A basic design objective for the Model 85 was to add a computer to
the SYSTEM/360 line that offers high performance over a wide range of
Jjob types. Simulation studies indicate that the Model 85 will provide
an average three- to five-fold increase in iniernal performance with
main storage capacities of up to four million bytes.

This part of the paper discusses the major elements of the Model 85
within the architectural context of sYSTEM/360, including the addition
of a high-speed buffer, called a cache.

Also summarized are the simulation studies that led to use of the
cache, selection of its parameters, and verification of internal per-
formance of the system.

Structural aspects of the System /360 Model 85

I General organization
by C. J. Conti, D. H. Gibson, and S. H. Pitkowsky

Intended primarily as a growth system for users of Models 65 and
75, the Model 85 was developed as a natural evolutionary phase
in sysTEM/360 architecture. The Model 85 eentral processing unit
is based upon solid-state technology that offers significant ad-
vantages over the circuit technology employed in Models 65 and
75. These advantages take the form of improved reliability, speed,
and packaging densities. However, going beyond a performance
gain attributable to technology, the Model 85 design objectives
set out to raise throughput performance by exploiting system or-
ganizational potentialities within sysTEM/360 architecture.

The Model 85 is designed for high performance across the entire
spectrum of editing, file maintenance, and computational work-
loads. As a result of combined improvements in organization and
technology, the internal performance of the Model 85 averages in
the range of 3 to 5 times the performance of the Model 65—de-~
pending upon the nature of the job being measured. A high-speed
multiply unit is optional for installations with unusually heavy
computational loads.

System performance can be enhanced by attaching as much as
four million bytes of main storage. Fast tape units are now avail-
able to support high throughput in a tape oriented environment.!
The Model 85 storage and storage bus configuration will permit
the attachment of faster direct-access devices as such units become
available. Moreover, the Model 85 design incorporates additional

IBM SYSTEMS JOURNAL + VOL. 7 - NO. 1 - 1968

Table ! Design parameters

System /360 Model
Function 50 65 75 86 91

CPU cycle 500 200 195 80 60
(nanoseconds)

Memory access 1.0 0.6 0.585 0.88 0.60
(microseconds)

Memory cycle 2.0 0.75 0.75 1.04 0.75
(microseconds)

Memory None 2-way 2-4 way 2-4 way 8-16 way
interleaving

Data path 4 bytes 8 bytes 8 bytes 16 bytes 8 bytes
width

checking, error correction, instruction retry, storage reconfigura~
tion, and diagnostic techniques that further reduce unscheduled
maintenance.

Our main purpose here is to introduce the Model 85 at the level
of overall structure and performance. The reader is assumed to be
familiar with the general architecture of sysTEM/360.2 We first dis-
cuss the organization of the Model 85, emphasizing features that
differ from previous models. Second, we discuss the performance of
the system and indicate the nature of the simulation studies that
were deemed necessary to the design effort. Third, we briefly sum-
marize the Model 85 inclusions that supplement performance and
provide incremental gains in installation throughput.

System elements

The relative position of the Model 85 in the high-performance end
of the sysTEM/360 family is indicated in Table 1. The basic machine
cycle time of the Model 85 is 40 percent as long as that of the
Model 65. On the other hand, the Model 85 cycle time is fairly
close to that of the Model 91.

An important design feature of the Model 85 is its storage data
path width of 16 bytes. The importance of storage organization
to the Model 85 (and the 91 as well) is implicit in the fact that the
main storages of Models 65, 75, 85, 91 are all designed from the
same basic storage units; for the most part, the variations on this
unit have related to packaging considerations and environmental
factors. We will return to this subject later.

