As a lot-sizing technique for minimizing the sum of ordering and in-
ventory costs, the algorithm described is based on some stmple dimen-
stons. By dwviding the ordering and setup costs by the inventory holding
costs per part per time period, the ordering costs are expressed in part-
periods. This value ts used to determine lot size.

First a simplified version is shown for demand sets that do not vary
widely between periods. For large variations in demand, significantly
greater overall accuracy is achieved with simple look-ahead and look-
back tests which are also discussed.

Two of the more important economic lot-sizing algorithms are compared
with the Part Period Algorithm.

An economic lot-sizing technique

I The part-period algorithm

by J. J. DeMaftteis

The objective of inventory management is to maintain optimum
levels of inventory consistent with customer demands and plant
capacity. Stated simply, management must determine what to
order, when to order, and how much to order. This is not an easy
task, for there are many conflicting goals. Nevertheless, manage-
ment must inevitably make a decision to order what it considers to
be an “economic”’ quantity.

The determination of an economic ordering quantity is common-
ly referred to as “lot-sizing.” Calculations of the size of an order
result in minimizing the sum of the ordering costs (including setup,
if any) and the inventory holding costs.

The purpose of this part of the paper is to describe a simple
economic lot-sizing algorithm and to compare it with two other
techniques. In Part II, A. G. Mendoza presents a mathematical
analysis of this algorithm.

The algorithm

The part-period concept is based on the following simple considera-
tion: if one part (i.e., one unit) is held in inventory for one period,
it incurs a particular holding cost; if it is held two periods, it incurs
twice the holding cost. Two parts held one period incur the same
cost as one part held two periods, and three parts held two periods
incur the same cost as two parts held three periods, ete. If the num-
ber of parts held in inventory are multiplied by the number of
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periods over which they are held, the dimension “part-period” is
derived. Expressing the ordering costs in this new dimension, a
simple and effective lot-sizing technique emerges.

By dividing the ordering costs (including setup, if any) by the
inventory holding costs per part per period, ordering costs are ex-
pressed in part-periods. If, for example, the ordering cost for any
number of pieces of a certain part is $50 and the inventory holding
cost is $0.50 per unit per period, we have a part-period value of
50,/0.50, or 100.

The term part-periods, in this instance, is analogous to “man-
days.” If a particular job costing $200 for labor may be performed
by one laborer working alone, or any number working in various
combinations, and if labor costs are $20/man/day, the value of the
job may be expressed in man-days: $200/20 = 10 men for one day
or 10 man-days.

Once ordering costs for each part number are converted to part-
periods, this simple calculation need be done again only if there is a
change in material and labor costs, setup, inventory holding, ete. A
slight modification of the Part Period Algorithm (PPA) permits use
of a different holding cost for each period. However, this feature
is not considered of sufficient value to incorporate it in the algo-
rithm.

A simplified version of part-period will be described first. This is
also a necessary part of a more accurate version described later. The
simplified version is very effective for all except the most demand-
ing circumstances, and also outperforms the Wagner-Whitin
algorithm! in the short-horizon environment.

Assume the part-period value of a particular part number to be
100, and the demand by periods to be dy, ds, ds, . . ., d.. Assume also
that no holding costs are incurred for items consumed in the period
in which they are ordered. To determine the reorder point and the
reorder quantity, we proceed as follows:

(0)dy + (Dde + (2)ds + B)ds + . ..

until the value of this expression exceeds 100. The setup should be
made in the period that causes the value to exceed 100. The reorder
quantity is then the sum of the demands of the periods covered by
the order. A specific example for computing economic lot sizes is
shown in Table 1 and now discussed.

Assume the setup costs to be $50 and the inventory holding
cost $0.50 per part per period. The part-period value of this item
will be 50/0.50 or 100. This value is maintained in the part-
number record.

