
This paper describes the kind of microprogram control that has been 
used in several models of SYSTEM/~GO. A microprogramming  language, 
as well as some of the main techniques used in “assembling” and testing 
microprograms, are discussed. Applications of microprogram con- 
trol to the design of emulators, to compatibility  features,  and to special 
modifications are summarized. 

Microprogram  control for System/360 
by S. G. Tucker 

Microprogram  control has received a heavy design emphasis in sev- 
eral of the SYSTEM/BGO models because it makes an extensive instruc- 
tion  set economically feasible in relatively small computers. Micro- 
program  control offers additional  advantages for the designers of 
emulators and compatibility modifications. This  paper  reports  on 
the main  features of the microprogram design approach employed 
in SYSTEM/~GO. To help place the subject  in perspective, some of the 
literature on microprogramming is briefly reviewed at   the outset. 
The outlines of a microprogram language  are also discussed. 

Background 

The idea of microprogramming is normally attributed  to Wilkes.1-3 
He was clearly concerned with  the  rather  ad hoc manner in which 
computer controls had previously been designed. Especially for 
computers  with complex instruction  sets,  he foresaw both design 
and maintenance benefits in a more orderly  approach to  the design 
of the controls. 

He noted that all of the  instructions of the  typical digital com- 
puter were constructed from a  number of more elementary opera- 
tions.  These  elementary  operations,  he  noted, consisted essentially 
of transfers of numbers from one register to another,  either  direct 
or via an adder,  and with or without shifting. The mechanism he 
suggested for controlling a sequence of these  elementary  orders to 
form  a  machine  instruction  is shown in Figure 1. A micro-order 
is placed in Register I, the  output of which feeds a decoder. One and 
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of branching to  break  out of a microprogram loop was mentioned. 
It was further  noted  that a  similar  branch before Matrix A would 
permit  data-dependent micro-orders to be  performed. 

Another significant suggestion was that  the sequencing of a 
microprogram  for  controlling  a  machine  instruction could be started 
by  inserting the operation code of the instruction  in  Register I1 (and 
placing zeros in  the low order  bits). In  this way,  Register I1 could 
serve  directly as  the address of the first micro-order of the micro- 
program for that machine  instruction.  This would eliminate the 
need for any form of operation decoder. Wilkes and Stringer also 
noted that  the arithmetic  unit could be designed to allow many or 
few elementary  operations. For a comprehensive instruction  set, a 
more flexible switching  system  (an  arithmetic unit allowing more 
elementary  operations) was thought  to offer potential  savings  in  the 
number of micro-orders required to microprogram the instruction 
set.  Other avenues  toward efficiency were also ~uggested,~ one  being 
to use the same micro-operations for both fixed- and floating-point 
division reduction,  say,  switching to  and from them  by branching. 
I n  effect, a  microsubroutine is thus accomplished. 

Since 1951, the  literature  has  made  many references to micro- 
programming.  Various  forms of control  are considered, most of 
which stay close to Wilkes’ idea  except  in terms of what  the ele- 
mentary  operations should be.  Here, there seems to  be a wide varia- 
tion;  frequently, i t  is  hard  to  determine  just  what  elementary opera- 
tions  are assumed.  Blankenbaker4 seems to  be considering a system 
in which the elementary  operations are much  simpler than those of 
Willies. In  fact,  the elementary  operations seem closer to basic 
Boolean connectives. In  1958, Dinneen et 231.5 described the logical 
design of the CG24 computer a t   MIT Lincoln Labs. The CG24 is con- 
trolled by a  diode-matrix read-only store. All the elementary  opera- 
tions  are described as  register-to-register  transfers, but  in  this con- 
text  the  output of an adder  with fixed inputs  is considered a source 
register. The diode matrix  is  read  out  every four  machine cycles and 
contains enough information to  control  four cycles. 

