The repertoire of sYSTEM/360 tnstructions has been expanded in the
Model 85 by iniroducing facilities for extended-precision floating-
point arithmetic. This part describes the new instructions, discusses
their need, and considers the design factors that influenced their choice.

Structural aspects of the System /360 Model 85

III Extensions to floating-point architecture

by A. Padegs

The floating-point facilities of the Model 85 extend the architecture
of systEM/360 by introducing a new floating-point number format,
called extended precision, and by providing seven new floating-
point instructions.

The extended-precision format, shown in Figure 1, consists of a
concatenation of two long-precision formats. Hence, the extended-
precision format has a fraction of 28 hexadecimal digits or 112 bits,
which is equivalent to approximately 34 decimal digits. When
specified as an operand, an extended-precision number consists of a
sign, 7-bit characteristic, and the 112-bit fraction. The contents of
the sign and characteristic fields of the low-order part are ignored.
In a result, the signs of both parts are set to the same value and the
characteristic of the low-order part is made 14 less than that of the
high-order part. When the true low-order characteristic is less than
zero, it is expressed modulo 128, but no exponent underflow is rec-
ognized unless the high-order characteristic underflows.

Table 1 lists the new floating-point instructions with their
mnemonics, formats, and operation codes. Three of the new instruc-
tions provide for adding, subtracting, and multiplying two extend-
ed-precision operands to yield an extended-precision result. Two
instruetions provide for multiplying two long-precision operands to
yield an exact extended-precision result. The two rounding in-
structions provide for rounding from the extended format to the
long format and from the long format to the short one.

IBM SYSTEMS JOURNAL + VOL.7 « NO. 1 - 1968




Figure 1 Floating-point formats

SHORT FLOATING-POINT NUMBER

7-BIT
S| CHARAC- 24-BIT FRACTION
TERISTIC

0 78

LONG FLOATING-POINT NUMBER

56-BIT FRACTION
TERISTIC

EXTENDED FLOATING-POINT NUMBER

78I HIGH-ORDER HALF OF

CHARAC-
TERISTIC 112-BIT FRACTION

LOW-ORDER HALF OF
112-BIT FRACTION

This part of the paper describes the types of applications for
which the new floating-point instructions were developed, the
underlying philosophy used in selecting these facilities, and some
of the design alternatives considered.

Applications requiring extended precision

The instructions contained in the original sysTeEM/360 floating-point
feature provide for truncated short- and long-precision arithmetic,
where, as a rule, operations with short operands yield short results,
and operations with long operands yield long results. The only
exception is a short-precision multiplication yielding an exact prod-
uct of two short-precision operands. By clearing the low-order half
of a register, a short operand can be extended to the long format,
and by using the long-precision instructions on such extended short
operands, long results may be obtained. However, no comparable
facilities exist for long-precision arithmetie, and sysTtEMm/360 float-

Table 1 Extended-precision and rounding instructions

Name Mnemonic Type Op Code

ADD NORMALIZED (extended operands,

extended result) 36
SUBTRACT NORMALIZED (extended

operands, extended result) 37
MULTIPLY (extended operands, extended

result) 26
MULTIPLY (long operands, extended result) 27
MULTIPLY (long operands, extended result) 67
LOAD ROUNDED (extended to long) 25
LOAD ROUNDED (long to short) 35

MODEL 85 FLOATING-POINT EXTENSION

23




crucial
computations

program
check-out

24

ing-point facilities do not lend themselves to programming opera-
tions with fractions having more than the 14 hexadecimal digits
provided by long-precision arithmetic.

Although the fraction size provided by long-precision arith-
metic is ample for the great majority of present applications and
those of the foreseeable future, a number of applications exist
where higher aceuracy is desirable. One typical example of such an
application is the execution of the function C = > (4; * B,) en-
countered in matrix multiplication. If the operands 4 and B are in
long precision, the accuracy of the matrix operation can be sig-
nificantly increased by developing an exact product having 28 hex-
adecimal digits and then performing summation on these products.
This function requires facilities that, first of all, permit developing a
28-hexadecimal-digit product of two long operands, and, second,
provide for forming a 28-hexadecimal-digit sum of two such
operands. If one of the operands in such an instruction for addition
could be specified to be in long preecision, the instruction would be
useful also for accumulating long operands into an extended sum.