The main functional units in the Model 85, as shown in Figure
1, appear similar to those of any other sysTEm/360 model. Within
the central processing unit (cpu), however, one unit is distinctive
to the Model 85. This is the cache,® a high-speed storage (cycle
time of 80 nanoseconds) that serves as a buffer between main
storage and the cpu. The purpose of the cache is to effect a work-

MODEL 85 GENERAL ORGANIZATION

the cache

Figure 1 Functional schematic of the Model 85

MAIN STORAGE

INSTRUCTION
STORAGE UNIT
CONTROL
UNIT EXECUTION
UNIT

1

CHANNELS

able match between main storage and the cpu—despite a tenfold
disparity in their access and cycle times. Hence, the cache—al-
though completely invisible to the programmer—is the key or-
ganizational element in the Model 85.

Before discussing the cache, let us define 1024 contiguous bytes
of storage as a sector and 64 contiguous bytes of storage as a block.
In the Model 85 context, main storage is assumed to be divided
into sectors and each sector subdivided into blocks. The address
of a sector or block is simply the address of the first word in the
sector or block.

In a basic Model 85, the cache holds sixteen sectors. Accompany-
ing each sector is an address tag (the high-order 14 bits of a 24-bit
address) that identifies a sector in main storage with which a
cache sector is associated. At any given time, the tags point to the
sixteen sectors of main storage from which words have been used
most recently. Moreover, the cache contains the information
fetched from these sixteen sectors and thereby avoids the need
for fetching the same information more than once from main
storage.

In transfers from main storage to cache, a block is a more suit-
able unit of information than a sector. To hold down the overhead
in main storage accesses, therefore, the Model 85 moves a block
as a unit in transfers from main storage to cache. A “validity bit”
accompanying each cache block is set to 1 whenever the block is
filled from main storage. Depending upon the pattern of word
fetches, from 1 to 16 of the validity bits in a sector may be set
to 1. A block consists of 64 bytes and the width of the data path
is 16 bytes. The block is therefore moved in four parts of 16 bytes
each—the parts following one another on the data path. (Because
of the way in which main-storage addresses are assigned, the four

CONTI, GIBSON, AND PITKOWSKY

parts are in separate main storage units that can operate in
parallel in storage configurations of one million bytes or greater.)
For the sake of cPu performance, the part that contains the de-
sired word is routed first; moreover, this part is routed not only
to the cache, but also directly to the processor.

Instructions that store information in main storage in no way
affect the assignment of cache sectors—such instructions are ex-
ecuted in a conventional manner. However, if the instruction
refers to a word that is currently in the cache, the word is up-
dated in both cache and main storage. The necessity for dual up-
dating is evident when we realize that the input/output channels
communicate with main storage in parallel with the cache.

In the course of fetching an instruction or operand, an effective
(main-storage) address is generated in the usual way and compared
with the cache tags. If the relevant sector is ‘“active,” i.e., pointed
to by the cache, its validity bits are examined to determine if the
relevant block is “valid”; if the block is valid, a main-storage
feteh is unnecessary; if not, the block is fetched and the validity
bit is set to 1. If the sector needed is not pointed to by the cache,
it must be activated by replacing the address of an active sector
in the cache.

The sectors of the cache are associated with main storage sectors
by entries in an activity list. The list is ordered such that the
sector most recently referred to is at the top of the list. Thus,
entries for less active sectors drift to the bottom of the list. If a
sector not in the cache is referred to, the entry for the sector that
has gone longest without being referred to is displaced. One of the
advantages of this scheme is that the number of sectors in the
cache can be readily altered. Although an instruction retry mech-
anism in the Model 85 (discussed later) usually allows successful
re-execution of instructions, the cache permits continued operation
despite a persistent fault in a sector. If the checking circuits indi-
cate such a persistent fault (which would degrade performance),
the sector can be logically removed from the cache.

The net effect of the cache is to sharply reduce the number of
required main storage fetches (Liptay discusses this in Part II).
As a result, cpu performance is much less dependent on storage
access time, and the designer becomes free to consider new al-
ternatives. For example, he can allow for more main storage, al-
though this implies longer cables and thus longer access times.
The access time penalty of additional error detecting and correct-
ing circuitry also becomes more acceptable. In addition, the effects
of channel interference become less significant, because the cache
reduces cpu referencing of main storage; in other words, channels
with higher priorities than the cpu are less likely to “steal” mem-
ory cycles from the cru.

