A multi-item economic lot-sizing problem is considered wherein, as a
consequence of a joint ordering or production setup cost, the ordering
policies for individual items are interdependent.

The problem. 1s to determine an optimal ordering plan in which the sum
of the costs of carrying inventories and the costs of ordering are mini-
mized and in which the known demands for each item in each time
period are satisfied.

Two algorithms are presented for solving such problems. The first is a
direct algorithm which yields periodic solutions and applies to prob-
lems in which demand occurs uniformly over time. The second is a
dynamic programming algorithm which yields optimal solutions,
whether periodic or aperiodic, and which applies to dynamic prob-
lems as well as to problems with constant demands.

A multi-item economic lot-sizing problem

by J. F. Pierce

In many inventory management systems, situations arise in which
ordering time and ordering quantity of an item are interrelated
with those for other items. In some of these cases, consideration of
the interrelationship among items is mandatory. This can happen
for a group of items, for instance, if there is a budgetary limit on
the total dollar value of inventory that may be carried for the
group, or if a limit exists on warehouse capacity available for stor-
ing items in the group.! In other cases, consideration of the inter-
relationship is optional, the interrelationship being considered only
when the added complexity in decision-making is outweighed by
the added benefits expected to be gained.

In a manufacturing context, for example, economies may accrue
through joint replenishment as a consequence of savings in facility
setup and changeover time. Or, in jointly ordering a number of
items from a vendor, economies may also accrue as a consequence
of the preparation, processing, and expediting of fewer orders and
the receiving of fewer shipments.

Considered here are joint replenishment problems with this op-
tional type of interrelationship. In these multi-item economic lot
sizing problems, the objective is to minimize total replenishment
and inventory carrying costs for all items.

To solve such problems one common approach is to determine =~ common
independently the lot size for each item as if no interrelationship approaches
among items exists, and then to ‘“‘coordinate’” the replenishment
of items by aligning the reordering periods to minimize ordering
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costs. For specificity let us consider a problem involving two pro-
duction items, 4 and B, having the annual demands ¥, unit in-
ventory carrying costs C,, and production setup costs C’, as shown
in Table 1.

For each item considered independently, the lot size @ which
minimizes the annual sum of the inventory carrying costs and the
production setup costs, (Q/2)C, 4+ (Y/Q)C,, for that item can be
determined by the classical Wilson formula:

2YC,
=T ®

For the example, these lot sizes, together with the interorder time
or production cycle time, b = (12)Q/Y, are as shown in the last two
columns of the table. If these two items are planned independently,
the total annual cost for the two items is Z = 32,400 4+ 3600 =
$36,000.

Assume, however, that items 4 and B represent different models
of the same basic product and that economies in production setup
time result whenever the items are produced in sequence. For ex-
ample, to make the production line ready for the product class, in
general, requires fixed cost F = $300, and that the additional time
to set up or change over the line for item A is S; = $600 and for
item B is Sg = $150. Thus, if 4 is produced alone, the total make-
ready cost is, as before, C;, = F 4+ S; = $900; if B is produced
alone, C, = F 4+ Sp = $450; but if both A and B are produced
in sequence, the total make-ready and changeover cost is
F + S84 + Sg = $1050. Now by properly coordinating the pro-
duction schedules of the two items (while still maintaining the lot
sizes and cycle times in Table 1), it is possible to reduce total
make-ready costs and hence total cost. For example, by producing
item A in months 1, 3, 5, 7, 9, and 11, producing item B in months
1, 4, 7, and 10, and sequencing together the production in months
1 and 7, annual make-ready costs can be reduced by [(900 -+ 450)
— (1050)] = $600, yielding a reduced total cost of Z = $35,400.

Further coordination in ordering the items can be achieved by
modifying the lot sizes and cycle times of selected items as they
were originally determined by Equation 1. One approach used in
practice is to decrease the cycle time (and, accordingly, the lot
size) of all items with a low reorder frequency, making it equal to
(a multiple of) that of the highest frequency item. In this way, it
is hoped to reduce the total number of production setups, and per-
haps thereby to reduce total cost. For example, in the illustration
we have by = 2 and by = 3 which, when coordinated, require
eight setups per year. If we increase the frequency of item B to
six so that by = 2, all runs can then be sequenced with runs of
item A, thereby reducing the effective setup costs for B as well as
the average inventory of item B but increasing the number of
setups from four to six. The net effect of this decrease of by = 3
to bp = 2, as can be verified, is to reduce total cost from $35,400
to $34,500.
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Table ¥ Data for illustrative example

Optimal
Unit Produc- Produc-
Inventory tion Optimal tion
Annual  Carrying  Setup Lot Cycle
Demand Cost Cost Size (Months)
Item Y C. C, Q b

A 16 200 $12 $2 700 2
B 1200 $12 $ 450 3

Table 2 Dato for illustrative coordinated replenishment plans

Produc-
tion

Annual Demand Changeover Cost Cycle
Ya Ys Sa Sg bsa ba

Case I 2700 7200 150 2 400

Case II 16200 7200 2400 2 400

Coordination approaches to joint replenishment of this type,
which involve modification of the cycle time for selected items, are
attractive in practice for several reasons. From a decision-making
viewpoint, the added complexity and problem-solving effort which
results by interrelating the items in this fashion is quite minimal.
And, moreover, from an implementation and operational view-
point, these approaches yield solutions that retain for each item
the periodic property of constant lot size and constant interorder
or production cycle time, a property sometimes desirable in prac-
tice in that it greatly facilitates other activities such as production
scheduling and control, physical inventory planning and control,
and so on.

