The motivation, history, and basic concepts of user-oriented languages
for digital simulation of continuous systems are presented. Reference
18 made to two illustrative programs, the 1BM 1130 and SYSTEM/360
Continuous System Modeling Programs (csMPp).

Both programs accept user-oriented input statements for constructing
stmulation models and controlling simulation runs. The 1130 csMPp
also allows on-line interaction by the user. An engineer or scientist
at the console can alter the model or change run conditions based on
direct observation of simulation outpuls. The SYSTEM/360 CSMP 1S
intended for batch-mode operation. It has extended facilities for de-
scribing the model and for obtaining automatic program control of
successwe simulation runs.

Two continuous system modeling programs
by R. D. Brennan and M. Y. Silberberg

Simulation is a well-established tool, with applications ranging
from the study of information flow in business organizations to the
investigation of the dynamic behavior of complex mechanical
systems. The former has often been treated as a discrete process on
digital computers through the use of such discrete system simula-
tion programs as the General Purpose System Simulator (gpss).!
By contrast, those continuous dynamic systems that are the usual
concern of engineers and scientists traditionally have been modeled
on analog computers.

The analog computer has been used for innumerable studies of
continuous systems and has proved to be a convenient and flexible
tool. However, the necessity of scaling variables into reasonable
voltage levels and the operational difficulties inherent in analog
circuitry combine to present the analog user with a number of irk-
some problems. These difficulties mount as the size, complexity,
and accuracy requirements of the problem increase. As a conse-
quence, considerable attention has been given in the last several
years to the use of digital computers for simulation of continuous
systems.

This does not imply that the analog computer is passé. In
general, for those situations in which raw computing speed is the
decisive factor, the analog approach is superior. Moreover there is
the possibility of combining an analog system with a digital system
in a so-called hybrid configuration. For certain problems, a success-
ful combination of the relative advantages of each has been realized.
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However the tasks of implementing and utilizing such a combina-
tion are by no means trivial. It would be pointless to attempt to
delineate precisely the problems that are best suited to one or
another approach. The situation has been in constant flux as the
capabilities of both digital and analog techniques have developed
and the requirements imposed by the users have become more and
more stringent.

An obstacle to the use of digital computers has been the re-
luctance of many engineers and scientists to enter into digital com-
puter programming. Recognition of that reluctance has stimulated
development of problem-oriented languages designed to facilitate
communication between simulation users and digital machines.

This article describes the basic design and user-oriented con-
cepts of these languages with specific reference to two programs
developed and supported by 1BM: the 1130 and sysTEM/360 Continu-
ous System Modeling Programs (csmp).

Historical background

Most past activity has been in the development of “digital-analog
simulators.” During the past ten years, upwards of thirty separate
programs of this type have been reported. Each provided a comple-
ment of functional elements or blocks similar to those of the analog
computer and a block-oriented language for specifying their inter-
connection. These ‘“digital-analog simulators’” model the elements
and organization of analog computers and provide numerical
routines that are equivalent to such standard analog elements as
integrators, summers, inverters, multipliers, and function genera-
tors. In addition, they provide those special-purpose functions
commonly assembled from several analog elements; for example,
division, exponentiation, limiting, time delay and dead space func-
tions. Just as the computer patchboard electrically links analog
computing elements, the simulation language describes intercon-
nections among the numerical routines.

Recently, developers have become interested in a somewhat
different approach, the so-called ‘“‘continuous system simulators.”
These programs combine the element or block modeling feature of
the “digital-analog simulators” with algebraic and logical modeling
capabilities. The input language permits configuration or structure
statements to be prepared directly and simply from either a block
diagram or differential equation representation of the system to be
simulated.

The designers of each successive program have sought to put
increased digital computing capability within the reach of the
engineer and scientist. While the programs differ in details, there
is a common thread—the block-oriented input language. A dis-
tinguishing characteristic of the engineering design-analysis ap-
proach is the conceptual breakdown of a system into its component
parts. By training, many engineers and scientists visualize a system
as a complex of interconnected subunits. For example, the control
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engineer often represents a servo system by transfer functions
grouped as input/output blocks in a feedback system diagram. A
physiologist often visualizes a body mechanism as a complex of
functional units, without necessarily preparing a formal statement
of equations. Because of this user orientation, the block-oriented
input language has persisted throughout the history of this type of
system.

This history can be traced back to the digital-analog simulator
developed by R. G. Selfridge? in 1955, a time when the digital com-
puter was still in its infancy. Programmed for the 1Bm 701, Sel-
fridge’s program demonstrated the validity of his idea—that digital
computers could be used effectively to simulate continuous phe-
nomena. From that beginning, there has been a steady progression
of programs as this new field has unfolded.’ It would be less than
honest, however, to suggest that Selfridge’s notion met with im-
mediate universal acceptance. The analog computer had been used
successfully in simulation studies for nearly a decade. Although
requiring considerable expertise, it had proved to be a flexible and
valued tool. Its devotees were convinced that the claims made
regarding digital simulation stemmed from empty parochialism.
The mipAS program, developed in 1963, finally overcame much of
this resistance.®

Although intended primarily to check solutions obtained with
an analog computer, Mipas soon found aceeptance as an alternative
to analog simulation. Its block-oriented language was convenient
and simple to use; the computer for which it was developed was
capable of handling even the extensive simulations used in the
aerospace and chemical process industries. Within months, MIpaAs
was In use almost everywhere an 18M 7090 was available; its strong-
est adherents were, more often than not, people who had previously
considered themselves happily wedded to the analog computer.

