
A basic design objective for the Model 85 was to add a computer to
the SYSTEM/^^^ line that ofers high performance over a wide range of
job types. Simulation studies indicate that the Model 85 will provide
an average three- to jive-fold increase in internal performance with
m a i n stoyage capacities of u p to four million bytes.

This part of the paper discusses the major elements of the Model 85
within the architectural context of S Y S T E M / ~ ~ O , including the addition
of a high-speed bufler, called a cache.

Also summarized are the simulation studies that led to use of the
cache, selection of its parameters, and verification of internal per-
formance of the system.

by C. J. Conti, D. H. Gibson, and S. H. Pitkowsky

Intended primarily as a growth system for users of Models 65 and
75, the Model 85 was developed as a natural evolutionary phase
in SYSTEMI360 architecture. The Model 85 central processing unit
is based upon solid-state technology that offers significant ad-
vantages over the circuit technology employed in Models 65 and
75. These advantages take the form of improved reliability, speed,
and packaging densities. However, going beyond a performance
gain attributable to technology, the Model 85 design objectives
set out to raise throughput performance by exploiting system or-
ganizational potentialities within S Y S T E M / ~ ~ O architecture.

The Model 85 is designed for high performance across the entire
spectrum of editing, file maintenance, and computational work- 1

loads. As a result of combined improvements in organization and
technology, the internal performance of the Model 85 averages in
the range of 3 to 5 times the performance of the Model 65-de-
pending upon the nature of the job being measured. A high-speed
multiply unit is optional for installations with unusually heavy
computational loads.

System performance can be enhanced by attaching as much as
four million bytes of main storage. Fast tape units are now avail-
able to support high throughput in a tape oriented environment.'
The Model 85 storage and storage bus configuration will permit
the attachment of faster direct-access devices as such units become
available. Moreover, the Model 85 design incorporates additional

2 IBM SYSTEMS JOURNAL VOL. 7 - NO. 1 * 1968

Figure 1 Functional schematic of the Model 85

I MAIN STORAGE I

i INPUT/OUTPUT UNITS I

able match between main storage and the cpu-despite a tenfold
disparity in their access and cycle times. Hence, the cache-al-
though completely invisible to the programmer-is the key or-
ganizational element in the Model 85.

Before discussing the cache, let us define 1024 contiguous bytes
of storage as a sector and 64 contiguous bytes of storage as a block.
In the Model 85 context, main storage is assumed to be divided
into sectors and each sector subdivided into blocks. The address
of a sector or block is simply the address of the first word in the
sector or block.

In a basic Model 85, the cache holds sixteen sectors. Accompany-
ing each sector is an address tug (the high-order 14 bits of a 24bit
address) that identifies a sector in main storage with which a
cache sector is associated. At any given time, the tags point to the
sixteen sectors of main storage from which words have been used
most recently. Moreover, the cache contains the information
fetched from these sixteen sectors and thereby avoids the need
for fetching the same information more than once from main
storage.

In transfers from main storage to cache, a block is a more suit-
able unit of information than a sector. To hold down the overhead
in main storage accesses, therefore, the Model 85 moves a block 1
as a unit in transfers from main storage to cache. A “validity bit”
accompanying each cache block is set to 1 whenever the block is
filled from main storage. Depending upon the pattern of word
fetches, from 1 to 16 of the validity bits in a sector may be set
to 1. A block consists of 64 bytes and the width of the data path
is 16 bytes. The block is therefore moved in four parts of 16 bytes
each-the parts following one another on the data path. (Because
of the way in which main-storage addresses are assigned, the four

4 CONTI. GIBSON. AND PITKOWSKY

parts are in separate main storage units that can operate in
parallel in storage configurations of one million bytes or greater.)
For the sake of CPU performance, the part that contains the de-
sired word is routed first; moreover, this part is routed not only
to the cache, but also directly to the processor.

Instructions that store information in main storage in no way
affect the assignment of cache sectors-such instructions are ex-
ecuted in a conventional manner. However, if the instruction
refers to a word that is currently in the cache, the word is up-
dated in both cache and main storage. The necessity for dual up-
dating is evident when we realize that the input/output channels
communicate with main storage in parallel with the cache.