The cpuU contains an instruction unit (I Unit) and an execution
unit (E Unit) that are spoken of together as the processor. Since
the I Unit is capable of a one eycle rate of decoding and issuance
of instructions to the E Unit, an instruction ean be processed by

MODEL 85 GENERAL ORGANIZATION

the
processor

Table 2 Sample E-unit execution cycles (l-unit cycles, storage access cycles, etc., are
excluded)

Number of
Operation E-unit cycles**

Fixed-point instructions
load full-word
store full-word
add
multiply
high-speed multiply
Floating-point instructions
load (long) 1
store (long) 1
add normalized (long) 4*
multiply (long) 24*
high-speed multiply (long) 7*
add normalized (extended) 16*
Decimal instruction
add decimal 14*

* Number of eycles varies with data.

** Execution unit eycles are defined for this table as the number of machine
cycles taken by the execution unit to process the indicated operation. The
additional cycles taken by the instruction unit to prepare the instruction and
to obtain the operand are not included.

the I Unit each 80 nanoseconds. An instruction buffer in the I Unit
can queue up to three instructions ahead of current execution.
For branch instructions, as many as 16 bytes of each leg of the
branch may be prefetched. This helps to minimize the lost time
due to branches that depend, during some interim, upon incom-
pleted executions. Although several instructions may be in process
at a given instant of time, strict instruction sequence is preserved:
instruction N is never completed before instruction N — 1. Thus,
the capability for precise interruptions is preserved as in the
Models 65 and 75. Once the I Unit has decoded an instruction and
fetched the required operand from main storage (if such is neces-
sary), the instruction is passed on to the execution unit as a pseudo
register-to-register (RR) instruetion, much as in the Model 91.4
Two operands from storage may be buffered in this manner.

The E Unit contains buffers that receive pseudo RR instructions
from the I Unit. The E Unit examines the pseudo RR instruction
to determine which (if either) of the two operand buffers will be
the source of data for the operation. An interlock prevents the E
Unit from executing instructions with the wrong data. Because
the controls of the E Unit are implemented with read-only storage,
a considerable degree of flexibility is built into the Model 85, which
facilitates, for example, emulation. The E Unit also contains the
general purpose and floating-point registers, a 64-bit parallel
adder, a 32-bit logical unit, an 8-bit binary or decimal adder, a
64-bit shifter, and an optional high-speed multiply unit. Table 2
shows sample instruction execution times in the E Unit.

CONTI, GIBSON, AND PITKOWSKY

The bus control unit controls the movement of data from main
storage to cache, between main storage and processor, between
cache and processor, and between main storage and channels. The
unit is interlocked to maintain data integrity under all circum-
stances.

The sysTEM/360 addressing format permits the attachment of
approximately 16 million bytes of main storage. Nonetheless, the
largest amount of main storage offered to date has been for the
Model 91, which permits 2048K, or about 2 million bytes of main
storage (we assume K = 1024). Adding more bytes of main storage
would result in a slower access time for the physical distances in-
volved in a Model 91. One of the advantages of the cache in the
Model 85 is that more storage can be attached without significantly
degrading system performance as a result of longer access times.

Models 65 through 91 utilize the same basic main storage,
which takes the form of an 1BM 2365 or 2395 (and, in the case of the
Model 85, the 2385) storage unit; the choice depends largely upon
packaging considerations. The 2385 contains twice as many bits of
storage as the 2365 in the same physical frame and volume. (The
2385 as well as the 2395 features unit interchangeability, which helps
to facilitate rapid changeover when a storage error is encountered
and must be repaired.) The Models 65, 75, and 91 utilize storage
interleaving and internal cpu buffering to provide the storage
bandwidth (theoretical upper limit on the bit rate) required in each
of the cases. The Model 91 buffers and interleaves to an unusual
extent in order to support its high-performance cpu. To achieve a
suitable bandwidth and average access time, the Model 85 em-
ploys less interleaving but combines the buffering advantages of
a cache with the advantages of a wider data path. Data is trans-
ferred from main storage sixteen bytes at a time, as compared with
eight bytes on the Model 91. (In the case of the 2365, two units are
tied together to feed the wide path.) The 16-byte groupings are
interleaved four ways for the two and the four million byte 2385
configurations and for the one million byte 2365 configurations. For
the half million byte 2365, interleaving is two-way.

