


costs. For specificity let  us consider a  problem involving two pro- 
duction items, A and B, having the  annual  demands Y ,  unit in- 
ventory  carrying costs C,, and production setup costs C,, as shown 
in  Table  1. 

For each  item considered independently, the lot size Q which 
minimizes the  annual  sum of the  inventory  carrying costs and  the 
production  setup costs, (&/2)C,  + (Y/Q)C,, for that item  can  be 
determined  by the classical Wilson formula: 

For the example, these  lot sizes, together  with  the  interorder  time 
or  production cycle time, b = (12)Q/Y, are  as shown in  the  last two 
columns of the table. If these two items  are planned independently, 
the  total  annual cost for the two items is 2 = 32,400 + 3600 = 

$36,000. 
Assume, however, that items A and B represent  different models 

of the same  basic  product and  that economies in  production  setup 
time result whenever the items are produced  in sequence. For ex- 
ample, to  make  the  production line ready  for the product class, in 
general,  requires fixed cost F = $300, and  that  the additional  time 
to  set  up  or change  over the line for item A is SA = $600 and  for 
item B is SB = $150. Thus, if A is produced alone, the  total make- 
ready cost is, as before, C, = F + SA = $900; if B is produced 
alone, C, = F + SB = $450; but if both A and B are produced 
in sequence, the  total make-ready and changeover cost is 
F + SA + SB = $1050. Now by properly  coordinating the pro- 
duction schedules of the two  items (while still  maintaining the lot 
sizes and cycle times  in Table  I),  it is possible to reduce  tota,l 
make-ready  costs and hence total cost. For example, by producing 
item A in  months 1, 3, 5,  7, 9, and 11, producing  item B in  months 
1,4,  7, and 10, and sequencing  together the production  in  months 
1 and 7, annual make-ready costs  can  be reduced by [(go0 + 450) 
- (1050)l = $600, yielding a  reduced total cost of 2 = $35,400. 

Further coordination  in  ordering the items  can  be achieved by 
modifying the  lot sizes and cycle times of selected items  as  they 
were originally  determined by  Equation 1. One  approach used in 
practice  is to  decrease the cycle time  (and, accordingly, the lot 
size) of all  items  with  a low reorder  frequency,  making it  equal  to 
(a multiple of) that of the highest  frequency item. In  this way, it 
is hoped to  reduce the  total  number of production  setups,  and per- 
haps  thereby  to reduce total cost. For example, in  the  illustration 
we have bA = 2 and be = 3 which, when coordinated,  require 
eight  setups per year. If we increase the frequency of item B to 
six so that bs = 2, all  runs  can  then be sequenced with  runs of 
item A ,  thereby  reducing the effective setup costs  for B as well as 
the average  inventory of item B but increasing the number of 
setups  from  four to six. The  net effect of this decrease of bB = 3 
to 613 = 2, as can  be verified, is to  reduce total cost from $35,400 
to $34,500. 
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1 Table 1 Data for  illustrative  example 

Optimal 
Uni t  Produc-  Produc- 

Inventory  tion  Optimal  tion 
Annual  Carrying  Setup  Lot  Cycle 
Demand  Cost  cost  Size  (Months)  Annual 

I t e m  Y CC C ,  Q b Cost 

A 16 200 $12 $2 700 2 700 2 32 400 
1200 $12 $ 450 300 3  3 600 ! B  

Table 2 Data  for  illustrative  coordinated replenishment plans 

Annual  Demand 
YA Y B  

Case I 2 700 7200 

Case I1 16 200 7 200 

Changeover  Cost 
SA SB 

150 2 400 

2 400 2 400 

Produe- 

Cost Cycle 
Annual  tion 

Total 

6.4 bs Z 

2 3 26 400 
2  2 

26 250 3 3 
27 000 

55 500 3 3 
54 000 2 2 
53400 2  3 

Coordination  approaches to joint  replenishment of this  type, 
which involve modification of the cycle time for selected items, are 
attractive  in practice for several reasons. From a decision-making 
viewpoint, the added complexity and problem-solving effort which 
results by  interrelating  the  items  in  this fashion  is  quite minimal. 
And, moreover, from an implementation  and  operational view- 
point,  these  approaches yield solutions that retain for each  item 
the periodic property of constant  lot size and  constant  interorder 
or  production cycle time,  a  property sometimes desirable in prac- 
tice in  that  it greatly  facilitates  other  activities  such  as  production 
scheduling and  control, physical inventory  planning  and control, 
and so on. 

The shortcomings of these  approaches, however, are  that  they 
are unreliable. Even among  solutions possessing this periodic prop- 
erty,  they do not always yield a solution  with  minimum total  cost; 
in  fact,  they sometimes yield solutions which are more costly than 
those in which all cycle times are simply left at their  original values. 
For  illustration,  Table 2 shows the  data for two examples obtained 
by slightly modifying the earlier example. As before, F = $300 
and C, = $12. In  both cases the values  determined  independently 

MULTI-ITEM  LOT-SIZING 49 



according to  Equation 1 are bA = 2 and be = 3. As seen in the 
table,  in  neither case does a  minimum cost solution  result  by 
increasing the frequency of item B :  in  Case I1 it is preferable to 
leave the frequencies and  lot sizes of both  items at their  values 
originally determined  independently  according to  Equation 1 ; in 
Case I it is actually  better  to reduce the frequency of item A and 
coordinate it  with  the replenishment of the lower frequency item. 
And  more  generally,  discovery of a  minimum cost solution may  be 
more complicated than  this  illustration might suggest, for it is not 
always possible to  determine a  minimum cost periodic solution  by 
simply  adjusting a single item a t  a  time.  Sometimes  combinations 
of items need to be  altered  concomitantly, a consideration which 
becomes potentially  more  troublesome as  the  number of inter- 
related  items increases. 

