
A basic  design  objective  for  the  Model 85 was  to  add a computer  to 
the  SYSTEM/^^^ line  that  ofers  high  performance over a  wide  range of 
job  types.  Simulation  studies  indicate  that  the  Model 85 will  provide 
an average  three-  to  jive-fold  increase in internal  performance  with 
m a i n  stoyage capacities of u p  to  four  million  bytes. 

This   part  of the  paper  discusses  the  major  elements of the  Model 85 
within  the  architectural  context of S Y S T E M / ~ ~ O ,  including  the  addition 
of a  high-speed  bufler, called a cache. 

Also summarized  are  the  simulation  studies  that led to  use of the 
cache,  selection of its  parameters,  and  verification of internal  per- 
formance of the  system. 

by C. J. Conti, D. H. Gibson, and S. H. Pitkowsky 

Intended  primarily as a growth  system  for users of Models 65 and 
75, the Model 85 was developed as a natural evolutionary  phase 
in SYSTEMI360 architecture. The Model 85  central processing unit 
is based upon  solid-state technology that offers significant ad- 
vantages over the circuit technology employed in Models 65 and 
75. These  advantages  take  the form of improved  reliability, speed, 
and packaging densities. However, going beyond a performance 
gain attributable  to technology, the Model  85 design objectives 
set  out  to raise throughput performance by exploiting system or- 
ganizational  potentialities  within S Y S T E M / ~ ~ O  architecture. 

The Model 85 is designed for high performance across the  entire 
spectrum of editing, file maintenance,  and  computational work- 1 

loads. As a result of combined improvements in organization and 
technology, the  internal performance of the Model 85 averages in 
the range of 3 to 5 times the performance of the Model 65-de- 
pending upon  the  nature of the job being measured. A high-speed 
multiply  unit is optional for installations  with  unusually  heavy 
computational loads. 

System performance can be enhanced by  attaching as much as 
four million bytes of main storage. Fast  tape  units  are now avail- 
able to support high throughput  in a tape oriented environment.' 
The Model  85  storage  and  storage  bus configuration will permit 
the  attachment of faster direct-access devices as such  units become 
available. Moreover, the Model  85 design incorporates  additional 
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Figure 1 Functional schematic of the Model 85 
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able  match between  main  storage and  the cpu-despite a  tenfold 
disparity  in  their access and cycle times.  Hence, the cache-al- 
though  completely invisible to  the programmer-is the key or- 
ganizational  element in  the Model 85. 

Before discussing the cache, let  us define 1024 contiguous  bytes 
of storage  as  a sector and 64 contiguous  bytes of storage  as  a block. 
In  the Model  85  context,  main  storage  is  assumed to be  divided 
into sectors and  each  sector subdivided into blocks. The address 
of a  sector or block is  simply the  address of the first word in  the 
sector or block. 

In  a basic Model 85, the cache holds sixteen sectors. Accompany- 
ing  each  sector is an address tug (the high-order 14  bits of a 24bit 
address) that identifies a  sector in  main  storage  with which a 
cache sector  is  associated. At  any given  time, the  tags  point  to  the 
sixteen  sectors of main  storage  from which words have been used 
most  recently.  Moreover, the cache contains the information 
fetched  from  these  sixteen  sectors and thereby  avoids the need 
for  fetching the same  information  more than once from  main 
storage. 

In  transfers  from  main  storage to cache, a block is a  more  suit- 
able  unit of information than a  sector. To hold down the overhead 
in  main  storage accesses, therefore, the Model  85 moves a block 1 
as a unit  in  transfers from  main  storage to cache.  A  “validity  bit” 
accompanying  each cache block is  set  to 1 whenever the block is 
filled from  main  storage.  Depending  upon the  pattern of word 
fetches,  from 1 to 16 of the validity bits in a  sector  may be set 
to 1. A block consists of 64 bytes  and  the  width of the  data  path 
is  16  bytes. The block is  therefore  moved in  four  parts of 16 bytes 
each-the parts following one another  on  the  data  path. (Because 
of the way in which main-storage  addresses are assigned, the  four 
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parts  are  in  separate  main  storage  units  that  can  operate  in 
parallel in  storage configurations of one million bytes or greater.) 
For the sake of CPU performance, the  part  that contains the de- 
sired word is  routed  first; moreover, this  part  is  routed  not only 
to  the cache, but also directly to  the processor. 