In the course of fetching an instruction or operand, an effective
(main-storage) address is generated in the usual way and compared
with the cache tags. If the relevant sector is “active,” i.e., pointed
to by the cache, its validity bits are examined to determine if the
relevant block is “valid”; if the block is valid, a main-storage
fetch is unnecessary; if not, the block is fetched and the validity
bit is set to 1. If the sector needed is not pointed to by the cache,
it must be activated by replacing the address of an active sector
in the cache.

The sectors of the cache are associated with main storage sectors
by entries in an activity list. The list is ordered such that the
sector most recently referred to is at the top of the list. Thus,
entries for less active sectors drift to the bottom of the list. If a
sector not in the cache is referred to, the entry for the sector that
has gone longest without being referred to is displaced. One of the
advantages of this scheme is that the number of sectors in the
cache can be readily altered. Although an instruction retry mech-
anism in the Model 85 (discussed later) usually allows successful
re-execution of instructions, the cache permits continued operation
despite a persistent fault in a sector. If the checking circuits indi-
cate such a persistent fault (which would degrade performance),
the sector can be logically removed from the cache.

The net effect of the cache is to sharply reduce the number of
required main storage fetches (Liptay discusses this in Part 11).
As a result, CPU performance is much less dependent on storage
access time, and the designer becomes free to consider new al-
ternatives. For example, he can allow for more main storage, al-
though this implies longer cables and thus longer access times.
The access time penalty of additional error detecting and correct-
ing circuitry also becomes more acceptable. In addition, the effects
of channel interference become less significant, because the cache
reduces CPU referencing of main storage; in other words, channels
with higher priorities than the CPU are less likely to “steal” mem-
ory cycles from the CPU.

The CPU contains an instruction unit (I Unit) and an execution
unit (E Unit) that are spoken of together as the processor. Since
the I Unit is capable of a one cycle rate of decoding and issuance
of instructions to the E Unit, an instruction can be processed by

MODEL 85 GENERAL ORGANIZATION

The bus control unit controls the movement of data from main
storage to cache, between main storage and processor, between
cache and processor, and between main storage and channels. The
unit is interlocked to maintain data integrity under all circum-
stances.

The S Y S T E M / ~ ~ O addressing format permits the attachment of
approximately 16 million bytes of main storage. Nonetheless, the
largest amount of main storage offered to date has been for the
Model 91, which permits 204SK, or about 2 million bytes of main
storage (we assume K = 1024). Adding more bytes of main storage
would result in a slower access time for the physical distances in-
volved in a Model 91. One of the advantages of the cache in the
Model S5, is that more storage can be attached without significantly
degrading system performance as a result of longer access times.

Models 65 through 91 utilize the same basic main storage,
which takes the form of an IBM 2365 or 2395 (and, in the case of the
RiIodel 85, the 2385) storage unit; the choice depends largely upon
packaging considerations. The 2385 contains twice as many bits of
storage as the 2365 in the same physical frame and volume. (The
2385 as well as the 2395 features unit interchangeability, which helps
to facilitate rapid changeover when a storage error is encountered
and must be repaired.) The Rodels 65, 75, and 91 utilize storage
interleaving and internal CPU buffering to provide the storage
bandwidth (theoretical upper limit on the bit rate) required in each
of the cases. The Model 91 buffers and interleaves to an unusual
extent in order to support its high-performance CPU. To achieve a
suitable bandwidth and average access time, the Model 85 em-
ploys less interleaving but combines the buffering advantages of
a cache with the advantages of a wider data path. Data is trans-
ferred from main storage sixteen bytes a t a time, as compared with
eight bytes on the Model 91. (In the case of the 2365, two units are
tied together to feed the wide path.) The 16-byte groupings are
interleaved four ways for the two and the four million byte 2385
configurations and for the one million byte 2365 configurations. For
the half million byte 2365, interleaving is two-way.