In the following sections,  two  different  algorithms are presented 
new for  determining  minimum  cost  solutions to  multi-item  problems of 

algorithms this  type.  Both  algorithms consider a planning  horizon of a fixed 
duration; for longer horizons it is assumed that  the replenishment 
plan to  be  determined is simply  replicated throughout  the longer 
horizon as required. The planning horizon is then divided into a, 
convenient2  number of discrete time periods N of equal  length. 
Solutions are  sought in which all  demands  are  met  exactly,  and 
for which total replenishment and  inventory  carrying costs are 
minimum. 

The first  algorithm is a  direct  algorithm  for  determining  joint 
periodic solutions  in which the lot size and cycle time for each  item 
remain  constant  throughout  the planning  horizon.  Under the as- 
sumption that each  lot is to cover demand  for an integral  number 
of time periods in the horizon and  tha,t  inventory balances are  to 
be zero at   the end of the planning  horizon, the algorithm yields 
optimal  joint  replenishment  solutions.  Experience  on an IBM 7094 
computer  with this  algorithm  as coded in FORTRAN has  indicated 
that for N = 12, for example, problems with M items  can  be 
solved in  approximately M/300 seconds for M I 1500. Although 
not usually of importance for problems  with  such short solution 
times, this  algorithm  has  the desirable property  that, since search 
proceeds from one feasible solution to a better feasible solution, 
the procedure  can be terminated  prior to  its ultimate completion 
with a usable, although  perhaps  not  optimal,  solution. 

The second algorithm is a  dynamic  programming  algorithm. Up 
to  this point  attention  has been focused on  periodic  solutions  in 
which the lot size and  interorder  or cycle time for each item re- 
mains  constant  throughout  the planning  horizon.  Upon  foregoing 
this  property  it  may be possible to achieve  a lower total replenish- 
ment  and  inventory cost through use of an aperiodic  solution. The 
dynamic  programming  algorithm to be presented yields a mini- 
mum cost solution to  the joint  replenishment  problem  whether the 
optimal  solution be periodic or  aperiodic. With  this same algo- 
rithm,  it is also possible to solve the dynamic  problem in which 
demand  varies  from period to period. As would be expected,  these 
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more  general solutions require  considerably  more problem-solving 
effort. In  practice, the size of problem for which this  approach  is 
practical  may be limited since, for N periods and M items the  total 
number of states  to  be  evaluated  is 

A direct  algorithm  for  periodic solutions 

For a  planning horizon of N periods, the  total replenishment and 
inventory  carrying cost for the multi-item  joint  replenishment 
problem to be considered in the present  section may  be expressed 
as : 

+ F . n ( b 1 ,   b z ,  * e ,  b k ,  * * a ,  b M )  (2) 

where b k  is the number of periods  between  procurement or produc- 
tion of item k ;  Ndk  is the  total  demand for item k assumed to occur 
a t  a  constant  rate  throughout  the  planning horizon; i k  is the  unit 
inventory  carrying cost for item k for one time  period; F is the 
general setup or order writing-expediting-receiving cost for the 
placement of a  replenishment order  in a  period; & is the additional 
setup, changeover or ordering cost incurred  each  time  item k is 
reordered; n ( b 1 ,  b2, . . ., b k ,  . . ., b"), is the  number of periods  in 
N in which one or more  items are  ordered;  and M is the  number 
of items being ~onsidered.~  In  this  formulation  a  set of interorder 
times ( b l ,  bp, . . 0 ,  b k ,  . ., b M ) ,  or equivalently,  a  set of order fre- 
quencies ( f 1 ,  fi, . . ., f k ,  e . -, fM), f k  = N/bk, is to be  determined 
for which the  total cost is minimum  (Equation 2 ) .  The order 
quantity for item k is &k = d k b k .  

As has been mentioned, it is assumed in the present case that 
the lot size &k is to remain the same  in  all  reorder periods and  that 
no inventory is to exist at  the end of the N periods. Together  with 
the assumption that  the number of interorder periods b k  is to be 
integral, the value of b k  becomes limited to one of the possible 
integers a1, az, . ., ai, - . 0 ,  a7 wherein both ai and N/ai  are 
integral, a1 _< 012 5 . . 5 a,.. For instance, for N = 12 the pos- 
sible values of b k  are a = 1, 2, 3, 4, 6, and 12. Whenever N is a 
prime  number,  the possible values of bk become a = 1 and N .  With 
these  assumptions, the solution ( b l ,  bz, . e ,  bw) as  determined  by 
the following algorithm is optimal. 

