
The  motivation,  history,  and  basic  concepts of user-oriented  languages 
for digital  simulation of continuous  systems  are  presented.  Reference 
i s   made  to  two  illustrative  programs,  the IBM 1130 and S Y S T E M / ~ ~ O  

Continuous  System  Modeling  Programs (CSMP). 

Both  programs  accept  user-oriented  input  statements for constructing 
simulation  models  and  controlling  simulation  runs.  The 1130 CSMP 

also  allows  on-line  interaction  by  the  user. An engineer or scientist 
at  the console can alter  the  model or change run  conditions based on 
direct  observation of simulation  outputs.  The SYSTEM/36O CSMP i s  
intended f o r  batch-mode  operation. I t  has  extended  facilities for de- 
scribing  the  model  and for obtaining  automatic  program  control of 
successive simulation  runs. 

I Two continuous system modeling  programs 
by R. D. Brennan  and M. Y. Silberberg 

Simulation is a well-established tool, with applications ranging 
from the  study of information flow in business organizations to  the 
investigation of the dynamic behavior of complex mechanical 
systems. The former has  often been treated  as a discrete process on 
digital computers through the use of such discrete system simula- 
tion programs as  the General Purpose  System  Simulator (GPSS).~ 
By  contrast, those continuous dynamic  systems that  are  the usual 
concern of engineers and scientists traditionally  have been modeled 
on analog computers. 

The analog computer  has been used for innumerable studies of 
continuous systems  and  has proved to be a convenient and flexible 
tool. However, the necessity of scaling variables  into reasonable 
voltage levels and  the operational difficulties inherent in analog 
circuitry combine to present the analog user with a number of irk- 
some problems. These difficulties mount  as the size, complexity, 
and accuracy requirements of the problem increase. As a conse- 
quence, considerable attention  has been given in  the  last several 
years to  the use of digital computers for simulation of continuous 
systems. 

This does not imply that  the analog computer is pass& In 
general, for those situations  in which raw computing speed is the 
decisive factor, the analog approach is superior. Moreover there is 
the possibility of combining an analog system  with  a  digital  system 
in  a so-called hybrid configuration. For certain problems, a success- 
ful combination of the relative  advantages of each has been realized. 
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However the  tasks of implementing and utilizing such a combina- 
tion  are  by no means trivial. It would be pointless to  attempt  to 
delineate precisely the problems that are  best  suited to one or 
another approach. The  situation  has been in  constant flux as the 
capabilities of both digital  and analog techniques have developed 
and  the requirements imposed by  the users have become  more and 
more stringent. 

An obstacle to  the use of digital computers has been the re- 
luctance of many engineers and scientists to enter  into  digital com- 
puter programming. Recognition of that reluctance has  stimulated 
development of problem-oriented languages designed to facilitate 
communication between simulation users and  digital machines. 

This  article describes the basic design and user-oriented con- 
cepts of these languages with specific reference to two programs 
developed and  supported  by IBM: the 1130 and S Y S T E M / ~ ~ O  Continu- 
ous System Modeling Programs (CSMP). 

Historical background 

Most past  activity  has been in  the development of “digital-analog 
simulators.” During the  past  ten years,  upwards of thirty  separate 
programs of this type  have been reported.  Each provided a comple- 
ment of functional elements or blocks similar to those of the analog 
computer and  a block-oriented language for specifying their  inter- 
connection. These “digital-analog simulators’’ model the elements 
and organization of analog computers  and provide numerical 
routines that are  equivalent to such standard analog elements as 
integrators, summers, inverters, mult,ipliers, and function genera- 
tors. In addition,  they provide those special-purpose functions 
commonly assembled from several analog elements; for example, 
division, exponentiation, limiting,  time  delay  and dead space func- 
tions. Just as the computer  patchboard electrically links analog 
computing elements, the simulation language describes intercon- 
nections among the numerical routines. 

Recently, developers have become interested  in a somewhat 
different approach, the so-called “continuous system simulators.’’ 
These programs combine the element or block modeling feature of 
the “digital-analog simulators” with algebraic and logical modeling 
capabilities. The  input language permits configuration or structure 
statements  to  be prepared directly  and simply from either  a block 
diagram or differential equation  representation of the system to be 
simulated. 

The designers of each successive program  have  sought to  put 
increased digital  computing  capability  within the reach of the 
engineer and scientist. While the programs differ in details,  there 
is a common thread-the block-oriented input language. A dis- 
tinguishing characteristic of the engineering design-analysis ap- 
proach is the conceptual breakdown of a  system  into its component 
parts.  By training,  many engineers and  scientists visualize a  system 
as  a complex of interconnected  subunits. For example, the control 
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engineer often  represents a servo system by transfer  functions 
grouped as  input/output blocks in a feedback  system  diagram.  A 
physiologist often visualizes a body mechanism as a complex of 
functional  units,  without necessarily preparing  a formal statement 
of equations. Because of this user orientation, the block-oriented 
input language has persisted throughout the history of this  type of 
system. 

This  history can be  traced  back to  the digital-analog simulator 
developed by R. G. Selfridge2 in 1955, a  time when the digital com- 
puter was still  in its infancy. Programmed for the IBM 701, Sel- 
fridge’s program demonstrated the validity of his idea-that digital 
computers could be used effectively to simulate continuous phe- 
nomena. From that beginning, there  has been a steady progression 
of programs as this new  field has u n f ~ l d e d . ~ ? ~  It would be less than 
honest, however, to suggest that Selfridge’s notion met  with im- 
mediate universal acceptance. The analog computer had been used 
successfully in  simulation  studies  for  nearly a decade. Although 
requiring considerable expertise, it  had proved to be a flexible and 
valued tool. Its devotees were convinced that  the claims made 
regarding digital simulation stemmed  from  empty parochialism. 
The MIDAS program, developed in 1963, finally overcame much of 
this resistan~e.~ 

Although intended primarily to check solutions obtained  with 
an analog computer, MIDAS soon found acceptance as an alternative 
to analog simulation. Its block-oriented language was convenient 
and simple to use; the computer for which it was developed was 
capable of handling even the extensive simulations used in the 
aerospace and chemical process industries. Within  months, MIDAS 

was in use almost everywhere an IBM 7090 was available; its strong- 
est adherents were, more often than  not, people who had previously 
considered themselves happily wedded to  the analog computer. 