An error checking and correcting code (ECC), carried with each
eight-byte grouping in main storage, corrects any single-bit failure
and detects double-bit failures on main storage f e t che~ .~ In store
operations involving fewer than eight bytes, the ECC is used to
detect and possibly correct errors in data that will be regenerated.
The redundant bits in this code are not transferred to other sys-
tem elements but converted to odd parity 011 a byte basis, which
is subsequently checked by the processor. The objective of the
ECC is to preserve the validity of information while in main storage.

The storage units are designed with a “floating address” capa-
bility such that any storage unit can be manually assigned any
appropriate address. This permits the R!Iodel 85 to function in a
“degraded mode” even though one storage unit has a solid error.
For the 2365 storage configuration of one million bytes, the Model
85 can function in this mode with a one-half million byte con-

MODEL 85 GENERAL ORGANIZATION

figuration. For the 2385 memory configuration of two million bytes,
a one million byte configuration is possible. For the 2385 storage
configuration of four million bytes, a three, two, or one million
byte degraded configuration is achievable. In addition, a tester
built into the 2385 allows servicing of a one-million byte unit while
the remaining storage is still being used.

Channels are attached to main storage through the bus control
channels unit. The IBM 2860 selector channels and the 2870 multiplexor chan-

nels are both available for the Model 85. The design of the Model
85 is sufficiently open-ended to permit the attachment of faster
channels and input/output devices if and when they become availa-
ble in the future.

In the Model 85, all data transfers and arithmetic operations are
accompanied by parity bits, which are used to check data at the
receiving point. When the checking circuitry detects an error in a
CPU execution, the Model 85 will typically retry the instruction
from the beginning, as though the instruction had never entered
the CPU. Up to eight retries are attempted; if any is successful,
there is no loss of information and the system continues to run.
Although most problem program instructions are retriable from
the beginning, a successful retry may not be possible in certain
cases, such as a failure in storing data. Because of the relative
speeds of the processor and main storage, the error may not have
been detected until the processor has proceeded beyond the point
where retry is possible.

The Model 85 technology employs “ac coupling,” as a result of
ac which the CPU, channel groups, and storage units are isolated from

coupling one another in the direct-current sense. This permits power to be
shut down on any given box without affecting the operation of
the remaining boxes. The field engineer can therefore operate on
any of the coupled elements without affecting other portions
similarly attached provided appropriate precautions are taken.

The Model 85 design also extends the SYSTEM/360 diagnostic
fault capability to facilitate a more direct diagnosis of error location.

isolation Some of the diagnostic routines are written in a microinstruction
language and executed out of a read-and-write form of control
storage. Since a microinstruction utilizes fewer circuits than a
typical machine instruction, the location of the failing element can
be ascertained more precisely than is possible with conventional
diagnostic programs.

Because the Model 85 is compatible with the SYSTEM/360 line,
operating existing versions of OS/360 will run on the Model 85.6-8 At deliv-

system ery of the Model 85, os/360 will include such features as MVT

(Multitasking with a Variable number of Tasks) with storage pro-
tection; data management with data set protection and password
security; and sequential, indexed sequential, direct, and tele-
processing access methods. Planned extensions to MVT include
rollin/rollout, on-line diagnostics, automatic recovery procedures,
and QTAM error recovery procedures. Remote job entry will be
provided, as well as basic support for graphics applications.

I 8 CONTI, GIBSON, AND PITKOWSKY

To take advantage of the distinctive features of the Model 85,
extensions to Os/360 are planned. Specifically provided will be the
programming required for an optional integrated operator display
console and assembler language statements for extended-precision
floating-point arithmetic, a development discussed by Padegs in
Part I11 of this paper. A recovery program will also be provided,
which is designed to exploit the built-in availability features of the
system. The latter includes a recording function, as well as error
analysis and recovery using both hardware and programming
means.

System performance
There are at least two main areas to attack in designing an efficient
system: performance in terms of more jobs per hour while the sys-
tem is running (throughput) and keeping the system running more
of the time (availability). Throughput, in turn, is affected by CPU-

storage performance. Improved availability decreases scheduled or
unscheduled maintenance time and thereby raises the proportion
of useful system time. The Model 85 was designed with both of
these areas in mind, as is clear from the description of system
elements.