An error checking and correcting code (Ecc), carried with each
eight-byte grouping in main storage, corrects any single-bit failure
and detects double-bit failures on main storage fetches.® In store
operations involving fewer than eight bytes, the Ecc is used to
detect and possibly correet errors in data that will be regenerated.
The redundant bits in this code are not transferred to other sys-
tem elements but converted to odd parity on a byte basis, which
is subsequently checked by the processor. The objective of the
ECC is to preserve the validity of information while in main storage.

The storage units are designed with a “floating address” capa-
bility such that any storage unit can be manually assigned any
appropriate address. This permits the Model 85 to function in a
“degraded mode” even though one storage unit has a solid error.
For the 2365 storage configuration of one million bytes, the Model
85 can function in this mode with a one-half million byte con-

MODEL 85 GENERAL ORGANIZATION

main
storage

channels

ac
coupling

fault
isolation

operating
system

figuration. For the 2385 memory configuration of two million bytes,
a one million byte configuration is possible. For the 2385 storage
configuration of four million bytes, a three, two, or one million
byte degraded configuration is achievable. In addition, a tester
built into the 2385 allows servicing of a one-million byte unit while
the remaining storage is still being used.

Channels are attached to main storage through the bus control
unit. The 1BM 2860 selector channels and the 2870 multiplexor chan-
nels are both available for the Model 85. The design of the Model
85 is sufficiently open-ended to permit the attachment of faster
channels and input/output devices if and when they become availa-
ble in the future.

In the Model 85, all data transfers and arithmetic operations are
accompanied by parity bits, which are used to check data at the
receiving point. When the checking circuitry detects an error in a
cPU execution, the Model 85 will typically retry the instruction
from the beginning, as though the instruction had never entered
the cru. Up to eight retries are attempted; if any is successful,
there is no loss of information and the system continues to run.
Although most problem program instructions are retriable from
the beginning, a successful retry may not be possible in certain
cases, such as a failure in storing data. Because of the relative
speeds of the processor and main storage, the error may not have
been detected until the processor has proceeded beyond the point
where retry is possible.

The Model 85 technology employs “ac coupling,” as a result of
which the cpuU, channel groups, and storage units are isolated from
one another in the direct-current sense. This permits power to be
shut down on any given box without affecting the operation of
the remaining boxes. The field engineer can therefore operate on
any of the coupled elements without affecting other portions
similarly attached provided appropriate precautions are taken.

The Model 85 design also extends the systEm/360 diagnostic
capability to facilitate a more direct diagnosis of error location.
Some of the diagnostic routines are written in a microinstruction
language and executed out of a read-and-write form of control
storage. Since a microinstruction utilizes fewer circuits than a
typical machine instruction, the location of the failing element can
be ascertained more precisely than is possible with conventional
diagnostic programs.

Because the Model 85 is compatible with the sysTEM/360 line,
existing versions of 0s/360 will run on the Model 85.5-% At deliv-
ery of the Model 85, os/360 will include such features as mvr
(Multitasking with a Variable number of Tasks) with storage pro-
tection; data management with data set protection and password
security; and sequential, indexed sequential, direct, and tele-
processing access methods. Planned extensions to mvT include
rollin/rollout, on-line diagnostics, automatic recovery procedures,
and qram error recovery procedures. Remote job entry will be
provided, as well as basic support for graphics applications.

CONTI, GIBSON, AND PITKOWSKY

To take advantage of the distinctive features of the Model 85,
extensions to 0s/360 are planned. Specifically provided will be the
programming required for an optional integrated operator display
console and assembler language statements for extended-precision
floating-point arithmetic, a development discussed by Padegs in
Part III of this paper. A recovery program will also be provided,
which is designed to exploit the built-in availability features of the
system. The latter includes a recording function, as well as error
analysis and recovery using both hardware and programming
means.

