
T h e  repertoire of SYSTEM/~W instructions  has  been  expanded in the 
Model 85 by introducing  facilities for extended-precision  Jloafing- 
point  arithmetic.   This  part  describes  the new  instructions,  discusses 
their  need,  and  considers  the  design  factors  that  influenced  their choice. 

Structural aspects of the  System/360 Model 85 

I11 Extensions  to  floating-point  architecture 
by A. Padegs 

The floating-point facilities of the Model 85 extend the architecture 
of SYSTEM/360 by introducing  a new floating-point number  format, 
called extended precision, and  by providing  seven new floating- 
point  instructions. 

The extended-precision format, shown in Figure 1, consists of a 
concatenation of two long-precision formats.  Hence, the extended- 
precision format  has a  fraction of 28 hexadecimal digits or 112 bits, 
which is equivalent to approximately 34 decimal digits. When 
specified as an operand,  an extended-precision number consists of a 
sign, 7-bit characteristic, and  the 112-bit fraction. The  contents of 
the sign and characteristic fields of the low-order part  are ignored. 
In  a  result, the signs of both  parts  are  set  to  the same  value and  the 
characteristic of the low-order part is made  14 less than  that of the 
high-order part.  When  the  true low-order characteristic is less than 
zero, it is expressed modulo 128, but no exponent underflow is rec- 
ognized unless the high-order characteristic underflows. 

Table 1 lists the new floating-point instructions  with  their 
mnemonics, formats,  and  operation codes. Three of the new instruc- 
tions  provide  for  adding,  subtracting, and multiplying  two  extend- 
ed-precision operands to yield an extended-precision result. TWO 
instructions  provide  for  multiplying  two long-precision operands to 
yield an exact extended-precision result. The two  rounding in- 
structions  provide  for  rounding  from the extended format  to  the 
long  format  and  from  the long format  to  the  short one. 
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tions  with  fractions  having  more than  the 14 hexadecimal digits 
provided  by long-precision arithmetic. 

Although the fraction size provided by long-precision arith- 
crucial metic is ample for the great  majority of present  applications and 

computations those of the foreseeable future, a  number of applications exist 
where higher accuracy is desirable. One typical example of such an 
application is the execution of the function C = (Ai * Bi) en- 
countered  in  matrix  multiplication. If the operands A and B are  in 
long precision, the accuracy of the matrix  operation  can  be sig- 
nificantly increased by developing an exact  product  having 28 hex- 
adecimal  digits and  then performing  summation on  these products. 
This function  requires facilities that, first of all, permit developing a 
28-hexadecimal-digit product of two long operands, and, second, 
provide  for  forming a 28-hexadecimal-digit sum of two  such 
operands. If one of the operands in such an instruction  for  addition 
could be specified to  be  in long precision, the instruction would be 
useful also for  accumulating long operands into  an extended sum. 

The need for floating-point arithmetic  with precision in excess of 
14 hexadecimal digits exists whenever the result of a computation 
must  be a long-precision number  with  all  digits significant. A  typi- 
cal example of such an application is the evaluation of mathematical 
functions,  such as sine, cosine, or square  root. The FORTRAN sub- 
routines that evaluate  these  functions  in  short precision contain 
occasional long-precision instructions to provide the required  short- 
precision significance. Analogously, the corresponding long-pre- 
cision subroutines must perform  certain  steps in  the  computations 
with more than 14 hexadecimal digits of significance, and extended- 
precision arithmetic is needed. In  these types of applications,  a few 
extended-precision instructions  are inserted a t  crucial points  in a 
long-precision computation,  and  the extended-precision facility is 
needed to  support long-precision arithmetic. Result precision in ~ 

excess of 14 hexadecimal digits is not desired. 
Another example where extended precision is needed for support 

program of long precision is program check-out. When one suspects that,  in 
check-out long precision, the accumulated  error due  to  truncation  and sub- 