The significance of accurate performance evaluations to the de-
sign of a high-speed computing system was evident to Model 85
designers from the start. The anticipated degree of overlapping,
buffering, and queuing in the Model 85 appeared to largely in-
validate conventional performance measures based on instruction
mixes and program kernels. Although it seemed beyond the state
of the art to obtain direct quantitative comparisons on average
throughput per day, it seemed feasible and necessary to rely very
heavily upon digital simulation for quantitative comparisons of
performances in the cpu-memory complex. Experience gained from
a special-purpose timing simulator developed for the Model 91
gave encouragement; actual verification runs on the Model 91
have shown the timing program to yield an accuracy within two
percent.

The performance studies were conducted in essentially three
phases, the first to test the idea of the cache, the second to optimize
it, and the last to assess the performance ranges of the final design.
All of this effort required gathering data to be used with the timing
simulator that reflected the anticipated workload of the Model 85.

Although the methodology used in these studies is a subject
suitable for a paper in itself, the basic procedure is to run typical
jobs on a small SYSTEM/^^^ computer. The small computer is placed
under control of a special instruction-level tracer, which yields an
output tape that lists every instruction dynamically executed in
completing the job. The tracer using the output tape also calcu-
lates the instruction execution times for the Models 30 through
75. The output tape identifies the instruction itself, the location of
the instruction, the operand address or addresses, and the operand
or operands themselves.

MODEL 85 GENERAL ORGANIZATION

The trace tape provides the data to the timing program, which
simulates every cycle of the CPU being analyzed. Although this
procedure provides extremely accurate results, it requires a great
deal of machine time, and it is not economical to handle all of
every job in this fashion.

To reduce the volume of data to manageable proportions with-
out losing its statistical significance, an address-level trace was
obtained using a monitoring device. In this case, the output tape
includes only the address generated by the CPU. By feeding this
data to a statistical analyzer program, which assumes a Model 85
cache, the percentage of main storage activity for the program on
a particular machine is obtained. This procedure permits selection
of jobs or portions of jobs sufficiently representative of the range
of conditions anticipated. These job segments are then timed using
the instruction-level tracer and the timing program.

Another program used to reduce the volume of data provides a
dynamic count of executions of object code produced by each state-
ment in a FORTRAN source deck. This program determines which
segments of the FORTRAN program are most critical of job-required
CPU running time. With critical segments, it is also possible to
make more economical use of the time-consuming tracer and timing
programs.

The timing program used in these studies is highly parameter-
ized. The designer can vary cache size, block size, the number of
sectors, the type of main storage, multiply time, store algorithms,
fetch algorithms, and, of course, the cache replacement algorithm.
This flexibility permitted optimizing of the cache parameters after
the cache approach had been chosen.

The performance studies made both to decide on the cache ap-
proach and to validate the choice included a wide range of applica-
tions. Detailed timing studies of 26 different jobs were made, cov-
ering the complete range of characteristics anticipated for the
Model 85. Traces of 160 million instructions were made, resulting
in 714 tape reels of trace information. Since some of the reels
were used more than once, over a thousand reels of tape were
processed in arriving at the nlodel85 cache design.

The major design lesson learned from these performance studies
cache was that with a cache of 80 nanosecond cycle and a main storage

justification in the order of one microsecond cycle, one could achieve a per-
formance approximately equivalent to 80 percent of that obtain-
able with a conventional main storage of 80 nanosecond cycle. It ,
was also observed that a 16K byte cache corresponded to an
optimum cost-performance point in the design.

