
The  Part Period  Algorithm  discussed in Part I i s  compared  with 
optimal  solutions,  determining  the max imum deviations  possible. 
Optimality of the algorithm i s  established for  the case of constant 
demand. 

Perjormance  characteristics  are  compared  with those of the Least 
Unit  Cost  algorithm. 

An economic  lot-sizing technique 

11 Mathematical analysis of the part-period  algorithm 
by A. G. Mendoza 

The purpose of this  paper is to analyze the solution of the  Part 
Period  Algorithm (PPA) to  the economic lot-size problem with 
known future  demands  as presented by J. J. DeMatteis  in  Part I 
of this  paper. Our model assumes that  the manufacturing (or pur- 
chasing)  cost  function is a straight line with positive setup (or 
ordering) cost and non-negative  slope; this cost function  and the 
unit  inventory holding cost are  time  invariant. 

The analysis is directed  primarily a t  comparing the PPA solution 
versus  optimal  solutions  as,  for  instance, the Wagner-Whitin 
solution.’  Optimal  algorithms yield results that are  better  up  to a 
certain  point. However, the  fact  that such  algorithms  lean  heavily 
on  the size of the horizon in a given problem makes them vulner- 
able to  any extension or reduction of that horizon, even by one 
time period. Thus,  such algorithms are  not readily  adaptable to 
“open-ended” usage, whereas PPA is  naturally  geared  to  such usage. 

For the case of constant  demand,  this  paper establishes the op- 
timality of PPA. For the case of non-constant  demand, the maximum 
deviations of PPA from the optimal  solution are determined. Also 
included is an analytical  comparison of PPA with the Least  Unit 
Cost  algorithm2 which, although  not necessarily optimal,  is quite 
elegant and economical. 

The Least  Unit Cost  algorithm leans  heavily on  the  demand of 
the already  established setup period in  order to  determine the next 
setup,  and assigns decreasing  importance to  the demands as they 
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since a = Y ( P  + x) - Kx 

x 2 1 ,  d > O  and Y 2 1 .  

Q.E.D. 

Deviations for non-constant  demand 

We now compare PPA with  optimal  solution  algorithms  for  a case 
of non-constant  demand. 

Demand  patterns for which PPA produces strings of two or more 
consecutive setups will not be considered, since in those cases there 
exist optimal solutions with  setups  in the same  time periods as  the 
second, third,  etc., of each PPA setup  string;  thus  the  demands  to 
be considered are  such that each PPA setup  is followed by one or 
more periods of positive inventory holding costs. Also, as PPA does 
not recommend setups  in periods of zero demand, we consider only 
strictly positive demands (excluding zero). 

The worst  such  demand pattern for PPA is: 

where S' is the  setup cost, h is the  unit  inventory holding cost, and 
k = 1, 2,  . . . , P. Note  that h < S', because (1 )  there would be  a 
setup  in every period if h > S', which we ruled out;  and ( 2 )  if h = 
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X' ,  the demand  is  constantly  equal to 1, which contradicts our 
assumption of non-constant  demand. The horizon is of length 2P, 1 
with P 2 2. 

The above  demand pattern is "worst for PPA" in  the sense that: 
(1) the inventory holding costs have been accumulated  in the small- 
est  number of time periods (i.e., in P periods), and  their  totality is 
equal to  the  total cost incurred in  setups;  and ( 2 )  the  sum  total of 
demands in  the PPA setup periods is minimal, i.e., P units. 

The PPA setups occur in the  time periods t k  = 2k - 1, for k = 1, 
2, - - . , P. The cost, C, of this solution is: 
c = PX' + PS' = 2PS' 
i.e., P setups  and P periods where the  inventory holding cost in each 
such period is (S'/h)h = X'. 

There  is an optimal  solution, 1.1, with  setups in time periods 1.1~ = 1, 
pk+l = 2k, for k = 1, 2, a ,  P. The cost, e, of such  a solution 
will be: 

, 

e = ( P  + 1)s' + (P  - 1)h 
i.e., P + 1 setups  and P - 1 time periods, where the inventory 
holding cost in each such period is 1 .h = h. Thus, 
c - e = 2PS' - [(P + 1)s' + ( P  - l)h] = (S' - h)(P - 1) 

and,  as  there  are P setups  in  the PPA solution, we have 

This  equation gives the upper  bound for the  extra cost per 
PPA setup period over the optimal-solution cost for the worst pos- 
sible case of non-constant  demand.  This  upper  bound indicates 
that PPA provides a comparatively good solution for non-constant 
demand  patterns, especially if PPA'S ease of computation  is consid- 
ered. 

Comparison with Least Unit Cost 

A comparison of PPA with  the Least Unit Cost (LUC) algorithm 
provides some interesting  insights  into the meaning of the per- 
formance  results shown in  Part I of this  paper. 

We let X be the  setup cost divided by the  unit  inventory hold- 
ing cost, and dm the demand in  the  mth  time period (m = 1, . . ., 
M ) .  We assume that dm > 0 for all m. Now assume there  is an 
LUC setup  in time period t. Then  there will  be an LUC setup  in 
period t + k (with no setups between t and t + k )  for the smallest 
k(k = 1,2,  . ' .) such that  the following two  conditions  are satisfied: 

k--2 k- 1 

44 A. G .  MENDOZA 



k-1 k .. . 

C d t + j  C dt+, 
j= 0 j =  0 

where for k = 1 :  

k"2 k--2 
A 

C j . d t + j  = ,x d t + j  = 0 .  
j=O ,=O 

We now let 

N k - - 2  2? S 4- j * d t + j  

and 

k- 2 

j=O 

A 
k"2 

D k - 2  = C d t + j  
j= 0 

From ( 1 )  we obtain 

( k  - 1 ) D k - - 2  < N k - 2  

and from (2) 
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