But users of MIDAS soon began to chafe under the frustrations
of batch-mode computer “turn-around time.” The elimination of
scaling and patching—the most irksome aspects of analog com-
puter programming—did permit the user to formulate a simulation
quickly, but this advantage was partially offset by the inability to
interact directly with the simulation in a “conversational”’ mode.
A program called pacToLus, which appeared in 1964, was de-
signed to remedy that situation.®

pacToLUs demonstrated that, with an appropriate terminal, a
modus operandi could be enjoyed that was very similar, and in
some ways superior, to that of conventional analog computers. The
program was developed for the 1M 1620, a comparatively small
seientific computer. By means of the typewriter, sense switches,
and the 1BM 1627 Plotter, the user was able to modify the simulation
configuration, parameters, and initial conditions at will, while ob-
serving the response of the system being simulated.

As with MipAS, the PAcTOLUS program had two big factors in its
favor—it appeared at just the right time and was developed for a
computer in wide use. Within a year, pacToLUs was being used
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extensively. Its simplicity made it particularly appealing to those
previously uninitiated to the mysteries of either analog or digital
programming,.

Since the appearance of pAcTOLUS in 1964, a whole new class of
programs, the “continuous system simulators” previously men-
tioned, has emerged. psr/90 and MiMIc were in the vanguard of this
recent movement;”-® the new sysTem/360 csMP is based on DsL/90
and is the latest and most comprehensive of this class.? It is in-
tended for simulation users having access to large-scale digital
systems.

However, the popularity of pacTrorus demonstrated that, for
many engineers and scientists who want to personally conduct their
own simulation studies, the simplicity of an exclusively block-
oriented programming language continues to have great appeal.
This, then, led to the development of the 1130 Continuous System
Modeling Program.!?

1130 CSMP

The 1130 csmp was developed specifically for the environment of the
design engineer. Because the program operates on a small, fast
computer, it is technically and economically feasible for the user to
both simulate relatively complex processes and yet interact in an
on-line mode. For a simulation study of typical complexity, a single
simulation run requires only several minutes of computing time;
thus, the user can feel free to experiment with the simulation until
satisfied with the system design and performance. For many types
of investigations, the 1130 csmp obviates any requirement for an
analog computer facility. Indeed, both the design and implementa-
tion of a simulation study are considerably simpler than would be
the case with an analog computer.

The 1130 csMP provides a complement of 25 standard simulation
elements or blocks, plus a group of five “Special”’ elements that the
user can tailor to his particular needs. Figure 1 illustrates a repre-
sentative group of these elements, their diagrammatic and language
symbols, and descriptions of their functions. The user starts by de-
veloping a block diagram showing the interconnections among the
elements required to implement his model. He then translates the
diagram into a corresponding set of 1130 csmp language statements.

Translation of the block diagram into a computer program in-
volves the use of three types of simple language statements. These
permit easy development of a simulation program and provide a
basis for convenient interaction with it by means of console switches
and keyboard. The three types are:

® Configuration statements, which define the interconnections
among the functional blocks and specify the desired functions.
Parameter statements, which associate numerical constants with
the elements to particularize their functions.
Function generator stalements, which define the input/output
relationships for the Function Generator elements.
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Figure 1 Representative 1130 CSMP functional elements

ELEMENT LANGUAGE DIAGRAMMATIC DESCRIPTION
TYPE SYMBOL SYMBOL

DEAD SPACE

FUNCTION
GENERATOR

INTEGRATOR 8, =P+ J (o) Fe,PyrePydt

LIMITER

OFFSET

WEIGHTED -
SUMMER €, =P8 TP, +Pey

MULTIPLIER

DIVIDER

B . SPECIAL SUBRQUTINES SUPPLIED
SPECIAL 1.5 BY USER

n represents the block number

Referring again to Figure 1, it is seen that the types of state-
ments required depend on the specific function. For example, some
of the elements have one or more inputs but no associated parame-
ters; each use of one of these elements in a model therefore requires
only a configuration statement. Those elements that do have
associated parameters in their definition usually require both con-
figuration and parameter statements for each use. The Function
Generator element requires all three types of statements.
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A most important feature of the program is the option of enter-
ing these statements either by means of punched cards or directly
from the console keyboard. In general, it is preferable to introduce
the problem by means of cards and use the on-line console features
only for modifying the statements. A standardized format simplifies
the routine task of preparing the necessary punched cards. Note
that the program is nonprocedural, in that block numbers can be
assigned arbitrarily and the configuration statements can be en-
tered in any order. The correct sequencing of the calculations is
performed automatically by a sorting routine, as explained in the
section on sorting.

During the introduction of a problem, the user is provided with
automatically typed instructions and diagnostics that guide him
through the procedures. The instructions tell him how to initiate
data entry, how to select the variables for printer and plotter out-
put, and how to specify the integration interval, total run time, and
output intervals by means of the console keyboard. There is even
the option of suppressing some instructions, by means of a console
switch, when the user has gained sufficient proficiency to no longer
require that assistance.

Chiefly, of course, interaction means that, during a run, the user
can experiment with the model as directly and spontaneously as he
would on an analog computer. The user may interrupt a run at will
to modify the simulation as desired and need not follow a prescribed
pattern for development and testing of the simulation. The digital
approach has the added advantage of providing positive documen-
tation of his modifications and progress.

The operational flexibility essential for this on-line experimenta-~
tion is obtained from use of the console entry switches for option
selection and of the console keyboard for entering the modifica-
tions. By means of the console features, the user can modify the
configuration, parameters, or control variables and can then either
proceed from the point of interruption or initiate a new run. Table 1
lists the various options. Effective use of these interactive features
requires a convenient means both for observing the model’s response
during the runs and for permanent documentation of the final data.
These requirements are satisfied by use of the console printer and,
optionally, the 1627 Plotter. The net effect is a very real capability
for user interaction—easy modification of the model, easy run
control, easy control of output devices, and adaptability in use.

The 1130 csMP can be classified as a special type of “general
differential equation solver.” Its distinction is that the set of
differential equations is specified by a special block-oriented lan-
guage. Solution is accomplished by means of a sorting algorithm,
which determines the order of computations, and a numerical
integration formula, which approximates the continuous integration
process.