Instructions that store  information in main  storage in no  way 
affect the assignment of cache sectors-such instructions  are ex- 
ecuted  in a  conventional  manner.  However, if the instruction 
refers to a word that is  currently in  the cache, the word is up- 
dated  in  both cache and main  storage. The necessity for dual up- 
dating is evident when we realize that  the  input/output channels 
communicate  with  main  storage  in parallel with the cache. 

In  the course of fetching an  instruction or operand, an effective 
(main-storage) address  is  generated in  the usual way and compared 
with the cache tags. If the relevant  sector  is  “active,” i.e., pointed 
to  by  the cache, its validity  bits  are  examined to determine if the 
relevant block is  “valid”; if the block is  valid, a  main-storage 
fetch  is unnecessary; if not,  the block is  fetched  and  the  validity 
bit  is  set  to 1. If the sector  needed  is not pointed to by the cache, 
it must be activated  by replacing the address of an active  sector 
in  the cache. 

The sectors of the cache are associated with  main  storage  sectors 
by entries in  an  activity list. The list is ordered such that  the 
sector  most  recently referred to is at  the  top of the list. Thus, 
entries for less active  sectors drift  to  the  bottom of the list. If a 
sector not  in  the cache is referred to,  the  entry for the  sector  that 
has gone longest without being referred to is displaced. One of the 
advantages of this scheme is that  the number of sectors  in the 
cache can  be  readily  altered.  Although an  instruction  retry mech- 
anism in the Model 85 (discussed later)  usually allows successful 
re-execution of instructions, the cache permits  continued  operation 
despite  a  persistent fault  in a  sector. If the checking circuits indi- 
cate  such a  persistent fault (which would degrade  performance), 
the  sector  can be logically removed from the cache. 

The  net effect of the cache is to sharply  reduce the number of 
required  main  storage  fetches (Liptay discusses this  in  Part 11). 
As a  result, CPU performance  is  much less dependent  on  storage 
access time, and  the designer becomes free to consider new al- 
ternatives. For example,  he  can allow for  more main  storage, al- 
though  this implies longer cables and  thus longer access times. 
The access time  penalty of additional  error  detecting  and  correct- 
ing  circuitry also becomes more acceptable. In  addition, the effects 
of channel  interference become less significant,  because the cache 
reduces CPU referencing of main  storage;  in  other words, channels 
with  higher  priorities than  the CPU are less likely to “steal” mem- 
ory cycles from the CPU. 

The CPU contains an instruction  unit (I Unit)  and  an execution 
unit (E Unit)  that  are spoken of together  as  the processor. Since 
the I Unit is capable of a one cycle rate of decoding and  issuance 
of instructions to  the E Unit, an instruction  can  be processed by 
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The bus  control unit controls the movement of data from  main 
storage to cache, between  main  storage and processor, between 
cache and processor, and between  main  storage and channels. The 
unit is interlocked to maintain data integrity  under  all circum- 
stances. 

The S Y S T E M / ~ ~ O  addressing format permits the  attachment of 
approximately 16 million bytes of main  storage. Nonetheless, the 
largest amount of main  storage offered to  date  has been for the 
Model 91, which permits 204SK, or about 2 million bytes of main 
storage (we assume K = 1024). Adding more bytes of main  storage 
would result  in  a slower access time  for the physical distances in- 
volved in  a  Model 91. One of the advantages of the cache in the 
Model S5, is that more storage  can  be  attached  without significantly 
degrading  system performance as  a  result of longer access times. 