In addition to representative programs, a search was made for
programs written specifically to defeat sector-replacement algo-
rithms of the sort employed for the Model 85 cache. In one such
problem, the “matrix minimax” problem, the task is to find the
minimum of the row or column maximums in a 64 x 64 word
matrix.9 The program is instructive in that when the matrix is
accessed in the direction in which data are stored, the Model 85

10 CONTI, GIBSON, AND PITKOWSKY

I Figure 2 Scatter chart of the performance estimates obtained from the timing simula-
tion of 24 iob sectors

UPPER BOUND (OBTAINED IN MATRIX MINIMAX PROBLEM)
"""""""""""""""""~""""""

e
e

e

e e

e e

"""""""""""""""""""""""-
LOWER BOUND (OBTAINED IN MATRIX MINIMAX PROBLEM)

60 1
I

I
I I

1 2 3 4 5 10 15 20 25

JOB.SECTION NUMBER

with its cache will run at or very near its best performance relative
to a conventional machine. But when data are accessed in the di-
rection perpendicular to optimum, the Model 85 will perform at
or near its worst relative level. Thus, for all practical purposes,
the timing results provide upper and lower bounds relative to a normalized
conventional main storage and bus configuration. performance

Figure 2 illustrates Model 85 performance normalized to the
performance of a comparable machine except for an 80-nanosecond
main storage attached in a conventional manner. The base is ana-
lytically useful but unrealistic-a large quantity of 80-nanosecond
memory cannot presently be attached without a significant degrai
dation in access time due to bus-length problems, as well as for
reasons of economy. In Figure 2, the two minimax bounds are
shown as dotted lines.

To test the hypothesis that the bounds are indeed best and
worst, a large number of other program cross sections have been
plotted. All of these cases do indeed fall between the given bounds.
Note that the lower bound represents 66 percent of the performance
expected with an idealized 80-nanosecond storage. This fact shows
the cache to be remarkably insensitive to addressing anomalies.

Table 3. For the sake of interpretation, we can divide jobs into Performance
two classes: Euni t limited and access dependent.

The results of a number of representative analyses are given in relative

MODEL 85 GENERAL ORGANIZATION 11

As examples of the class of programs that are E-Unit limited,
consider the sample sequences numbers 9 and 10 of Table 3. For
these two sequences, the internal performance relative to a Model
65 improves about 20 percent when the high-speed multiply option
is added to the Model 85, indicating that the E-Unit time required
to execute the multiply instruction is a critical speed determinant.
This conclusion is strengthened by noting that no noticeable per-
formance improvement occurs when the cache is expanded, even
though the sequences require over 63K and 105K bytes of main
storage, respectively, for execution. Sample sequence number 11
is an additional example of an E-Unit limited program.

The class of program that is access-dependent is illustrated by
sample sequence number 6 of Table 3. When the cache is expanded
for the Model 85, thereby improving access time to additional data
for this sequence, the internal performance is seen to improve about
15 percent. This would indicate that access time is the critical
speed determinant, a conclusion that is borne out by the relatively
smaller improvement with the addition of the high-speed multiply

Table 3 Relative internal performance for execution of sample instruction sequences. Numbers shown are ratios, compared
to Model 65 CPU.

System/36O Model
Instruction sequences Storage 86 with 16X

taken from-the allocated 86 with 86 with cache and high-
following job steps to segment 76 16K cache SdK cache speed multiply 91

1. Compile job step using

2. COBOL compile
3. Assembly job step using

OS/360 Assembler (F)
4. Link edit job step
5. Sorting operation using

6. Heat transfer problem
7. Data reduction problem
8. Curve fitting by least squares

method
9. Integral evaluation within a

&level nested Do-loop
10. Matrix eigenvalue calculations

within nested Do-loops
11. Partial differential equation

solution using AD1 method

OS/360 FORTRAN I V (H)

OS/360 SORT

218

82
44

96
16

17
199
173

63

105

28

1 . 3

1 .3
1 . 3

1 .3
1 . 2

1 . 5
1.5
1 .6

1.7

1.7

1 . 8

3 . 2

3 .7
3 . 6

3 .8
3 . 2

3 .9
4 . 2
4 . 6

4 . 5

3 .6

4 . 6

3 . 6

4 . 3
4 . 5

4 . 5
4 . 1

4 . 5
4 . 4
4 . 8

4 . 5

3 .6

4 . 6

3 . 2 3 . 6

3 .7 N.A.
3.6 3.5

3 .8 3 .8
3 . 2 3 . 4

4 . 1 4 . 1
4 . 4 4 . 1
5 . 3 5 . 2

5 . 4 7 . 6

4 .6 9 .1

6 . 4 13.9

I n arriving at these figures, only cpu-main storage activity was simulated. Thus, these figures represent internal
performance only; they do not reflect either the total times required to run the programs or throughput. The
above ratios are subject to a 10% tolerance except for the 75 ratios which are subject to a 15% tolerance. These
ratios are only for the instruction sequences tested and are not necessarily correct for a complete job step.