In contrast to most digital programming, in which the order of
coding is important, the 1130 csMP is organized to provide a “paral-
lel” language. That is, the order in which the configuration state-
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Table 1  Console entry switch options

Interrupt run

Modify configuration

Change initial conditions or parameters
Change Function Generator intercepts
Change integration specifications

Set print interval

Define print variables

Specify new plot frame

Scale plotter x-axis

Scale plotter y-axis

Suppress instructions

Suppress typing of card input data
Punch updated data deck

Interrogate block outputs

Save status at interrupt point

Restart at previous interrupt point

ments are entered does not affect the subsequent solution. The
sorting algorithm is used after each change in the configuration to
determine the proper order for processing the functional elements;
no element is allowed to be processed until updated values of its
input variables are available. At each integration interval, it is as-
sumed that constants and the outputs of memory-type elements are
available. A memory-type element is one in which the current out-
put depends only on past values of the input and output. Using
these, it is possible to process one or more elements; these outputs
then become available as inputs to additional elements. If the con-
figuration is correct, it is possible to process all the blocks in accord-
ance with the sorting algorithm. This operation is performed
automatically and requires only a few seconds.

If the sorting algorithm indicates an improperly specified con-
figuration, the program produces a diagnostic message. The most
common cause for a sort error is the existence of an algebraic loop.
This is a closed path in the simulation diagram that does not include
a memory element. Special means provided in the program must
then be used to “break’ the loop and implement the necessary
iteration mechanism for solution of the implicit function.

Integration is approximated by means of the second-order
Runge-Kutta numerical method. The simplicity of this method is
particularly important to the user who wishes to develop Special
elements involving memory. The program uses centralized integra-
tion, and the set of differential equations is treated as a vector equa-
tion. Each time a block is processed, the independent variable,
time, is incremented by one half the integration interval. At each
such half step, the program calls into operation a subroutine that
computes the outputs of all the blocks specified for the configura-
tion, in effect, evaluating the derivative vector. This vector quan-
tity is then used to compute the new value of the state variable
vector; that is, the output of all the Integrators.
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The user must specify the integration interval, consistent with
the requirements of his problem. The “best” value for a particular
problem can be determined only by experimentation. A good rule of
thumb is to first try approximately one-tenth the period of the high-
est frequency expected. The best value is the largest time interval
that can be used without degrading the accuracy below that de-
sired; this choice results in the fastest solution times. It is best to
experiment with several different integration intervals before ini-
tiating any series of parameter runs.
The basic modeling capabilities of the 1130 csMP can be illus-  cable reel
trated by a simple but representative problem—a design study of a  problem
cable reel system. The objective is to devise a controller that will
maintain a constant linear cable velocity as a cable unwinds from a
large motor-driven reel. A sketch of the physical system is shown in
Figure 2.
Control is to be established by measuring the cable velocity,
comparing it to a desired or reference signal, and using the error to
generate a motor control signal. This is the classical feedback
method of control. A tachometer is used to sense the cable velocity
and convert that measurement into a corresponding voltage, which
can be compared to a reference. The operational characteristic of Figure 2 Cable reel control system
the tachometer is represented by a simple first-order transfer
function.
To maintain a constant linear cable velocity, angular reel ve-
locity must increase as the cable unwinds, that is, as the effective
radius of the reel decreases. The situation is complicated by the P
fact that the moment of inertia of the reel decreases as the cable CONTROL O cromerer
unwinds, reducing the torque required to maintain constant cable N / reaome
velocity. Since the moment of inertia of the reel is proportional to /'@comm
the fourth power of its effective radius, this phenomenon is quite SYSTEM
nonlinear. Common analytic control system techniques would,  uwwmoseverse
therefore, be inadequate for solving the design problem, and simu-
lation seems the most suitable approach. The equations and specific
physical data for the system are presented in Table 2. For a reel of
width W and cable diameter D, there are W/ D windings per layer.
Thus, the rate of change of effective radius R is D?/27W times the
angular velocity of the reel. (In the simulation programs illustrated
Iater, this constant, K1, is assigned a value of —0.0008.) The motor
output/input relationship is represented as a simple first-order
transfer function. The cable speed and reel acceleration equations
describe the basic dynamics of the problem. The desired linear
cable velocity is 50 feet/second.
After first gathering all this pertinent data, the designer using  procedure
the 1130 csmMP would next develop an appropriate simulation block
diagram. This phase of the simulation process is critical for success-
ful use of the technique. In general, the user would be guided by the
complement of standard 1130 csmp functional elements and would
minimize the programming of Special elements. During preparation
of the block diagram the primary concern should be that the partic-
ular simulation implementation truly represents his visualization
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Table 2 Equations for cable reel problem

Effective radius of reel
R, = 4.0 ft (full reel)
B, = 2.0 ft (empty reel) .
R —(D*/27W)0 = —K1 0
where
R is time rate of change of reel radius and
6 is angular velocity of the reel

Moment of inertia
I =18.5 B¢ — 221.0

Tachometer transfer function
V measured (volts) 20 1
V actual (fps) T 8420 05841

8§ is the Laplace Transform operator. This is equivalent to
0.5V measured + V measured = V actual

Torque motor transfer function

Torque (ftlbs) _ 5000 _ o ( 1 )
Control Signal (volts) S + 1.0 S+1
or Torque + Torque = 500.0 (Control Signal)

Cable speed
V actual = RS

Desired cable speed
50 ft/sec (represented by 50 volts at set point)

Reel Acceleration
6 = Torque/I

where 6 is angular acceleration of the reel.

of the phenomenon. For this cable reel design problem, the designer
might want to experiment with several control algorithms, observ-
ing the performance of each at cable start up, braking, and reversal.
In these respects, the simulation design should be as flexible as
possible.