In  principle, when there  are r different allowable frequencies or 
interorder periods ai in period N ,  an  optimal solution  can  be  de- 
termined by  enumerating all of the rM possible combinations 
( 6 1 ,  b2, . . 1 ,  b ~ )  and selecting  one  for which total cost is  minimum. 
In light of the  structure of Equation 2, however, a  solution  guar- 
anteed  to  be  optimal  can be  found with considerably less search. 
We begin with an initial  solution B" = (b l* ,  b2*, . . ., bk*, . . -, b M * ) ,  
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l X X 4  
0 1 x 2  

(When F = 0 and  the M items are considered independently, 
N/bk* is the  optimal order  frequencv for it,em k 2,s rletm-mined hv 
the clessicnl Wilson fnrm111n.l The 
is then 

M 

Z* = Z(bl*, . e * ,  b M * )  = a k ( b k * )  + F*n(bl*, * * a ,  b M * )  
k = l  

where n(bl*, * * a ,  b M * )  is the minimum  number of periods in which 
one or more  orders must be placed so as to permit the realization Table 'ii(61'62f ' * * ' = 

011 = 1, a2 = 2, a3 = 3, o l p  = 6 of all  frequencies N/bk*. 
61 62 8 3   6 4  ?i Given  this  initial  solution B*, subsequent  interest resides only 

in  solutions B for which Z(bl, b2, . ., bk, . . 0 ,  b M )  < Z*. Since 
1 X X X 6 t,he  mlnnt,itv n,.(h,.*) iq R minimllm fnr parh itom E 9 Ioua o n a t l x r  I 

x one  in which the  total  number ot periods having  one or more 
o 0 0 1 1 orders is reduced,  i.e., n(bl',  a ,  bM') < n(bl*, . ., bM*). To 

guarantee  an  optimal solution,  all  such possibilities must be in- 
vestigated, a t  least implicitly. Let  us consider first the determina- 
tion of the values n(bl, b2, . -, b M ) .  

For any solution B = (bl, b 2 ,  . . . , b M ) ,  the minimum  value 
n(b1, 6 2 ,  . . ., b M )  can  be easily computed with  the  aid of a  pre- 

Table 5 it(61,62,. . . , 6,) N = 8 determined  table of minimum  values E(&, 82, . ., 6,) which de- 
Dends onlv on the  total  number of Derinds N and  the  set of allow- 

I are determined  from B as: 
l X X X S  
0 1 x x 4 a i =  
0 0 1 x 2  0 otherwise 

1 if bk = a(  for any k 
i = 1,2,  e e ,  r 

I When 6; = 1 .  nrders milst, he so nln.ce!d  d11ring. t,he N nerinrln t.hn.t, 
an  interorder  time of ai periods is realizable. For each of the 2r 
possible combinations (&, 8 2 ,  + ., a,), the minimum  value 
B(61, 82, . a ,  6,) can  be  determined  and  then  tabled. Since, in  prac- 
tice, a number of combinations  often  have the same  value 

. . . . . . . . plicitly tabled. 
011 = 1, 012 = 2, a3 = 3, As illustrations,  Tables 3 through 8 
014 = 4, 015 = 6, 016 = 12 Ti(&, 8 2 ,  . . -, 6,) for N = 4, 6, 8, 12, 16, and 24 respectively. An 

61 62 83 84 85 86 entry of X in  a  table indicates that  the value of 6 i  mag  be  either 

0 1 1 x x x 8 sider the combinations (0,  0, 0, 1, a5, aG) for N = 12 in Table 6. 
0 1 o x x X 6 With 6 4  = 1, orders  must  be placed in amanner which permits an 

0 0 1 0 x x 4 in  periods 1, 5, apcl 0 Th;, n m c l n w ~ m m n n h n c l ~ ~ l  

O O O l l X  4 ,, x 
0 0 0 0 1 X 2 interorder  interval of aG = 12 is realizable with an order in period 
o o o o o I 1 1. We  therefore  have ~ ( 0 ,  0,  0, 1, 0, X )  = 3. When 65 = 1, an 

65, = 86 = 0. ALSO, 1% sa 

52 J. F. PIERCE 



64 = 1, the result is an 
and 9. Since this 

ler,  each of the 

dering (at least x x 

I ordering schedule that includes periods 1, ti, 7, srhednle satisfies both  the cases. 8R = 0 and 6 s  = 1, we have  the 61 & & 6 4  65 5 

1 X X X X l 6  

011 = 1, a2 = 2, 013 = 4, 
014 = 8, 015 16 

3s 1s uer1veu. 
r ,  0 l X X X 8  

implicitly)  all  solutions B for which n(b1, b2, . e ,  b ~ )  < 0 0 0 1 x 2 
n(h ,* .  h9*. . . ._  bar*\. This  reauirement is fulfilled with the help  of 0 0 0 0 1 1 

sidering (at least  implicitly)  all  "states" (&', 62', . . ., 6;) in  the 
table  for which %(til', 82', . - ., 6;) < a(&*, 62*, . . ., &*), where 
(61*, 62*, . . ., 6,*) is the  state determined  by  the  initial solution 
R* = (h.* h,* . . . h.,*). 2nd second. hv considerinn (at least 

responding to  that  state. Condition  one is fulfilled by ordering the 
states  in lexicographically decreasing order  and proceeding to sys- 
tematically  investigate  all  states lexicographically smaller than  the 
initial  state, (&*, 62*, . . ., a,*) determined  by  the  initial solution 
fh,*. h.*. . .. hnl*\. A st,ate (&a. . . .. 6,") is defined to  be 

6 i b  = 0, i = 1, 2, + ,  s - 1 and  either 6,b = 1, 6," = 0, or 
= 6," = 1 and 5(6la, a2", 1 a ,  6,") < %(61b, Lizb, . e ,  8>) ,  for 

some s, 1 5 s 5 T. (The  states  in  Tables 3 through 8, for  instance, 
are tabled  in decreasing  order.)  Condition  two is satisfied by de- 
termining  for  each state explicitly considered a  solution for which 
Z(b1, b2, . . . , bM) is  minimum  among  all  solutions  corresponding 
to  that  state. 

