The Part Period Algorithm discussed in Part I is compared with
optimal solutions, determining the maximum deviations possible.
Optimality of the algorithm is established for the case of conslant
demand.

Performance characleristics are compared with those of the Least
Unit Cost algorithm.

An economic lot-sizing technique

II Mathematical analysis of the part-period algorithm

by A. G. Mendoza

The purpose of this paper is to analyze the solution of the Part
Period Algorithm (pPa) to the economic lot-size problem with
known future demands as presented by J. J. DeMatteis in Part I
of this paper. Our model assumes that the manufacturing (or pur-
chasing) cost function is a straight line with positive setup (or
ordering) cost and non-negative slope; this cost function and the
unit inventory holding cost are time invariant.

The analysis is directed primarily at comparing the ppa solution
versus optimal solutions as, for instance, the Wagner-Whitin
solution.! Optimal algorithms yield results that are better up to a
certain point. However, the fact that such algorithms lean heavily
on the size of the horizon in a given problem makes them vulner-
able to any extension or reduction of that horizon, even by one
time period. Thus, such algorithms are not readily adaptable to
“open-ended”’ usage, whereas PPA is naturally geared to such usage.

Tor the case of constant demand, this paper establishes the op-
timality of Ppa. For the case of non-constant demand, the maximum
deviations of ppa from the optimal solution are determined. Also
included is an analytical comparison of ppa with the Least Unit
Cost algorithm? which, although not necessarily optimal, is quite
elegant and economical.

The Least Unit Cost algorithm leans heavily on the demand of
the already established setup period in order to determine the next
setup, and assigns decreasing importance to the demands as they
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oceur successively in future time periods. In addition, no weight is
assigned to the demand of the next setup period in reaching the
decision whether or not to set up in that period. PPa does not con-
sider the demand of the already established setup period, but as-
signs increasing importance to successive demands, ending with the
demand of the next setup period.

The term solution will refer to a collection of setups which, ac-
companied by the corresponding production (or order) quantities,
satisfies a given demand vector: (dy, - - -, d,). An optimal solution
is a collection of setups in which the corresponding production
amounts satisfy the demands, and the total cost of production or
purchasing (including inventory holding costs) is a minimum.

We consider a time horizon that covers time period 1 through
the time period immediately preceding the last setup of the ppa
solution, given that the last setup is not the first or second one;
i.e., we only analyze problems where the ppa solution has three or
more setups, and we only consider the time horizon covered by all
but the last setup. It is trivial to show that the ppa solution for
the time horizon covered by the first setup is an optimal one.

Optimality for constant demand

We now compare ppa with optimal solution algorithms, assuming
that all demands are equal. It is shown that no algorithm performs
better than pra, thus proving that ppa is an optimal solution
algorithm for the specific case of constant demand.

Let the adjusted time horizon be N, and let P be the number
of setups of the pra solution.

First we prove that for any given solution with @ setups (here-
after called the @ solution) it is optimal to have each setup satisfy
at least the demand of the time period where it occurs, plus the
L — 1 immediately successive demands, and at most satisfy the
demand of the time period after the L — 1 immediate successors;
where

2]

Le., the greatest integer in N/Q, and consequently

N=IQ+ea, a=01--Q~1

We want to prove that, given @ setups, it is optimal to have
(@ — o) setups, each of which satisfies L demands (from the time
period in which the setup occurs through the period L — 1 units
later), and each of the remaining o setups satisfies L + 1 demands
(through the Lth period after the setup).

For any @ solution, the number of periods that contribute to the
inventory holding costs is: N — @ = (L — 1)@ + a. Thus, if
we let z;¢d = 1, - -, @) be the number of demands that are
satisfied by the ¢th setup and which contribute to the inventory
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holding costs (i.e., x; does not count the time period during which
the 7th setup occurs), then we want to minimize the objective
function ’

3, zi(zi+ 1)

2
subject to three constraints:

Q
Z z;= (L —1)Q + o z; > 0and x; = integer.
=1

The answer to the above problem without the third constraint is
readily seen to be z; = z3 = - -+ = zq. Now, as we do not allow
non-integer z.’s, and as the constraints are symmetric with respect
to the z/s, and the objective function is symmetrie, continuous,
and monotone (in each variable) in the region of interest, the
minimum is attained by letting (@ — «) of the z/s be equal to
L — 1, and the remaining « be equal to L. Thus, in what follows,
it is sufficient to consider those @ solutions which satisfy the above
requirements.

