
A s  a lotsizing  technique  for minimizing the sum of ordering  and in- 
ventory costs,  the algorithm described i s  based on some simple  dimen- 
sions. B y  dividing  the ordering and  setup costs by  the  inventory  holding 
costs per  part  per  time  period, the ordering costs  are  expressed in part- 
periods. This  value i s  used  to  determine lot size. 

First a  simpli$ed version i s  shown  for  demand sets that do not  vary 
widely between periods.  For large variations in demand,  significantly 
greater overall accuracy i s  achieved with  simple look-ahead and look- 
back tests which  are  also  discussed. 

Two of the more  important  economic  lotsizing  algorithms are compared 
with  the  Part  Period  Algorithm. 

An  economic lot-sizing  technique 

I The  part-period  algorithm 
by J. J. DeMatteis 

The objective of inventory  management is to  maintain  optimum 
levels of inventory  consistent  with  customer  demands and  plant 
capacity. Stated simply,  management must determine what  to 
order, when to order, and how much to order.  This  is not  an  easy 
task,  for  there  are  many conflicting goals. Nevertheless, manage- 
ment  must  inevitably  make  a decision to order what it considers to 
be an “economic” quantity. 

The determination of an economic ordering quantity  is common- 
ly referred to  as “lot-sizing.” Calculations of the size of an order 
result in minimizing the  sum of the ordering  costs (including setup, 
if any)  and  the  inventory holding costs. 

The purpose of this  part of the  paper is to describe a  simple 
economic lot-sizing algorithm and  to compare i t  with  two  other 
techniques. In  Part  11, A. G. Mendoza  presents  a mathematical 
analysis of this algorithm. 

The algorithm 
The part-period  concept  is based on the following simple considera- 
tion: if one part (i.e., one unit) is held in  inventory  for one period, 
i t  incurs  a  particular holding cost; if i t  is held two periods, i t  incurs 
twice the holding cost. Two parts held one period incur the same 
cost as one part held  two periods, and  three  parts held  two periods 
incur the same cost as two parts held three periods, etc. If the num- 
ber of parts held in  inventory  are  multiplied  by the number of 
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periods over which they  are held, the dimension “part-period” is 
derived. Expressing the ordering costs in  this new dimension, a 
simple and effective lot-sizing technique emerges. 

By  dividing the ordering costs (including setup, if any)  by the 
inventory holding costs  per part per period, ordering costs  are ex- 
pressed in part-periods. If, for example, the ordering cost for any 
number of pieces of a  certain  part is $50 and the inventory holding 
cost is $0.50 per unit per period, we have  a  part-period value of 
50/0.50, or 100. 

The  term part-periods,  in this instance,  is analogous to “man- 
days.” If a  particular job costing $200 for labor  may be performed 
by one laborer working alone, or any  number working in various 
combinations, and if labor costs are  $20/man/day,  the value of the 
job  may be expressed in man-days: $200/20 = 10 men for one day 
or 10 man-days. 

Once ordering costs for each part number  are  converted to  part- 
periods, this simple calculation need be done again only if there is a 
change  in  material  and  labor costs, setup,  inventory holding, etc.  A 
slight modification of the  Part Period Algorithm (PPA) permits use 
of a different holding cost for each period. However, this  feature 
is not considered of sufficient value to incorporate it in the algo- 
rithm. 

A simplified version of part-period will be described first. This is 
also a necessary part of a more accurate version described later. The 
simplified version is very effective for all except the most demand- 
ing circumstances, and also outperforms the Wagner-Whitin 
algorithm’  in the short-horizon  environment. 

Assume the part-period value of a  particular  part number to be 
100, and  the demand  by periods to be d l ,  dz, d3, . . ., d,. Assume also 
that no holding costs  are  incurred for items consumed in the period 
in which they are ordered. To determine the reorder  point  and the 
reorder quantity, we proceed as follows: 

(())dl + -k (2)& -k -k 
until the value of this expression exceeds 100. The  setup should be 
made in  the period that causes the value to exceed 100. The reorder 
quantity is then  the sum of the demands of the periods covered by 
the order.  A specific example for  computing economic lot sizes is 
shown in Table 1 and now discussed. 