The need for floating-point arithmetic with precision in excess of
14 hexadecimal digits exists whenever the result of a computation
must be a long-precision number with all digits significant. A typi-
cal example of such an application is the evaluation of mathematical
functions, such as sine, cosine, or square root. The FORTRAN sub-
routines that evaluate these functions in short precision contain
occasional long-precision instruections to provide the required short-
precision significance. Analogously, the corresponding long-pre-
cision subroutines must perform certain steps in the computations
with more than 14 hexadecimal digits of significance, and extended-
precision arithmetic is needed. In these types of applications, a few
extended-precision instructions are inserted at crucial points in a
long-precision computation, and the extended-precision facility is
needed to support long-preecision arithmetic. Result precision in
excess of 14 hexadecimal digits is not desired.

Another example where extended preeision is needed for support
of long precision is program check-out. When one suspects that, in
long precision, the accumulated error due to truncation and sub-
traction may have reduced the result significance below the mini-
mum number of significant digits, some assurance of the number of
significant digits left may be obtained by executing the computa-
tion in a higher precision for certain selected input data and com-
paring the results with those obtained in long precision. In such an
application, the whole task is programmed and computed in the
extended-precision format, and an extended-precision result is ob-.
tained. However, the higher result precision is not a goal in itself.
Once the validity of the long-precision program has been estab-
lished, the extended-precision version is not needed. Extended pre-
cision in this case serves as a substitute for rigorous error analysis.

Arithmetic using a larger fraction also reduces the need for
rounded arithmetic. In the absence of facilities for such higher-pre-
cision arithmetic, rounding may be needed to reduce the magnitude

A. PADEGS




of the error, and a rigorous error analysis may require rounded
arithmetic as a means of making certain error-analysis techniques
applicable. For these reasons, use of extended preeision may serve as
a substitute for rounding.

Finally, facilities for arithmetic of higher precision are needed
whenever the significance provided by long-precision arithmetie is
insufficient. This situation may arise because the initial operands
have more than 14 hexadecimal digits of significance, because higher
result significance is desired, or because in long precision the ac-
cumulated error introduced by truncation and subtraction reduces
the result significance below an acceptable level. As machines be-
come faster and more reliable, longer computations are attempted.
But as the number of operations performed on a piece of data in-
crease, so does the accumulated truncation error. Higher precision,
therefore, has to be used in certain stages of the computation to
maintain the same result significance.

Requirements for extended precision

To provide a significant increase in the size of the fraction and to
permit operations involving an exact product of two long-precision
numbers, the arithmetic of the next-higher precision must provide
for fractions of at least 28 hexadecimal digits or 112 bits. The for-
mat having 28 hexadecimal fraction digits is referred to as the ex-
tended format, and the associated arithmetic is referred to as
extended-precision arithmetic. However, to provide for the few
applications requiring even larger fractions which occur, for exam-
ple, in integer arithmetie, the facilities should preferably be open-
ended, so as to permit one to program arithmetic on operands ob-

tained by concatenating three or more long-precision fractions.
Arithmetic yielding precision three or more times higher than long
precision will henceforth be referred to as multiple-precision
arithmetic.

The requirements for extended-precision floating-point facilities,
therefore, are as follows:

® The fraction must have at least 28 hexadecimal digits.

e The number range must not be less than that in short or long
precision,
The format must be compatible with the present format, name-
ly, it must be possible to extend a long-precision number to
extended precision by appending zeros, and, conversely, it
should be possible to truneate an extended-precision number to
long precision by discarding the low-order digits.
The data format and the set of instructions must be optimized
for extended precision, but should also facilitate multiple-
precision floating-point arithmetic.

To make the floating-point instruction set attractive for opera-
tions on numbers having more than 14 hexadecimal digits of frac-
tion, two additional facilities are essential: first, instructions for

MODEL 85 FLOATING~-POINT EXTENSION

higher
precision




addition

26

adding and subtracting are needed that shift the fraction across the
boundary between the long-precision format and its extension, and,
second, it must be possible to obtain the exact product of two long-
precision numbers. Once these facilities are available, it becomes
feasible to program all other operations.