But users of MIDAS soon began to chafe under the  frustrations 
of batch-mode computer “turn-around time.” The elimination of 
scaling and patching-the most irksome aspects of analog com- 
puter programming-did permit the user to formulate  a simulation 
quickly, but  this advantage was partially offset by  the inability to 
interact  directly  with the simulation in  a “conversational” mode. 
A program called PACTOLUS, which appeared  in 1964, was de- 
signed to remedy that situation.6 

PACTOLUS demonstrated that, with an appropriate  terminal,  a 
user modus operandi could be enjoyed that was very similar, and  in 
interaction some ways superior, to  that of conventional analog computers. The 

program was developed for the IBM 1620, a  comparatively small 
scientific computer.  By means of the typewriter, sense switches, 
and the IBM 1627 Plotter,  the user was able to modify the simulation 
configuration, parameters,  and  initial conditions at will, while ob- 
serving the response of the system being simulated. 

As with MIDAS, the PACTOLUS program had two big factors  in its 
favor-it appeared a t  just  the  right time  and was developed for a 



extensively. Its simplicity  made it particularly  appealing to those 
previously uninitiated to  the mysteries of either  analog or digital 
programming. 

Since the appearance of PACTOLUS in 1964, a whole new class of 
programs, the “continuous  system  simulators’’ previously men- 
tioned, has emerged. D m p o  and MIMIC were in  the  vanguard of this 
recent m o ~ e m e n t ; ~ , ~  the new SYSTEM/~~O CSMP is based on DSL/SO 

and  is  the  latest  and most comprehensive of this class.g It is in- 
tended  for  simulation  users  having access to large-scale digital 
systems. 

However, the popularity of PACTOLUS demonstrated that, for 
many engineers and scientists who want  to personally  conduct  their 
own simulation  studies, the simplicity of an exclusively block- 
oriented  programming  language  continues to  have  great appeal. 
This,  then, led to  the development of the 1130 Continuous  System 
Modeling  Program.lo 

1130 CSMP 

The 1130 CSMP was developed specifically for the environment of the 
design engineer. Because the program  operates  on  a  small,  fast 
computer, it is technically and economically feasible for the user to  
both  simulate relatively complex processes and  yet  interact  in an 
on-line mode. For a  simulation  study of typical  complexity,  a single 
simulation run requires only several  minutes of computing  time; 
thus,  the user can feel free to experiment with  the simulation until 
satisfied with the system design and performance. For many  types 
of investigations, the 1130 CSMP obviates  any requirement  for an 
analog  computer  facility.  Indeed, both  the design and implementa- 
tion of a  simulation study  are considerably  simpler than would be 
the case with  an analog  computer. 

The 1130 CSMP provides a complement of 25 standard simulation functional 
elements or blocks, plus a group of five “Special” elements that  the elements 
user can  tailor to  his  particular needs. Figure 1 illustrates  a repre- 
sentative group of these  elements,  their  diagrammatic and language 
symbols, and descriptions of their  functions. The user starts  by de- 
veloping a block diagram showing the interconnections  among the 
elements  required to implement his model. He  then translates the 
diagram  into a corresponding set of 1130 CSMP language  statements. 

Translation of the block diagram  into a computer  program in- input 
volves the use of three  types of simple language statements. These language 
permit easy development of a simulation  program  and  provide  a 
basis for convenient  interaction  with it by  means of console switches 
and keyboard. The  three  types  are: 

Conjiguration statements, which define the interconnections 
among the functional blocks and specify the desired functions. 
Parameter statements, which associate  numerical  constants  with 
the element’s to  particularize  their functions. 
Function generator statements, which define the  input/output 
relationships  for the Function  Generator elements. 



Figure 1 Representative 1130 CSMP functional elements 
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Referring  again to Figure 1, it is seen that  the  types of state- 
ments required depend  on the specific function. For example, some 
of the elements  have one or more inputs  but no associated parame- 
ters; each use of one of these  elements in a model therefore  requires 
only  a configuration statement.  Those  elements that do  have 
associated parameters in  their definition usually  require both con- 
figuration and  parameter  statements  for each use. The  Function 
Generator  element  requires  all  three  types of statements. 



A most important  feature of the program  is the option of enter- 
ing  these  statements  either  by  means of punched  cards or directly 
from the console keyboard. I n  general, it  is preferable to  introduce 
the problem by means of cards  and use the on-line console features 
only  for modifying the  statements. A standardized  format simplifies 
the routine  task of preparing the necessary punched  cards. Note 
that  the program is nonprocedural, in  that block numbers  can  be 
assigned arbitrarily  and  the configuration statements  can  be en- 
tered in  any  order.  The correct sequencing of the calculations is 
performed  automatically by a  sorting  routine,  as explained in  the 
section on  sorting. 

During the introduction of a problem, the user is provided  with 
automatically  typed  instructions  and diagnostics that guide him 
through the procedures. The  instructions  tell  him how to  initiate 
dat>a  entry, how to select the variables  for printer  and  plotter  out- 
put,  and how to specify the integration  interval,  total  run  time,  and 
output  intervals  by means of the console keyboard. There  is even 
the option of suppressing some instructions,  by means of a console 
switch,  when the user  has  gained sufficient proficiency to no longer 
require that assistance. 

Chiefly, of course, interaction  means that, during  a  run,  the user 
can  experiment  with the model as directly and spontaneously as  he 
would on  an analog  computer. The user may  interrupt a run  at will 
to modify the simulation  as desired and need not follow a prescribed 
pattern for  development and  testing of the simulation. The digital 
approach  has  the  added  advantage of providing  positive documen- 
tation of his modifications and progress. 

The operational flexibility essential  for this on-line experimenta- 
tion is obtained  from use of the console entry switches  for  option 
selection and of the console keyboard  for  entering the modifica- 
tions. By means of the console features, the user can  modify the 
configuration,  parameters, or control  variables and  can  then  either 
proceed from the point of interruption or initiate a new run.  Table 1 
lists the various  options.  Effective use of these  interactive  features 
requires  a  convenient  means both for observing the model’s response 
during the  runs  and for  permanent  documentation of the final data. 
These  requirements  are satisfied by use of the console printer  and, 
optionally, the 1627 Plotter.  The  net effect is a very real  capability 
for user interaction-easy modification of the model, easy run 
control,  easy  control of output devices, and  adaptability  in use. 

The 1130 CSMP can  be classified as  a special type of “general 
differential  equation solver.” Its distinction is that  the  set of 
differential  equations  is specified by a special block-oriented lan- 
guage. Solution  is accomplished by means of a  sorting  algorithm, 
which determines the order of computations,  and a numerical 
integration  formula, which approximates the continuous  integration 
process. 