The shortcomings of these approaches, however, are that they
are unreliable. Even among solutions possessing this periodic prop-
erty, they do not always yield a solution with minimum total cost;
in fact, they sometimes yield solutions which are more costly than
those in which all cycle times are simply left at their original values.
For illustration, Table 2 shows the data for two examples obtained
by slightly modifying the earlier example. As before, F = $300
and C, = $12. In both cases the values determined independently
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accarding to Equation 1 are by = 2 and bp = 3. As seen in the
table, in neither case does a minimum cost solution result by
increasing the frequency of item B: in Case II it is preferable to
leave the frequencies and lot sizes of both items at their values
originally determined independently according to Equation 1; in
Case T it is actually better to reduce the frequency of item 4 and
coordinate it with the replenishment of the lower frequency item.
And more generally, discovery of a minimum cost solution may be
more complicated than this illustration might suggest, for it is not
always possible to determine a minimum cost periodic solution by
simply adjusting a single item at a time. Sometimes combinations
of items need to be altered concomitantly, a consideration which
becomes potentially more troublesome as the number of inter-
related items increases.

In the following sections, two different algorithms are presented
for determining minimum cost, solutions to multi-item problems of
this type. Both algorithms consider a planning horizon of a fixed
duration; for longer horizons it is assumed that the replenishment
plan to be determined is simply replicated throughout the longer
horizon as required. The planning horizon is then divided into a
convenient? number of discrete time periods N of equal length.
Solutions are sought in which all demands are met exactly, and
for which total replenishment and inventory carrying costs are
minimum.

The first algorithm is a direct algorithm for determining joint
periodic solutions in which the lot size and cycle time for each item
remain constant throughout the planning horizon. Under the as-
sumption that each lot is to cover demand for an integral number
of time periods in the horizon and that inventory balances are to
be zero at the end of the planning horizon, the algorithm yields
optimal joint replenishment solutions. Experience on an 1sm 7094
computer with this algorithm as coded in ForTrAN has indicated
that for N = 12, for example, problems with M items can be
solved in approximately M /300 seconds for M < 1500. Although
not usually of importance for problems with such short selution
times, this algorithm has the desirable property that, since search
proceeds from one feasible solution to a better feasible solution,
the procedure can be terminated prior to its ultimate completion
with a usable, although perhaps not optimal, solution.

The second algorithm is a dynamic programming algorithm. Up
to this point attention has been focused on periodic solutions in
which the lot size and interorder or cycle time for each item re-
mains constant throughout the planning horizon. Upon foregoing
this property it may be possible to achieve a lower total replenish-
ment and inventory cost through use of an aperiodic solution. The
dynamic programming algorithm to be presented yields a mini-
mum cost solution to the joint replenishment problem whether the
optimal solution be periodic or aperiodic. With this same algo-
rithm, it is also possible to solve the dynamic problem in which
demand varies from period to period. As would be expected, these
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more general solutions require considerably more problem-solving
effort. In practice, the size of problem for which this approach is
practical may be limited since, for & periods and M items the total
number of states to be evaluated is

A direct algorithm for periodic solutions

For a planning horizon of N periods, the total replenishment and
inventory carrying cost for the multi-item joint replenishment
problem to be considered in the present section may be expressed
as:

M
Z(by, bg, -, bgy e, b)) = k};: (Ndyixbe/2 + 8N /bi)
4+ F-n(by,ba, +- -, bs, -+, bu) 2)

where by, is the number of periods between procurement or produc-
tion of item k; Ndi is the total demand for item & assumed to occur
at a constant rate throughout the planning horizon; 4 is the unit
inventory carrying cost for item k for one time period; F is the
general setup or order writing-expediting-receiving cost for the
placement of a replenishment order in a period; s; is the additional
setup, changeover or ordering cost incurred each time item & is
reordered; n(by, bs, - - -, b, - -+, by), is the number of periods in
N in which one or more items are ordered; and M is the number
of items being considered.® In this formulation a set of interorder
times (by, be, - - -, by, * - -, ba), OF equivalently, a set of order fre-
quencies (fy, fo, <, fo, <, far), fu = N/bg, is to be determined
for which the total cost is minimum (Equation 2). The order
quantity for item k is Qx = dibs.

As has been mentioned, it is assumed in the present case that
the lot size @y is to remain the same in all reorder periods and that
no inventory is to exist at the end of the N periods. Together with
the assumption that the number of interorder periods b is to be
integral, the value of b; becomes limited to one of the possible
integers o1, as, -+, @i -, @ wherein both «; and N/a; are
integral, a; < as < -« < «,. For instance, for N = 12 the pos-
sible values of b, are @« = 1, 2, 3, 4, 6, and 12. Whenever N is a
prime number, the possible values of b, become « = 1 and N. With
these assumptions, the solution (by, by, -« -, by) as determined by
the following algorithm is optimal.

In principle, when there are r different allowable frequencies or
interorder periods «; in period N, an optimal solution can be de-
termined by enumerating all of the r¥ possible combinations
(by, bs, - - -, bar) and selecting one for which total cost is minimum.
In light of the structure of Equation 2, however, a solution guar-
anteed to be optimal can be found with considerably less search.
We begin with an initial solution B* = (by*, bo*, - - -, b, - - -, ba™®),
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where b;* is the integer «,, ¢ = 1, 2, --
minimum:

qx(by) = Nduixbi/2 + sy N/by

(When F = 0 and the M items are considered independently,
N/be* is the optimal order frequency for item k as determined by
the classical Wilson formula). The total cost of the initial solution
is then

-, v for which ¢(bs) is

M
2% = Z(b* -+, by*) = l; @ (be*) + Fon(bs*, - - -, ba*)

where n(by*, - - -, by*) is the minimum number of periods in which
one or more orders must be placed so as to permit the realization
of all frequencies N/by*.

Given this initial solution B*, subsequent interest resides only
in solutions B for which Z(by, by, - - -, by, - -+, by) < Z*. Since
the quantity ¢.(b*) is a minimum for each item %, a less costly
solution B = (by’ - -, ba’), when one exists, must necessarily be
one in which the total number of periods having one or more
orders is reduced, i.e., n(by, -+, by') < n(by*, ---, by*). To
guarantee an optimal solution, all such possibilities must be in-
vestigated, at least implicitly. Let us consider first the determina-
tion of the values n(by, by, - - -, bu).