traction  may  have reduced the result significance below the mini- 
mum  number of significant digits, some assurance of the number of 
significant digits  left may  be  obtained  by executing the computa- 
tion  in a higher precision for  certain selected input  data  and com- 
paring the results  with  those  obtained in long precision. I n  such an 
application, the whole task is programmed and computed  in the 
extended-precision format,  and  an extended-precision result is ob-. 
tained. However, the higher result precision is not a goal in itself. 
Once the validity of the long-precision program  has been  estab- 
lished, the extended-precision version is not needed. Extended pre- 
cision in  this case serves as a substitute for rigorous error analysis. 

Arithmetic using a  larger  fraction also reduces the need for 
rounded  arithmetic. In  the absence of facilities  for  such higher-pre- 
cision arithmetic,  rounding  may  be  needed  to  reduce the magnitude 
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of the error,  and  a rigorous error analysis may require rounded 
arithmetic  as  a means of making  certain error-analysis techniques 
applicable. For these reasons, use of extended precision may serve as 
a  substitute for rounding. 

Finally, facilities for arithmetic of higher precision are needed higher 
whenever the significance provided by long-precision arithmetic is precision 
insufficient. This  situation  may arise because the initial  operands 
have more than 14 hexadecimal digits of significance, because higher 
result significance is desired, or because in long precision the ac- 
cumulated error introduced  by  truncation and  subtraction reduces 
the result significance below an acceptable level. As machines be- 
come faster and more reliable, longer computations  are attempted. 
But as the number of operations performed on  a piece of data in- 
crease, so does the accumulated  truncation  error.  Higher precision, 
therefore, has  to be used in  certain stages of the  computation  to 
maintain the same  result significance. 

Requirements for extended  precision 

To provide a significant increase in the size of the fraction and  to 
permit  operations involving an exact product of two long-precision 
numbers, the arithmetic of the next-higher precision must provide 
for fractions of a t  least 28 hexadecimal digits or 112 bits. The for- 
mat having 28 hexadecimal fraction  digits is referred to  as  the ex- 
tended  format,  and the associated arithmetic is referred to as 
extended-precision arithmetic. However, to provide for the few 
applications requiring even larger  fractions which occur, for exam- 
ple, in  integer  arithmetic, the facilities should preferably be open- 
ended, so as  to permit one to program  arithmetic  on  operands ob- 
tained by concatenating  three or more long-precision fractions. 
Arithmetic yielding precision three or more times higher than long 
precision will henceforth be  referred to  as multiple-precision 
arithmetic. 

The requirements for extended-precision floating-point facilities, 
therefore, are  as follows: 

The fraction must  have at least 28 hexadecimal digits. 
The number  range  must not be less than  that  in short or long 
precision. 
The  format  must be compatible with  the present  format, name- 
ly, it  must be possible to extend a long-precision number to 
extended precision by appending zeros, and, conversely, it 
should be possible to  truncate  an extended-precision number to 
long precision by discarding the low-order digits. 
The  data format  and  the  set of instructions  must be optimized 
for extended precision, but should also facilitate multiple- 
precision floating-point arithmetic. 

To make the floating-point instruction  set  attractive for opera- 
tions on numbers  having more than 14 hexadecimal digits of frac- 
tion,  two  additional facilities are essential: first,  instructions  for 
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boundary between the long-precision format  and  its extension, and, 
second, it  must be possible to  obtain  the exact  product of two long- 
precision numbers. Once these facilities are available, it becomes 
feasible to program  all  other  operations. 

Design  considerations 

Since the justification  for extended-precision arithmetic comes 
primarily  from  a few specialized applications and since it is not 
anticipated that extended precision will become, in the near  future, 
the basic format of floating-point arithmetic  for general use,. the 
full SYSTEM/360 floating-point  instruction set is not  made available 
for extended-precision arithmetic.  Instead,  the extended-precision 
facilities were chosen with the underlying philosophy of including 
only those  instructions that provide  a new function or that provide 
a  function that has  both a significant, use and is not readily per- 
formed  by  means of the present S Y S T E M / ~ ~ O  instructions. In  view 
of this,  instructions only for adding,  subtracting,  and  multiplying 
are provided. 