I n  contrast to most  digital  programming,  in which the order of 
coding is  important,  the 1130 CSMP is organized to provide  a  “paral- 
lel” language. That is, the order  in which the configuration state- 
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Table 1 Console entry switch options 

Interrupt run 
Modify  configuration 
Change initial conditions or parameters 
Change Function Generator intercepts 
Change integration specifications 
Set print interval 
Define print variables 
Specify new plot frame 
Scale plotter x-axis 
Scale plotter y-axis 
Suppress instructions 
Suppress typing of card input data 
Punch updated data deck 
Interrogate block outputs 
Save status  at interrupt point 
Restart at previous interrupt point 

ments  are  entered does not affect the subsequent solution. The 
sorting  algorithm is used after each change in  the configuration to 
determine the proper  order for processing the functional  elements; 
no element is allowed to be processed until  updated values of its 
input variables  are available. At each integration  interval, it is as- 
sumed that constants  and  the  outputs of memory-type  elements are 
available.  A  memory-type  element is one in which the current  out- 
put depends  only on  past values of the  input  and  output. Using 
these, it  is possible to process one or more elements;  these outputs 
then become available as  inputs  to additional elements. If the con- 
figuration  is  correct, it is possible to process all the blocks in accord- 
ance  with the sorting  algorithm.  This  operation is performed 
automatically  and  requires  only  a few seconds. 

If the sorting  algorithm  indicates an improperly specified  con- 
figuration, the program produces a diagnostic message. The most 
common cause for  a sort error is the existence of an algebraic loop. 
This  is  a closed path  in  the simulation  diagram that does not include 
a memory element. Special means  provided in  the program must 
then  be used to “break” the loop and implement the necessary 
iteration mechanism for solution of the implicit  function. 

Integration  is  approximated by means of the second-order 
integration Runge-Hutta numerical method. The simplicity of this  method is 
method particularly important  to  the user who wishes to develop Special 

elements involving memory. The program uses centralized integra- 
tion,  and the  set of differential equations is treated  as a  vector  equa- 
tion.  Each  time  a block is processed, the independent  variable, 
time, is incremented by one  half the integration  interval. At each 
such half step,  the program calls into operation  a  subroutine that 
computes the  outputs of all the blocks specified for the configura- 
tion, in effect, evaluating  the  derivative vector.  This  vector  quan- 
tity is then used to compute the new value of the  state  variable 
vector; that is, the  output of all the  Integrators. 
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The user must specify the integration  interval,  consistent  with 
the requirements of his problem. The  “best” value  for  a  particular 
problem can be determined only by  experimentation. A good rule of 
thumb is to first try approximately  one-tenth the period of the high- 
est frequency expected. The best  value is the largest time  interval 
that can be used without  degrading the accuracy below that de- 
sired;  this choice results  in the fastest solution times. It is best to 
experiment with several different integration  intervals before ini- 
tiating  any series of parameter runs. 

The basic modeling capabilities of the 1130 CSMP can be illus- 
trated  by a simple but representative problem-a design study of a 
cable reel system. The objective  is to devise a controller that will 
maintain  a  constant  linear cable velocity as a  cable  unwinds  from  a 
large motor-driven reel. A sketch of the physical system  is shown in 
Figure 2 .  

Control is to be established by measuring the cable velocity, 
comparing it  to a desired or reference signal, and using the error to 
generate  a  motor  control signal. This is the classical feedback 
method of control. A tachometer  is used to sense the cable velocity 
and  convert that measurement into a corresponding voltage, which 
can be compared to a reference. The operational  characteristic of 
the  tachometer is  represented by a simple first-order transfer 
function. 

To maintain  a  constant  linear  cable velocity, angular reel ve- 
locity must increase as  the cable unwinds, that is, as  the effective 
radius of the reel decreases. The  situation is complicated by  the 
fact  that  the moment of inertia of the reel decreases as  the cable 
unwinds, reducing the  torque required to maintain  constant cable 
velocity. Since the moment of inertia of the reel is proportional to 
the  fourth power of its effective radius, this phenomenon is  quite 
nonlinear. Common analytic  control  system techniques would, 
therefore, be inadequate for solving the design problem, and simu- 
lation seems the most  suitable  approach.  The  equations  and specific 
physical data for the system  are  presented  in  Table 2.  For a reel of 
width W and cable diameter D ,  there  are W I D  windings per  layer. 
Thus,  the  rate of change of effective radius R is D2/27rW times the 
angular velocity of the reel. (In  the simulation  programs  illustrated 
later,  this  constant, K1, is assigned a  value of -0.OOOS.) The  motor 
output/input relationship is represented as a simple first-order 
transfer  function. The cable speed and reel acceleration equations 
describe the basic dynamics of the problem. The desired linear 
cable velocity is Ti0 feet/second. 

After first gathering all this  pertinent  data,  the designer using 
the 1130 CSMP would next develop an appropriate  simulation block 
diagram.  This  phase of the simulation process is critical for success- 
ful use of the technique. In general, the user would be guided by  the 
complement of standard 1130 CSMP functional elements and would 
minimize the programming of Special elements.  During  preparation 
of the block diagram the primary concern should be that  the partic- 
ular  simulation  implementation truly represents  his  visualization 

TWO SYSTEM  MODELING  PROGRAMS 



Table 2 Equations for  cable  reel  problem 

Effective radius of reel 

R, = 4.0 ft (full reel) 
5. = 2.0 ft (empty reel) 

where 
R is time  rate of change of reel radius  and 
6 is  angular  velocity of the reel 

R -(D2/2~W)i, = “K16 

Moment of inertia 
I = 18.5 R4 - 221.0 

Tachometer transfer function 

V measured (volts) 2.0 1 
V actual  (fps) S + 2.0 0.5s + 1 

S is the Laplace Transform operator. This is equivalent to 
0.5V measured + V measured = V actual 

=“-=- 

Torque motor transfer function 

Torque  (ft  lbs) 500.0 
= - = 500.0 

Control Signal (volts) S + 1.0 
or Porque + Torque = 500.0 (Control Signal) 

Cable speed 
V actual = R6 

Desired cable speed 
50 ft/sec  (represented  by 50 volts at  set  point) 

Reel Acceleration 

6 = Torque/I 

where 6 is  angular  acceleration of the reel. 

of the phenomenon. For this cable reel design problem, the designer 
might  want to experiment with several control algorithms, observ- 
ing the performance of each a t  cable start up,  braking, and reversal. 
In  these respects, the simulation design should be as flexible as 
possible. 

One possible simulation  diagram for this problem is shown in 
simulation Figure 3. Block numbers  have been assigned in  an  arbitrary manner 
diagram to emphasize that  the 1130 CSMP configuration statements  may  ap- 

pear  in any order within the punched-card deck provided they all 
precede the  set of parameter  statements. 