a  solution B for which, among  all  solutions  constrained  by the solution 
condition bL > a;. the  sum y,El a h )  is minimum.  We will term 

, bM". 'l'he  value of the  sum itself, 

In  the following discussion, reference will frequently  be  made to bounding 

I 
bk ' ai'" and denote it Table 8 E ( & ,  62, .  . . , &) N = 24 

xE1 pk(bki), will be  denoted  as ri. In  addition, we will on occasion CY1 = 1, a2 = 2, 013 = 3, 
a4 = 4, 01s = 6, 016 = 8, 

I respectively.  Solutions B corresponding to each of these  states will 1 x x x x x x x 24 
be  similarly  termed  prime and nonprime.  Finally, a t  each  point o 1 1 X X X X X 16 

0 0 1 l X X X X l 2  

and  its  total cost as X". 0 0 1 o x  l X X 1 0  
0 0 1 o x  o x x  8 

We  start,  then,  with  the  initial solution b ~ * ,  . . -, b ~ * )  as 0 0 0 1 1 x x x 8 
the best thus  far, Bo = (bl*, b2*, . . a ,  b ~ * )  and Zo = qk(bk*) + 0 0 0 1 0 X X X 6 

thrn-lrrhnllt the  cnarrh nrnpecc t,he hest, (minimum  total cost) SO- 0 1 0 X X X X X 12 

Bo = (blO, bZO, . . e ,  b ~ ' )  

P.Fz/.s.* A-* . . . A *\ nnrl nrnponcl t,n investigate the  states lexi- 0 0 0 0 1 1 X X 6 
qearch of a less x x 

costly  solution. If s denotes the smallest Index z m (61*, 62*,  e ,  x 0 0 0 0 0 1 1 x 4  

the  initial solution is  a 0 0 0 0 0 0 1 x 2 
bounding  solution for b k  2 a,, ( h a ,  b z8 ,  * * , b ~ , ) ,  with o o o o o o o 1 1 

P *\ :- 
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(big, bz8, . - ., b y s ) ,  may be either prime or nonprime.  Let us con- 
sider each of these possibilities  in turn. 

When the  state determined by the bounding  solution (bls, b28, 
* . 0 ,  b d )  is  prime, then 6, = 0 for all lexicographically  smaller 
states, as may be  seen in Tables 3 through 8. In this case, all sub- 
sequent solutions  requiring  consideration are therefore constrained 
by the condition b k  2 a,+1, k = 1, 2, . , M .  From among  all 
such solutions, we first consider a solution for which the sum 

a k ( b k )  is minimum; this solution, by definition,  is a bounding 
solution B8+l = ( b l s f l ,  bz8+l,  . . a ,  by8++') for b g  2 a,+1. The sum 
r,+l constitutes a lower  bound  on c k  f&(bk) for all subsequent so- 
lutions requiring consideration. 

Computationally a solution BS+l can be  readily derived from 
solution B8. For in  general, if @I*,  bz*, a ,  bM*) is the uncon- 
strained solution for which x k  q k ( b k )  is  minimum, then  a bound- 
ing solution (@,  b z ~ ,  * * *, by , )  for  which be > a, and x k  @&) 
is  minimum is: 

I b k q  = maX [ b k * ,  a,] k = 1, 2, * *, M (3') 

This follows  from the fact that for  each k,  f&(bk) assumes a mini- 
mum at b k  = bk* and is a non-decreasing function of bk for 
b k  > b k * .  From Equation 3' it follows that,  starting with the initial 
solution ( h a ,  bz8, . . . , b y 8 ) ,  subsequent bounding solutions may 
conveniently  be determined successively with: 

I bks+i+l = max [bka+i a s + j + l ] ;  k = 192, * * *, M ;  aa+i+l 5 a r  (3) 

In  the present case, then, we have for B8+l, bks+l = max [bk' ,  a8+'] 
for all k. 

Determining from B8+] the  state &a+],  a ,  6,8+1) and 
then from the table the value of E(&8+l, &8+l, . . e ,  & + I ) ,  the  total 

Z8+l < Zo solution B8+l is retained as the best  found thus far, 
setting Bo = B8+l and Zo = Za+l. 

Having determined and evaluated the bounding  solution B+1, 
we next  proceed to the investigation of solutions  corresponding to 
states lexicographically  smaller than ( 6 1 ~ + ~ ,  &,+l, . . . , 6,*+]). That 
no other solutions  need  be first investigated results from the fol- 
lowing consideration: 

If (619,  6 2 9 ,  . e ,  6,~) is the prime state for 61 = 6z  = . . = 

determined by the bounding  solution Bq+l, then Z Q + ~  5 
Z(bl', . , bM') for all solutions B' corresponding to states (4) 
lexicographically smaller than ( 8 1 9 ,  Be,, - - a ,  a,,) and lexi- 
cographically at least as large as ( & d l ,  8p+',  - e ,  & d l ) .  

cost Z S + l  = r8+1 + F . E i ( 8 1 ~ + ~ ,  . . -, is computed. If 

6,-1 = 0 and 6, = 1, and (819+', 8zq+l, * e ,  &dl) is the  state 

This follows directly from the fact that for all solutions B' cor- 
responding to these states x k  q k ( b k ' )  2 r,+' nnd, n(bl', bz', 
. ', bM')  2 n(blq+', bZd', ' * *, byd') So that x k  q k ( b k ' )  + 

Fan@<, bz', * * *, b ~ ' )  2 Zd ' .  
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~ In  proceeding to  the investigation of states lexicographically 
smaller than (&*+I, . . ., l i r 8 + I ) ,  two possible cases arise, just 
as  they  did  with  the  initial solution B 8 :  the bounding  solution 
Bs+l is prime or it is non-prime.  When B8+I is prime, we proceed 
to  the determination of the next  bounding  solution Bsf2 in the 
same  manner as described for BS+I. Let us consider, then,  the case 
when a  bounding solution is non-prime. 