For any solution B = (by, b2, - -+, by), the minimum value
n(by, by, -+, by) can be easily computed with the aid of a pre-
determined table of minimum values 7(3y, 85, - - -, 8,) which de-
pends only on the total number of periods N and the set of allow-
able interorder times «;, a2, - -+, a, The variables 8y, 82, - - -, &,
are determined from B as:

6~—{1 if by = a;forany k k=12 - M
o otherwise i=1,2 1

When §; = 1, orders must be so placed during the N periods that
an interorder time of a; periods is realizable. For each of the 2r
possible combinations (§;, 8, ---, §,), the minimum value
78y, 82, + - -, 8-) can be determined and then tabled. Since, in prac-
tice, a number of combinations often have the same value
7(81, 82, - - -, 8,), considerably fewer than 2+ entries need be ex-
plicitly tabled.

As illustrations, Tables 3 through 8 give the values of
781, 8, - -+, 8,) for N = 4, 6, 8, 12, 16, and 24 respectively. An
entry of X in a table indicates that the value of 8; may be either
zero or one. To explain the derivation of these entries, let us con-
sider the combinations (0, 0, 0, 1, &, 8) for N = 12 in Table 6.
With 6, = 1, orders must be placed in a manner which permits an
interorder interval of @y = 4 periods. Orders are therefore placed
in periods 1, 5, and 9. This ordering schedule then satisfies the case
85, = 6s = 0. Also, it satisfies the case §; = 0, § = 1 since an
interorder interval of ag = 12 is realizable with an order in period
1. We therefore have 7(0, 0, 0, 1, 0, X) = 3. When & = 1, an
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interval of @; = 6 must be realizable; this requires that orders be
placed in periods 1 and 7. Coupled with 8, = 1, the result is an
ordering schedule that includes periods 1, 5, 7, and 9. Since this
schedule satisfies both the cases, § = 0 and §s = 1, we have the
single entry m(0, 0, 0, 1, 1, X) = 4. In like manner, each of the
other entries in the tables is derived.

Let us now return to the requirement for considering (at least
implicitly) all solutions B for which n{by, bs, -+, ba) <
n(br*, bo*, - - -, ba*). This requirement is fulfilled with the help of
these tables of minimum values 7(6,, 82, - - -, 8,). More explicitly,
the consideration of all such solutions is guaranteed, first, by con-
sidering (at least implicitly) all “states” (8y/, 8¢/, - - -, 8,) in the
table for which ®=(3/, 82/, - -+, &) < A(d*, 8%, - - -, 8,*), where
(81%, 82*, - - -, 8,*) is the state determined by the initial solution
B* = (by*, by*, -+, ba*); and, second, by considering (at least
implicitly) for each such state (81, 82/, - - -, 8,’) all solutions B cor-
responding to that state. Condition one is fulfilled by ordering the
states in lexicographically decreasing order and proceeding to sys-
tematically investigate all states lexicographically smaller than the
initial state, (8:*, 82*, - - -, 8,*) determined by the initial solution
(br*, bo*, - -+, ba*). A state (812, 8% -, 8,%) is defined to be
lexicographically smaller than state (8.5, 8:%, ---, §,%) if 8,2 =
8 =0,7=1,2, .-+, s — 1 and either 6> = 1, §, = 0, or
8.2 = 6, = 1 and 7(8:% 8% .-, 8,%) < 78 80 -, &), for
some 8, 1 < s < r. (The states in Tables 3 through 8, for instance,
are tabled in decreasing order.) Condition two is satisfied by de-
termining for each state explicitly considered a solution for which
Z(by, by, - -+, by) Is minimum among all solutions corresponding
to that state.

In the following discussion, reference will frequently be made to
a solution B for which, among all solutions constrained by the
condition b, > e, the sum > _#Z; gx(bs) is minimum. We will term

such a solution ‘‘a bounding solution for b, > a4’ and denote it

by B = (bi% bs, ---, bu’). The value of the sum itself,
>¥ | q(by?), will be denoted as .. In addition, we will on occasion
wish to distinguish between states in which, for 6, = 8 = ... =
8,010 =0and 8; = 1, (81, 3, - - -, 8,) = N/a;and Ti(dy, e, -+ -, &4)
> N/a: Such states will be termed prime and nonprime states
respectively. Solutions B corresponding to each of these states will
be similarly termed prime and nonprime. Finally, at each point
throughout the search process, the best (minimum total cost) so-
lution found thus far will be denoted as B = (b bs% - - -, bu?)
and its total cost as Z°.

We start, then, with the initial solution (b:*, bs*, - - -, bu*} as
the best thus far, B® = (by*, bo*, - - -, by*) and Z° = 3 qu(b*) +
F 7. (8s*, 85* -- -, 8,%), and proceed to investigate the states lexi-
cographically smaller than (8:*, &*, ---, 8,*) in search of a less
costly solution. If s denotes the smallest index < in (6,%, &%, - - -,
8%, -+, 8% such that §* = 1, then the initial solution is a
bounding solution for b, > a, b1, b, ---, bx®), with
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s = D M, qu(be*). In general, this (or any) bounding solution
(b1, be®, -+ -, by®), may be either prime or nonprime. Let us con-
sider each of these possibilities in turn.

When the state determined by the bounding solution (b:°, b2,
« -+, bu*) is prime, then 8, = 0 for all lexicographically smaller
states, as may be seen in Tables 3 through 8. In this case, all sub-
sequent solutions requiring consideration are therefore constrained
by the condition by > a1, & = 1,2, ---, M. From among all
such solutions, we first consider a solution for which the sum
M gi(b) is minimum; this solution, by definition, is a bounding
solution Bt = (bt beett) - - -, by*tY) for by > @.q1. The sum
ms4+1 constitutes a lower bound on Y x gi(b:) for all subsequent so-
lutions requiring consideration.