Models 65  through  91  utilize the same  basic main  storage, 
which takes the form of an IBM 2365 or 2395 (and,  in  the case of the 
RiIodel 85, the 2385) storage  unit;  the choice depends largely upon 
packaging considerations. The 2385 contains twice as  many  bits of 
storage  as  the 2365 in  the same  physical  frame and volume. (The 
2385 as well as  the 2395 features  unit interchangeability, which helps 
to facilitate  rapid changeover when a  storage  error is encountered 
and  must be repaired.) The  Rodels 65, 75, and 91 utilize storage 
interleaving and  internal CPU buffering to provide the storage 
bandwidth  (theoretical  upper  limit on the bit  rate) required  in  each 
of the cases. The Model 91 buffers and  interleaves to  an unusual 
extent  in  order  to  support  its high-performance CPU. To achieve a 
suitable  bandwidth and average access time, the Model  85 em- 
ploys less interleaving but combines the buffering advantages of 
a cache with  the  advantages of a wider data  path.  Data is trans- 
ferred  from  main  storage  sixteen  bytes a t  a  time,  as compared with 
eight  bytes  on the Model 91. (In  the case of the 2365, two  units  are 
tied  together  to feed the wide path.) The 16-byte groupings are 
interleaved  four  ways  for the two  and the four million byte 2385 
configurations and  for the one million byte 2365 configurations. For 
the half million byte 2365, interleaving is two-way. 

An error checking and correcting code (ECC), carried with  each 
eight-byte  grouping  in  main  storage,  corrects any single-bit failure 
and  detects double-bit failures on  main  storage f e t che~ .~   In  store 
operations involving fewer than eight  bytes, the ECC is used to 
detect  and possibly correct  errors in  data  that will be regenerated. 
The  redundant  bits  in  this code are  not transferred to  other sys- 
tem elements but converted to odd  parity 011 a byte basis, which 
is  subsequently checked by the processor. The objective of the 
ECC is to preserve the validity of information while in  main  storage. 

The storage  units  are designed with  a  “floating  address”  capa- 
bility  such that  any storage  unit  can be  manually assigned any 
appropriate  address.  This  permits  the R!Iodel 85  to function  in  a 
“degraded mode” even  though one storage  unit  has a solid error. 
For the 2365 storage configuration of one million bytes, the Model 
85 can  function  in this mode  with  a one-half million byte con- 
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figuration. For the 2385 memory configuration of two million bytes, 
a one million byte configuration is possible. For the 2385 storage 
configuration of four million bytes,  a  three,  two, or one million 
byte degraded configuration is achievable. In  addition,  a tester 
built  into the 2385 allows servicing of a one-million byte  unit while 
the remaining  storage is still being used. 

Channels  are attached  to main  storage  through the bus control 
channels unit.  The IBM 2860 selector channels and  the 2870 multiplexor chan- 

nels are  both available for the Model 85. The design of the Model 
85 is sufficiently open-ended to permit the  attachment of faster 
channels and  input/output devices if and when they become availa- 
ble in the future. 

In  the Model 85, all data transfers  and  arithmetic operations  are 
accompanied by  parity  bits, which are used to check data  at  the 
receiving point.  When the checking circuitry  detects an error in a 
CPU execution, the Model 85 will typically retry  the  instruction 
from the beginning, as  though  the  instruction  had never  entered 
the CPU. Up  to eight  retries are  attempted; if any is successful, 
there is no loss of information and  the  system continues to run. 
Although  most problem program  instructions are  retriable from 
the beginning, a successful retry  may  not be possible in certain 
cases, such  as a failure  in  storing data. Because of the relative 
speeds of the processor and  main storage, the error may  not  have 
been detected  until  the processor has proceeded beyond the point 
where retry  is possible. 