In  the  event a  bounding  solution Bq is non-prime, it is necessary, 
in  general, to individually consider each of the lexicographically 
smaller states for which 6, = 1, as  listed  in the  appropriate  table 
of states. For each such  state (6<, 62', . . +, &'), only a single solu- 
tion B' need be  determined for which the  sum Ck qk(bk) is mini- 
mum. In  each case such  a  minimum  solution  can  be  derived  from 
the bounding  solution Bq by  setting: 

bk' = 
a j  for bkq = ai, 6: = 0 
b k q  otherwise (5) 

where4 

(In  light of the convexity of the function q k ( b k ) ,  a t  most  two  values 
of t ,  { t /S, '  = 1 ), need explicitly  be  considered: the largest  value 
of t such that t < i; and  the smallest  value of t such that t > i, 
when one exists.) For the resulting  solution B', the  total cost 
Z' = ck @ ( b k ' )  + F .~(61' ,  82', . . a ,  6:) is computed,  and when 
its  value is less than Zo, B' is saved  as  the best  solution thus  far.6 
When  a  minimum  solution  has been determined  and evaluated  for 
each lexicographically smaller state  with 6, = 1, the investigation 
then proceeds to  the consideration of states  with 6, = 0. 

In  summary, the algorithm consists of determining an initial algorithm 
solution B8 and  then proceeding to systematically  investigate the summary 
states lexicographically smaller than (&s, 8 2 8 ,  . . . , 6,s) as given by 
the appropriate  predetermined  table. The  main progression of the 
search begins with B8 and continues in succession to  the (r - s) 
bounding  solutions B8+l, . , B r ,  each  solution being de- 
termined  from  its predecessor by Equation 3. For each  bounding 
solution Bj, s 5 j 5 r, that is  found to be nonprime, it is necessary 
to determine  and  evaluate a  minimum  solution B' for  each state 
lexicographically smaller than Bj for which 6 j  = 1 ; each  such so- 
lution B' is determined  from Bj according to  Equation 5. Search 
is  complete when the prime state for 6, = 1 has been considered. 

In  some  instances, it  may  be possible to  further reduce the  num- 
ber of states which need be explicitly considered. Three  such in- 
stances  are as  follows: 

Let Bj" and Bj, s < j ,  be  any successive bounding  solutions 
in any problem  for which (&+I - a k )  2 (ab - ak-1) for6  all 



START 

DETERMINE INITIAL SOLUTION (bi ,  b; , . . . , b i ) ,  

SET bf= b:. k =  1. 2.. . . , M  AND Z o = x  qk(b:)+n(8:. 8;. ...,a;) 
S E T A = 7 1 ~ - ~ ~ _ 1 = 0 ; S E T j = r  

I F ~ a x + l - ~ h ~ ~ ~ - a h - - a h ~ l ~ F O R A L L k . S E T d = l ; O T H E R W l S E S E T d ~ O  

4 I 
HAS THE LEXICOGRAPHICALLY 

SMALLEST STATE BEEN CONSIDERED? 

NO 
TERMINATE 

I 1 IS (8:. S: ,.. . ,+PRIME? 

YES NO 

LET (a!! 8; 8 , .  , 88;)) BE NEXT LEXICOGRAPHICALLY SMALLER STATE. 

lsz~-z~+@;,8; , . .  t ,  8)-6(8? , . . . ,  Sl")]? 

YES NO 

DOES j = r? 

TERMINATE 

DETERMINE SOLUTION B' HAVING MINIMUM 

SUM 2 qk(bh) FOR THIS STATE; IF Z(b; , . . . ,bh < Zo 

SETZo=Z(b; ...., ba)ANDBo=B'  

L 

IS THIS THE LEXICOGRAPHICALLY SMALLEST STATE 

WITHS1=S2=  , . . . ,S,- l=OANDS,=l? 

YES NO 

- 

SMALLEST STATE BEEN CONSIDERED? 
HAS THE LEXICOGRAPHICALLY 

TERMINATE 

I S d = l ?  

I S A Z F .  n(6;,6:,....61-N/ai+~]? [- 
NO 

TERMINATE 

DOES THERE EXISTA t, t 5 r-1. SUCH THAT FOR ALL i, i=l .  2.. . . , t: 
Z'-Zo>F.[A(81.6:  ,...,G!)-N/ai+l]-i.A? 

NO 
I 

YES 

7 S E T u = j + l  DDESt+j=r? 

TERMINATE 

I S E T u = j + t + l  I 

DETERMINE BOUNDING SOLUTION BU 

I F Z " < Z ~ , S E T Z O = Z ~ A N D B O = B U  

IFu=j+I,SETA=?r.-lr,.SETj=u. 