Note that block 43 is identified as  a “Special #3” element;  this 
element has been specifically developed to provide a convenient 
means for switching from cable unwind to braking or reversal. The 
simple FORTRAN program developed for  this special purpose is 
shown in  Figure 4. This  listing shows that two  parameters are 
associated with  this new  element-the first can  be set  to +50.0 
(ft/sec) to signify that  the reel should unwind; the second can be 
set  to -50.0 (ft/sec) to signify reversal. The  output of this element 

250 R. D. BRENNAN AND M. Y. SILBERBERG 



Figure 3 Block diagram  for  cable  reel  control system 
r""~r""-~r""""""""""" 

CABLE  REEL  DYNAMICS 
1 
I 

I1 L"-JIl ( L  "" J L  "" _I L ""_""" I_ """_ '"1 
I 1  

- V  MEASURED 
r"-"""7 I 

Figure 4 FORTRAN  listing  for  unwind-reverse  control  function 

/ I  FOR 
+LIST SOURCE PROGRAM 
+ONE WORD INTEGERS 

C OUTPUT EQUALS P 1  WHEN SWITCH 3 IS ON. P Z  WHEN SWITCH IS OFF 
SUBROUTINE SUB3 

REAL REALS13951 
INTEGER I N T S l 5 8 7 1  
DIMENSION  CI76)~PAR1175)rPAR2175l  
COMMON REALSI INTS 
EQUIVALENCE I INT513761.  I 1 s I REALSI  21s C l l l  I 

CALL DATSWI 3 9  KEY I 
EQUIVALENCE lREALSi156lr   PAR2111 ) e i REALSI 81). PAR1111 I 

GO TO I 1.21 KEY 

r.0 To 2 
1 C I I I  - PAR1111 
" .- - 

2 
3 RETURN 

C 1 1 1  = P A R 2 i I l  

END 

can  be switched from one value to  the  other  by use of console 
switch #3, allowing the designer to, in effect, "operate the controls" 
for the simulated  system  as  he observes the  plotted response during 
the runs. The designer has assumed that a  simple  proportional con- 
trol scheme should be sufficient for this  system. Accordingly, the 
control signal has been generated by  just a Gain  element, block 25 
in Figure 3, having as  input  the error signal from the summing junc- 
tion, block 24. Should this simple scheme prove unsatisfactory, the 
user can experiment with  a more complex controller. For example, 
should this first approach yield wild oscillations, he  might try to use 
a Limiter  element between block 25 and block 2 to restrict the 
magnitude of the control signal applied to  the motor. 

After developing the block diagram, the designer's next  step is 
to  translate  it  into  the corresponding set of 1130 CSMP statements. A 
configuration statement  must  be prepared  for each block on the 
diagram; associated parameter  and function  generator statements 
must be prepared as required. Simple coding forms, such as those 
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Figure 5 1130 CSMP coding  form  with  configuration statements for  cable  reel  problem 

r 

t 
t 

c 

1130CONTlNUOUS SYSTEM MODELING PROGRAM 

1 

Figure 6 Portion of console printer  outDut  from 1130 CSMP run 

OUTPUT  NAME  RLOCK 
ERROR 
G A I N  

24 
U N W I N D  - R E W I N D  4 3  

25 

- V-MEASURED 12 
MOTOR  TOROUE ‘I V - A C T U A L  

T / I  3 
R A D I U S  R 

4 

8 

MOMENT - I N E R T I A  19 

C O N F I G U P A T I O N   S P F C l F l C A T l O N  

I N P U T  1 
4 3  
24 

I! 
0 

4 
7 
8 

10 

I N P U T  2 
14 

0 

la 

lb 

8 

25 

7 

I N P U T  3 

0 

2 
0 
0 

0 

0 

I N I T I A L   C O N D I T I O N S  ANI)  PARAMETERS 
I C l P A R   N A M E   B L O C K   I C / P A R 1  
U N W I N D  - REWIbID 4 3  
MOTOR  DYNAMICS 

50 0 0 0 0  

REEL  CONSTANTS $ 
-50 0000 
500:OOOO 

0.0000 
4 . O O O O  

- 1 . 0 0 0 0  

MOMFNT - I N E R T I A  f: - 2 2 1 . 0 0 0 0  

- 0 . 0 0 0 8  
1.5000 

0.0000 

TACHOMETER 13 8:8888 
0 0 0 0 0  

0 . 0 0 0 0  
18  5000 

0 . 0 0 0 0  

PAR 2 P A R 3  

o : o o o o  

1 0  
1 4  

o : o o o o  

-2:oooo 8:8888 

illustrated  in  Figure 5, greatly  facilitate  this  task, especially for 
those who are  unfamiliar  with  digital programming. The problem 
is  most  conveniently  entered into  the  computer  by means of corre- 
sponding  punched  cards. 

Figure 6 is a  reproduction of the first  portion of the console 
printer record. The configuration statements correspond to those 
shown in Figure 5 .  Note  that  integration  interval  and  total  time  are 
among the  data entered on-line. 
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Figure 7 shows the 1627 Plotter  output from two trial  runs used 
to obtain an initial  estimate of the gain  setting of the controller. A 
gain of 1.5 resulted in some overshoot; the underdamped response 
obtained  with  a  gain of 0.5 was more satisfactory to  the designer. 
After making  this  initial analysis, the designer undoubtedly pro- 
ceeded with  a longer series of runs  in which he  manipulated console 
switch #3 to  test unwind and reversal of the cable throughout  the 
operating  range, both  with  the reel nearly  full  and  nearly  empty. 

SYSTEM11360 CSMP 

The S Y S T E M / ~ ~ O  CSMP combines the functional block modeling 
feature of a “digital-analog simulator,’’ such as the 1130 CSMP, with 
extensive algebraic and logical modeling capabilities. It is intended 
for batch-mode operation  on large-scale digital  systems, rather  than 
interactive  operation  on a small machine. On the  other  hand,  it is a 
far more comprehensive simulation tool. 