Computationally a solution B**' can be readily derived from
solution Be. For in general, if (by*, bs*, - .-, by*) is the uncon-
strained solution for which D ; ¢i(bs) is minimum, then a bound-
ing solution (b1, ba?, - - -, by?) for which by > a, and D ; qi(bs)
is minimum is:
br? = max [bp*, ag] k=12 --- M 39

This follows from the fact that for each k, ¢.(b:) assumes a mini-
mum at b, = b* and is a non-decreasing function of b, for
b > b*. From Equation 3’ it follows that, starting with the initial
solution (b, by*, - - -, by*), subsequent bounding solutions may
conveniently be determined successively with:

bttt = max (b, aeyial; b =1,2, -, M; amia < ar )

In the present case, then, we have for B#t! by*t! = max [b*, a1
for all k.

Determining from B¢t! the state (5,*!, &+, - .., §.) and
then from the table the value of 7(8:°, §,*1, - - -, §,5+1), the total
cost Z#tt = mupy + F-m(6,*, 827t - - -, §,°1)) is computed. If
Z < Z° solution Bt is retained as the best found thus far,
setting B® = B+l and Z° = ZH,

Having determined and evaluated the bounding solution B+,
we next proceed to the investigation of solutions corresponding to
states lexicographically smaller than (5,7, 8;*t1, - - -, §,#+1), That
no other solutions need be first investigated results from the fol-
lowing consideration:

If (819, 829, « - -, 6,9) is the prime state for é; = 8, = -+ =

801 = 0 and §, = 1, and (8,91, 8591, - - - §,71) is the state
determined by the bounding solution Bet!, then Z+ <
Z{by, -+, by') for all solutions B’ corresponding to states (4)
lexicographically smaller than (59, 89, ---, 6,9 and lexi-
cographically at least as large as (8,71, 8,941, - - -, §,H),

This follows directly from the fact that for all solutions B’ cor-
responding to these states D i qu(bi’) > w1 and, n(by, by,
sy ba) = on(bitt, bt - .. byttl) so that Zk ) +
F-n(bl’, bz’, tey, bM') > ZH,
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In proceeding to the investigation of states lexicographically
smaller than (8:571, 8,2+, - - - §,*1)), two possible cases arise, just
as they did with the initial solution B®: the bounding solution
Bt is prime or it is non-prime. When B**!is prime, we proceed
to the determination of the next bounding solution B*t? in the
same manner as described for B#tl. Let us consider, then, the case
when a bounding solution is non-prime.

In the event a bounding solution B? is non-prime, it is necessary,
in general, to individually consider each of the lexicographically
smaller states for which 8, = 1, as listed in the appropriate table
of states. For each such state (8/, 82/, - - -, 8,/), only a single solu-
tion B’ need be determined for which the sum D gx(bs) is mini-
mum. In each case such a minimum solution can be derived from
the bounding solution B¢ by setting:

b — a; forby? = @y, 8/ =0
k by otherwise

(5)
wheret

Qk(a]’) = (}}}%I:l” qk(ag) .

(In light of the convexity of the function ¢.(bx), at most two values
of ¢, {t/6/ = 1}, need explicitly be considered: the largest value
of t such that { < 7; and the smallest value of ¢ such that ¢ > <,
when one exists.) For the resulting solution B’, the total cost
Z' = > @) + F-usy, 8, -+, 8,) is computed, and when
its value is less than Z°, B’ is saved as the best solution thus far.
When a minimum solution has been determined and evaluated for
each lexicographically smaller state with §, = 1, the investigation
then proceeds to the consideration of states with §, = 0.

In summary, the algorithm consists of determining an initial
solution B+ and then proceeding to systematically investigate the
states lexicographically smaller than (3,°, 8:°, - - -, 8,°) as given by
the appropriate predetermined table. The main progression of the
search begins with B¢ and continues in succession to the (r — s)
bounding solutions Bet!, Be+2 ...  Br each solution being de-
termined from its predecessor by Equation 3. For each bounding
solution B4, s < j < r, that is found to be nonprime, it is necessary
to determine and evaluate a minimum solution B’ for each state
lexicographically smaller than B7 for which §; = 1; each such so-
lution B’ is determined from B7 according to Equation 5. Search
is complete when the prime state for 6§, = 1 has been considered.

In some instances, it may be possible to further reduce the num-
ber of states which need be explicitly considered. Three such in-
stances are as follows:

Let Bi1 and B?, s < j, be any successive bounding solutions

in any problem for which (a1 — ax) > (@ — ax—1) fors all
k=2 --- M —-1.U7m; —7;—1 > F-[R(:7, 87, « -, 8. — (6
N/a 1], then it is unnecessary to explicitly investigate states
withé, =8, = --- = 8; = 0.
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Figure 1 General flowchart of search procedure
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Let B! and B4, s < 7, be any successive bounding solutions
in any problem for which (a1 — ax) = (e — ax—1) for all
k=223 -~ M—-1YZ — 2° 4 tr; — mjm1) 2
F -[7(819, 829, - -+, 6.%) — N/aj;yi] for any ¢, it is unnecessary
to explicitly investigate states with & = 6, = --- =
6j+t_1 = 0 and 6j+t = 1.

Proofs of Conditions 6 and 7 are given in the Appendix.

For any state (57, 8, - -+, §,) with 8,0 = 8, =
coeo= §;,M = 0 and §;¢0 = 1 which is lexicographically
smaller than the bounding state (8,7, &7, ---, §7), if
Zi— 79> F-[7(619, 829, - -+, 8,9) — w619, 8,09, - - -, 8,40)],
the state need not be explicitly investigated.

This follows from the fact that the value Z¢) = Zi —
F [m(dyd, 87, «--, 8,9) — A6, 8@, -+, §,D)] constitutes a
lower bound on the total cost of all solutions for state (617, 8.9,

e, 8,0, ie., 2@ < ZW for all BY. Thus if Z° < Z), there
exists no solution B which is preferred to B and hence solu-
tions B need not be further considered. Condition 8 results upon
substituting for Z¢ in the condition Z° < 2@, and rearranging
terms.