One possible simulation diagram for this problem is shown in
Figure 3. Block numbers have been assigned in an arbitrary manner
to emphasize that the 1130 csMP configuration statements may ap-
pear in any order within the punched-card deck provided they all
precede the set of parameter statements.

Note that block 43 is identified as a “Special #3”’ element; this
element has been specifically developed to provide a convenient
means for switching from cable unwind to braking or reversal. The
simple FORTRAN program developed for this special purpose is
shown in Figure 4. This listing shows that two parameters are
associated with this new element—the first can be set to -450.0
(ft/sec) to signify that the reel should unwind; the second can be
set to —50.0 (ft/sec) to signify reversal. The output of this element
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Figure 3 Block diagram for cable reel contro! system

o ———
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Figure 4 FORTRAN listing for unwind-reverse control function

/4 FOR

#L IST SOURCE PROGRAM

#0ONE WORD INTEGERS
SUBROUT INE SUB3 .

< QUTPUT EQUALS Pl WHEN SWITCH 3 IS ONs PZ WHEN SWITCH IS OFF
REAL REALS(395)
INTEGER INTS(587}
DIMENSION CL76)sPARLIT5)sPAR2{75)
COMMON REALSs INTS
EQUIVALENCE ( INTS(376)s
EQUIVALENCE (REALS(156)y FAR2(L}
CALL DATSW( 3» KEY )
GO TO ( 1s2) » KEY

C(I) = PARL(])

{ REALS( 2)s [ S|

1o
b s ( REALSC( 8ils PARLI(LI )

GO 70 3

C{ly = PAR2LI)
RETURN
END

can be switched from one value to the other by use of console
switch #3, allowing the designer to, in effect, ‘“‘operate the controls”
for the simulated system as he observes the plotted response during
the runs. The designer has assumed that a simple proportional con-
trol scheme should be sufficient for this system. Accordingly, the
control signal has been generated by just a Gain element, block 25
in Figure 3, having as input the error signal from the summing june-
tion, block 24. Should this simple scheme prove unsatisfactory, the
user can experiment with a more complex controller. For example,
should this first approach yield wild oscillations, he might try to use
a Limiter element between block 25 and block 2 to restrict the
magnitude of the control signal applied to the motor.

After developing the block diagram, the designer’s next step is
to translate it into the corresponding set of 1130 csmMP statements. A
configuration statement must be prepared for each block on the
diagram; associated parameter and function generator statements
must be prepared as required. Simple coding forms, such as those
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Figure 7 shows the 1627 Plotter output from two trial runs used
to obtain an initial estimate of the gain setting of the controller. A
gain of 1.5 resulted in some overshoot; the underdamped response
obtained with a gain of 0.5 was more satisfactory to the designer.
After making this initial analysis, the designer undoubtedly pro-
ceeded with a longer series of runs in which he manipulated console
switch #3 to test unwind and reversal of the cable throughout the
operating range, both with the reel nearly full and nearly empty.

SYSTEM/360 CSMP

The sysTEM/360 csMP combines the functional block modeling
feature of a ‘“digital-analog simulator,” such as the 1130 csmp, with
extensive algebraic and logical modeling capabilities. It is intended
for batch-mode operation on large-scale digital systems, rather than  Figure 7 1627 Plotter output for
interactive operation on a small machine. On the other hand, it is a cable reel system simy-
far more comprehensive simulation tool. lation {annotation added)
The sYsTEM/360 csMP input language enables a user to prepare T T T T
configuration or structure statements describing a physical system,
starting from either a differential equation representation or a .~
block diagram of that system. The program provides several means  \fiocry,
rather than one for defining functions specially suited to a particu-
lar simulation requirement. The sYSTEM/360 csMP also accepts
FORTRAN statements, thereby allowing the user to readily handle
complex nonlinear and time-variant problems. Controlling input T
and output is facilitated by means of a free format for data entry TIME IN sE¢
and simple control statements. Like the 1130 csMP, the sYSTEM /360
csmp provides a parallel language; so that, with few exceptions,
configuration or structure statements can be entered in any order
and may be intermixed with data and control statements. Output
options include printing of variables in standard tabular format,
print-plotting in graphic form, and preparation of a data set for
user-prepared plotting programs. An important feature is the
facility for terminating a simulation run with a sequence of compu-
tations and logical tests. These can be designed to accomplish
iterative simulations of the type required for parameter optimiza-
tion studies.
A system to be simulated is described to the program by a series  input
of structure, data, and control statements. Structure statements  language
describe the functional relationships among the variables of the
model, and, taken together, define the network to be simulated. A
translator converts these structure statements into a FORTRAN sub-
routine, which is compiled and then executed alternately with a
selected integration routine to accomplish the simulation. Data
statements assign numerical values to the parameters, constants,
initial conditions, and table entries associated with the problem.
Control statements specify options relating to the translation,
execution, and output phases of the sysTEM/360 csmP, such as run
time, integration interval, and type of output.

GAIN=1.5

GAIN=0.5
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Figure 8 Sample SYSTEM /360 CSMP functions

GENERAL FCRM FUNCTION

Y=AFGEN (FUNCT, X) Y =FUNCT (X)

ARBITRARY FUNCTION GENERATOR
{LINEAR INTERPOLATION)

Y=LIMIT (P PLX)

LIMITER

Y=QNTZR (P, X) = (;—(\)/E)IP<;_<2«+1/2)P
=0,*x1,22,=3...

QUANTIZER

Y=DEADSP (P}, P,, X)

DEAD SPACE

Although the functional blocks of the sYsTEM/360 cSMP are used
in the same way as those of the 1130 csmPp, the semantics differ.
Figure 8 illustrates the basic form of the sYsSTEM/360 cSMP structure
statements. A specific example is

Y = LIMIT (—5., 10., X)

which states that a limiting operation was performed on the input
variable X to obtain the output variable Y.