Three  types of instructions  can  be considered for  adding ex- 
addition tended-precision operands: 

AXDD: X + D + D 
A X X D : X + X + D  
AX: X t X  + X  

where D and X represent  operands in  the long and extended  format, 
respectively. Analogous alternatives exist for  subtraction. The first 
of the three  instructions (AXDD) is the simplest one to implement 
and provides the most  elementary  tool  for  adding  numbers  with 
fraction sizes in excess of 14 hexadecimal digits. The second in- 
struction (AXXD) considerably eases programming of extended- 
precision arithmetic  by simplifying the handling of fraction over- 
flow. But  both approaches  share the shortcoming that  to  add two 
extended-precision numbers, the operations  require explicit ad- 
dressing of the low-order part of the operand.  Therefore,  these 
instructions  require an extended-precision format where the low- 
order part is a valid long-precision number  with the sign the same 
as and  the characteristic 14 less than  that of the high-order part. 

Such an approach causes the low-order characteristic to under- 
flow whenever the high-order characteristic is less than 14, and 
therefore effectively restricts the range to numbers  with  character- 
istics between 14 and 127. Taking an interruption  after  the under- 
flow, with the characteristic expressed modulo 128, and processing 
the exception as a special case, would have the effect of making the 
execution  time  for  addition and  subtraction prohibitively long. Al- 
ternatively,  a  format could be  adopted where the characteristic of 
the low-order part of an extended-precision number is set equal to 
the high-order characteristic.  One could then consider a set of 
instructions, AXXD and AXXD’, where the  latter implicitly specifies 
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that  the  true characteristic of the second operand is 14 less than 
specified in the format.  Such an approach, however, is  undesirable 
because of its indirectness  in  providing the desired facility. 

To avoid the need for explicit addressing of the low-order part of 
an extended-precision operand and  the associated problems of 
range  restriction,  instructions  for  adding and  subtracting of the 
type AX were adopted: AXR and SXR. They provide, a t  some addi- 
tional cost of implementation,  a  direct way of adding and sub- 
tracting  two extended-precision numbers  and  make  the  structure of 
extended-precision instructions  consistent  with that of short-  and 
long-precision instructions.  Although the instructions  are  optimized 
for  extended precision, they  make  addition  and  subtraction of 
multiple-precision operands feasible. To limit the size of the error 
introduced when the operation involves taking the difference be- 
tween the absolute  values of two  operands, the preshifted  operand 
is extended  with a four-bit  guard  digit that participates  in the 
operation. 

numbers, is satisfied by  providing  a  pair of multiply  instructions, 
MXDR and MXD, that yield an extended-precision product of a long 
multiplicand and a long multiplier.  These  instructions are relatively 
easy to implement, and,  in conjunction  with the instructions  for 
extended-precision addition and  subtraction,  they enable  one to 
program the multiplication of two extended-precision numbers. 
Although the algorithm  for the  latter operation is simple, program- 
ming of the routine is complicated again by  the need for scaling to  
avoid  exponent underflow within the normal SYSTEM/B~O floating- 
point range. Thus, normally, this operation would have to  be pro- 
vided by a  library  routine,  incurring  thereby the overhead  penalty 
of subroutine calls. In  view of the need for  fast  multiplication, 
the wide use of the function, and  the performance  gain that can  be 
achieved by performing the operation in hardware, the extended- 
precision instruction  set also includes the instruction for extended- 
precision multiplication, MXR. Although the instruction MXR can 
be used to perform the functions of  MXDR and MXD, the need for 
the operation performed by MXD was deemed to be sufficient to 
justify the inclusion of all three  instructions. 