Incorporating these considerations into the general search proc-
ess, the resulting procedure is as shown in Figure 1. To illustrate
the algorithm, we solve a problem involving two items wherein
it will be assumed that N = 12. With d, = 35, %1 = 4, d» = 150,
fe = 5, 851 = 83 = 200 and F = 280, the quantities g.(bx) =
Ndklkbk/2 + si N/bk for k = 1, 2,; by = a = 1, 2, 3, 4, 6, and
12 are calculated as shown in Table 9.

From these values the initial solution is seen to be b1 = 2 and
b0 = 1 with g1(:°) = 2880 and g¢2(b:’) = 6900. The minimum
sum is therefore =, = 2880 + 6900 = 9780. With 6; = 1, 6, = 1,
8; = 8, = 8 = &g = 0, reference to Table 6 gives n(8/, 8¢/, - « -, 8')
= 12 periods. The total cost is thus Z¢ = =, 4+ F(12) = 9780 +
280(12) = 13,140. Switch d is set to 1.

Starting with the second block in Figure 1, the path traced out
is determined by the following responses at successive blocks: the
smallest state has not been investigated; (8., 82/, - - -, &¢) is prime;
j#r;d =1; A =0;thereexistsnosuch {;and u = j + 1 = 2.
Determining the bounding solution (bs?, b?), we have from (by!, b2')
that b2 = b;' and by = 2; consequently ¢1(b®) = 2880, ¢2(bs?) =
10,200 and =, = 13,080. Referring to Table 5, it is seen that

Table 9 Initial calculation for 2-item example

o =1 oy =2 as = 3 =4 as =6 ag = 12

3240 2 880 3320 3 960 5440 10 280
6 900 10200 14 300 18 600 27 400 54200
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Table 10 Data for 11-item example

Inventory Cost qi(bx)
Item Demand Cost
k Ndy N1 a=1law=2a=3 a=4 a =6 as =12

80 .20 12.67 7.33 6.00 5.67 6.00 9.00

49 .00 14.04 10.08 10.12 11.17 14.25 25.50

80 .25 16.17 14.33 16.50 19.67 27.00 51.00
.20 13.50 9.00 8.50 9.00 11.00 19.00
.00 16.17 14.33 16.50 19.67 27.00 51.00
.25 28.67 39.33 54.00 69.67 102.00 201.
.25 12.38 6.75 5.13 4.50 4.25 5.50
.20 13.04 8.08 7.12 7.17 8.25 13.50
.00 14.67 11.33 12.00 13.67 18.00 33.
.25 21.38 24.75 32.13 40.50 58.25 113.
.25 12.17 6.33 4.50 3.67 3.00 3.

© 00 3 S O e W N~

-
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Table 11 Optimal ordering schedule for 11-item example

Period 1 2 3 4 5 6 7 8

Items
Ordered

1
2
3
4
5
6
7
8
9

—-
- O

(0, 1,0,0,0,0) = 6so that Z(bs?, b?) = m + F(6) = 13,080 +
280(6) = 14,760. Because Z(b:? bs*) > Z°, the best solution thus
far remains the initial solution. Since v = 7 + 1, weset A = w2 —
m1 = 3300, and finally, j = 2.

Returning to the second block at the top of the flowchart, we
proceed to trace out the same path. The smallest state has not
been investigated; (8:%, 822, - - -, 8¢%) is prime; j # r and d = L.
However, this time A = 3300 > F-[R(8:% 82 - -, &%) — N/3] =
280 [6 — 4] = 560 so that search is terminated with the solution
b, = 2 and b, = 1 being optimal.
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Table 12 Optimal ordering schedule for constrained 1l-item example

by £3;67 <3;bu <3

Period 1 2 3 4

O
o

Items
Ordered

© 0 N O O e W NN -
O 0 Ot W NN
© 00 N1 S Ut W N =

—_—
- O
—_ =
— O
—
= o

Tor a somewhat larger illustration, we use the data for the 11
items of Naddor and Saltzman.” This data together with the value
of qi(br) for N = 12 is shown in Table 10. For all items s, = 1.00
and F' = 5.00.

As can be verified by tracing through the procedure in Figure 1,
an optimal solution for this problem is given by the schedule in
Table 11 showing by period the items that are to be ordered in
each period; the cost of this schedule 1s 173.25.

In some contexts, limits may be imposed on the acceptable range
of interorder times b; for specific items as, for instance, when items
are perishable. Such limits are readily accommodated in the algo-
rithm, the general effect being to reduce the amount of search that
is required. As an illustration, we impose shelf-life constraints on
items 1, 7, and 11, requiring that b, < 3. With these constraints,
an optimal solution is given by the order schedule of Table 12.
As a consequence of these constraints, the minimum cost is in-
creased from 173.25 to 180.75.

In summary, the algorithm presented in this section proceeds
directly to a feasible solution for the joint replenishment problem
and then continues to search for successively better and better
feasible solutions until ultimately one is discovered that is shown
to be optimal among periodic solutions. Computationally the
algorithm appears quite efficient, solving multi-item problems with
several hundred items in seconds on an 1BM 7094 computer.

In some problems, however, it may be desirable to explicitly
consider the dynamic aspects of item demand. Or, in some, the
added problem-solving effort expended in determining an optimal
solution, periodic or aperiodic, may be warranted. We conclude
with a dynamic programming approach to the solution of these
problems.
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A dynamic programming formulation

Assume that di, denotes the demand for item & in time period ¢
which we assume is known for all items for each of the N time
periods. The present problem is then to determine the quantity xx.
of each item % to procure for each time period ¢ (assumed to be on
hand at the beginning of period £) so as to fill all demands d;, and
50 as to minimize the sum of the variable costs of carrying the
items in inventory and the costs of ordering.