A setup is made in Period 1, and we wish to determine the quan-
tity to be manufactured. The demand of 20 units for Period 1 is
consumed in the same period in which it is produced and will there-
fore incur no part-period costs. The demand for Period 2, if ordered
in Period 1, is held for one period, incurring a holding cost of
1X20 or 20 part-periods. Therefore, 20 is deducted from the 100
part-periods available for the item, leaving a balance of 80 part-
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Table 1 Part-period lot-size calculation

Period 1 2 3 4 (4) 5 6 Y4 8

Demand 20 20 25 35 (35) 30 10 10 15

Part-Period
Value 0 (1X20) (2X25) (3xX35 (0) (1x30) (2xX10) (3X10) (4X15)

Cumulative
Part-Periods 20 70 175 0) 30 50 80 140

Setups X (X) X

Cumulative
Cost* 135 150

Assumptions:
Re-order cost is $50.00
Inventory holding cost is $0.50/unit/period

* Computation of cumulative costs are not required by ppa, however they are shown for comparison with
other algorithms described.

periods. The demand for Period 3 is held two periods, incurring a
cost of 2X25 or 50 part-periods, leaving a new balance of 30
part-periods. The part-period requirements for Period 4 (which is
3 X 35) exceed the balance of 20 available, thus signaling the need
for a setup in Period 4. The first ordering quantity (placed in
Period 1) is 65, the sum of the demands for Periods 1, 2, and 3.

A second orderis placed in Period 4, and the ordering quantity is
to be determined. The demand for Period 5 is 1X30 or 30 part-
periods, substantially less than the 100 available. To the 30 part-
periods incurred in Period 5, we add 2X10 or 20, the part-
periods for Period 6, making a total of 50. Period 7 contributes
3X10 or 30 part-periods for a total of 80, and we note that we
have yet to exhaust the supply of part-periods. Finally, we try to
satisfy the demand for Period 8 (which is 4 X 15) and find the
supply inadequate. That is the signal for a new setup in Period 8.
We found the second ordering quantity (placed in Period 4) to be
85, and the number of periods covered are four. In the first setup,
65 pieces were ordered to cover three periods, and in the second
setup, 85 pieces were ordered to cover four periods. Thus, it may be
seen that part-period is a variable-order-quantity, variable-order-
point system which is providing the flexibility required for com-
puting economic lot sizes.

For demand sets that do not vary widely between periods, the
refined  simplified ppa version performs very well. However, where the
version  variation in demand is large, the refined ppA version provides sig-

nificantly greater overall accuracy and reduces or eliminates a
majority of the larger errors that creep into the simple version. This
is generally accomplished at the very modest cost of three addi-
tional computer steps per planning cycle. In the refined version,
PPA goes through exactly the same calculations indicated above for
the simple version. However, once the decision to set up has been
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Table 2 Look-ahead calculations

Period

Demand

Part-Periods

Cumul. Part-Periods
Tentative Setups
Tentative Cumul. Cost
Final Setups

Final Cumul. Cost

Table 3 Look-back calculations

Pertod 1

Demand 10
Part-Periods 0
Cumul. Part-Periods 0
Tentative Setups X
Tentative Cumul. Cost 100
Final Setups X
Final Cumul. Costs 100

made, it “looks ahead” at a minimum of two periods following the
tentative setup period to determine if it is faced with a large demand
in the immediate future. It also incorporates a “look-back” test,
which checks to see if the demand for the previous period is also
relatively very large. Thus, the look-ahead and look-back tests
avoid the costly mistake of remaining on one level with a mountain
of demand at either or both sides. Examples, summarized in Tables
2 and 3, will clarify this.

Assume $100 to be the setup cost and $1.00 to be the holding
cost per item per period. Then, the item part-period value is 100.
When the cumulative part-periods exceed 100, a setup is tentatively
recommended. Before accepting the decision as final, the look-
ahead feature is invoked as follows: The part-period value of Period
3 (namely 20) is compared with the demand for Period 4 (i.e., 90);
if it is equal to or less than this demand, the setup period is moved
ahead to Period 4. If it is not equal to or less than the demand for
Period 4, the original decision stands. In our example, it is clear that
the setup should be moved to Period 4.

The look-back test is illustrated in Table 3 (assuming the same
setup and holding cost as for the previous example). The demand
for tentative setup in Period 4 (d,) is compared with the demand for
the previous period (ds—1) as follows: If

2 dx S ds—l

the setup should be in the previous period. In our example, 2 X 10
is less than 40; therefore, the setup period becomes 3 rather than 4.
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Figure 1 look-ahead and look-back tests
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ds—-DEMAND FOR NEXT SETUP PERIOD UNDER CONSIDERATION

n —NUMBER OF PERIODS FOR WHICH INVENTORY HOLDING COSTS
ARE CHARGED IF PRODUCED IN THE CURRENT SETUP

The steps needed for a combination of the look-ahead and look-
back tests are illustrated in Figure 1. The look-back test is not in-
voked if the look-ahead test succeeds in moving the setup to a fu-
ture period. An optional, final refinement involves a check both
ways and, if demand d, is very low, swings to the higher of the two
high values. This is accomplished by comparing d,_; with d,;, and
selecting the one with the highest value.