A  number of alternatives  can  be considered for  facilitating high- 
er precision in division, such as providing  a  remainder  in long pre- 
cision or dividing two extended-precision numbers  to yield an 
extended-precision quotient.  A  program to yield a  correct trun- 
cated extended-precision quotient  from  two extended-precision 
operands is very  time consuming. However, by making  approxima- 
tions that sacrifice the significance of one or more of the low-order 
quotient  digits, the function  can  be  evaluated  in  a  software  routine 
in a period of time that is comparable to  the time it takes  to perform 
the exact division by hardware. Since division is less common than 
addition,  subtraction,  and  multiplication,  and since a comparable 
alternative exists, it was decided that  the cost of the hardware im- 
pIementation of the function is not justified. 

The other  requirement, an exact  product of two long-precision multiplication 
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It was recognized that  the RX formats of the instructions  for 
instruction extended-precision addition,  subtraction,  and  multiplication would 

format eliminate  a  substantial amount of loading and storing, since the 
register space  with extended-precision operands and results be- 
comes rather limited. Each extended-precision operand  requires a 
pair of registers, and,  in the absence of the RX-format instructions, 
one of these register pairs has  to be used for buffering the storage 
operand, thus reducing the effective number of registers from  four 
to one. However, the =-format instructions  do  not  provide  a new 
arithmetic  function;  they  primarily  reduce the  amount of coding 
required rather  than  the execution time of the program. Since the 
execution of extended-precision instructions  requires  a  relatively 
long time, the time  for  storing  and fetching is not significant and 
may be  partially  overlapped  with the execution  time.  Furthermore, 
implementation of the RX-format instructions would require  stor- 
age references for  two  double words and  thus  introduce a new  con- 
cept  in  operand  fetching.  Such  change is particularly  undesirable 
in view of the removal of the original S Y S T E M / ~ ~ O  restrictions  on the 
boundary  alignment of operands. To comply with  the ground rules 
of putting emphasis on  function and providing only the essential 
instructions  for  programming of extended-precision arithmetic, 
the instructions  designating  extended  operands  are  provided only 
in  the 'RR format.  Similarly, extended-precision instructions  for 
loading and  storing  are  not provided, since a  pair of the corre- 
sponding long-precision instructions  provide the function. 

The extended-precision format is defined as a  concatenation of 
data two long-precision formats,  with  the signs of both  parts of the result 

format being set  to  the same  value, and  the characteristic of the low-order 
part of the result being made 14 less than  that of the high-order 
part.  The definition of extended-precision arithmetic is such that 
the low-order sign and characteristic field is  redundant  and  instead 
could have been used for  two  additional  digits of fraction. However, 
by keeping the extended-precision fraction  a  multiple of the long- 
precision fraction,  implementation of extended-precision operations 
is greatly  facilitated in parallel machines and  the execution of di- 
vision in  software is made feasible. Such an approach also makes 
the instruction  set  more  suitable for multiple-precision arithmetic. 

When the low-order characteristic underflows, it is expressed 
modulo 128. Since extended-precision instructions  do  not explicitly 
refer to  the low-order part of an operand, underflow in the low- 
order  characteristic does not cause recognition of exponent  under- 
flow; exponent underflow is recognized only when the high-order 
characteristic of the result is less than zero. The low-order charac- 
teristic  and sign of an extended-precision operand are ignored, and 
the correct  values are inserted in results only so as to make  each 
component of an extended-precision result  a  valid and meaningful 
number  by itself. The  latter is convenient  for  such  applications as 
programming of multiple-precision arithmetic. 

To satisfy the need for rounding in floating-point arithmetic, 
rounding two  instructions  for explicit rounding  are provided-LRDR for 
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rounding from the extended to  the long format  and LRER for 
rounding from the long to  the  short format.  These  instructions 
provide an alternative to truncation when the result of a compu- 
tation is shortened to  the next smalIer format. 
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