Letting I, denote the inventory of item % at the beginning of
period ¢ before the arrival of xx, we have for period ¢:

t—1

-1
I = Io + lekj— ZldijO
= =

where I;o is the initial inventory on hand at the beginning of the
planning period. As an extension of the single-item case reported
by Wagner and Whitin,® the functional equations for the minimal
cost poliey in the multi-item case can be written as:

M M
fe(I1sy Ioey -+, Ing) = min I:Z wlis + 2 6(2ee) s
xk,t Z 0, k=1 k=1

Tie 4+ 2y > drs
k=1,---,M

+ F-:S*(x”, Togy * th)
F fepa(l1s + @1e — digy Ioe + 290 — dogy » -y Taee + o — th)]

fort=1,2,---,N — 1;
and

M M
fvIy, Iew, -+, Iuy) = min [Z Gwlw + 2 0(zin) s
ey > 0,571 =1

Ly + &y = din

k=1, M

+ F-8* (2w, Tov, * - 1 xMN):l

where

_ 0 if Tt = O
8(zee) = {1 otherwise

and

3* (T1y, Taey -+ o, TN = {1 Ltfgrwise o

The quantity fi(I1s, I2s - - -, Ine) represents the minimum total
cost to be incurred in periods ¢, ¢ + 1, - - -, N when period ¢ begins
with inventory balances I1,, Iz, - - -, Iy—1,1, and Isr, on hand, and
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when an optimal policy for periods ¢, ¢t 4+ 1, - - -, N is employed.®
Starting with fy and evaluating recursively the functions fx, fy_i,
-« +, fe, f1, an optimal solution becomes determined when the com-
bination of inventory balances I1, Is1, - -+, Ix1 has been con-
sidered.

When, in practice, starting inventories are netted successively
against demands for period 1, period 2, and so on—so that in the
problem formulation I;» = 0 and all demands di, represent de-
mands net of initial inventories—computation can be reduced con-
siderably as a consequence of a theorem proved by Wagner and
Whitin® for the single-item problem. This theorem states simply
that in searching for an optimal solution it is unnecessary to con-
sider for any item in any time period a case in which both inventory
is brought forward into the period and an order is placed for the
period, i.e., there exists an optimal solution in which I, -zx; = 0
for all k& and all t. As an important consequence of this theorem, an
optimal solution exists in which for all items % and all time periods ¢:

2p, = 0,0r Y di;forsomer,t <r < N.
=t

Therefore, in period ¢ only (N — ¢ + 2) values of I, need be con-
sidered for each item k. Hence, for M items there are (N — ¢t 4 2)M
states to be evaluated at each stage t.

For illustration, we compute the optimal solution for the ex-
ample of the previous section with four time periods. For item
1 we have diu = diz = diz = duy = 35, il = 4, and 81 = 200,
for item 2, da1 = da2 = das = das = 150, 72 = 5, ss = 200; and
finally, we have F = 280. Table 13 shows the computational
results. For each period ¢, we list (N — ¢ 4+ 2) states as defined
by the pair of inventory balances (11, I2;) on hand at the begin-
ning of the period. For each such state in the problem, the table
shows the optimal order quantities x;, and ., for that period to-
gether with the minimum cost f,(71,, I2:) to be incurred for the
remaining time periods when an optimal policy is employed.

To determine the entries in Table 13, we begin with period 4.
Since, by Equation 1, Iy + xx4 = dx. and, by the Wagner-Whitin
theorem, zx:- Ir; = 0, there are two possibilities to be considered for
each item k: Ik4 = 0, Tpa = dk4 and Ik4 = dk4, Try = 0. For two
items, therefore, 22 states are to be evaluated according to:
f(Iu, 124) = t1]1s + tolas + 5(1‘14)81 + 5(56'24)-5‘2 -+ 5*@14, x24)-F,
the values of which are shown in Table 13. For instance, for
Iy = 0 and Iy = 150 we have f(0, 150) = 0 4+ 5(150) + 0 +
200 + 280 = 1230.

Next, period 3 is considered. For each item k, the initial in-
ventory balance I; should be zero, or sufficient to cover the de-
mand for period 3, dis, or sufficient to cover the demand for both
periods 3 and 4, dis + dis; therefore 3?2 states must be evaluated
for period 3. For all states with I; > 0, we have immediately that
Trs = 0. If both 113 >0 and 123 > 0, we then have Simplyfs(lm, 123)
= ’£1I13 + ’i2I23 +f4([13 - d13, 123 —_ dza). For instance, for 113 =35
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Table 13 Dynamic programming calculations for two products and four time periods

Period 1 Period 2 Period 3 Period 4

Iin I Xn Iz Xi2 Itz Ioz Xus Jo T Ioq X

0o 70 o 70* 0 0 70 680 0 0 35
70 70* 0 150 70 0 150 35

300 70 70 0 300 70 35 (U]

450 105 35 0 35 150 O

600 35 150

0 35

150 70

300 70

450 70

-~
(=]

(=2 =T R = R R = R - O 2 — 2~ - ]

* alternately, X12 = 35.

[N R = N = — 2 R — I = i~ S R = i = R = R O = 2" = I — I -]

and I3 = 150, we have f3(35,150) = 4(33) + 5(150) + 680 = 1570.
When I;; = 0 for one or both items, however, the order quantities
23 must be chosen so that a minimal state is reached at period 4.
For example, when I3 = 0 and I3 = 150, we have f3(0, 150) =
0 + 5(150) + 1(200) + 0 + 1(280) + min [fi(x13 — dis, 0)] =
1230 + min [f4(0, 0), f4(35, 0)] = 1850 for x13 = 70. In like man-
ner, each of the other states in period 3 are evaluated, followed by
those in period 2 and finally by those in period 1.

From the completed table, it is seen that the cost of an optimal
solution for the 4 periods when starting with no inventory is $2600.
To determine the optimal solution itself, we start with period 1 and
proceed to each succeeding period in turn, determining at each
stage the subsequent state from the present state and present
order quantities.