A dynamic programming formulation 

Assume that d k t  denotes the demand  for  item IC in  time period t 
which we assume  is  known  for  all  items  for  each of the N time 
periods. The present  problem is then  to determine the  quantity 2 k  

of each  item k to procure  for  each  time period t (assumed to be on 
hand at  the beginning of period t )  so as to fill all  demands d k t  and 
so as to minimize the  sum of the variable costs of carrying the 
items in  inventory  and the costs of ordering. 

optimal Letting I k t  denote the inventory of item IC at  the beginning of 
solution period t before the arrival of X k t ,  we have  for  period t :  

where I k O  is the initial  inventory on hand  at  the beginning of the 
planning  period. As an extension of the single-item case reported 
by  Wagner  and  Whitiqs  the  functional  equations for the minimal 
cost policy in  the  multi-item case can  be  written as: 

M 

f t ( I l t ,   I 2 t ,  . - a ,  I M t )  = min [E i k I k t  + 6 ( x k t ) ' S k  

x k , t  2 0, 
I k t  -!- % k t  2 d k t  

k= 1 

k = 1, f * . , M  

+ F . 6 * ( x 1 t ,   x 2 t ,  * * * ,  X Y t )  

+ f t + l ( I l t  + x l t  - d l t ,   I 2 t  + ~ 2 t  - d 2 t ,  * .  ., I M t  + X M ~  - d M t )  1 
fort  = 1 ,2 ,  ...,A7 - 1 ;  

and 
r~ M 

if x k t  = 0 

and 

6 * ( x l t ,   X Z t ,  * ", X N t )  = 
0 if x k t  = 0 for  all k 
1 otherwise 

The  quantity f t ( l l ,  12t, . . -, I M t )  represents the minimum total 
cost to be  incurred  in  periods t, t + 1, . . . , N when period t begins 
with  inventory balances I l t ,  I z t ,  . e ,  I"+ t ,  and I M ~  on  hand,  and 
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when an optimal policy for  periods t ,  t + 1, . . ., N is e m p l ~ y e d . ~  
Starting  with fN and  evaluating recursively the functions fN, f N P 1 ,  
. . . , f 2 ,  f l ,  an optimal  solution becomes determined when the com- 
bination of inventory  balances I l l ,  1 2 1 ,  e - 1 ,  I M 1  has been con- 
sidered. 

When,  in  practice, starting inventories are  netted successively 
against  demands for period 1, period 2,  and so on-so that  in  the 
problem  formulation I k O  = 0 and all  demands d k t  represent de- 
mands  net of initial inventories-computation can  be  reduced con- 
siderably  as  a consequence of  a theorem  proved  by  Wagner  and 
Whitin8  for the single-item problem. This  theorem  states  simply 
that in  searching for an optimal  solution it is unnecessary to con- 
sider  for  any item  in  any  time period a case in which both  inventory 
is brought  forward  into the period and  an  order is placed for the 
period,  i.e., there exists an optimal  solution  in which I k t ' x k t  = 0 
for all k and  all t .  As an  important consequence of this  theorem,  an 
optimal  solution exists in which  for  all  items IC and all time periods t :  

x k t  = 0,  or d k j  for some r ,  t I r 5 N . 
Therefore,  in period t only ( N  - t + 2 )  values of  I k t  need be con- 
sidered for  each item k .  Hence,  for M items there  are ( N  - t + 
states  to be  evaluated at  each  stage t. 

For illustration, we compute the optimal  solution  for the ex- 
ample of the previous  section with four time periods. For item 
1 we have dl1 = dl2 = d13 = d14 = 35; il = 4, and s1 = 200; 
for item 2, dz l  = dZ2 = d23 = d24 = 150, i 2  = 5, s2 = 200; and 
finally, we have F = 280. Table 13 shows the computational 
results. For each period t ,  we list ( N  - t + 2 )  states  as defined 
by the pair of inventory  balances ( I l t ,  I z t )  on  hand at  the begin- 
ning of the period. For each  such state in the problem, the  table 
shows the optimal  order  quantities zlt  and xZt for that period to- 
gether with  the minimum cost f t ( I l t ,  I z t )  to be  incurred  for the 
remaining time periods when an optimal policy is employed. 

To determine the entries  in Table 13, we begin with period 4. 
Since, by  Equation 1, 1 3 4  + x k 4  = d k d  and,  by  the Wagner-Whitin 
theorem, x k  t .  I k  = 0, there  are  two possibilities to be considered for 
each  item k :  I k 4  = 0, x k 4  = d k 4  and 1 8 4  = d k 4 ,  x k 4  = 0. For two 
items,  therefore, 22 states  are  to be  evaluated  according to: 

the values of which are shown  in Table 13. For instance,  for 
114 = 0 and I Z 4  = 150  we have f(0, 150) = 0 + 5(150) + 0 + 
200 + 280 = 1230. 

Next, period 3 is considered. For each  item k, the initial in- 
ventory balance Ik3  should  be zero, or sufficient to cover the de- 
mand for period 3, dk3, or sufficient to cover the demand for both 
periods 3 and 4, d k 3  + dk4; therefore 32 states  must be  evaluated 
for period 3. For all states  with Ik3 > 0, we have  immediately  that 
xk3 = 0. If both I I3  > 0 and I23 > 0, we then  have simplyf3(113,123) 
= i1I13 + i d 2 3  + f 4 ( 1 1 3  - d13, I Z 3  - d23). For instance, for113 = 35 

r 

j =  t 

f(I14, 1 2 4 )  = i d 1 4  + i d 2 4  + 8(x14)81 + 8 ( X 2 4 ) s Z  + 6*(x14, x 2 4 )  * F,  
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The ordering of item 1 every  other period and  item 2  every summary 
period for an even  number of periods N was also the optimal comment 
policy as  determined  with  the  direct  algorithm. However, the  total 
cost determined  by  the  two methods differs, since in  the  dynamic 
programming  algorithm there is no reflection in  the  total cost of 
the inventory cost incurred  in period t for the quantities d k t ,  

k = 1, 2, . a ,  M .  When  these  costs are represented  as ik.dkt/2 as 
in  the  static model, total cost is the same  for both  methods. 