The  SYSTEM/^^^ CSMP input language enables a user to prepare 
configuration or structure  statements describing a physical system, 
starting from  either  a differential equation  representation or a 
block diagram of that system. The program provides several means 
rather than one for defining functions specially suited to a  particu- 
lar simulation  requirement. The SYSTEM/360 CSMP also accepts 
FORTRAN statements,  thereby allowing the user to readily handle 
complex nonlinear and  time-variant problems. Controlling input 
and  output is facilitated by means of a  free  format for data  entry 
and simple control statements. Like the 1130 CSMP, the SYSTEM/360 
CSMP provides a parallel language; so that, with few exceptions, 
configuration or structure  statements can be  entered  in any order 
and  may be intermixed with data and control statements.  Output 
options include printing of variables in standard  tabular  format, 
print-plotting  in  graphic  form, and preparation of a data  set for 
user-prepared plotting programs. An important  feature is the 
facility for terminating  a  simulation  run  with  a sequence of compu- 
tations  and logical tests.  These can be designed to accomplish 
iterative  simulations of the  type required for parameter optimiza- 
tion  studies. 

A system to be  simulated is described to  the program by a series 
of structure,  data,  and control statements.  Structure  statements 
describe the functional relationships among the variables of the 
model, and,  taken together, define the network to be  simulated. A 
translator  converts  these  structure  statements  into a FORTRAN sub- 
routine, which is compiled and  then executed alternately  with  a 
selected integration  routine to accomplish the simulation. Data 
statements assign numerical values to  the parameters,  constants, 
initial  conditions,  and  table  entries associated with the problem. 
Control statements specify options  relating to  the  translation, 
execution, and  output phases of the SYSTEM/360 CSMP, such as  run 
time,  integration  interval,  and  type of output. 
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Figure 8 Sample SYSTEMI360 CSMP functions 

GENERAL FORM FUNCTION 

Y=AFGEN  (FUNCT. X) 

(LINEAR  INTERPOLATION) 
ARBITRARY FUNCTION GFNERATOR 

Y = FUNCT (X) 

Y=LIMIT (PI, P2.X) Y=P1 IF x<pl 

Y=P2 IF x> p2 

LIMITER Y=X IF   P I   <X< P2 

~ 

Y=QNTZR (P,X) 

QUANTIZER 

Y=kP IF ( k - l / 2 ) P < X < ( h + 1 / 2 ) P  
k=0,*1,12.;3 . . .  

Y = DEADSP (PI, P2,  X) Y=O IF 

Y=X-P, IF 

PI<X<P2 

x> p2 

DEAD SPACE I y=x-pl IF 
x<p, I 

Although the functional blocks of the S Y S T E M ~ ~ O  CSMP are used 
in the same way as those of the 1130 CSMP, the semantics differ. 
Figure 8 illustrates the basic form of the SYSTE”/~GO CSMP structure 
statements. A specific example is 

Y = LIMIT ( -5 . ,  lo., X )  

which states  that a limiting operation was performed on the  input 
variable X to  obtain  the  output variable Y.  

The basic program library contains thirty-four such functions. 
It includes all the  standard functions of analog computers, plus a 
complement of special-purpose functions often encountered in 
simulation problems. The basic set is augmented by  the FORTRAN 

library routines, including, for example, cosine and  absolute  value 
routines. Note that  the simple arithmetic operations are performed 
by  the conventional FORTRAN opcrators,  rather than by functional 
blocks. 

Special functions can be defined either  through FORTRAN pro- 
gramming, or, more sinxply, through  a MACRO capability, which 
permits the combining of individual existing functions into a larger 
functional block. This  subject of user-defined functions is  covered 
in somewhat more detail in a  later section. The essential point is 
that  the user has  a high degree of flexibility. By properly preparing 
a set of special functions, he can restructure the S Y S T E M / ~ G O  CSMP to 
provide a problem-oriented language for chemical kinetics, control 
system analysis, or biochemistry. In effect, the SYSTEM/~GO CSMP 
does not  have to operate within the framework of a digital-analog 
simulator language; it can take  on  the characteristics of a language 



Table 3 SYSTEMI360 CSMP data labels 

Label Type of Data 
-~ 

PARAM 
CONST 
INCON 
AFGEN 

NLFGEN 

TABLE 

Parameters 
Constants 
Initial conditions 
Coordinates of an arbitrary function 
(linear  interpolation) 
Coordinates of an  arbitrary function 
(quadratic interpolation) 
Entries  in a stored  array 

For most simulation studies, the user first prepares configuration 
statement,s and follows them  by  the  data  and control  statements, 
in that order. The use of data statements to assign numerical values 
to variables that  are  to be  fixed during a given run provides a 
means for  automatically changing these  values between successive 
runs of the same model. An example of a data  statement is: 

PARAM RATE = 550.0, DIST = 1000.0 

where PARAM is the card label identifying it as a  parameter  card, 
RATE and DIST are  the variables to be assigned numerical values, 
and 550.0 and 1000.0 are, respectively, the values assigned. The 
different types of data  that can  be specified are shown in  Table 3. 

Logically, the user’s next step would be to specify operations 
associated with the  translation, execution, and  output phases of the 
program by means of control  statements. Like data statements, 
these can be changed between runs  under  control of the simulation 
program. An example of a  control  statement is: 

PRINT X,XDOT,XBDOT 

where PRINT is the label of a  card specifying that lists of the varia- 
bles X, XDOT, and XBDOT are  to be  printed.  Other  controllabels  and 
their effects are shown in  Table 4. 

As has been noted, the user has several means for building his 
own special-purpose functional blocks. These  functions  may in- 
volve just a few statements or represent an extremely complex 
model of a complete plant;  they  may be defined by SYSTEM/360 
CSMP statements, FORTRAN statements, or a combination of both. 
Three different types of functions, identified by  the names MACRO, 
PROCED, and  subprogram,  may  be defined. These functions differ 
somewhat jn their use and the way  in which they  are handled  by 
the SYSTEM/3FO CSMP. 

The MACRO capability is a particularly significant feature of 
the language. It allows the user to build larger  functional blocks 
from the basic functions  available in  the  library.  Thus,  the user can 
identify a subsection of a simulation block diagram,  or the corre- 
sponding  subset of st,ructure  statements,  as a parallel functional 
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Table 4 SYSTEM/360  CSMP control labels 

Control  Label  Operation 

NOSOItT Specify groups of structure  statements not to be sorted 

SOnT 
~ 

INIT 
~~ 

Define a block of computations  to be execut,ed only once 
a t  the beginning of the  run 

~~ 

DYNAM 

TIMER Specify print interval, print-plot  interval, finish time, and 
integration  interval 

FINISH Specify a  condition for termination of run 

RELERR Specify relative  error for integration  routine 

ABSERK. Specify absolute error for integration  routine 

METHOD Specify integration method 

PRINT Identify  variables  to be printed 

PRTPLT Identify  variables  to be print-plotted 

TITLE Print page  headings  for printed  output 

LABEL Print page headings  for print-plot  output 

RANGE Obtain minimum and maximum  values of specified 
variables 

entity. Once defined, the MACRO subset can be used any number of 
times  within the simulation, just like any of the other basic library 
functions. 