The results are as follows:

I11 = 0 121 =0 T = 70 To1 = 150
112 = 35 122 =0 12 0 To2 = 150
I 0 I3 =0 Z13 70 223 = 150
I, =35 Isy=0 Z14 0 224 = 150

Item 2 is therefore to be ordered every period, item 1 every two
periods.t?
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The ordering of item 1 every other period and item 2 every
period for an even number of periods N was also the optimal
policy as determined with the direct algorithm. However, the total
cost determined by the two methods differs, since in the dynamic
programming algorithm there is no reflection in the total cost of
the inventory cost ineurred in period ¢ for the quantities dy.,
k=1,2 -, M. When these costs are represented as 7;-dx,/2 as
in the static model, total cost is the same for both methods.

In practice, the size of problems for which this dynamic pro-
gramming formulation is useful may be rather limited since the
total number of states S to be evaluated increases rapidly with
both Nand M: S =1+ 2 ¥, (N —t+2)¥ = 3V ¢4 For
example, with a planning horizon of 12 periods there are, for two
items, S = 506 states; upon increasing the number of items to 5,
S soars to 381,876 states. In any case, however, the decision
ultimately rests on a comparison of the expected benefits to be
gained from a more globally optimum solution and the added
problem-solving effort to be expended in obtaining it.
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. A number, for example, yielding a convenient review period for items.
As N is increased for a given planning horizon, we increase the number
of prospective opportunities for reordering and thereby increase the pros-
pects for a solution with lower total costs. However, at the same time we
also tend to increase the problem-solving effort required to solve the
problem, so that a balance between the two must be struck.

. A variation of this problem with a continuous planning horizon of infinite
duration has been reported by E. Naddor and S. Saltzman, “Optimal
reorder periods for an inventory system with variable costs of ordering,”
Operations Research 6, No. 5, 676—685 (September-October 1958). They
present an approximate solution for the case wherein an order is to be
placed regularly with the vendor or plant every ¢ years and item k is to
be requisitioned every zif, where x; is some positive integer. By com-
parison, in the present algorithm each item k is requisitioned regularly
every by periods, but the time between orders placed on the vendor need
not be regular.

. In the event gi(a,;*) = gk(&;) = l min ’ gi{e:) either of the values a;

468 =1
or a3 may be chosen for b’ since they yield identical cost ¢k(&;) and
since in no way is the resulting solution B’ itself used in generating sub-
sequent states.

. An exception to this procedure occurs when, to conform with state
(8, &, ---, &), all §;% are transformed to zero by means of Equation 5
for which 8, = 0, and there results a 8, = 0 for some k such that &’ = 1.
In every such case there exists another state in the table with &, = &'
for all 4 5 k and &' = 0, and with #(8,", &, ---, 8"") < 78/, &, -+ +,8,")
(otherwise the present state would not be distinguished and the exception
would not arise). Since upon ultimately transforming the ;¢ as required
to conform to the &;" of this other state, the resulting values of the b;
will necessarily be the same as those just determined for state
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8/, 8/, - -+, &), it follows that Z(b.", b"’, -+ -, bu"") < Z(b, by, -+ -, by').
Therefore whenever this exception occurs we simply locate the state
(8, 8", ---, 8’ in the appropriate table, evaluate Z(b,"’, b/, ---, ba'"),
and proceed to the evaluation of the remaining states, giving no further
consideration to state (&, &', - - -, &').

. This condition is satisfied for many cases of practical interest, including,
for example, each of those given in Tables 3 through 8. However the con-
dition need not always be satisfied as is illustrated, for example, with the
case N = 323 and « = 1, 17, 19, and 323.

. From Table IV of Reference 3. The problem for which they employ the
data differs somewhat from that being considered here.

. H. M. Wagner and T. M. Whitin, “Dynamic version of the economic lot
size model,”’ Management Science 5, No. 1, 89-96 (October 1958).

. In these cost expressions inventory carrying costs for period (¢ — 1) for
item k& are represented as 74l being based only on the balance on hand
at the end of the period. This understates the carrying cost for the period
by the cost incurred for the quantity di: supplied during the period. How-
ever, this cost is fixed, regardless of ordering policy, and hence need not
be explicitly represented in the cost expression.

. As can be seen from the table, had the number of periods N been odd
e.g., 3, b, . . ., item 2 would still be ordered each period; item 1 would be
ordered every two periods except for one arbitrary period when only a
quantity sufficient to eover the demand for a single period is ordered.

Appendix
Proof of Condition 6

Let Bi~' and B7, s < j, be any successive bounding solutions in
any problem for which (a1 — aw) > (e — ap-1) for all
E=23 -, r—1Ifr; — w1 > F(, 827, -+, 8,7) —
N/a;,1], then it is unnecessary to explicitly investigate states
With 8y = &, = -+ = §, = 0.

For bounding solution B7, the total cost is Z7 = =x; +
F-n(817, 827, - - -, 8,7, and for any solution B* = (by*, be*, - - -, ba*)

with b* > «, for all k, any » > j, 2% = Zk g:(b*) 2

F-7i(5:*, 85%, - - -, 8,%). Sinee D _; qu(be*) > m, and 7(81%, 82, + - -, 8,

> N/a, for all B¥ with §* = Oforalls < v and 8,* =1, 2* =
7 + N/a, constitutes a lower bound on Z*. Since Z° < Z7and
2% < Z* if Zi < Z* then Z° < Z* and no solution B* exists
which is preferred to B® and therefore need be investigated. Upon
substituting for Z7 and Z*, rearranging terms and expanding, the
condition Z7 < Z* can be written:

(7"1) - 7rv—1) + (7!'7,__1 - T”—2) + e + (1rj+1 - 7r])
Z F(ﬁ(ﬁlj, 62]', FE 761'j) —_ N/a;H—l) + F(N/aj+1 - N/aj~+‘l) (1)
+ -+ F(N/av—1 — N/aw)