Kampe (1960) mentioned  two  techniques of which we shall see 
more.6 First,  as  part of the arithmetic  and logical unit being con- 
trolled, there is a unit  that  can form all sixteen Boolean connectives 
between bit pairs. It is controlled by a four-bit field in  the micro- 
instruction  (output of Matrix A in Wilkes’ model). Here we have, 
explicitly, the grouping of bits  in  the  output of a read-only store to 
form  a field which controls a particular  function. Second, he men- 
tioned  groups of  bits which have no predetermined use but serve as 
emit fields (i.e. fields that can  be  gated  into  a data  path).  The micro- 
programmer is  free to  use these fields as a source of constants. 
Graselli (1962) was even  more explicit about grouping fields in  the 
microinstruction and  then decoding the fields to control particular 
portions of the  data path.7 

The  main  motivation  in  the microprogramming reviewed thus 
far seems to  have been in  an organized approach to  the design of 
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controls. An  offshoot of this line of thinking seems to have  stemmed 
from the desire to exploit the changeability of the microprogram 
storage media and economically provide a selection of instruction 
sets for a given machine. GlantzS (1956) suggested a  machine that 
has, in  addition to  its fixed instruction  set, a section of control  store 
that can be written  under  program control. Thus for various  ap- 
plications, additional performance can be gained by tailoring 
specialized machine instructions (microprogrammed via  the writ- 
able  control  store) to  the application. 

In  at  least four machines (References 9-12), the  entire control 
store is described as writable. The  term “stored logic” is  frequently 
applied to these machines. The elementary  operations resemble 
simple machine instructions  with an operation code and  an address 
field. The P~-440, for example, has 64 micro-orders stored in  the low 
locations of main core storage, which are designed with  extra speed 
t o  aid performance. The T R W ~  uses the  term “logand” to describe 
the steps of a microprogram. Logands become as complicated as a 
19-cycle divide. 

These microprogrammed control  systems were designed to meet 
various  objectives (e.g., custom-tailored instruction  sets, cost re- 
duction,  control  system simplification, etc.). This  diversity of ob- 
jectives  resulted in such a great  variation of “elementary opera- 
tions” that  the control  systems,  although  all microprogrammed, 
were indeed different. 

SYSTEM/~BO microprogramming 
n!hroprogramming in  the SYSTEM/360 line is not  meant  to provide 
the problem programmer  with an instruction  set that he  can custom- 
tailor.  Quite the contrary, it  has been used to help design a fixed 
instruction  set  capable of reaching across a  compatible line of 
machines in a wide range of performances. The programmer has no 
way of telling from the external specifications of a SYSTEM/360 proc- 
essing unit whether or not  it is microprogram controlled. The use of 
microprogramming has, however, made it feasible for the smaller 
models of SYSTEM/360 to provide the same comprehensive instruc- 
tion  set  as  the large models. 

This  is  due to  the following. As the instruction  set of a conven- 
tionally controlled processor is  made more comprehensive, the cost 
of the controls goes up in  a roughly linear  manner. In a  Read-only 
Store (ROS) microprogram-controlled processing unit, a  base cost 
for the ROS device and  supporting  hardware  must  be borne, after 
which the marginal cost of adding the words needed to micropro- 
gram more machine instructions  is  relatively small. Thus there is a 
cross-over point. As an instruction  set is made more comprehensive, 
microprogram control becomes more attractive.  Thus,  in SYSTEM/360, 

microprogramming stays largely in  the province of the engineers 
designing the processors; added flexibility is passed on  to  the pro- 
grammer  in the form of a more comprehensive instruction  set  and 
special features that become economically feasible with ROS control. 



Figure 2 Part of a SYSTEMI360 ROS microprogram  control 
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The microprogram  controls used in S Y S T E M / ~ ~ O  are  very similar 
in technique to those described by Wilkes. A word from ROS not  only 
controls the arithmetic  unit for  a single cycle, but also contains in- 
formation for accessing an ROS word to control the following cycle. 

Figure 2 reflects the manner  in which S Y S T E M / ~ ~ O  ROS control 
systems  are usually shown. The  unit  within  the  dotted lines is an 
ROS device. (Various physical devices are used on the different SYS- 