Design considerations

Since the justification for extended-precision arithmetic comes
primarily from a few specialized applications and since it is not
anticipated that extended precision will become, in the near future,
the basic format of floating-point arithmetic for general use, the
full sysTeEM/360 floating-point instruction set is not made available
for extended-precision arithmetic. Instead, the extended-precision
facilities were chosen with the underlying philosophy of including
only those instructions that provide a new function or that provide
a function that has both a significant use and is not readily per-
formed by means of the present sYSTEM/360 instructions. In view
of this, instructions only for adding, subtracting, and multiplying
are provided.

Three types of instructions can be considered for adding ex-
tended-precision operands:

AXDD: X< D 4+ D
AXXD: X<~ X+ D
AX: Xe=X4+X

where D and X represent operands in the long and extended format,
respectively. Analogous alternatives exist for subtraction. The first
of the three instructions (AXDD) is the simplest one to implement
and provides the most elementary tool for adding numbers with
fraction sizes in excess of 14 hexadecimal digits. The second in-
struction (AXXD) considerably eases programming of extended-
precision arithmetic by simplifying the handling of fraction over-
flow. But both approaches share the shortcoming that to add two
extended-precision numbers, the operations require explicit ad-
dressing of the low-order part of the operand. Therefore, these
instructions require an extended-precision format where the low-
order part is a valid long-precision number with the sign the same
as and the characteristic 14 less than that of the high-order part.

Such an approach causes the low-order characteristic to under-
flow whenever the high-order characteristic is less than 14, and
therefore effectively restricts the range to numbers with character-
istics between 14 and 127. Taking an interruption after the under-
flow, with the characteristic expressed modulo 128, and processing
the exception as a special case, would have the effect of making the
execution time for addition and subtraction prohibitively long. Al-
ternatively, a format could be adopted where the characteristic of
the low-order part of an extended-precision number is set equal to
the high-order characteristic. One could then consider a set of
instructions, AXXD and AXXD', where the latter implicitly specifies

A. PADEGS




that the true characteristic of the second operand is 14 less than
specified in the format. Such an approach, however, is undesirable
because of its indirectness in providing the desired facility.

To avoid the need for explicit addressing of the low-order part of
an extended-precision operand and the associated problems of
range restriction, instructions for adding and subtracting of the
type AX were adopted: AXR and SXR. They provide, at some addi-
tional cost of implementation, a direct way of adding and sub-
tracting two extended-precision numbers and make the structure of
extended-precision instructions consistent with that of short- and
long-precision instruetions. Although the instructions are optimized
for extended precision, they make addition and subtraction of
multiple-precision operands feasible. To limit the size of the error
introduced when the operation involves taking the difference be-
tween the absolute values of two operands, the preshifted operand
is extended with a four-bit guard digit that participates in the
operation.

The other requirement, an exact product of two long-precision
numbers, is satisfied by providing a pair of multiply instructions,
MXDR and MXD, that yield an extended-precision produet of a long
multiplicand and a long multiplier. These instructions are relatively
easy to implement, and, in conjunction with the instructions for
extended-precision addition and subtraction, they enable one to
program the multiplication of two extended-precision numbers.
Although the algorithm for the latter operation is simple, program-
ming of the routine is complicated again by the need for scaling to
avoid exponent underflow within the normal sysTEM/360 floating-
point range. Thus, normally, this operation would have to be pro-
vided by a library routine, incurring thereby the overhead penalty
of subroutine calls. In view of the need for fast multiplication,
the wide use of the function, and the performance gain that can be
achieved by performing the operation in hardware, the extended-
precision instruction set also includes the instruection for extended-
precision multiplication, MXR. Although the instruction MXR can
be used to perform the functions of MXDR and MXD, the need for
the operation performed by MXD was deemed to be sufficient to
justify the inclusion of all three instruetions.