The Model 85 technology employs “ac coupling,” as a  result of 
ac which the CPU, channel  groups, and storage  units are isolated from 

coupling one another  in  the direct-current sense. This permits power to  be 
shut down on  any given box without affecting the operation of 
the remaining boxes. The field engineer can  therefore  operate on 
any of the coupled elements  without affecting other  portions 
similarly attached provided appropriate  precautions are  taken. 

The Model  85 design also extends the SYSTEM/360 diagnostic 
fault capability to facilitate a more  direct diagnosis of error location. 

isolation Some of the diagnostic  routines  are  written  in  a  microinstruction 
language  and  executed out of a  read-and-write  form of control 
storage. Since a  microinstruction utilizes fewer circuits than a 
typical  machine  instruction, the location of the failing element  can 
be  ascertained more precisely than is possible with  conventional 
diagnostic  programs. 

Because the Model 85 is compatible  with the SYSTEM/360 line, 
operating existing versions of OS/360 will run  on  the Model 85.6-8 At deliv- 

system ery of the Model 85, os/360  will include  such  features  as MVT 

(Multitasking  with  a  Variable  number of Tasks)  with  storage pro- 
tection; data management  with data set  protection and password 
security;  and sequential, indexed sequential,  direct, and tele- 
processing access methods.  Planned extensions to MVT include 
rollin/rollout, on-line diagnostics,  automatic recovery procedures, 
and QTAM error recovery procedures. Remote  job  entry will be 
provided,  as well as basic support for  graphics  applications. 

I 8 CONTI, GIBSON, AND PITKOWSKY 



To  take  advantage of the distinctive  features of the Model 85, 
extensions to Os/360 are planned. Specifically provided will  be the 
programming required for an optional  integrated  operator display 
console and assembler language statements for extended-precision 
floating-point arithmetic, a development discussed by Padegs in 
Part I11 of this  paper.  A recovery program will  also  be provided, 
which is designed to exploit the built-in availability  features of the 
system. The  latter includes a recording function, as well as error 
analysis and recovery using both hardware and programming 
means. 

System performance 
There  are at least two main  areas to  attack  in designing an efficient 
system: performance in terms of more jobs per hour while the sys- 
tem is running  (throughput)  and keeping the system  running more 
of the  time (availability).  Throughput,  in turn, is affected by CPU- 

storage performance. Improved  availability decreases scheduled or 
unscheduled maintenance  time  and  thereby raises the proportion 
of useful system  time. The Model 85 was designed with  both of 
these  areas in mind, as is clear from the description of system 
elements. 

The significance of accurate performance evaluations to  the de- 
sign of a high-speed computing system was evident to  Model 85 
designers from the  start.  The anticipated degree of overlapping, 
buffering, and queuing in the Model 85  appeared to largely in- 
validate conventional performance measures based on instruction 
mixes and  program kernels. Although it seemed beyond the  state 
of the  art  to  obtain direct quantitative comparisons on average 
throughput  per  day, it seemed feasible and necessary to rely very 
heavily upon  digital  simulation for quantitative comparisons of 
performances in the cpu-memory complex. Experience gained from 
a special-purpose timing  simulator developed for the Model 91 
gave encouragement;  actual verification runs on the Model 91 
have shown the timing  program to yield an accuracy within two 
percent. 

The performance studies were conducted in essentially three 
phases, the first to  test  the idea of the cache, the second to optimize 
it, and the  last  to assess the performance ranges of the final design. 
All of this effort required gathering data  to be used with the timing 
simulator that reflected the anticipated workload of the Model 85. 