The basic program library contains thirty-four such functions.
It includes all the standard functions of analog computers, plus a
complement of special-purpose functions often encountered in
simulation problems. The basic set is augmented by the FORTRAN
library routines, including, for example, cosine and absolute value
routines. Note that the simple arithmetic operations are performed
by the conventional FORTRAN opcrators, rather than by functional
blocks.

Special functions can be defined either through FORTRAN pro-
gramming, or, more simply, through a MACRO capability, which
permits the combining of individual existing functions into a larger
functional block. This subject of user-defined functions is covered
in somewhat more detail in a later section. The essential point is
that the user has a high degree of flexibility. By properly preparing
a set of special functions, he can restructure the sYsTeEM/360 csmp to
provide a problem-oriented language for chemical kinetics, control
system analysis, or biochemistry. In effect, the sysTEM/360 csMP
does not have to operate within the framework of a digital-analog
simulator language; it can take on the characteristics of a language
oriented to any special field in continuous system simulation.
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Table 3 SYSTEM/360 CSMP data labels

Label Type of Data

PARAM Parameters

CONST Constants

INCON Initial conditions

AFGEN Coordinates of an arbitrary function
(linear interpolation)

NLFGEN Coordinates of an arbitrary function
(quadratic interpolation)

TABLE Entries in a stored array

For most simulation studies, the user first prepares configuration
statements and follows them by the data and control statements,
in that order. The use of data statements to assign numerical values
to variables that are to be fixed during a given run provides a
means for automatically changing these values between successive
runs of the same model. An example of a data statement is:

PARAM RATE = 550.0, DIST = 1000.0

where PARAM is the card label identifying it as a parameter card,
RATE and piIsT are the variables to be assigned numerical values,
and 550.0 and 1000.0 are, respectively, the values assigned. The
different types of data that can be specified are shown in Table 3.
Logically, the user’s next step would be to specify operations
associated with the translation, execution, and output phases of the

program by means of control statements. Like data statements,
these can be changed between runs under control of the simulation
program. An example of a control statement is:

PRINT X,XDOT,X2DOT

where PRINT is the label of a card specifying that lists of the varia-
bles X, XDOT, and X2DOT are to be printed. Other controllabels and
their effects are shown in Table 4.

As has been noted, the user has several means for building his
own special-purpose functional blocks. These functions may in-
volve just a few statements or represent an extremely complex
model of a complete plant; they may be defined by sysTEM/360
csMP statements, FORTRAN statements, or a combination of both.
Three different types of functions, identified by the names MACRO,
PROCED, and subprogram, may be defined. These functions differ
somewhat in their use and the way in which they are handled by
the sYSTEM /360 CSMP.

The MACRO capability is a particularly significant feature of
the language. It allows the user to build larger functional blocks
from the basic functions available in the library. Thus, the user can
identify a subsection of a simulation block diagram, or the corre-
sponding subset of structure statements, as a parallel functional
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Table 4 SYSTEM/360 CSMP control labels

Control Label Operation

NOSORT Specify groups of structure statements not to be sorted

SORT

INIT Define a block of computations to be executed only once
. at the beginning of the run

DYNAM

TIMER Specify print interval, print-plot interval, finish time, and
integration interval

FINISH Specify a condition for termination of run

RELERR Specify relative error for integration routine

ABSERR Specify absolute error for integration routine

METHOD Specily integration method

PRINT Identify variables to be printed

PRTPLT Identify variables to be print-plotted

TITLE Print page headings for printed output

LABEL Print, page headings for print-plot output

RANGE Obtain minimum and maximum values of specified
variables

entity. Once defined, the MACRO subset can be used any number of
times within the simulation, just like any of the other basie library
functions.

The PROCED type of user-defined function allows simple appli-
cation of the logic capabilities of ForRTRAN. During sorting, the
statements that define the PROCED function are treated as a single
functional group, and the entire set is moved around as an entity in
order to satisfy the input/output sequencing requirements of the
sorting algorithm. There is no internal sorting of statements within
a PROCED group. Generally, a particular PROCED group can be
used only once within a simulation program. However, the PROCED
block can be imbedded within & MACRO block and thereby used
repeatedly.

The FORTRAN subprogram approach permits the user to prepare
a separate subprogram that represents the functional character-
istics of the phenomenon to be simulated. This approach actually

R. D. BRENNAN AND M. Y. SILBERBERG




adds little to the algebraic and logical capabilities available through
use of the PROCED technique. However, use of the subprogram
permits the new block to be permanently added to the system
library.

As an illustration of a user-defined function, consider a simula-
tion study that involves several transfer functions with differing
parameter values but the same general form:

Z(s) _s2+as+b

X(s) s+es+d

The user may define a MACRO to represent this general functional
relationship, assigning to it some unique name, such as FILTER.
The sYSTEM/360 cSMP statements to define this MACRO might be as
follows:

MACRO ouT
S2Y

SY

Y

ouT

FILTER (A, B, C, D, IN)
IN — C*SY — D*Y
INTGRL (0.0, 82Y)
INTGRL (0.0, SY)

S2Y + A*SY + B*Y

10 | T

ENDMAC

where the MACRO and ENDMAC cards are translation control state-
ments that bound the set of statements defining the new function.

Although syYsTEM /360 csMp was designed to provide a parallel
language, specifically to free the user from the task of correctly
sequencing structure statements, the automatic sorting can be by-
passed by using the NOSORT option, PROCED functional blocks, or
subroutines. The user can thereby include any type of procedural
statement capability, such as branching on conditions and logical
testing, within a sequence of either SYSTEM/360 CSMP Or FORTRAN
statements. In particular, the NOSORT option can be used to
identify a section of coding that divides the other structure state-
ments into groups, each of which is separately sorted. Such a
NOSORT section might be used to test simulation response as a
basis for switching portions of the configuration into or out of the
simulation. This might be done to decrease run time or alter the
information flow. Problem structure variations that can be antici-
pated can thereby be included in a single run.