In general, the combination of look-ahead and look-back tests
adds only three steps to each setup cycle, with an average of ap-
proximately 3.2 steps. Although the tests are not infallible, they
add greater precision in the real world of fluctuating demand. Cer-
tain combinations of demand also present problems to other al-
gorithms tested, including the Wagner-Whitin algorithm in the
short-horizon case.

For a horizon equal to one part-period planning cycle, part-
period is invariably optimal. For longer horizons, ppa yields sub-
optimal results; its precision variance, however, is so low as to be of
no consequence in a practical application. The advantages of this
simple algorithm are many: it is open-ended; that is, it performs as
well over short horizons as over long horizons. It is highly accurate

J. J. DEMATTEIS




for demands with large variations between periods, as well as for
those with very small variations; it is particularly outstanding in
the typical industrial environment where the demand may be
known, but only for a maximum of six or seven months. Finally, it is
inexpensive and quick to implement and maintain.

Comparison with other algorithms

A large number of economic lot-sizing techniques are available to
management, any one or combination of which may be incorporated
in an inventory control system. In choosing a lot-sizing technique,
the cost of applying the technique and its performance for certain
demand characteristics are the major considerations. Low-cost
items may be controlled by one technique, and those of higher cost
by another. Some of the considerations in choosing a technique, or
combination of techniques, are: the cost and time of applying the
algorithms; the demand range, i.e., the variation in demand from
period to period; the availability of a Iong-range forecast; and one’s
confidence in the aceuracy of the forecast. Two of the more im-
portant economic lot-sizing algorithms are now briefly described
and then compared with ppa. These two are generally considered
to be more accurate than the classic square-root formulas com-
monly used.

The Wagner-Whitin algorithm! is an ‘“exact solution” tech-
nique for known demands over a horizon equal to the life of the
item. Rather than to test every combination of either ordering or
not ordering in each period (which would require 2! tests), this
algorithm is able to achieve the same results in substantially fewer
steps. The actual number of steps required varies with the nature
of the demand (i.e., the particular manner in which it may fluctu-
ate), the ratio of the setup and inventory holding costs, and the
number of periods in the horizon. For short horizons, repeated ap-
plications of this algorithm result in solutions inferior to those of
PPA.

The major drawback of the Wagner-Whitin algorithm in com-
parison to paa is the relatively large number of calculations required
in a typical environment. The computational time is extremely sen~
sitive to the frequency of setups. Typically, from ten to thirty
times as many calculations are required for Wagner-Whitin as for
PPA.
The Least Unit Cost algorithm? attempts to compute for
various order sizes the costs per unit chargeable to setup and to in~
ventory holding and selects the minimum value. The following
demonstrates the procedure followed:

Period: 1 2 3 4
Demand: 20 20 25 35

Setup cost: $50; carrying costs: $0.50 unit/period
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Step 1

Unit cost for producing only the demand for Period 1 is the setup
cost plus zero carrying charges, all divided by the demand for
Period 1:

50 +0

= §2,
50 $2.50

Step 2

Unit cost for producing the demand for Periods 1 and 2 in Period
1 is the setup cost plus the product of the demand for Period 2,
the inventory holding cost per period, and the number of periods
that inventory is carried—all divided by the sum of the demand
for the periods covered:

50 + (20) (0.50) (1)
20 + 20

= $1.50

Since the unit cost at Step 2 is less than that of Step 1, an additional
step is taken:

Step 3
. 50 + 20 (0.50) (1) + 25 (0.50) (2) _
Unit cost = 20 & 20 + 25 = $1.31

The cost is still decreasing, so another step is taken:
Step 4

Unit cost =
= $1.38

50 + 20 (0.50) (1) + 25 (0.50) (2) + 35 (0.50) (3)
20+ 20+ 25+ 35

The cost at Step 4 is greater than that derived in Step 3. Therefore,
it is assumed that $1.31 represents the minimum cost, and a quan-
tity of 65 is ordered.