Nowlet P > Q = P — z, for x > 1. We shall show that the
ppA solution is more economical than the @ solution.

By assumption, we have N = KP, where each of the P setups
satisfies K demands. Also, N = L(P — z) + a, where 0 < a <
P — z — 1 and the P — z setups satisfy the requirements of
the first constraint above.

Thus

K<L=K+Y, Y>>0

Let S be the setup cost divided by the unit inventory holding cost.
Let Cp and Cp_, be the costs (in terms of inventory holding cost)
agsociated with each solution respectively, where

&ﬂ=SGhﬂﬂ+dBP—ﬂ££€jl+m4

K@;n}

Cp= SP+d[P

Consider the two cases
A Y =0
Then o = Kz, and

Cp—e — Cp = :zc!:dK2 - (S + dE(—K{—D—):l

=x|:d—lg(—K2—+1)-—S:|>0

KK +1)

) > Sandz > 1.

since d
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= — Sz + d[(P - x)Y<K -1+ ﬁi)

2
—EESD |t

Butas (P — 2) Y = Kz — «, then

Cros— Cp = — 8z + d(Kz — a) (K — 1)

Y+1

+d(Ke — @)

KEK-1)

+da(K+Y) —dz 2

o d KEAD) o]y g YL

Y+1
2

and as ¥ > 1, then
KK+7Y)
d 2

since x > 1, da >0

K(K+1)
2

Nowlet P < Q = P + z, forz > 1. As before

>d > 8. Q.E.D.

N=KP, and N=L{P +2) +a 0LalP+ae—-1

We note that K = L implies « = —Kz < 0, which is impossible;
thus K > L =K — YforY > 1.

Also

L(L — 1)
2

Crie = 8P 4+ z) +d(P + 2) + dolL,

and

KK -1)

Cp = SP + dP 5

Thus,

Cprw — Cp = xs+d[x%— py2Lt¥-1 —I—aL]

since K=L+7Y
L(L — 1)
2

2L+ Y -1
2

since PY =+ Lz

=xS+d|:x

+ aL:I

— (a4 Lz)

A. G. MENDOZA




L(L+Y):|_ Y -1
—d ) ad 5

KK — 1)
—d 2 :I
Yy —1
2

(Kx — a)

+d Y;1 [Y(P + z) — 2a]

since oa=Y(P+z)— Kz
s[5 -0 KO0

Yy -1
2

since a<P+z-—-1

o at0]

+d [Y(P+z)—2(@+z—1)]

i =L+ -2120

KK-1)
2
z>1, d>0 and Y 2>1.

Q.E.D.

since S >d and

Deviations for non-constant demand

We now compare ppa with optimal solution algorithms for a case
of non-constant demand.

Demand patterns for which ppa produces strings of two or more
consecutive setups will not be considered, since in those cases there
exist optimal solutions with setups in the same time periods as the
second, third, ete., of each ppa setup string; thus the demands to
be considered are such that each ppa setup is followed by one or
more periods of positive inventory holding costs. Also, as ppa does
not recommend setups in periods of zero demand, we consider only
strictly positive demands (excluding zero).

The worst such demand pattern for ppa is:

Sl
dyp—1 =1, o = " (= integer)

where S’ is the setup cost, & is the unit inventory holding cost, and
k=12, ---, P. Note that h < &', because (1) there would be a
setup in every period if & > S§’, which we ruled out; and (2) if A =
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S’, the demand is constantly equal to 1, which contradiets our
assumption of non-constant demand. The horizon is of length 2P,
with P > 2.

The above demand pattern is ‘“‘worst for pPA” in the sense that:
(1) the inventory holding costs have been accumulated in the small-
est number of time periods (i.e., in P periods), and their totality is
equal to the total cost incurred in setups; and (2) the sum total of
demands in the ppA setup periods is minimal, i.e., P units.