Asin the 1130 csmp, centralized integration is used to ensure that
all integrator outputs are computed simultaneously at the end of
the iteration cycle. The user may choose from among several dif-
ferent types of integration routines provided with the program.
These include both fixed-step and variable-step integration rou-
tines. Five fixed-step routines are available: fixed-step Runge-
Kutta, Simpson, trapezoidal, rectangular, and second-order Adams.
Two variable-step routines are available: fifth-order Milne predic-
tor-corrector and fourth-order Runge-Kutta. In the latter two
routines, the integration interval is varied, under program control,
during problem execution. Both routines provide an estimate of the
integration error, which is compared with a user-specified error
bound. The step size is adjusted accordingly by the program to
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achieve the specified accuracy with the maximum step size. If none
of the above methods satisfies the user’s requirement, he can specify
his own integration method.

To repeat an idea, selection of an integration method and inte-
gration interval for a particular simulation study should be made
only after consideration of a number of interrelated factors. The
objective is to choose that combination of routine and interval that
provides the fastest execution while maintaining sufficient accuracy
and providing sufficient output data for easy interpretation of
results. In general, as the complexity of the integration method
increases, the computer time required for a single step also in-
creases. On the other hand, stability may also increase, permitting
larger time steps. Thus, a number of trade-offs between accuracy
and running time are possible.

If no integration method is specified, the program automatically
uses the fixed-step Runge-Kutta method. This method is generally
a good choice for the initial runs of a simulation study if the user is
unsure of the dynamic response of the simulated phenomenon. It
is advisable to make the initial choice of integration interval suf-
ficiently small to ensure accurate, stable solution, even at the ex-
pense of a longer-than-necessary initial computer run. After be-
coming familiar with a particular problem, the user may choose a
more optimal combination of timing specifications and integration
method. Again, the user must be prepared to do some experimenta-
tion to achieve that end.

Because the sysTEM/360 csMP is a batch-mode program, several
means are provided for obtaining an automatic sequence of runs of
the same structure statements with different parameters, output
variables, and output options. For example, CONTIN, END, and
STOP execution statements can be used as follows:

® A CONTIN statement permits data and control statements to be
changed without resetting the independent variable, and causes
the run to continue. This feature permits such items as inte-
gration method, integration interval, and data output interval
to be modified during the progress of a simulation study.
An END statement permits data and control statements to be
changed, resets the independent variable to zero, and initiates
a new run.
A combination of END and STOP statements indicates termina-
tion of the sequence.

Changes in a parameter, an initial condition, or a constant can
also be performed automatically by specifying multiple values on
an appropriate data card. For example, the statement:

PARAM RATE = (5.0,5.5,6.0)

will initiate a sequence of three runs in which RATE = 5.0 for the
first run, RATE = 5.5 for the second run, and RATE = 6.0 for the
third run. Only one variable at a time can be specified using this
multiple-parameter option.
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Figure 9 Rough block diagram for cable reel control system

CONTROL
SIGNAL MOTOR TORQUE REEL V ACTUAL

V DESIRED CONTROLLER 500.0
e DYNAMICS

TACHOMETER

V MEASURED 0.55+1

The foregoing methods are, of course, applicable only when the
user can specify his desired sequence a priori. Frequently, however,
it is desirable to control the sequence by using results obtained in a
prior run, possibly to decide whether or not the sequence should be
continued. Examples are parameter optimization and two-point
boundary value problems, which require modification of parameters
between iterative simulations. A eriterion is required in these cases
for terminating this iterative sequence when a “sufficiently accu-
rate’’ solution has been obtained. The sysTEM/360 csMP has a con-
trol feature called TERMIN that allows the user to identify a se-
quence of statements that are to be performed only on the termina-
tion of a run and thereby achieve this type of program control. Use
of this feature is shown later in a sample problem.

The cable reel design problem described before will also serve to
illustrate the basic features of the sysTEM/360 csmp. When ap-
proaching this problem, the designer could conceivably work from
either the system equations or a very detailed block diagram of the
type shown in Figure 3. Most likely, however, he would sketch the
basic operational units in the sort of rough block diagram shown in
Figure 9. The sYsTEM ;360 csmp statements would then be developed
from a composite block diagram-differential equation representa-
tion of the dynamiecs of the problem. In any case, the designer must,
as always, keep account of the approximations introduced by his
visualization of the system.

A complete listing of the statements that might be prepared for
this problem is shown in Figure 10. It must be emphasized that this
is simply one possibility and that there is no single or “best” way to
describe the system. Some programs might be more direct or ef-
ficient, but any complete sYSTEM/360 csMP statement of the equa-
tions should produce equivalent results.

In this case, the designer decided to provide flexibility in the
program by entering D and W as parameters and directing the
computer to determine the composite coefficient K1. For efficiency,
this coefficient s computed only once during the initialization phase
of the run. The necessary structure and data statements are identi-
fied as initializing operations by means of the translation control
cards INIT and DYNAM, which, respectively, precede and follow
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Figure 10 SYSTEM /360 CSMP statements for cable reel problem
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Figure 11  OQutput of cable reel control system for gain=1.5