Assume the  setup costs to  be $50 and  the inventory holding 
cost $0.50 per part per period. The part-period value of this  item 
will be 50/0.50 or 100. This value is  maintained  in the part- 
number record. 

A setup is made in Period 1, and we wish to determine the quan- 
tity  to be manufactured. The demand of 20 units for Period 1 is 
consumed in  the same period in which it is produced and will there- 
fore  incur no part-period costs. The demand for Period 2, if ordered 
in Period 1, is held for one period, incurring  a holding cost of 
1x20 or 20 part-periods. Therefore, 20 is  deducted from the 100 
part-periods  available  for the  item, leaving a  balance of 80 part- 
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Table 2 look-ahead calculations 

Period 1 2 3 4 5 6 

Demand 10  90 10 90 10 90 
Part-Periods 0 90 20 
Cumul. Part-Periods 0 90 110 
Tentative Setups X X X 
Tentative Cumul. Cost 100 190 290  380  480 570 
Final Setups X X 
Final Cumul. Cost 100  190 210  310  320 420 

Table 3 look-back  calculations 

Period 1 2 3 4 6 6 7 

Demand 10 20 40 10 20 40 10 
Part-Periods 0 20 80 0 20 80 
Cumul. Part-Periods 0 20 100 0 20 100 
Tentative Setups x X X 
Tentative Cumul. Cost 100  120  200  300  320 400 500 
Final  Setups X X X 
Final Cumul. Costs 100 120  220  230 270 370  380 

made, it “looks ahead” a t  a minimum of two periods following the 
tentative  setup period to determine if it is faced with  a large demand 
in the immediate  future. It also incorporates  a “look-back” test, 
which checks to  see if the demand  for the previous period is also 
relatively  very large. Thus,  the look-ahead and look-back tests 
avoid the costly mistake of remaining on one level with  a  mountain 
of demand a t  either or both sides. Examples, summarized in  Tables 
2 and 3, will clarify this. 

Assume $100 t o  be the setup cost and $1.00 to be the holding 
cost per  item  per period. Then, the item  part-period  value  is 100. 
When the cumulative  part-periods exceed 100, a setup is tentatively 
recommended. Before accepting the decision as final, the look- 
ahead  feature is invoked as follows: The part-period  value of Period 
3 (namely 20) is compared with  the demand for Period 4 (i.e., 90); 
if it is equal  to or less than  this demand, the  setup period is moved 
ahead to Period 4. If it is not  equal to or less than  the demand for 
Period 4, the original decision stands. In our example, it is clear that 
the  setup should be moved to Period 4. 

The look-back test is illustrated in  Table 3 (assuming the same 
setup  and holding cost as for the previous example). The demand 
for tentative  setup in Period 4 (d,) is compared with  the demand for 
the previous period (d8--1) as follows: If 

the  setup should be in  the previous period. In  our example, 2 X 10 
is less than 40; therefore, the  setup period becomes 3 rather  than 4. 
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Figure 1 look-ahead  and look-back tests 

START 

SETUP I N  drl2 SETUP IN ds+j 

ds-DEMAND FOR NEXT  SETUP PERIOD UNDER  CONSIDERATION 
n " N U M B E R  OF PERIODS FOR WHICH  INVENTORY  HOLDING COSTS 

ARE CHARGED IF PRODUCED IN THE  CURRENT  SETUP 

The  steps needed for  a  combination of the look-ahead and look- 
back tests  are  illustrated  in Figure 1. The look-back test is not in- 
voked if the look-ahead test succeeds in moving the  setup  to a fu- 
ture period. An optional, final refinement involves a check both 
ways  and, if demand d, is very low, swings to  the higher of the two 
high values. This is accomplished by comparing d,-l with dsfz  and 
selecting the one with  the highest  value. 