To prove condition 6, it will be shown (a) that (w1 — m)
> (7rk — 1rk_1) for all k; (b) that (ﬁ(51j, dal, - Yy 5rj) — N/Olj+1)
> (N/aj1 — N/ajp); and (o) that (N/wyn — N/a) =
(N/Ozk - N/ak+1). Then when (ﬂ'j - 71','_1> > F'TL(&", 52j, ct Yy 5ri)
— N/ajy, inequality (i) is satisfied so that Z° < Z*, and hence B*
need not be investigated, as asserted in condition 6.
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Beginning with (a) we first prove the following inequality:

If (at+1 - Olt) Z (at — at_l) forallt = 2, 3, tr, T — 1
then Qj(ak+1) — qj(a;c) > q,-(ak) — Qj(ak_l) forall k > S (11)
where ¢;(a;) = min, {¢/e)},allj=1,2, ---, M

Suppose for some k and 7, ¢;(art1) — gilon) < ¢iar) — gq;(on_1).
Upon substituting (Ndi,a/2 + s;-N/a) for ¢;(«) in each term and
rearranging, this becomes:

[Ndji;/2 — NS;/arenyill(ansr — ar) — (o — op—1)] (iii)

< NSJ[(alc - ak—l)/ak][(ak—l — ak+1)/ozk_1ak+1]
If we denote by A?q;(e) the second difference of ¢;(«) for any item
7 and cycle time «, then A%q;(a) = ¢i{a+2) — 2¢{a + 1) 4 g¢;(a)
= 2N8,/[ala + 1)(a + 2)] which is always positive. Therefore
for all ¥ > s, ¢i{aws1) — ¢gjlar) > 0. Upon substituting
Ndjia/2 + s;*N/a for gi(a) as above and rearranging, this in-
equality becomes

[Ndﬂ]/z - NSj/akak+1][ak+1 - ak] Z 0
from which it follows that [Ndz,/2 — NS;/awarii] > 0 since
i1 — eax] > 0. Together with the assumption that (azr 1 — o)
> (ax — ax_1) this implies that the left hand side of (iii) is there-
fore never negative. On the other hand, since a1 > « for any ¢,
the right hand side of (iii) is always negative. Therefore (iii) can
never hold for any & and j, contradicting the assertion q;(ezt1)
— gqilon) < qi(ew) — gi{ar—1) for some j and k > s, thereby estab-
lishing (ii). With the help of (ii) the following inequality can now
be established :

If (aH_l - at) > (at - ag_l) forallt = 2, 3, re, T — 1,
then ¢;(b#t) — ¢;(b/) > ¢;(b/#) — ¢;(b/#7) for all @iv)

k and j.

Since b = max [a;, o, where ¢;{a;) = min, {g;(au)}, for all p,
HFl = pE = bF1forallk < s — 1, and strict equality results
a (iv). For k = s, (iv) becomes q;(as11) — qj(e;) > 0, which will
always be true in light of the positive second difference of ¢;(e).
And finally, for & > s, (iv) becomes g¢jasi1) — g¢ilow) >
gi{ay) — qi{as_y) which is true by (ii), thus establishing (iv). We
now establish (a), as was the initial objective:

If (a1 — ay) 2> (@ — apy) forallt =2,3, -+, r — 1,
then (w1 — m) > (m, — me_y) forallk (a)

Substituting m, = > %, ¢;i(b;*) forw = k — 1, k, and k + 1,
and rearranging terms, (a) can be written

M

2 a0 — g0 — f) — ¢ >0

=
which is necessarily true since by (iv) every term is nonnegative.
Next consider (c):

Ifag1—a) > (et —agq) forallt =2,3, -+, r — 1,
then (N/ak_l - N/Olk) > (N/Olk - N/ak+1) forall k (C)
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For every o in the set {a1, as, - - -, a,} there exists another ele-
ment o’ = N/ay which is also in the set. Since for all k; a1 < o
< agp1 implies i’ > o’ > axt, and since for all elements
a1 < ap < apg in the set (a1 — ay) > (@ — a,y), it follows
that (ax—1’ — ax’) > (o’ — aryt’), as asserted.

Finally, the proof of condition 6 is completed by establishing
(b):

If (e — ar) > (0 — an) forallt =2,3, ---,r — 1,
then (7(847, 827, -+ -, 8:7) — N/aju1) > (N/ajp1 — N/aje)  (b)
for all j.

Expanding the inequality and rearranging terms we get:
[n(alj) 62j) Ty 67‘j) - N/ai]
+ [(N/a; = N/ajn) — (N/ajn — N/aj2)] >0

The first term is either zero or positive depending on whether B’
is prime or non-prime, and the second term is always nonnegative
as a consequence of (¢) above. Therefore the equality or inequality
in (b) will always be fulfilled.

Proof of Condition 7

Let B and BY, s < 7, be any successive bounding solutions in
any problem for which (ary1 — o) > (@ — ag—1) for all k. If
27 = 2° + Yr; — mia] 2 F[R(Y, 89 - -+, 87) — N/ay ] for
any ¢, it is unnecessary to explicitly investigate states with §; = 8,
= -+ =849 =0and s, = 1.
Letting» = j + t, we have as with condition 6 that Z* = =, + N /a,
constitutes a lower bound on the value of a solution B* with
8+ = 0 for¢ < v and 8,* = 1 so that if Z* > Z° there exists no
such B* which is preferred to B° Upon adding Z7 to both sides of
the inequality Z* > Z° and rearranging terms we get:

727 = Z° 4 (mpe — m;) 2 FRQY, 857, + -+, 8:7) — N/agd] ()

Expanding the term (r;y, — 7)) = (7jpr — 7jpe1) + -+ +
(rjpe — w41 + (w01 — 7,) and employing from (a) the fact that
(g1 — wi) 2= (7 — m1) for all 7, we conclude that (7 — 7;)
> t-(r; — 7j—1). Therefore whenever the inequalities in condi-
tion 7 are satisfied, the inequality in (v) is satisfied, and hence no
solutions B* need be explicitly investigated, as was to be shown.
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