CABLE REEL CONTRCL BESIGN

TINE VACT Vv ERROR CONTL TORQUE R I
C.0 0.C 0.0 5.0000E 01 7.5CCOE 01 0.0 4.0000E 00 4.5150E
Ca50 2.2774E 7.6835E-C1 4.9232E Q1 7.3847E 01 1.4996E 04 3.9999E 00 4.5146E
1.00 1.1779€ 5.1595E 00 4.4B41E Q01 6.7261€ 01 2.3250€ 04 3.9992E 00 4.5113E
1.50 2.2z859€ 1.3256E C1 2.6744E Ol 5.5116E 01 2.6294E 04 3.9976E 00 4.5035¢
2.00 3.4448E 2.3573E C1 2,6427E Ol 3.9641E Ol 2.5307E 04 3.9948E 00 4.4902E
2.50 4.49S7E 3.4426E Cl 1.5574F Q1 2.3360F 01 2.1492€ 04 3.9908E 00 4.4718¢
3.00 5.3484F 4.44C5E C1 5,5955€ 00 B.3932E 00 1.6040E 04 3.9859E 00 4.4488E
3.50 5.9391F 5.2527E G1-2.5272E C0-3.790SE 00 1.0029E 04 3.9803E 00 4.4224E
4.00 6.2637E 5.8273FE (C1-8.2726E 00-1.2409E 01 4.32%6E 03 3.9742E 00 4.3940€
4.50 6.3481E 6«1531E C1-1.1531€E 01-1.7296E 01-4.4140E 02 3.9679E€ 00 4.3646E
5.00 642411E 6.2517€ 01-1.2517€ 01-1,877¢E 01-3.9332E 03 3.9615E 00 4.3354E
5.5C 6.C028E 6.1672E C1-1.1672E 01-1.7508E 01-6.0364E 03 3,.9553E 00
£.00 5,6 9550E «5502E 00-1.,4325€ 31 3 3.9494E 00 80!

Q

19.50 4.9751E .
20.00 4.S834E 01 4.9750E Ol 2.4983E-0Q1 3.T475€-01 2.7062E 02 3.8070E 00 3.6652E 03

the initialization statements. The DYNAM card indicates the end of
the initialization statements and the beginning of the dynamic
portion of the simulation program. No provision has been made in
this particular illustration for wind-unwind control.

To prepare the dynamic portion of the simulation program, the
designer began with the reel dynamics and developed the appropri-
ate structure statements directly from the differential equations.
He then proceeded around the block diagram starting at the com-
parison point. Note that both the motor and tachometer blocks
were modeled using the library function REALPL, which represents
a first-order transfer function. Data statements specifying parame-
ter values were inserted wherever the designer found it convenient.
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Figure 12 Print-plot output of cable reel control system

PRELIMINARY TEST OF SYSTEM STABILITY {GAIN = 1.5) PAGE 1

MINIMUM VACT VERSUS TIME MAXIMUN
0.0 6.3492E 01
I

TIVE VACT
Cc.C 0.0
0.500 3.2774E
1.000 1.177GE
1.500 2.2859E
2.000 3.4448E
2.500 444997E
3.000 5.3484E
3.500 5.9391E
4.000 6.2637E
4.500 6.3481E
5.000 6.2411E
5.50¢C 6.C028E
6.000 5.6951€
6.500 5.3734E
7.000 5.0814€
7.500 4.8486E
8.000 4«69C2E
8.500 4.6081E
9.000 4.5%42E
S.500 ©.6339E

10.000 4.7CSOE

10.500 4.8013E

11.000 4.8948E
11.500 4.911CE

12.000 5.0400E

12.500 5.08C1E
13.c00 5.0976E

13.500 5.0954E
14,086 5.0786E

14.500 5.0529E
15.000 5.0238E

15.500 4.9960E
16.0C0C 4.9729E

16.500 4.9566E

17.00C0 4.9477E

17.500 4.9457¢

18.000 4+9492E

18.500 449565E

19.000 4.9657E

19.500 4.9751E

20.000 4.9834E

The programming was completed with a group of control state-
ments specifying the run termination condition (R = 2), integration
and data output intervals, variables to be plotted and print-plotted,
a label for the print-plot, and the integration method.

As in the 1130 csmp illustration, the designer assumed that
simple proportional control would prove sufficient, and decided to
make his initial runs with gains of 0.5 and 1.5. However, he added
a comment card, which was included in the documentation, to re-
mind himself that a modification should be considered in the next
series of trial runs. The first END statement indicates the com-
pletion of data entry for the first run, which was made with a
controller gain of 0.5. The designer requested that a second run be
made immediately after the first, with a controller gain of 1.5. This
shows how easily the user can prepare, in advance, the desired
parameters, execution options, and output options for a series of
runs. Figures 11 and 12 illustrate the type of tabular and print-plot
outputs, respectively, that are provided by the program. A title has
been printed as a heading for the tabular output and a label has
been printed for the print-plot. The minimum and maximum values
of the dependent variable, VACT, have also been given in the print-
plot output.
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Another simple example that illustrates several sysTeEm/360
csmp features, including TERMIN, is the design of a radiating heat
fin of the type shown in Figure 13. The fins are attached to the
coolant tube in order to increase heat dissipation by thermal radia-
tion. This method might, for example, be used to control the
thermal environment of a space station power plant.!!

A typical design problem would be to dimension the fing such
that each dissipated a specified amount of heat per hour, with a
specified temperature along the root end of the fin. If the metal and
the surface roughness are fixed by other considerations, the availa-
ble design parameters are fin length, L, and fin thickness, H. Since
physical constraints on fin length make that dimension less readily
manipulated, the engineer would generally first seek a solution
using only fin thickness as the design parameter.

In most simulation studies, it is the time or transient response
that is of interest. Here, however, the engineer is concerned with
the steady-state heat flow within the fin, at thermal equilibrium.
Assuming negligible thermal interaction among fins, the situation
is described by the following differential equation:

#BT/dX? = 2 E(T* — T4)/KH
where

X = distance from fin root

T = temperature in degrees R

T, = temperature of surrounding space
o = Stefan-Boltzmann constant

E = thermal emissivity

K = thermal conductivity

H = fin thickness

The independent variable is X, the distance from the fin root,
rather than time.