In  general, the combination of look-ahead and look-back tests 
adds only three  steps  to each setup cycle, with  an average of ap- 
proximately 3.2 steps.  Although the  tests  are  not infallible, they 
add  greater precision in the real world of fluctuating  demand. Cer- 
tain combinations of demand also present problems to  other al- 
gorithms  tested,  including  the  Wagner-Whitin  algorithm  in  the 
short-horizon case. 

For a horizon equal  to one part-period  planning cycle, part- 
period is invariably  optimal. For longer horizons, PYA yields sub- 
optimal  results; its precision variance, however, is so low as  to be of 
no consequence in a  practical  application. The advantages of this 
simple algorithm are  many:  it is open-ended; that is, it performs  as 
well over short horizons as  over  long horizons. It is highly  accurate 

34 J. J. DEMATTEIS 



for demands  with  large  variations  between periods, as well as  for 
those  with  very  small  variations; it is  particularly  outstanding  in 
the typical  industrial  environment where the demand  may be 
known, but only for  a  maximum of six or seven  months.  Finally, i t  is 
inexpensive and quick to implement and  maintain. 

Comparison  with  other  algorithms 
A large  number of economic lot-sizing techniques  are  available to 
management, any one or combination of which may be  incorporated 
in  an  inventory control  system. In  choosing a lot-sizing technique, 
the cost of applying the technique  and  its performance  for  certain 
demand  characteristics are  the  major considerations. Low-cost 
items  may be controlled by one technique, and  those of higher  cost 
by  another. Some of the considerations in choosing a  technique, or 
combination of techniques, are:  the cost and  time of applying the 
algorithms; the demand  range,  i.e., the variation  in  demand  from 
period to period; the availability of a long-range forecast;  and one’s 
confidence in  the accuracy of the forecast.  Two of the more im- 
portant economic lot-sizing algorithms  are now briefly described 
and  then compared with PPA. These  two are generally considered 
to be more accurate than  the classic square-root formulas com- 
monly used. 

nique  for known demands  over  a horizon equal to  the life of the Whitin 
item.  Rather  than  to  test  every combination of either ordering or 
not ordering in each period (which would require 2n-1 tests),  this 
algorithm  is  able to achieve the same  results in  substantially fewer 
steps.  The  actual  number of steps required  varies  with the  nature 
of the demand (i.e., the  particular  manner  in which it  may fluctu- 
ate),  the ratio of the  setup  and  inventory holding costs, and  the 
number of periods in  the horizon. For short horizons, repeated  ap- 
plications of this algorithm  result in solutions inferior to those of 

The major  drawback of the Wagner-Whitin  algorithm in com- 
parison to PAA is the relatively  large  number of calculations  required 
in a  typical  environment. The computational  time is extremely sen- 
sitive to  the frequency of setups.  Typically,  from ten  to  thirty 
times as  many calculations  are  required for Wagner-Whitin as for 

The Wagner-Whitin  algorithm‘  is an “exact  solution”  tech- Wagner- 

PPA. 

PPA. 

The Least  Unit Cost  algorithm2  attempts  to compute  for least 
various  order sizes the costs  per unit chargeable to  setup  and  to in- unit 
ventory holding and selects the minimum  value. The following c o s t  
demonstrates  the procedure followed: 

Period: 1 2 3 4 
Demand: 20 20 25 35 

Setup cost: $50; carrying  costs: $0.50 unit/period 
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In  the second environment, more realistic than  the first, the de- 
mand is known for an average of slightly less than two  full  planning 
cycles (six months  in our  tests).  This is referred to  as  the short-horizon 
environment. In  this case, it was assumed that lot-sizing would be 
necessary with each setup  to accommodate possible changes in de- 
mand  during the second planning cycle, although  in  our  tests  no 
changes in  demand were actually  made. The demand  values used in 
the known-demand, long-horizon case were also used in  these  tests, 
but  the planning horizon was restricted to six months. Short-hori- 
zon tests were made for the Wagner-Whitin  algorithm and PPA 

only. The  test results were as follows: 