A number of alternatives can be considered for facilitating high-
er precision in division, such as providing a remainder in long pre-
cision or dividing two extended-precision numbers to yield an
extended-precision quotient. A program to yield a correct trun-
cated extended-precision quotient from two extended-precision
operands is very time consuming. However, by making approxima-
tions that sacrifice the significance of one or more of the low-order
quotient digits, the function can be evaluated in a software routine
in a period of time that is comparable to the time it takes to perform
the exact division by hardware. Since division is less common than
addition, subtraction, and multiplication, and since a comparable
alternative exists, it was decided that the cost of the hardware im-
plementation of the function is not justified.

MODEL 85 FLOATING-POINT EXTENSION

multiplication




instruction
format

data
format

rounding

28

It was recognized that the RX formats of the instructions for
extended-precision addition, subtraction, and multiplication would
eliminate a substantial amount of loading and storing, since the
register space with extended-precision operands and results be-
comes rather limited. Each extended-precision operand requires a
pair of registers, and, in the absence of the RX-format instructions,
one of these register pairs has to be used for buffering the storage
operand, thus reducing the effective number of registers from four
to one. However, the RX-format instructions do not provide a new
arithmetic function; they primarily reduce the amount of coding
required rather than the execution time of the program. Since the
execution of extended-precision instructions requires a relatively
long time, the time for storing and fetching is not significant and
may be partially overlapped with the execution time. Furthermore,
implementation of the RX-format instructions would require stor-
age references for two double words and thus introduce a new con-
cept in operand fetching. Such change is particularly undesirable
in view of the removal of the original sysTEM/360 restrictions on the
boundary alignment of operands. To comply with the ground rules
of putting emphasis on function and providing only the essential
instructions for programming of extended-precision arithmetic,
the instructions designating extended operands are provided only
in the RR format. Similarly, extended-precision instructions for
loading and storing are not provided, since a pair of the corre-
sponding long-precision instructions provide the function.

The extended-precision format is defined as a concatenation of
two long-precision formats, with the signs of both parts of the result
being set to the same value, and the characteristic of the low-order
part of the result being made 14 less than that of the high-order
part. The definition of extended-precision arithmetic is such that
the low-order sign and characteristic field is redundant and instead
could have been used for two additional digits of fraction. However,
by keeping the extended-precision fraction a multiple of the long-
precision fraction, implementation of extended-precision operations
is greatly facilitated in parallel machines and the execution of di-
vision in software is made feasible. Such an approach also makes
the instruction set more suitable for multiple-precision arithmetie.

When the low-order characteristic underflows, it is expressed
modulo 128. Since extended-precision instructions do not explicitly
refer to the low-order part of an operand, underflow in the low-
order characteristic does not cause recognition of exponent under-
flow; exponent underflow is recognized only when the high-order
characteristic of the result is less than zero. The low-order charac-
teristic and sign of an extended-precision operand are ignored, and
the correct values are inserted in results only so as to make each
component of an extended-precision result a valid and meaningful
number by itself. The latter is convenient for such applications as
programming of multiple-precision arithmetie.

To satisfy the need for rounding in floating-point arithmetic,
two instructions for explicit rounding are provided—LRDR for

A. PADEGS




rounding from the extended to the long format and LRER for
rounding from the long to the short format. These instructions
provide an alternative to truncation when the result of a compu-
tation is shortened to the next smaller format.

ACKNOWLEDGMENT

A number of people have participated in defining the extensions to
the floating-point architecture of sysTEM/360. Particularly sig-
nificant contributions were made by J. P. Benkard, G. B. Hedrick,
T. A. Kircher, and P. H. Sterbenz. The advice of V. Kahan of the
University of Toronto has been very valuable.

GENERAL REFERENCES

1. G. M. Amdahl], G. A. Blaauw, and F. P. Brooks, Jr., “Architecture of the
1BM SYSTEM/360,”” IBM Journal of Research and Development 8, 87-101
(April 1964).

2. G. M. Amdahl, “The structure of system/360, Part ITI— Processing unit
design considerations,” IBM Systems Journal 3, No. 2, 144-164 (1964).

3. D. W. Sweeney, “An analysis of floating-point addition,” IBM Systems
Journal 4, No. 1, 31-42 (1965).

MODEL 85 FLOATING-POINT EXTENSION

29