The PROCED type of user-defined function allows simple appli- 
cation of the logic capabilities of FORTRAN. During  sorting, the 
statements  that define the PROCED function  are  treated  as a single 
functional  group,  and the  entire  set is moved around as an  entity  in 
order to satisfy the  input/output sequencing requirements of the 
sorting algorithm. There is no internal  sorting of statements  within 
a PROCED group. Generally, a  particular PROCED group can be 
used only once within a simulation program. However, the PROCED 
block can be imbedded within  a MACRO block and  thereby used 
repeatedly. 

The FORTRAN subprogram  approach  permits the user to prepare 
a separate  subprogram that represents the functional  character- 
istics of the phenomenon to be simulated. This approach  actually 
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adds  little  to  the algebraic and logical capabilities  available  through 
use of the PROCED technique.  However, use of the subprogram 
permits the new block to be  permanently  added to  the  system 
library. 

As an illustration of a user-defined function, consider a simula- 
tion  study  that involves  several  transfer  functions with differing 
parameter  values but  the same  general  form: 

Z(S, s2 + as + b 
X ( s )  s2 + cs + d 

The user may define a MACRO to represent this general functional 
relationship, assigning to  it some unique  name,  such as FILTER. 
The S Y S T E M / ~ ~ O  CSMP statements  to define this MACRO might  be  as 
follows: 

- 

MACRO OUT = FILTER (A, B, C, D, IN)  
S2Y = I N  - C*SY - D*Y 
SY = INTGRL (0.0, S2Y) 
Y = INTGRL (0.0, SY) 

OUT = S2Y + A*SY + B*Y 
ENDMAC 

where the MACRO and ENDMAC cards  are  translation  control  state- 
ments that bound the  set of statements defining the new function. 

Although SYSTEM/MO CSMP was designed to provide a parallel 
language, specifically to free the user  from the  task of correctly 
sequencing structure  statements,  the  automatic  sorting  can  be by- 
passed by using the NOSORT option, PROCED functional bloclis, or 
subroutines.  The user  can thereby include any  type of procedural 
statement  capability, such as  branching on  conditions and logical 
testing,  within  a  sequence of either SYSTEM/360 CSMP or FORTRAN 

statements.  In  particular,  the NOSORT option  can  be used to 
identify  a  section of coding that divides the  other  structure  state- 
ment,s into groups,  each of which is  separately  sorted.  Such  a 
NOSORT section  might be used to  test  simulation response as  a 
basis for  switching  portions of the configuration into or out of the 
simulation.  This  might be  done  to decrease run  time or alter  the 
information flow. Problem  structure  variations  that  can be  antici- 
pated  can  thereby  be included in a single run. 

As in  the 1130 CSMP, centralized  integration is used to ensure that 
all integrator  outputs  are  computed simultaneously at  the end of 
the  iteration cycle. The uscr may choose from  among  several dif- 
ferent  types of integration  routines  provided  with the program. 
These include both fixed-step and variable-step  integration rou- 
tines.  Five fixed-step routines  are available: fixed-step Runge- 
Kutta, Simpson, trapezoidal,  rectangular, and second-order Adams. 
Two  variable-step  routines are available:  fifth-order  Milne predic- 
tor-corrector and fourth-order Runge-Iiutta.  In  the  latter two 
routines, the integration  interval  is varied,  under  program  control, 
during  problem  execution. Both  routines provide an  estimate of the 
integration  error,  which  is  compared  with  a user-specified error 
bound. The  step size is  adjusted accordingly by the program to 
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achieve the specified accuracy with  the maximum step size. If none 
of the above  methods satisfies the user’s requirement,  he  can specify 
his own integration  method. 

To repeat an idea, selection of an integration  method  and  inte- 
gration  interval  for a  particular  simulation  study should  be  made 
only  after consideration of a  number of interrelated  factors. The 
objective  is to choose that combination of routine  and  interval  that 
provides the fastest  execution while maintaining sufficient accuracy 
and providing sufficient output  data for  easy interpretation of 
results. In general, as the complexity of the integration  method 
increases, the computer  time  required  for a single step also in- 
creases. On the  other  hand,  stability  may also increase,  permitting 
larger  time  steps. Thus, a  number of trade-offs between  accuracy 
and  running  time  are possible. 

If no  integration  method is specified, the program  automatically 
uses the fixed-step Runge-Butta  method.  This  method is generally 
a good choice for the initial  runs of a simulation study if the user is 
unsure of the dynamic response of the simulated  phenomenon. It 
is  advisable to  make  the  initial choice of integration  interval suf- 
ficiently  small to ensure  accurate,  stable  solution,  even at   the ex- 
pense of a  longer-than-necessary  initial  computer run.  After be- 
coming familiar  with a particular  problem, the user may choose a 
more  optimal  combination of timing specifications and  integration 
method. Again, the user must be  prepared to do  some  experimenta- 
tion to achieve that end. 

Because the S Y S T E M / ~ ~ O  CSMP is a  batch-mode  program,  several 
programmed means are provided  for  obtaining an  automatic sequence of runs of 
simulation the same structure  statements  with different  parameters,  output 
sequences variables, and  output options. For example, CONTIN, END, and 

STOP execution statements  can  be used as follows: 

A CONTIN statement  permits  data  and  control  statements  to  be 
changed  without  resetting the independent  variable,  and causes 
the  run  to continue. This  feature  permits  such  items  as inte- 
gration  method,  integration  interval,  and data  output  interval 
to be modified during the progress of a  simulation  study. 
An END statement  permits  data  and control  Statements to  be 
changed,  resets the independent  variable to zero, and  initiates 
a new run. 
A  combination of END and STOP statements  indicates  termina- 
tion of the sequence. 

Changes  in  a parameter,  an  initial condition, or a constant  can 
also be  performed  automatically by specifying multiple  values  on 
an  appropriate  data  card. For example, the  statement: 

PARAM RATE = (5.0,5..5,6.0) 

will initiate a  sequence of three  runs  in which RATE = 5.0 for the 
first run, RATE = 5.5 for the second run,  and RATE = 6.0 for the 
third  run. Only  one  variable a t  a time  can  be specified using this 
multiple-parameter  option. 
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Figure 9 Rough block diagram for cable  reel control system 
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The foregoing methods  are, of course, applicable only when the 
user can specify his desired sequence a  priori.  Frequently, however, 
it is desirable to  control  the sequence by using  results  obtained  in  a 
prior run, possibly to decide whether or not  the sequence should  be 
continued.  Examples  are  parameter  optimization  and  two-point 
boundary  value  problems, which require modification of parameters 
between iterative simulations. A criterion is required  in  these cases 
for  terninating  this iterat,ive  sequence when a “sufficiently accu- 
rate” solution has been obtained.  The SYSTEM/360 CSMP has a con- 
trol  feature called TERMIN that allows the user to identify  a se- 
quence of statements  that  are  to  be performed only 011 the termina- 
tion of a run  and  thereby achieve this  type of program  control. Use 
of this  feature  is shown later in a sample problem. 