12 CONTI, GIBSON, AND PITKOWSKY

option. A further interesting characteristic of access-dependent in-
struction sequences is inherent in this illustration: performance im-
provement resulting from expanded cache size cannot be correlated
with program size. This sequence requires only a little over 17K
bytes of problem program storage area for execution, yet the inter-
play between the problem program and the operating system is
such that the expanded cache size improves performance. In con-
trast, sample sequence number 7 requires over 199K bytes of prob-
lem program storage area for execution, yet the expanded cache
size improves performance only about 5 percent. This inability to
correlate program size to performance improvement resulting from
expanded cache size is an interesting and somewhat surprising
characteristic of access-dependent instruction sequences.

The internal performance information provided in Table 3 should
not be confused with total job time or throughput. Actual through-
put depends on factors not included in the values in the table.
However, the values in TabIe 3 represent a number of distinctive
applications, the characteristics of which can be well documented.
Thus it is feasible as the subject of a future study to form a weighted
average that applies reasonably well to a given installation. More-
over, this data can be used as one of the inputs in arriving a t r e h
tive estimates of throughput that take account of input/output
traffic. Of course, these informed evaluations will not do full justice
to the throughput potentialities of the large main storage in the
Model 85. For example, with more storage, the programmer can
reduce the need for overlays, provide larger buffers for terminal
devices, hold more data in readiness, and in some cases reduce
computational requirements by storing precomputed tables.

Summary
The Model 85 is a high-performance system that will execute pro-
grams that run on smaller SYSTEM/360 computers. Its basic design
includes monolithic circuits, very wide data paths, an 80-nano-
second internal buffer of at least 16K bytes, and a high-speed
multiply feature. The system is designed for high throughput over
a full range of applications. Among the features that bolster
throughput, in addition to the high internal performance, are an
exceptionally large main storage, instruction retry, error correction
in main storage, and improved diagnostic and maintenance
facilities.

CITED REFERENCES AND FOOTNOTES

1. The recently announced IBM 2420.
2. G. A. Blaauw and F. P. Brooks, Jr., “The structure of SYSTEM/%O, Part I ,

Outline of the logical structure,” IBM Systems Journal 3, No. 2, 119-135
(1964).

3. Cache is synonymous with high-speed buffer, as used in other Model 85
documentation.

MODEL 85 GENERAL ORGANIZATION 13

4. R. M. Tomamlo, “The IBM SYSTEM/^^^ Model 91: An efficient algorithm
for exploiting multiple arithmetic units,” ZBM Journal of Research and
Development 11, No. 1, 25-33 (January 1967). Or see T. C. Chen, “The
overlap design of the IBM SYSTEM/^^^ Model 92 central processing unit,”
Proceedings of the 1964 AFZPS Fall Joint Computer Conference 26, Part 2,

5. R. W. Hamming, “Error detecting and error correcting codes,” The Bell

6. G. H. Mealy, “The functional structure of 0~1360, Part I, Introductory

7. B. I. Witt, “The functional structure of 0~1360, Part 11, Job and task

8. W. A. Clark, “The functional structure of O S / 3 6 0 , Part 111, Data man-

9. The minimax program is due to Dr. H. Hellerman.

73-80 (1964).

System Technical Journal XXIX, No. 2, 147-160 (April 1950).

survey,” IBM System Journal 5, No. 1, 3-11 (1966).

management,” ZBM Sys tem Journal 5, No. 1, 12-29 (1966).

agement,” ZBM System Journal 5, No. 1, 30-51 (1966).

14 CONTI, GIBSON, AND PITKOWSKY