TEM/360 models.) Typically, they  contain a few thousand words 
from 56 to 100 bits each. The longer words are used on  the larger 
models to control  their more complex arithmetic  units. In  all cases, 
the ROS cycle time  is  the same as  the basic machine cycle time. (ROS 

access times are somewhat less than machine cycle times.)  On  each 
cycle, a  word  is  read out of the ROS array  into  the  Read-only  Store 
Data Register  (ROSDR),  where i t  is latched  up  and held for the dura- 
tion of the cycle. It might be  noted a t  this  point  that a significant 
portion of the control  section of the machine  can be checked by 
including in each ROS word  one or more parity  bits.  Thus,  the con- 
tents of the ROSDR can  be checked for  correct parity  on  each cycle. 
This  much checking is difficult to accomplish on a  conventionally 
controlled machine. 
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Figure 3 Part of SYSTEMI360 data  path 
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Thus  far,  the  terms microinstruction, micro-order, and ele- 
mentary operation have been used very loosely. We  can now define 
a microinstruction, as a single word, or if you prefer, the information 
which is  contained in a single word of the ROS. A microinstruction 
controls a single basic processor cycle. 

In  order to see how the information  in a microinstruction is used 
to control the  action of the  data  path (arithmetic  unit),  it is in- 
structive  to look at a simplified portion of a particular SYSTEM/3GO 

data  path. Figure 3 shows three 32-bit registers: T, A, and B. Pro- 
vision is  made  to  gate  the  contents of these  registers into a 56-bit 
parallel  adder in various ways. The  output of the parallel  adder is 
fed  into a shifter, which may  shift i t  left  four bits,  right four  bits, or 
pass it  straight  through.  The  shifter  output  can  be  returned  to 
either  Register T or Register B. On a single machine cycle, we can 
gate various fields from the registers into  the  adder,  shift  the result- 
ing adder  output,  and  return  the result to a register. 

Table 1 is a list of functions the  data  path can  perform. Each of 
these  is  given a symbol. The symbols are based  on a few conventions 
and are not too  obscure after one gets a bit used to them. The adder 
and shifter  are generally indicated by  the  letter J. Entire registers 
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Now, we are  able  to define what we mean  by a micro-order. A 
micro-order is a control  function  for  which a code point in  an ROS 

word field is defined. A  microinstruction  is  a collection of micro- 
orders encoded in a single ROS word and controlling a single machine 
cycle. 

Sequencing ROS control  is  handled in a  manner  similar to  
Wilkes’ model. Referring to  Figure 2 again,  notice that one of the 
fields of the ROS word is returned to  the  Read-only  Store Address 
Register  (ROSAR). Basically, the ROSAR is used to address the next 
ROS word  read. In  this respect, the ‘‘next-address field” corresponds 
to  Matrix B in Wilkes’ model. There  are, however, a few differences. 

The number of bits  in  the next-address field is less than  the nunl- 
ber of bits required to address the full ROS. The next-address field is 
used as  the high-order part of an address  in ROSAR. The low-order 
bit or bits  must be  supplied by  other means.  Call the low-order bit 
in  the ROSAR the  “Y bit.”  We  can  then  have a field in  the ROS word 
which specifies how the Y bit of the address is to be  determined. If 
we were to  choose a  three-bit field, there would be eight  code  points 
available in  the field. Two of the code points, 000 and 001, could be 
used to force the Y bit  directly to  0 and 1 respectively. Thus,  by 
using the next-address field and  two code points of the Y bit con- 
trol field, any address in  the ROS could be specified for the next cycle. 
The other six code points  may now be  used to specify other  means 
of determining the Y  bit. For example,  one code point  might  be 
used to “make the Y bit 1 if there were a  carry  out of the adder.” I n  
effect, the carry  out of the adder is used as the low-order bit of the 
address of the next ROS word. This provides  a two-way branch  in 
the microprogram  depending on a bit  in  the  arithmetic  unit.  The 
branch  condition does not, of course, have  to  be  restricted  to a sin- 
gle bit  in  the  arithmetic  unit. For example, another code point  in 
the “Y-branch field” might  “make  the Y  bit 1 if bits 0-3 of Register 
T are all 0’s.” This would be useful for normalizing a  hexadecimal 
number  in  Register T. Another  type of condition that is  frequently 
tested  might  “make  the Y bit 1 if Register T bit position 0 is the 
same  as Register A bit position 0.” Since the leftmost bit  in a SYS- 

T E M / % ~  fixed-point word  is  a sign bit,  this  amounts  to a “branch- 
on-signs-alike.” The three-bit  Y-branch field now looks similar 
to  that shown in  Table 4. What we have  just done  is to specify 