System performance

There are at least two main areas to attack in designing an efficient
system: performance in terms of more jobs per hour while the sys-
tem is running (throughput) and keeping the system running more
of the time (availability). Throughput, in turn, is affected by cru-
storage performance. Improved availability decreases scheduled or
unscheduled maintenance time and thereby raises the proportion
of useful system time. The Model 85 was designed with both of
these areas in mind, as is clear from the description of system
elements.

The significance of accurate performance evaluations to the de-
sign of a high-speed computing system was evident to Model 85
designers from the start. The anticipated degree of overlapping,
buffering, and queuing in the Model 85 appeared to largely in-
validate conventional performance measures based on instruction
mixes and program kernels. Although it seemed beyond the state
of the art to obtain direct quantitative comparisons on average
throughput per day, it seemed feasible and necessary to rely very
heavily upon digital simulation for quantitative comparisons of
performances in the cPu-memory complex. Experience gained from
a special-purpose timing simulator developed for the Model 91
gave encouragement; actual verification runs on the Model 91
have shown the timing program to yield an accuracy within two
percent.

The performance studies were conducted in essentially three
phases, the first to test the idea of the cache, the second to optimize
it, and the last to assess the performance ranges of the final design.
All of this effort required gathering data to be used with the timing
simulator that reflected the anticipated workload of the Model 85.

Although the methodology used in these studies is a subject
suitable for a paper in itself, the basic procedure is to run typical
jobs on a small sysTEM /360 computer. The small computer is placed
under control of a special instruction-level tracer, which yields an
output tape that lists every instruction dynamically executed in
completing the job. The tracer using the output tape also calcu-
lates the instruction execution times for the Models 30 through
75. The output tape identifies the instruction itself, the location of
the instruction, the operand address or addresses, and the operand
or operands themselves.

MODEL 85 GENERAL ORGANIZATION

need for
simulation

general
methodology

cache
justification

The trace tape provides the data to the timing program, which
simulates every cycle of the cpu being analyzed. Although this
procedure provides extremely accurate results, it requires a great
deal of machine time, and it is not economical to handle all of
every job in this fashion.

To reduce the volume of data to manageable proportions with-
out losing its statistical significance, an address-level trace was
obtained using a monitoring deviee. In this case, the output tape
includes only the address generated by the cpu. By feeding this
data to a statistical analyzer program, which assumes a Model 85
cache, the percentage of main storage activity for the program on
a particular machine is obtained. This procedure permits selection
of jobs or portions of jobs sufficiently representative of the range
of conditions anticipated. These job segments are then timed using
the instruction-level tracer and the timing program.

Another program used to reduce the volume of data provides a
dynamic count of executions of object code produced by each state-
ment in a FORTRAN source deck. This program determines which
segments of the FORTRAN program are most critical of job-required
cPU running time. With critical segments, it is also possible to
make more economical use of the time-consuming tracer and timing
programs.

The timing program used in these studies is highly parameter-
ized. The designer can vary cache size, block size, the number of
sectors, the type of main storage, multiply time, store algorithms,
fetch algorithms, and, of course, the cache replacement algorithm.
This flexibility permitted optimizing of the cache parameters after
the cache approach had been chosen.

The performance studies made both to decide on the cache ap-
proach and to validate the choice included a wide range of applica-
tions. Detailed timing studies of 26 different jobs were made, cov-
ering the complete range of characteristics anticipated for the
Model 85. Traces of 160 million instructions were made, resulting
in 714 tape reels of trace information. Since some of the reels
were used more than once, over a thousand reels of tape were
processed in arriving at the Model 85 cache design.

The major design lesson learned from these performance studies
was that with a cache of 80 nanosecond cycle and a main storage
in the order of one microsecond cycle, one could achieve a per-
formance approximately equivalent to 80 percent of that obtain-
able with a conventional main storage of 80 nanosecond cycle. It
was also observed that a 16K byte cache corresponded to an
optimum cost-performance point in the design.