The PPA setups occur in the time periods tx = 2k — 1, fork = 1,
2, ..., P. The cost, C, of this solution is:

C = PS' + PS' = 2P§'
i.e., P setups and P periods where the inventory holding cost in each
such period is (S8'/h)h = 8.

There is an optimal solution, u, with setups ip time periods y; = 1,
w1 = 2k, for k = 1, 2, ..., P. The cost, C, of such a solution
will be:

C=F+1DY+@-1h

ie., P + 1 setups and P — 1 time periods, where the inventory
holding eost in each such period is 1-4 = h. Thus,

C—C=2P8 —[(P+1)S 4+ (P —1Dhl = (S —h)(P —1)

and, as there are P setups in the ppaA solution, we have

c-2C P-1
=8 — h) ——
( ) >

P

This equation gives the upper bound for the extra cost per
PPA setup period over the optimal-solution cost for the worst pos-
sible case of non-constant demand. This upper bound indicates
that ppa provides a comparatively good solution for non-constant
demand patterns, especially if Ppa’s ease of computation is consid-
ered.

Comparison with Least Unit Cost

A comparison of ppa with the Least Unit Cost (Luc) algorithm
provides some interesting insights into the meaning of the per-
formance results shown in Part I of this paper.

We let S be the setup cost divided by the unit inventory hold-
ing cost, and d,, the demand in the mth time period (m =1, -- -,
M). We assume that d, > 0 for all m. Now assume there is an
Luc setup in time period ¢ Then there will be an Luc setup in
period ¢ + k (with no setups between ¢ and ¢ + k) for the smallest
E(k = 1,2, - - -) such that the following two conditions are satisfied:

k—2 k—1

8+ _Zoj.dH—j S+ ,Zoj'dtﬂ'
i= i=
> (1)
k—2 k—1
2 devs 2 du;
0 =0

i=
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and

k—1 k
S+ Z{;j'dtﬁ S+ _Z;j'dt+i
j= i=
<
k—1 k
2 e 2{} dey
J=

Jj=0

where for k = 1:

k-2

k-2
_Z]"dt+i = EO deyj = 0.
j=

7=0
We now let

k—2

N = S + ‘Zoj'dH_j
j=

and

k—2

Dis 2 T du;
=0
From (1) we obtain
(k — )Dr—s < Ni—
and from (2)
Ni2 < kD2 + dei
Thus
(k — 1)Di2 < Nj—o < kDy_2 + diyi
But as

k
Nia=8+ (k—2)Di2— 2 Dis

z=3

substituting in (3):

k — 1)Dy—z — I:(k — 2)Dp_s — és: Dk—z] <8

k
< kDis + dipi1 — [(k — 2)Dj2 — Z; Dk—z]

and simplifying terms:

k k
Z Dk_;; < S S E Dk—:c
z=1

=2
that is
k—2 k—2 k—1

Thk—1—du; <8< ]Z; k—1—=j5)de; + § din;  (4)

J=0
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Now assume there is a PPa setup in time period ¢. There will be a
pPA setup in time period ¢ + k (with no setups between ¢ and
t + k) for the smallest & (k = 1, 2, ---) such that:

k—1 k—1

21: Jdu; <8< ledtﬂ + kd oy 5)
j= =

where, for k = 1,

k—1

¥ jdurs 20
P

Thus, starting with ¢ = 1 (assuming that both Luc and pra have
a setup in the first time period), we see that in determining the
occurrence of the second setup, the algorithms behave as follows:

The Luc algorithm, in effect (see Equation 4), assigns to each
demand an integer weight factor that is inversely proportional to
the time span between the present setup period and the period in
which the demand occurs; the first demand so weighted is that one
occurring in the present setup period (and consequently carrying
the largest weight factor), and the last one (with a factor equal to
1) is the one immediately preceding the next recommended setup.
After each intermediate iteration, the weight factors are increased
by 1.

The pra algorithm assigns (see Equation 5) integer weight
factors that are equal to the time span between the present setup
period and the period in which the demand occurs; thus the demand
occurring in the time period of the present setup has a factor of 0
assigned to it, and the last demand (with consequently the largest
factor) to be so treated is the one occurring in the period of the next
recommended setup. Once a demand has been assigned a weight
factor, the assignment becomes permanent through the rest of the
computations.
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