In  practice, the size of problems  for which this dynamic  pro- 
gramming  formulation is useful may be rather limited since the 
total  number of states S to  be  evaluated increases ratidlv  with 
both N and M :  S = 1 + ( N  - t + 2 ) M  = cy=l t M .  For 
example, with a  planning horizon of 12 periods there  are, for two 

A~ .I 

items, S = 506 states;  upon increasing the  number of items to 5, 
S soars to 381,876 states. In any case, however, the decision 
ultimately  rests  on  a  comparison of the expected benefits to  be 
gained  from  a  more globally optimum solution and  the  added 
problem-solving effort to  be expended in  obtaining  it. 
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2. A  number,  for example, yielding a convenient review period for items. 
As N is increased for a given planning horizon, we increase the number 
of prospective  opportunities for reordering and  thereby increase the pros- 
pects for a solution with lower total costs. However, a t  the same time we 
also tend  to increase the problem-solving effort required to solve the 
problem, so that a balance between the two must  be  struck. 

3. A variation of this problem with a continuous  planning horizon of infinite 
duration  has been reported by  E.  Naddor  and S. Saltzman,  “Optimal 
reorder periods for an  inventory system with variable costs of ordering,” 
Operations  Research 6, No. 5, 676485 (September-October 1958). They 
present an approximate  solution for the case wherein an order is to be 
placed regularly with  the vendor or plant every t years and  item k is to 
be requisitioned every X k t ,  where x k  is some positive integer. By com- 
parison, in  the present  algorithm each item k is requisitioned regularly 
every b k  periods, but  the  time between orders placed on the vendor need 
not be regular. 

4. In  the  event q k ( a i * )  = qk(&) = min q k ( a t )  either of the values ai 

or a; may  be chosen for bk‘ since they yield identical cost qk(&,) and 
since in no way is the resulting  solution B’ itself used in generating sub- 
sequent states. 

5.  An exception to  this procedure occurs when, to conform with  state 
(61’, &‘, . . ., & r ) ,  all &* are transformed to zero by means of Equation 5 
for which &‘ = 0, and  there results a 6k = 0 for some k such that &’ = 1. 
In  every  such case there exists another  state in the  table  with 6i” = 6i’ 
for all i # k and 8k“ = 0, and with E(&’’, 62”, . . ., &”) < A(&’, &‘, . . e ,  &’) 
(otherwise the present state would not  be distinguished and  the exception 
would not arise). Since upon ultimately transforming the W as required 
to conform to  the &” of this  other  state,  the resulting  values of the bi 
will necessarily be  the same as those just determined for state 

[ t/a; - 11 
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(&’, &’, . . . , a?’), it follows that Z(bl”, bz“, . . ., b ~ ” )  < Z(bl‘, bz‘, . . . , b ~ ’ ) .  
Therefore whenever this exception occurs we simply locate the  state 
(&”, &“, . . ., &”) in the  appropriate table, evaluate Z(bl”, bz’, . + . , b ~ “ ) ,  
and proceed to  the evaluation of the remaining states, giving no further 
consideration to  state (&’, 62‘) . . ., &’). 

6. This condition is satisfied for  many cases of practical  interest, including, 
for example, each of those given in  Tables 3 through 8. However the con- 

case N = 323 and LY = 1, 17, 19, and 323. 
7. From  Table IV  of Reference 3. The problem for which they employ the 

data differs somewhat  from that being considered here. 
8. H. M. Wagner and T. M. Whitin, “Dynamic version of the economic 101 

size model,” M a n a g e m e n t   S c i e n c e  5,  No. 1, 89-96 (October 1958). 
9. In these cost expressions inventory carrying costs for period ( t  - 1) for 

item k are represented as i J k t ,  being based only on the balance  on hand 
at   the end of the period. This  understates  the carrying cost for the period 
by  the cost incurred for  the  quantity d k t  supplied during  the period. How- 
ever, this cost is fixed, regardless of ordering policy, and hence need not 
be explicitly represented  in the cost expression. 

10. As can be seen from the table, had  the number of periods N been odd 
e.g., 3, 5, . . ., item 2 would still be ordered each period; item 1 would be 
ordered  every  two periods except for one arbitrary period when only a 
quantity sufficient to cover the demand  for  a single period is ordered. 

. .  

Appendix 

Proof of Condition 6 

Let Bj-’ and Bi, s < j ,  be any successive bounding  solutions in 
any  problem for which ((Yk+l - a k )  2 ( a k  - a k - 1 )  for  all 
k = 2, 3, . . ., r - 1. If aj - a j - 1  2 F [ E ( & ~ ,  6 2 i ,  . ., 6 2 )  - 
N / C ~ ~ + ~ ] ,  then  it is unnecessary to explicitly  investigate  states 
with 6 1  = a2 = . . - = 6i = 0. 