In addition to representative programs, a search was made for
programs written specifically to defeat sector-replacement algo-
rithms of the sort employed for the Model 85 cache. In one such
problem, the “matrix minimax” problem, the task is to find the
minimum of the row or column maximums in a 64 X 64 word
matrix.? The program is instructive in that when the matrix is
accessed in the direction in which data are stored, the Model 85

CONTI, GIBSON, AND PITKOWSKY

Figure 2 Scatter chart of the performance estimates obtained from the timing simula-
tion of 24 job sectors

—
=3
k=3

UPPER BOUND (OBTAINED IN MATRIX MINIMAX PROBLEM)

©
S

MODEL 85 PERFORMANCE AS A PERCENTAGE OF A
COMPARABLE SYSTEM WITH 80-NSEC MAIN STORAGE

]
20 2

JOB-SECTION NUMBER

with its cache will run at or very near its best performance relative
to a conventional machine. But when data are accessed in the di-
rection perpendicular to optimum, the Model 85 will perform at

or near its worst relative level. Thus, for all practical purposes,
the timing results provide upper and lower bounds relative to a
conventional main storage and bus configuration.

Figure 2 illustrates Model 85 performance normalized to the
performance of a comparable machine except for an 80-nanosecond
majn storage attached in a conventional manner. The base is ana-
lytically useful but unrealistic—a large quantity of 80-nanosecond
memory cannot presently be attached without a significant degra-~
dation in access time due to bus-length problems, as well as for
reasons of economy. In Figure 2, the two minimax bounds are
shown as dotted lines.

To test the hypothesis that the bounds are indeed best and
worst, a large number of other program cross sections have been
plotted. All of these cases do indeed fall between the given bounds.
Note that the lower bound represents 66 percent of the performance
expected with an idealized 80-nanosecond storage. This fact shows
the cache to be remarkably insensitive to addressing anomalies.

The results of a number of representative analyses are given in
Table 3. For the sake of interpretation, we can divide jobs into
two classes: E-unit limited and access dependent.

MODEL 85 GENERAL ORGANIZATION

normalized
performance

relative
performance

As examples of the class of programs that are E-Unit limited,
consider the sample sequences numbers 9 and 10 of Table 3. For
these two sequences, the internal performance relative to a Model
65 improves about 20 percent when the high-speed multiply option
is added to the Model 85, indicating that the E-Unit time required
to execute the multiply instruction is a critical speed determinant.
This conclusion is strengthened by noting that no noticeable per-
formance improvement occurs when the cache is expanded, even
though the sequences require over 63K and 105K bytes of main
storage, respectively, for execution. Sample sequence number 11
is an additional example of an E-Unit limited program.

The class of program that is access-dependent is illustrated by
sample sequence number 6 of Table 3. When the cache is expanded
for the Model 85, thereby improving access time to additional data
for this sequence, the internal performance is seen to improve about
15 percent. This would indicate that access time is the critical
speed determinant, a conclusion that is borne out by the relatively
smaller improvement with the addition of the high-speed multiply

Table 3 Relative internal performance for execution of saumple instruction sequences. Numbers shown are ratios, compared
to Model 65 CPU.

System /360 Model
Imstruction sequences Storage 85 with 16K
taken from the allocated 85 with 85 with cache and high-
following job steps to segment 16K cache 32K cache speed multiply 91

. Compile job step using 218 . 3.2 3.6 3.2
08/360 FORTRAN 1v (H)

. COBOL compile 82

. Assembly job step using 44
0s/360 Assembler (F')

. Link edit job step 96

. Sorting operation using 16
08 /360 SORT

. Heat transfer problem 17

. Data reduction problem

. Curve fitting by least squares
method

. Integral evaluation within a
3-level nested po-loop

. Matrix eigenvalue calculations
within nested po-loops

11. Partial differential equation 28 . 4.6 4.6 6.4 13.9

solution using ADI method

3.7
3.6

.3 3.
.5 3.

