefore, the probability of this occur-
rence is (1 - Xh+lsh+l)(Xh+lwh+l), and the associated delay is
ph+l,I* (the length of the first processing block).

Pil*.

116 HAUTH IBM SYST J I

Therefore, when a message for partition j arrives and parti-
tion j is free, partition i (where i = 1, 2, . . . , j - 1) can be in
any of ni + 2 states, which results in a delay in the processing

, of the message for partition j . The states, eik, and the associated
probability and delay associated with each are shown in Table 3.

Therefore, the mean of the delay (wjl) encountered by a mes-
sage arriving a t partition j and finding it free is equal to the sum-
mation of all permutations and combinations of the probabilities,
P i k , multiplied by the sum of the associated delays. (Note that
il # i2 and if # i, in the summations below.)

.'. wjl (mean of wjl) =

(if # i, for f # g)

mfl (2nd moment of Wjl) =

(if # i, for f # g)

At this point, the mean si and variance of the service time for
partition j (where j = 1, 2, . . . , m) have been found in addition
to the mean wil and second moment Tilz of the delay of a message
that arrives at partition j and finds it idle. Note that a message
that arrives at partition j when it is busy must wait for all of the
previous services for partition j to be completed. However, as
soon as the preceding message has been processed, the newly ar-
rived message is immediately processed. In this case, there is no
possibility of interruptions from higher priority partitions. The
interval between the termination of one message and the initiation
of processing of the next message in a partition is considered to
be zero for this analysis. Therefore, since the CPU belongs to parti-
tion j at the termination of processing of a message, partition j
can immediately begin processing the next message in the queue.

In order to determine the initial waiting time, including delay
(Wil), some previously developed results have been used.6

NO. 2 . 1968 MESSAGE TURNAROUND TIME 117

Determining initial waiting time for the highest priority par-
tition is relatively simple. However, finding initial waiting time
for lower priority partitions is complicated by the fact that this
time may be increased because of interruptions by higher priority
processing.

Service time is the sum of the times required to execute in-
structions within the partition and the times spent waiting for I/O

operations that are not overlapped with program execution. How-
ever, both of these times may also be extended because of inter-
ruptions from higher priority partitions.

The equations used here to determine each of these times take
account of factors frequently encountered in performing data
processing tasks on a priority basis. Thus, the approach used to
solve this problem is applicable to many comparable problems.
Moreover, many of the equations can be applied directly where
identical conditions prevail.

CITED REFERENCES

1. Z B M S Y S T E M I S 6 0 Operating System-Option 2: Multiprogramming with
a Fixed Number of Tasks-Concepts and Considerations, C27-6926-0, IBM
Data Processing Division, White Plains, New York.

2. W. P. Margopoulos and R. J. Williams, “On teleprocessing system de-
sign,” ZBM Systems Journal 5 , No. 3, 134-141 (1966).

3. T. T. Saaty, Elements of Queueing Theory, McGraw-Hill Book Company,
Inc., New York, New York (1961).

4. ZBM Data Prosessing Techniques-Analysis of Some Queuing Models in
Real-Time Systems, F20-0007, IBM Data Processing Division, White
Plains, New York.

G. H. Mealy, “Part I, Introductory survey,” IBM Systems Journal 5,

B. I. Witt, “Part 11, Job and task management,” ibid., 12-29.
W. A. Clark, “Part 111, Data management,” ibid., 30-51.

6. P. Welch, “On a generalized queuing process in which the first customer of
each busy period receives exceptional service,” Operations Research 12,
No. 5, 736-752 (September-October 1964).

5. “The functional structure of OS/360.”

NO. 1, 2-11 (1966).

GENERAL REFERENCES

1. L. Takacs, Introduction to the Theory of Queues, Oxford University Press,

2. W. Feller, An Introduction to Probability Theory and Its Applications, 1,
New York, New York (1962).

John Wiley & Sons, New York, New York (1960).

Appendix

Equations for the extension of time A for an input/output in-
struction caused by other requests for the same channel and/or
device are stated below.

j partition containing request for which added time is being

ki request that is influencing the request in partition j .
Uki input/output time of request ki.

The following notation applies in the these equations:

calculated.

IBM SYST J I

B k i blocking factor for request ki.
w k i time for WAIT macroinstruction associated with request ki.
T processing time occurring between the I/O macroinstruction

R k i data transfer time for request ki
T , processing time occurring between I/O request k j and the

I/O macroinstruction in partition j .
s k j seek time for request lcj.
I k j index seek and read time for request k j .
S , j seek time for request in partition j .

in partition j and the prior WAIT macroinstruction.

1. GET/PUT instructions on the same channel and device-
higher priority partitions:

I where

I which is evaluated first and the result is truncated.

partitions:

I
~ 2. GET/PUT instructions on the same channel-higher priority

A = u k i - (0.5 + L) B k i (l / X i + w k i)

where

which is evaluated first and the result is truncated.

device-lower priority partitions.
3. READ/WRITE or EXCP instructions on the same channel and

I 4. READ/WRITE or EXCP instructions on the same channel-
lower priority partitions.

I 5. GET/PUT instructions on the same channel and device-lower
I priority partitions:

I where

which is evaluated first and the result is truncated.

NO. 2 . 1968 MESSAGE TURNAROUND TIME 121

6. GET/PUT instructions on the same channel-lower priority
partition:

A = u k i - Lk)

where

L =

which is evaluated first and the result is truncated.

device-same partition (with no intervening wait).

u k i

B k i (l / X i) ’

7. READ/WRITE or EXCP instructions on the same channel and

A = U k j - T p

8. READ/WRITE or EXCP instructions on the same channel-
same partition (with no intervening wait).

A = ukj - T for I k j s k j I Tp
A = u k j - Tp - S c j for I k j > T p , s k j > Scj

A = u k j - Tp - Sci for u k j 5 Tp u k j - I k j I Tp S c j

9. GET/PUT instruction on the same channel and/or device-
same partition (occurring before the request being considered).

A will be calculated as in 8 and divided by the blocking
factor.

10. GET/PUT instruction on the same channel and/or device-
same partition (occurring after the request being considered).

A will be calculated as in 8 and decremented by (1 / X i - 2Tp).
This result will be divided by the blocking factor to form
the added time.

8

IBM SYST J 122 HAUTH