Although the methodology used in these  studies is a subject 
suitable for a paper  in itself, the basic procedure is to  run typical 
jobs on a small  SYSTEM/^^^ computer. The small  computer is placed 
under  control of a special instruction-level tracer, which yields an 
output  tape  that lists  every  instruction dynamically executed in 
completing the job. The tracer using the  output  tape also  calcu- 
lates the instruction execution times for the Models 30 through 
75. The  output  tape identifies the instruction itself, the location of 
the  instruction,  the  operand  address or addresses, and  the operand 
or operands themselves. 
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The  trace  tape provides the  data  to  the timing  program, which 
simulates  every cycle of the CPU being analyzed. Although this 
procedure  provides  extremely  accurate  results, it requires  a  great 
deal of machine  time, and it is not economical to handle all of 
every  job  in  this fashion. 

To reduce the volume of data  to manageable  proportions with- 
out losing its  statistical significance, an address-level trace was 
obtained using a  monitoring device. In  this case, the  output  tape 
includes only the address  generated  by the CPU. By feeding  this 
data  to a  statistical  analyzer  program, which assumes a Model 85 
cache, the percentage of main  storage  activity  for  the program  on 
a particular  machine is obtained.  This  procedure  permits selection 
of jobs or portions of jobs sufficiently representative of the range 
of conditions  anticipated.  These  job  segments  are  then  timed using 
the instruction-level tracer  and  the  timing program. 

Another  program used to reduce the volume of data provides a 
dynamic  count of executions of object code produced  by  each  state- 
ment  in a FORTRAN source deck. This  program  determines which 
segments of the FORTRAN program  are  most  critical of job-required 
CPU running  time. With critical  segments, it is also possible to 
make more economical use of the time-consuming tracer  and timing 
programs. 

The timing  program used in  these  studies is highly  parameter- 
ized. The designer  can vary cache size, block size, the number of 
sectors, the  type of main  storage,  multiply  time,  store  algorithms, 
fetch algorithms,  and, of course, the cache replacement  algorithm. 
This flexibility permitted  optimizing of the cache parameters  after 
the cache approach  had been chosen. 

The performance  studies  made both  to decide on the cache ap- 
proach and  to  validate  the choice included a wide range of applica- 
tions.  Detailed  timing  studies of 26 different jobs were made, cov- 
ering the complete  range of characteristics  anticipated  for the 
Model 85. Traces of 160 million instructions were made,  resulting 
in 714 tape reels of trace  information. Since some of the reels 
were used more than once, over  a  thousand reels of tape were 
processed in  arriving at  the  nlodel85 cache design. 

The major design lesson learned from these  performance  studies 
cache was that with  a cache of 80 nanosecond cycle and a  main  storage 

justification in the order of one microsecond cycle, one could achieve a per- 
formance  approximately  equivalent to 80 percent of that obtain- 
able  with  a  conventional  main  storage of 80 nanosecond cycle. It , 
was also observed that a  16K  byte cache corresponded to  an 
optimum cost-performance point  in  the design. 

In  addition to representative  programs,  a  search was made  for 
programs  written specifically to defeat  sector-replacement algo- 
rithms of the  sort employed for the Model 85 cache. In  one such 
problem, the  “matrix minimax” problem, the  task is to find the 
minimum of the row or column maximums in a 64 x 64 word 
matrix.9 The program is instructive  in that when the matrix is 
accessed in the direction  in which data are  stored, the Model 85 
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I Figure 2 Scatter  chart of the  performance estimates obtained  from  the  timing simula- 
tion  of 24 iob sectors 
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with its cache  will run  at or very near its best performance relative 
to a conventional machine. But when data are accessed in the di- 
rection perpendicular to optimum, the Model 85 will perform at 
or near its worst relative level. Thus, for all practical purposes, 
the timing results provide upper and lower bounds relative to a normalized 
conventional main storage and bus configuration. performance 

Figure 2 illustrates Model 85 performance normalized to  the 
performance of a comparable machine except for an 80-nanosecond 
main storage attached  in a conventional manner. The base is ana- 
lytically useful but unrealistic-a large quantity of 80-nanosecond 
memory cannot presently be attached  without a significant degrai 
dation  in access time  due  to bus-length problems, as well as for 
reasons of economy. In Figure 2, the two minimax bounds are 
shown as dotted lines. 