I Part-Period  algorithm Lowest cost 
Wagner-Whitin  algorithm 1.6 percent  higher 

(average of all samples) 

A  basic  assumption is made  for  a  system employing the al- 
gorithms described in  this  paper: a  requirements  planning  sub- 
system  is  installed which converts  demands  for finished products 
by period to requirements  for subassemblies and component parts 
a t  all levels, and which nets the component part requirements 
against  inventory  on  hand and  on order. When  a  requirement 
exists within the replenishment  lead  time for a  particular  item, 
an indication  is  made that  an order is to be placed. 

One  hundred  and two sets of random  demand data over  twelve 
to fifteen periods each were grouped  by  range in  demand  as shown 
in Table 4. The distribution  about  the  mean was uniform. Averag- 
ing the results  obtained  for  each of the seven  demand  groups pro- 
duced the results of Table 5 in which the  sums of the  setup  and in- 
ventory holding costs are compared. The  table gives an average of 
all  the  demand groups, including low as well as high-value items  in 
each  group. 

The performance of the algorithms,  using  high-value  items with 
wide variation  in  demand, is shown in  Table 6. These  results were 
obtained  in  the 01 to 99 group  with  a  maximum  variation  from 
the mean of 100 percent, and  an average  variation of 50 percent. 

The performance of the algorithms  varied  according to (1) range 
of demand, (2) maximum  variation  in  demand  between periods, and 
(3) the frequency of setup (value of the  item).  In  the known-de- 
mand, long-horizon environment,  Wagner  Whitin  always  produces 
a minimum cost solution. PPA is remarkably low in cost and  stable 

Table 5 Cost comparison for  known  demand  in  long  horizon  environment 

Percentage cost  above 
Algorithm best performer 

Table 4 Range groups 

Maximum 
Range of variation 
demand from mean 

01-200 f 100% 
01-99 f 100% 
10-80 k 75% 
25-75 f 50% 
30-60 f 33% 
40-60 f 20% 
45-55 f 10% 

performance 
results 

Wagner-Whitin Lowest  cost 
Part-Period 0.5% 
Least Unit Cost 5.5% 
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Table 6 Cost comparison  for  wide  variations  in  demand 

Algorithms  Performance 

Wagner-Whitin Lowest cost 

Part-Period 0.8% higher cost 

Least  Unit Cost 21.3% higher cost 

Table 7 Cost comparison  for  extreme  categories  in  percentage  above minimum cost 
~ ~ ~~ ~ 

Group 01 -200 Group 46-66 
(Average 6.9 setupslyear) (Average 2.8 selups/year) 

Wagner-Whitin 0.0 0.0 
Part-Period 0.7 
Least  Unit Cost 16.4 

0.0 

0.2 

in all  categories; however, it, too, is influenced by the demand 
characteristics. The wide variation  in  performance is shown by  the 
extreme categories of Table 7. 

It is  to be emphasized that  the performance  indicated assumes 
that  the  actual demand  pattern for the twelve-month  horizon re- 
mains precisely as originally forecast. If the demand  remains the 
same for the first  planning cycle only, the accuracy of the Wagner- 
Whitin  algorithm  is affected, whereas the  Part Period and Least 
Unit  Cost  algorithms  are not affected. 

Conclusions 

The  Part Period  Algorithm  performs well in all  environments, but 
is particularly well suited  for  industries whose demand  forecast ex- 
tends  for a limited  number of periods, and  for those whose forecast 
is appreciably more accurate  in the near  future  than  for  the more 
distant  future.  In  the short-horizon  environment, PPA outperforms 
the other  algorithms  tested. In  addition, considerably few compu- 
tations  are required by the  Part Period  Algorithm than of the  other 
tested algorithms with comparable  performance. In  the “known- 
demand, long-horizon” environment,  setup  and holding-cost per- 
formance  with PPA is,  on the average,  approximately half of one 
percent  higher than minimum cost. 
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