In arriving at these figures, only cPu-main storage activity was simulated. Thus, these figures represent internal
performance only; they do not reflect either the total times required to run the programs or throughput. The
above ratios are subject to a 109, tolerance except for the 75 ratios which are subject to a 15%, tolerance. These
ratios are only for the instruction sequences tested and are not necessarily correct for a complete job step.

12 CONTI, GIBSON, AND PITKOWSKY

option. A further interesting characteristic of access-dependent in-
struction sequences is inherent in this illustration: performance im-
provement resulting from expanded cache size cannot be correlated
with program size. This sequence requires only a little over 17K
bytes of problem program storage area for execution, yet the inter-
play between the problem program and the operating system is
such that the expanded cache size improves performance. In con-
trast, sample sequence number 7 requires over 199K bytes of prob-
lem program storage area for execution, yet the expanded cache
size improves performance only about 5 percent. This inability to
correlate program size to performance improvement resulting from
expanded cache size is an interesting and somewhat surprising
characteristic of access-dependent instruction sequences.

The internal performance information provided in Table 3 should
not be confused with total job time or throughput. Actual through-
put depends on factors not included in the values in the table.
However, the values in Table 3 represent a number of distinctive
applications, the characteristics of which can be well documented.
Thus it is feasible as the subject of a future study to form a weighted
average that applies reasonably well to a given installation. More-
over, this data can be used as one of the inputs in arriving at rela~
tive estimates of throughput that take account of input/output
traffic. Of course, these informed evaluations will not do full justice
to the throughput potentialities of the large main storage in the
Model 85. For example, with more storage, the programmer can
reduce the need for overlays, provide larger buffers for terminal
devices, hold more data in readiness, and in some cases reduce
computational requirements by storing precomputed tables.

Summary

The Model 85 is a high-performance system that will execute pro-
grams that run on smaller sYsTEM/360 computers. Its basic design
includes monolithic circuits, very wide data paths, an 80-nano-
second internal buffer of at least 16K bytes, and a high-speed
multiply feature. The system is designed for high throughput over
a full range of applications. Among the features that bolster
throughput, in addition to the high internal performance, are an
exceptionally large main storage, instruction retry, error correction
in main storage, and improved diagnostic and maintenance
facilities.

CITED REFERENCES AND FOOTNOTES

1. The recently announced 1Bm 2420.

2. G. A. Blaauw and F. P. Brooks, Jr., “The structure of system/360, Part I,
Outline of the logical structure,” IBM Systems Journal 3, No. 2, 119-135
(1964).

3. Cache is synonymous with high-speed buffer, as used in other Model 85
documentation.

MODEL 85 GENERAL ORGANIZATION

14

4.

R. M. Tomasulo, “The 1BM sysTEM/360 Model 91: An efficient algorithm
for exploiting multiple arithmetic units,”” IBM Journal of Research and
Development 11, No. 1, 25-33 (January 1967). Or see T. C. Chen, “The
overlap design of the mBM sysTEM/360 Model 92 central processing unit,”
Proceedings of the 1964 AFIPS Fall Joint Computer Conference 26, Part 2,
73-80 (1964).

. R. W. Hamming, “Error detecting and error correcting codes,”’” The Bell

6.

7.

8.

9.

System Technical Journal XXIX, No. 2, 147-160 (April 1950).

G. H. Mealy, “The funetional structure of 0s/360, Part I, Introductory
survey,” IBM Systems Journal 5, No. 1, 3-11 (1966).

B. I. Witt, “The functional structure of os/360, Part II, Job and task
management,”’ IBM Systems Journal 5, No. 1, 12-29 (1966).

W. A. Clark, “The functional structure of 0s/360, Part III, Data man-
agement,”” IBM Systems Journal 5, No. 1, 30-51 (1966).

The minimax program is due to Dr. H. Hellerman.

CONTI, GIBSON, AND PITKOWSKY