To test  the hypothesis that  the bounds are indeed best and 
worst, a large number of other program cross sections have been 
plotted. All of these cases  do  indeed fall between the given bounds. 
Note that  the lower bound represents 66 percent of the performance 
expected with an idealized  80-nanosecond storage. This  fact shows 
the cache to be remarkably insensitive to addressing anomalies. 

Table 3. For the sake of interpretation, we can divide jobs into Performance 
two  classes: Euni t  limited and access dependent. 

The results of a number of representative analyses are given in relative 
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As examples of the class of programs that are E-Unit limited, 
consider the sample sequences numbers 9 and 10 of Table 3. For 
these two sequences, the internal performance relative to a Model 
65 improves about 20 percent when the high-speed multiply option 
is added  to the Model 85, indicating that  the E-Unit  time required 
to execute the multiply instruction is a critical speed determinant. 
This conclusion  is strengthened  by noting that no noticeable per- 
formance improvement occurs when the cache is expanded, even 
though the sequences require over 63K and 105K bytes of main 
storage, respectively, for execution. Sample sequence number 11 
is an additional example of an E-Unit limited program. 

The class of program that is access-dependent is illustrated  by 
sample sequence number 6 of Table 3. When the cache is expanded 
for the Model 85, thereby improving access time to additional data 
for this sequence, the internal performance is seen to improve about 
15 percent. This would indicate that access time is the critical 
speed determinant,  a conclusion that is borne out by the relatively 
smaller improvement with the addition of the high-speed multiply 

Table 3 Relative  internal  performance for execution of sample instruction sequences. Numbers shown are ratios,  compared 
to Model 65 CPU. 

System/36O Model 
Instruction sequences  Storage 86 with 16X 

taken from-the allocated 86 with 86 with cache and  high- 
following job steps to  segment 76 16K cache SdK cache  speed multiply 91 

1. Compile job  step using 

2. COBOL compile 
3. Assembly job  step using 

OS/360 Assembler (F) 
4. Link  edit  job  step 
5. Sorting  operation using 

6. Heat  transfer problem 
7. Data reduction problem 
8. Curve  fitting  by least  squares 

method 
9. Integral evaluation  within  a 

&level nested Do-loop 
10. Matrix eigenvalue calculations 

within nested Do-loops 
11. Partial differential equation 

solution using AD1 method 

OS/360 FORTRAN I V  (H) 

OS/360 SORT 

218 

82 
44 

96 
16 

17 
199 
173 

63 

105 

28 

1 . 3  

1 .3  
1 . 3  

1 .3  
1 . 2  

1 . 5  
1.5 
1 .6  

1.7 

1.7 

1 . 8  

3 . 2  

3 .7  
3 . 6  

3 .8  
3 . 2  

3 .9  
4 . 2  
4 . 6  

4 . 5  

3 .6  

4 . 6  

3 . 6  

4 . 3  
4 . 5  

4 . 5  
4 . 1  

4 . 5  
4 . 4  
4 . 8  

4 . 5  

3 .6  

4 . 6  

3 . 2   3 . 6  

3 .7  N.A. 
3.6 3.5 

3 .8   3 .8  
3 . 2   3 . 4  

4 . 1   4 . 1  
4 . 4   4 . 1  
5 . 3   5 . 2  

5 . 4   7 . 6  

4 .6   9 .1  

6 . 4  13.9 

I n  arriving at  these figures, only cpu-main storage activity was simulated.  Thus,  these figures represent internal 
performance only;  they do not reflect either the  total times required to  run  the programs or throughput.  The 
above  ratios are  subject  to a 10% tolerance except for the 75 ratios which are  subject  to a 15% tolerance. These 
ratios are only for the  instruction sequences tested  and  are  not necessarily correct for a complete job step. 