The lot-sizing algorithms were tested in two different environ-
ments. In the first environment, called known-demand, long-horizon
environment, the customer demand is known for a period of time
sufficient to cover three or more production or purchase orders (12
or more months, in our tests), and the demand does not change.
Also, no internal attrition (such as serap, losses, etc.) is permitted.
The interval of time covered by a production or purchase order is
referred to as a planning interval or cycle. This is to be distinguished
from the planning horizon which encompasses all periods for which
a demand is available, that is, for several planning periods, or possi-
bly, for less than one. It is also to be distinguished from the term
repetitive cycle which involves the placement of an order at fixed
time intervals. As the term planning cycle is used herein, successive
orders may occur at different time intervals.
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In the second environment, more realistic than the first, the de-
mand is known for an average of slightly less than two full planning
cycles (six monthsin our tests). Thisisreferred to as the short-horizon
environment. In this case, it was assumed that lot-sizing would be
necessary with each setup to accommodate possible changes in de-
mand during the second planning cycle, although in our tests no
changes in demand were actually made. The demand values used in
the known-demand, long-horizon case were also used in these tests, Mazimum
but the planning horizon was restricted to six months. Short-hori- Range of variation
zon tests were made for the Wagner-Whitin algorithm and pra demand from mean
only. The test results were as follows:

Table 4 Range groups

01-200
Part-Period algorithm Lowest cost 01-99
Wagner-Whitin algorithm 1.6 percent higher
(average of all samples)

100%
100%
75%
50%
33%
20%
10%

10-80
25-75
A basic assumption is made for a system employing the al- 30-60
gorithms described in this paper: a requirements planning sub-
system is installed which converts demands for finished products
by period to requirements for subassemblies and component parts
at all levels, and which nets the component part requirements
against inventory on hand and on order. When a requirement
exists within the replenishment lead time for a particular item,
an indication is made that an order is to be placed.
One hundred and two sets of random demand data over twelve  performance
to fifteen periods each were grouped by range in demand as shown  results
in Table 4. The distribution about the mean was uniform. Averag-
ing the results obtained for each of the seven demand groups pro-
duced the results of Table 5 in which the sums of the setup and in-
ventory holding costs are compared. The table gives an average of
all the demand groups, including low as well as high-value items in
each group.
The performance of the algorithms, using high-value items with
wide variation in demand, is shown in Table 6. These results were
obtained in the 01 to 99 group with a maximum variation from
the mean of 100 percent, and an average variation of 50 percent.
The performance of the algorithms varied according to (1) range
of demand, (2) maximum variation in demand between periods, and
(3) the frequency of setup (value of the item). In the known-de-
mand, long-horizon environment, Wagner Whitin always produces
a minimum cost solution. PPA is remarkably low in cost and stable

40-60
45-55

M W H R

Table 5 Cost comparison for known demand in long horizon environment

Percentage cost above
Algorithm best performer

Wagner-Whitin Lowest cost
Part-Period 0.5%
Least Unit Cost 5.59,
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Table 6 Cost comparison for wide variations in demand

Algorithms Performance

Wagner-Whitin Lowest cost
Part-Period 0.8%, higher cost
Least Unit Cost 21.3%, higher cost

Table 7 Cost comparison for extreme categories in percentage above minimum cost

Group 01-200 Group 46-65
(Average 5.9 setups/year) (Average 2.8 setups/year)

Wagner-Whitin 0.0 0.0
Part-Period 0.7 0.0
Least Unit Cost 16.4 0.2

in all categories; however, it, too, is influenced by the demand
characteristics. The wide variation in performance is shown by the
extreme categories of Table 7.

It is to be emphasized that the performance indicated assumes
that the actual demand pattern for the twelve-month horizon re-
mains precisely as originally forecast. If the demand remains the
same for the first planning cyecle only, the accuracy of the Wagner-
Whitin algorithm is affected, whereas the Part Period and Least
Unit Cost algorithms are not affected.

Conclusions

The Part Period Algorithm performs well in all environments, but
is particularly well suited for industries whose demand forecast ex-
tends for a limited number of periods, and for those whose forecast
is appreciably more accurate in the near future than for the more
distant future. In the short-horizon environment, ppA outperforms
the other algorithms tested. In addition, considerably few compu-
tations are required by the Part Period Algorithm than of the other
tested algorithms with comparable performance. In the ‘“known-
demand, long-horizon” environment, setup and holding-cost per-
formance with ppA is, on the average, approximately half of one
percent higher than minimum cost.
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