For bounding  solution Bj, the  total cost is ZI = sj + 
F . % ( l i l j ,  & j ,  . . . , &i), and for any solution B* = (bl*, bz*, . . , b M * )  

with bk* 2 av for  all IC, any v > j ,  Z* = Ck q k ( b k * )  J 

F .E(&*, 82*, . . ., 6,*). Since x k  q k ( b k * )  2 av and E(&*, 82*, . *, 6: 
2 N/aV for all B*, with iji* = 0 for all i < v and 6,* = 1, %* = 
av + N / a v  constitutes  a lower bound on Z*. Since Zo 5 Zi  and 
$* 5 Z*, if Z j  5 2*, then Zo 5 Z* and  no  solution B* exists 
which is  preferred to Bo and therefore need be  investigated.  Upon 
substituting for Zi  and 2*, rearranging  terms  and expanding, the 
condition Zi 5 2* can  be  written: 

(a, - Tv-l) + ( a v - 1  - a,-2) + * * * + (7rj+l  - 7rj) 
2 F ( E ( G ~ ~ ,  62i ,  . . . ,62) - N / a i + 1 )  + F(N/aj+l - N/ai+2) (i) + * . . + F(N/ol,-l - N/a,) 

To prove  condition 6, it will be  shown (a) that (m+l - T k )  

2 ( T k  - ak-1 )  for all k ;  (b) that & j ,  . . ., 6, j )  - N / a j + 1 )  

2. ( N / a j + l  - N/aj+2) ; and (c) that (NIak-1 - N / Q )  2 
( N / ( Y k  - N / a k + 1 ) .  Then when (aj - ~ j - 1 )  2 F .%(61j,  6 2 j ,  * e ,  S V i )  
- N / ( Y ~ + ~ ,  inequality (i) is satisfied so that Zo 5 Z*, and hence B* 
need not be investigated, as asserted in condition 6. 
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I 

Beginning with (a) we first  prove the following inequality: 
If ( a t + ,  - at) 2 (at - at-l) for a11 t = 2 , 3 ,  . . a ,  r - I 
then QJ(~+I )  - 2 qj(ak) - q j ( ( ~ ~ - ~ )  for  all k > s (ii) 
where qj(as) = minu { qj(au) 1, a l l j  = 1,2, . . ., M 

Suppose for some k and j ,  q j ( a k + l )  - q j ( a k )  < qi(ak) - q i ( ~ k - l ) .  
Upon substituting ( N d j i , a / 2  + s f  .N/a) for ai(.) in each term  and 
rearranging, this becomes : 

[Ndj i j /2  - NSj/W/-%+d[(ak+l - a k )  - (Lyk - a k ” 1 ) ]  (iii) 
< NSj[(ak - a k - l ) / ~ k l [ ( ~ k - l  - a k + l ) / L y k - I L y k + l ]  

If we denote by A2qj(a) the second difference of qj(a) for any  item 
j and cycle time a, then A2qj(a)  = q j (a+2)  - 2qj(a + I) + qj(a) 
= 2NSj/[a(a + l)(a + 2)]  which is  always positive. Therefore 
for  all k 2 s, q j ( a k + l )  - q j ( ( Y k )  2 0. Upon  substituting 
N d j i i a / 2  + sj - N / a  for qj(a) as  above  and rearranging, this in- 
equality becomes 

[ N d l i j / 2  - N S j / Q k f f k + l ] [ f f k + l  - 2 0 
from which it follows that [Ndjij /2 - N S j / a k ~ k + l ]  2 0 since 
[ a k + l  - a h ]  > 0. Together  with  the  assumption  that ( ‘ Y ~ + ~  - ak) 
> ( a k  - a k - 1 )  this implies that  the left hand  side of (iii) is  there- 
fore never  negative. On the  other  hand, since atC1 > a t  for  any t ,  
the right  hand side of (iii) is always  negative.  Therefore (iii) can 
never hold for  any k and j ,  contradicting the assertion qj(ak+l) 
- q j ( a k )  < p j ( a k )  - q j ( a k - I )  for  some j and k > s, thereby  estab- 
lishing  (ii). With  the help of (ii) the following inequality  can now 
be established : 

If (at+l - a t )  2 (at - at-l) for  all t = 2, 3, + -, r - 1, 
then qj(bjk+l) - qi(bp) 2 p j ( b j k )  - ~ ~ ( b ~ k - 1 )  for all (iv) 
k and j .  

Since bjP = max [a,, aP] where qj(a.) = minu (qi(au) 1,  for  all p ,  
3jk++’  = bjk = bjk” for  all k 5 s - 1, and  strict  equality  results 
n (iv). For k = s, (iv) becomes qj(a,+l) - qj(as) 2 0, which will 

Always be true in light of the positive second difference of qj(a). 
And finally, for k > s, (iv) becomes q j ( ~ k + l )  - qj(ak) 2 
q j ( a k )  - q j ( a k - 1 )  which is true by (ii), thus establishing  (iv). We 
now establish  (a),  as was the initial  objective: 

If (at+l - a t )  2 (at - at--l) for  all t = 2, 3,  - . a ,  T - 1, 
then (?Tk+l - T k )  2 ( T k  - 3Tk-1) forallk  (a> 

Substituting rUr = qi(bjw) for w = k - 1, k ,  and k + 1, 
and  rearranging  terms, (a) can  be  written 
M c I[ai(bj”+’) - nAbi”> - qAbj”> - q i ( b j ” - l ) l ]  1 0  

j= 1 

which is necessarily true since by (iv)  every term  is nonnegative. 
Next consider (c): 

If at+l - a t )  2 (at - at-l) for  all t = 2 ,  3, -, r - 1, 
then ( N I a k - 1  - N / a k )  2 (N/ak - N / L Y ~ + ~ )  for all k ( 4  
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