12 CONTI, GIBSON, AND PITKOWSKY 



option. A further interesting characteristic of access-dependent in- 
struction sequences  is inherent in this  illustration: performance im- 
provement resulting from expanded cache  size cannot be correlated 
with program size. This sequence requires only a  little over 17K 
bytes of problem program storage  area for execution, yet the inter- 
play between the problem program and the operating system is 
such that the expanded cache size improves performance. In con- 
trast, sample sequence number 7 requires over 199K bytes of prob- 
lem program storage area for execution, yet the expanded cache 
size improves performance only about 5 percent. This inability to 
correlate program size to performance improvement resulting from 
expanded cache  size is an interesting and somewhat surprising 
characteristic of access-dependent instruction sequences. 

The internal performance information provided in Table 3 should 
not be  confused with total job time or throughput. Actual through- 
put depends on factors  not included in the values in the table. 
However, the values in TabIe 3 represent a number of distinctive 
applications, the characteristics of which can be  well documented. 
Thus it is feasible as  the  subject of a  future  study  to form a weighted 
average that applies reasonably well to a given installation. More- 
over, this data can be  used as one of the  inputs  in arriving a t   r e h  
tive  estimates of throughput that take account of input/output 
traffic. Of course, these informed evaluations will not do full justice 
to  the throughput potentialities of the large main storage in  the 
Model 85. For example, with more storage, the programmer can 
reduce the need for overlays, provide larger buffers for terminal 
devices,  hold more data in readiness, and  in some  cases reduce 
computational requirements by storing precomputed tables. 

Summary 
The Model 85 is a high-performance system that will execute pro- 
grams that run on smaller SYSTEM/360 computers. Its basic  design 
includes monolithic circuits, very wide data paths, an 80-nano- 
second internal buffer of at least 16K bytes, and  a high-speed 
multiply feature. The system is designed for high throughput over 
a  full range of applications. Among the features that bolster 
throughput,  in addition to  the high internal performance, are an 
exceptionally large main storage, instruction  retry,  error correction 
in  main storage, and improved diagnostic and maintenance 
facilities. 

CITED  REFERENCES AND  FOOTNOTES 

1. The recently  announced IBM 2420. 
2. G. A. Blaauw and F. P. Brooks, Jr., “The  structure of SYSTEM/%O, Part I ,  

Outline of the logical structure,” IBM Systems Journal 3, No. 2, 119-135 
(1964). 

3. Cache is synonymous with high-speed buffer, as used in  other Model 85 
documentation. 

MODEL 85 GENERAL ORGANIZATION 13 



4. R. M. Tomamlo, “The IBM  SYSTEM/^^^ Model 91: An  efficient algorithm 
for exploiting multiple arithmetic units,” ZBM  Journal of Research and 
Development 11, No. 1, 25-33 (January 1967). Or see T. C. Chen, “The 
overlap design of the IBM  SYSTEM/^^^ Model 92 central processing unit,” 
Proceedings of the 1964 AFZPS Fall  Joint  Computer Conference 26, Part 2, 

5. R. W. Hamming, “Error detecting and error correcting codes,” The  Bell 

6. G. H. Mealy, “The functional structure of 0~1360,  Part I, Introductory 

7. B. I. Witt, “The functional structure of 0~1360,  Part 11, Job and task 

8. W. A. Clark, “The functional structure of O S / 3 6 0 ,  Part 111, Data man- 

9. The minimax program is due to Dr. H. Hellerman. 

73-80 (1964). 

System  Technical  Journal XXIX, No. 2, 147-160 (April 1950). 

survey,” IBM  System  Journal  5, No. 1,  3-11 (1966). 

management,” ZBM  Sys tem Journal 5,  No. 1, 12-29 (1966). 

agement,” ZBM  System  Journal 5, No. 1, 30-51 (1966). 

14 CONTI, GIBSON, AND PITKOWSKY 