The cable reel design problem described before will also serve to 
illustrate the basic features of the  SYSTEM/^^^ CSMP. When  ap- 
proaching this problem, the designer could conceivably work from 
either the system  equations  or  a  very  detailed block diagram of the 
type shown  in  Figure 3. Most likely,  however, he would sketch the 
basic operational  units  in  the  sort of rough block diagram  shown in 
Figure 9. The SYSTEM 1360 CSMP statements would then be developed 
from a  composite block dia.~ra~~l-differentjal  equation representa- 
tion of the dynamics of the problem. In  any case, the designer must, 
as always, keep  account of the approximations  introduced  by  his 
visualization of the system. 

A complete  listing of the  statements  that might  be  prepared  for 
this problem is shown in  Figure 10. It must  be emphasized that  this 
is simply  one  possibility and  that  there  is  no single or “best”  way to  
describe the system. Some programs  might  be more direct or ef- 
ficient, but  any complete SYSTEhI/BGO CSMP statement of the equa- 
tions  should  produce  equivalent  results. 

In  this case, the designer decided to provide flexibility in  the 
program  by  entering D and W as  parameters  and  directing the 
computer to determine the composite coefficient K1. For efficiency, 
this coefficient is  computed  only  once  during the initialization  phase 
of the  run.  The nccessary structure  and  data  statements  are identi- 
fied as init’ializing  operations by means of the translation  control 
cards INIT and DYNAM, which, respectively, precede and follow 
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I I T L E   C A B L E   R E E L   C O N T R O   D E S  N 
, .. , .. SEPTEMBER 2k,  1'389 

PARA14 
C O Y S T   P I  = 3:14159 ' w - 2 . 0  
PARA14 R F U L L  = 4.0 , REMPTY = 2 . 0  

I N ,  I 
Kl = ( D + = 2 ) / ( 2 . O + P I * W )  
0 = 0 1  

DYNAM 

PARAM 

PARAM 

FINISH 
T I MER 
PR I N T  

L A B E L  
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BkHHOO 

$? 6xla ERROR TO AD! EONTROL L I M I T I N G   O N   N E X T   T R Y 1  

L I  = H * l " l " " l  
VM = R E A L P L ( O . 0 ,  0 . 5 ,  V A C T )  

~ E ~ ~ ~ ~ ~ ~ o ~ T ~ 0 . ~ t o ~ ~ ~ ~ ~ ~ ~ , 5 , 0 U T D E L * 0 . 5  R . 2 0  
.nr I 

R E C T  
P R E L I M I N A R Y   T E S T  O F  S Y S T E M   S T A B I L I T Y   ( G A I N  - 0 . 5 ) .  
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END 
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4-00 6.2631E 0 1  5.8213E C1-8.2126E  00-1.2409E 0 1  4.3296E 03 3 .9742E 00 4.3940F 03 
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Figure 12 Print-plot output of cable ;eel control system 
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The programming was completed  with a group of control  state- 
ments specifying the  run termination  condition(R = a ) ,  integration 
and  data  output intervals,  variables to be plotted  and  print-plotted, 
a  label  for the print-plot,  and the integration  method. 

As in the 1130 CSMP illustration,  the designer  assumed that 
simple proportional  control would prove sufficient, and decided to 
make  his  initial  runs  with  gains of 0.5 and 1.5. However, he  added 
a  comment  card, which was included in  the  documentation,  to re- 
mind himself that a modification should be considered in  the  next 
series of trial  runs.  The first END statement indicates the com- 
pletion of data  entry for the first run, which was  made  with  a 
controller  gain of 0.5. The designer requested that a second run be 
made  immediately  after the first,  with  a  controller  gain of 1.5. This 
shows how easily the user can  prepare, in advance, the desired 
parameters,  execution  options,  and  output  options  for  a series of 
runs.  Figures 11 and 12 illustrate the  type of tabular  and  print-plot 
outputs, respectively, that  are provided by  the program. A title  has 
been printed  as a  heading  for the  tabular  output  and a  label has 
been printed  for the print-plot. The minimum and maximum  values 
of the dependent  variable, VACT, have also been given in  the  print- 
plot  output. 
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Another simple example that illustrates several S Y S T E M / ~ ~ O  

CSMP features, including TERMIN, is the design of a  radiating  heat 
fin of the  type shown in  Figure 13. The fins are  attached to  the 
coolant tube in  order to increase heat dissipation by thermal  radia- 
tion.  This  method  might, for example, be used to control the 
thermal  environment of a space stat8ion power plant." 

A  typical design problem would be to dimension the fins such 
that each dissipated  a specified amount of heat per  hour,  with  a 
specified temperature along the root end of the fin. If the  metal  and 
the surface roughness are fixed by other considerations, the availa- 
ble design parameters  are fin length, L, and fin thiclmess, H. Since 
physical constraints on fin length make that dimension less readily 
manipulated, the engineer would generally first seek a solution 
using only fin thickness as  the design parameter. 

In most simulat,ion studies, it is the  time or transient response 
that is of interest.  Here, however, the engineer is concerned with 
the steady-state  heat flow within the fin, a t  thermal equilibrium. 
Assuming negligible thermal  interaction  among fins, the  situation 
is described by  the following differential equation: 
d2T/dX2 = 2 E(T4 - T4,)/KH 
where 
X = distance  from fin root 
T = temperature  in degrees R 
T ,  = temperature of surrounding space 
u = Stefan-Boltzmann  constant 
E' = thermal emissivity 
K = thermal  conductivity 
H = fin thickness 

The independent  variable is X ,  the distance from the fin root, 
rat,her than time. 

The simplicity of this differential equation  is disarming. Al- 
though  only  a few SYSTEM/~BO CSMP structure  statements  are 
needed to represent the relationship, design requires solution of a 
two-point boundary  value problem. Two conditions are needed to 
solve the second-order differential equation. One is given a t  X = 
0.0 and  the  other a t  X = L. At  the point X = 0.0, T must  equal 
the specified, constant fin root  temperature, To.  At  the edge of the 
fin ( X  = L),  radiation  must  approach zero; that is, dT/dX must 
equal zero. 