The simplicity of this differential equation is disarming. Al-
though only a few sysTEM/360 csmP structure statements are
needed to represent the relationship, design requires solution of a
two-point boundary value problem. Two conditions are needed to
solve the second-order differential equation. One is given at X =
0.0 and the other at X = L. At the point X = 0.0, T' must equal
the specified, constant fin root temperature, T,. At the edge of the
fin (X = L), radiation must approach zero; that is, dT/dX must
equal zero.

Solution of this type of problem involves a trial and error
process. The basic procedure is to search for a value of dT/dX at
X = 0.0 that, together with the specified temperature condition at
X = 0.0, yields a solution that also satisfies the other end-point
condition, dT/dX = 0.0at X = L.

In this case, the actual implementation involves a search over

values of the design parameter H by use of the relationship:
dT _Qo
X = RBH at X = .00
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Figure 14 SYSTEM/360 CSMP statements for cooling fin design
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where Q, is the specified heat dissipation rate and B is the width of
the fin. The fin thickness, H, is varied until the initial condition on
dT/dX yields a value at the fin edge sufficiently close to zero to be
considered a solution. A common approach is to make an arbitrary
first guess for the design parameter and then, by means of some
algorithm, successively modify that value after each run until all
constraints are satisfied. This procedure may be easily automated
within the SYSTEM/360 CSMP.

Suppose now that a solution is to be obtained for a specific fin
for which:

T, =0deg R

E =08

K = 25 Btu/hr/ft/ deg R
B =0.51t

L =0251t

T, = 2000 deg R, and

Q, = 1000 Btu/hr

Suppose, too, that the fin thickness, H, is constrained to be less
than 0.01 foot.

Figure 14 shows the complete set of sYSTEM/360 csMP state-
ments for one possible approach to this design problem. A LABEL
card provides a heading for the output, which will be generated at
the end of the computation. The RENAME feature is used so that,
for convenience, the independent variable will be represented by
the symbol X, rather than by TIME.

Note that the structure statements are separated into three
segments by the INIT, DYNAM, and TERMIN control statements.
The computations in the initial segment are performed only at the
beginning of each run. For the first run, the value of H is computed
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using values of HIGH and LOW, as specified in a CONST statement.
On subsequent runs during the iterative search, HIGH and LOW are
adjusted by the algorithm imbedded in the terminal segment. Using
this value for H, the program next calculates the variables COEF
and DTDXO for use in the dynamic segment. It should be remem-
bered that structure statements within the initial segment are pre-
sumed to represent parallel structure. Accordingly, the actual order
of the statements within this segment is of no concern. Unless the
user deliberately chooses otherwise, by specifying the NOSORT
option or by placing statements within a PROCED group, the sort-
ing algorithm automatically determines an appropriate computa-
tional sequence.

The statements between the DYNAM and TERMIN control
cards represent the dynamies of the differential equation. Note
again that this is merely one possible representation of this rela-
tionship. Some users prefer to “nest’” expressions to achieve a very
compact problem formulation; others find that fewer errors ocecur
if a single functional relationship is expressed in each statement.
Note, in particular, that the integrator that develops DTDX uses,
as an initial condition, the value DTDX0 computed in the initial
segment. An interesting refinement of the search procedure is the
use of a limiting function, applied to T, to obtain the variable
TEMP. Clearly, in a correct solution, the temperature along the fin
must be less than that at the fin root and greater than the tempera-
ture of the surrounding space. The limiting function imposes this
restriction explicitly, as a precaution, in the event that an estimate
of H causes a “wild” solution. A TIMER control card specifies the
integration interval, and also specifies that the dynamic computa-
tion should terminate in each run when X reaches 0.25, the fin
length. Since no integration method has been specified, the program
will automatically use the fixed-step Runge-Kutta method.

By definition, the structure statements within the terminal seg-
ment represent procedural programming. In this example, the
terminal segment is an implementation of a binary search algorithm
that adjusts the values of HIGH and LOW according to the final
value of DTDX. Consistent with the physics of the problem, this
algorithm reduces the estimate of H used in the next run if the
final value of DTDX is positive, and increases the estimate if DTDX
is negative. The algorithm is designed to ensure convergence sub-
ject to the dimensional constraints on fin thickness imposed by the
HIGH and LOW values specified on the CONST data card. The de-
signer has made his own definition of “sufficient accuracy” by his
choice of the constant term in the first IF statement. When con-
vergence is obtained, the program bypasses the adjustment algo-
rithm. Until convergence is obtained, the sYsTEM/360 csmP state-
ment RERUN is executed, thereby signifying that yet another
iteration is required.

Note that no output statements are used prior to the first END
card. This allows the entire search to occur without either tabular
or plot output until convergence. When convergence occurs, the
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program next encounters statements requesting a print-plot of the
temperature profile. The sYSTEM /360 csmP then performs one addi-
tional run, using the final value of H obtained from the iterative
search, and writes out the results of this run as requested on the
TIMER and PRTPLT control cards.

Summary comments

One objective of this paper was to demonstrate that continuous
system modeling programs have reached a useful level of maturity.
Certainly, digital-analog simulators now have a reasonably stable
set of design criteria. In addition, it appears that the basic develop-
ment phase is past for the continuous system simulators. Several
programs of this type are currently available with a number of ad-
vanced features. There does remain, though, a need to accumulate
application experience, which could serve to chart the requirements
for new developments.

Even now, however, certain directions are apparent. In the
opinion of the authors, the next few years will bring extensive use
of graphic devices for simulation data input and display. For ex-
ample, Figure 15 shows output obtained on an 1BM 2250 for the
cable reel problem through use of the sysTEM/360 csMP PREPAR
data set and a homemade display routine. Remote consoles oper-
ating within a time-sharing environment will give the simulation
user a computing tool that can be used to handle complex problems
and yet provide the desired on-line interaction. Such developments
will necessarily have a profound effect upon the day-to-day practice
of engineering and many of the allied sciences.
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