Solution of this  type of problem involves a  trial  and error 
process. The basic procedure  is to search for a  value of dT/clX a t  
X = 0.0 that, together  with the specified temperature condition a t  
X = 0.0, yields a solution that also satisfies the other  end-point 
condition, dT/dX = 0.0 at X = L. 

In this case, the  actual implementation involves a  search over 
values of the design parameter H by use of the relationship: 

dT -Qo 

clX KBH 
"- - a t  X = .OO 
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Figure 14 SYSTEMI360 CSMP statements for cooling  fin  design 
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where Qo is the specified heat dissipation rate  and B is the width of 
the fin. The fin thickness, H ,  is varied until  the  initial condition on 
dT/dX yields a  value at the fin  edge  sufficiently  close to zero to be 
considered a solution. A common approach is to make an  arbitrary 
first guess for the design parameter  and  then, by means of some 
algorithm, successively  modify that value after each run  until all 
constraints  are satisfied. This procedure may be easily automated 
within the SYSTEM/360 cSMP. 

Suppose now that a solution is to be obtained for a specific  fin 
for which: 

T ,  = 0 deg R 
E = 0.8 
K = 25 Btu/hr/ft/ deg R 
B = 0.5 ft 
L = 0.25 ft 
To = 2000  deg R, and 
Qo = 1000 Btu/hr 

Suppose, too, that  the fin thickness, H ,  is constrained to be  less 
than 0.01 foot. 

ments for one  possible approach to  this design  problem. A LABEL statement 
card provides a heading for the  output, which  will  be generated at 
the end of the  computation.  The RENAME feature is used so that, 
for convenience, the independent variable will  be represented by 
the symbol X ,  rather  than  by TIME. 

Note  that  the  structure  statements are  separated  into  three 
segments by the INIT, DYNAM, and TERMIN control statements. 
The computations in the initial segment are performed only at  the 
beginning of each run.  For the first run, the value of H is computed 

Figure 14 shows the complete set of SYSTEM/360 CSMP state- problem 



using values of HIGH and LOW, as specified in a CONST statement. 
On subsequent  runs  during  the  iterative search, HIGH and LOW are 
adjusted by  the algorithm  imbedded  in the terminal  segment. Using 
this  value for H ,  the program  next  calculates the variables COEF 
and DTDXO for use in  the dynamic  segment. It should  be remem- 
bered that  structure  statements  within  the  initial segment are pre- 
sumed to represent  parallel structure. Accordingly, the  actual order 
of the  statements  within  this segment is of no concern. Unless the 
user deliberately chooses otherwise, by specifying the NOSORF 
option or by  phcing  statements within  a PROCED group, the sort- 
ing  algorithm  automatically  determines an appropriate  computa- 
tional sequence. 

The  statements between the DYNAM and TERMIN control 
cards  represent the dynamics of the differential  equation. Note 
again that  this is merely one possible representation of this rela- 
tionship. Some users  prefer to “nest” expressions to achieve  a  very 
compact  problem  formulation;  others find that fewer errors occur 
if a single functional  relationship is expressed in each statement. 
Note,  in  particular, that  the  integrator  that develops DTDX uses, 
as an initial  condition, the value DTDXO computed in  the initial 
segment.  An  interesting  refinement of the search  procedure is the 
use of a  limiting  function,  applied to T ,  to  obtain  the  variable 
TEMP. Clearly, in a  correct  solution, the  temperature along the fin 
must be less than  that  at  the fin root and  greater  than  the  tempera- 
ture of the surrounding space. The limiting  function imposes this 
restriction explicitly, as a precaution,  in the  event  that  an estimate 
of H causes a “wild” solution.  A TIMER control  card specifies the 
integration  interval,  and also specifies that  the dynamic  computa- 
tion should terminate  in each run when X reaches 0.25, the fin 
length. Since no  integration  method  has been specified, the program 
will automatically use the fixed-step Runge-Kutta  method. 

By definition, the  structure  statements  within  the  terminal seg- 
ment represent  procedural  programming. In  this example, the 
terminal  segment is an implementation of a binary  search  algorithm 
that  adjusts  the values of HIGH and LOW according to  the final 
value of  DTDX. Consistent with  the physics of the problem, this 
algorithm reduces the estimate of H used in  the  next  run if the 
final value of DTDX is  positive, and increases the estimate if DTDX 
is negative. The algorithm is designed to ensure convergence sub- 
ject to  the dimensional  constraints  on fin thickness imposed by  the 
HIGH and LOW values specified on  the CONST data card. The de- 
signer has  made  his own definition of “sufficient accuracy” by his 
choice of the constant  term  in  the first IF statement.  When con- 
vergence is obtained, the program  bypasses the  adjustment algo- 
rithm.  Until convergence is obtained, the SYSTEM/360 CSMP state- 
ment RERUN is executed,  thereby signifying that  yet  another 
iteration is required. 

Note  that no output  statements  are used prior to  the first END 
card. This allows the entire  search to  occur without  either  tabular 
or plot  output  until convergence. When convergence occurs, the 
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program next encounters  statements requesting a  print-plot of the 
temperature profile. The S Y S T E M / ~ ~ O  CSMP then performs one addi- 
tional run, using the final value of H obtained from the  iterative 
search, and writes out  the results of this  run  as requested on the 
TIMER and PRTPLT control cards. 

Summary comments 

One objective of this  paper was to demonstrate that continuous 
system modeling programs have reached a useful level of maturity. 
Certainly, digital-analog simulators now have  a reasonably stable 
set of design criteria. In addition, it appears that  the basic develop- 
ment phase is past for the continuous  system  simulators. Several 
programs of this type  are currently  available  with  a  number of ad- 
vanced features. There does remain, though, a need to accumulate 
application experience, which could serve to  chart  the requirements 
for  new developments. Figure 15 2250 d i s p l a y  of  output 

Even now, however, certain  directions are  apparent. In  the 
opinion of the  authors,  the  next few years will bring extensive use 
of graphic devices for simulation data  input and display. For ex- 
ample, Figure 15 shows output obtained on an IBM 2250 for the 
cable reel problem through use of the SYSTEM/360 CSMP PREPAIL 
data  set  and a homemade display routine. Remote consoles oper- 
ating  within  a time-sharing environment will give the simulation 
user a computing tool that can  be used to handle complex problems 
and  yet provide the desired on-line interaction. Such developments 
will necessarily have  a profound effect upon the day-to-day  practice 
of engineering and  many of the allied sciences. 

from  cable  reel  problem 
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