Table 4 Code points for the  Y-branch field 

Code 
point Symbol Function 

000 YO Set Y bit  to 0 unconditionally 
001 Y1 Set Y bit to 1 unconditionally 
010 YCJ Set Y bit  to 1 if there is a carry  out of the  adder 
011 YTO3Z Set Y bit  to 1 if Register T bit positions 0-3 are all 0 
100 YLS Set Y bit  to 1 if Registers T and A have like signs 

i.e., bit positions 0 are  the same  for both registers 
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Figure 4 Timing of microinstruction flow 
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some “Y-branch” micro-orders. By allowing one bit of the ROSAR 

to be  determined  by  the Y-branch field, we allow a two-way branch 
in  the microprogram  for any  data  path condition  for which we pro- 
vide a micro-order. This  technique is somewhat  restrictive com- 
pared to  the branch Wilkes described in  that only  a single bit of the 
next  address is altered  by  the  branch, whereas Wilkes’ model 
showed a whole alternate  address selected. 

Since two-way branching  turns  out  to be insufficient, the control 
systems used in  SYSTEM/^^^ generally allow two low-order bits  to  be 
specified independently by two  branch fields. This allows a four- 
way  branch  based  on  two  independent  conditions. 

Normal  branching allows up  to a  four-way  branch.  Higher-order 
branches  are also used. They  are referred to  as “function  branches.” 
A micro-order that specifies a function  branch  gates several data 
conditions to  the ROSAR. Function branching,  for example, is  used 
during  instruction  fetch (I fetch) to effect a multiway  branch  on 
some of the operation code bits. 

Thus  far,  the ROS control  system has been discussed as  though, 
for any given  machine cycle, an ROS word were read out  at  the  start 
of the cycle and held in  the ROSDR until  the cycle was completed. 
When designing a machine for the minimum cycle, a  particular ROS 

device, and a  particular  circuit  family in  the  arithmetic  unit,  it soon 
becomes apparent  that  this is not  the best  design  approach. 

The second line in  Figure 4 shows the basic  machine clock pulse. 
The  data  path  in Figure 3 relates to  the clock pulse as follows. 
Registers T, A, and B are  set  by  the clock pulse. During  the  portion 
of the cycle immediately after  the rise of the clock pulse, informa- 
tion flows through  dc logic to  the adder.  During  the  center  portion 
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of the cycle, it  goes through the shifter and back to a register. In  
general, information  must  be  latched so that  it  is held at  the register 
input  through  the  duration of the following  clock pulse. 

Now consider the ROS relative to Cycle 2.  If the gating-out of 
the registers for Cycle 2 is to  start  during  the clock pulse numbered 
“I,” the microinstruction for Cycle 2 must be in  the ROSDR some 
time before clock pulse 1 in order to allow time to decode the micro- 
orders that control the  outgating. Hence, the pulse that sets  the 
ROSDR is shown somewhat before the main clock pulse. The ROS 

address  must be available in  the ROSAR long enough before the clock 
pulse to allow for the access time of the ROS. Furthermore,  a data 
condition that controls a branch  must be available before this  to 
allow time for the logic which controls the branch. It is now obvious 
that if a data condition is to be branched  on, it must be available 
very  early in  the cycle. Normally, a  carry which occurs late  in Cycle 
1 is saved  in  a trigger. The Cycle 2 microinstruction may  then speci- 
fy a  branch  on the carry  trigger which determines  what microin- 
struction is read out  to control Cycle 3. Needless to say, this can be 
a frustration to  the microprogrammer who normally likes to branch 
on the result of the current cycle. However, the alternative is a 
large increase in  the basic cycle time. 

Where performance is degraded  too  much by  the time  taken  to 
branch, the  situation  can  be helped with  added  hardware. In  the 
example, Cycle 2 could contain  a micro-order which is  conditional 
on the  state of the carry  trigger.  Thus, Cycle 2 can  perform the re- 
complement function by means of the following micro-order: “Gate 
out  in  true form if the  carry trigger is on;  gate  out  in complement 
form if the carry  trigger  is off .” 

Note that, since the ROSDR is set some time before the clock 
pulse, provision must be made for saving the micro-orders which 
control the gate-in during the clock pulse. This  is done by transfer- 
ring them  into  the LATE ROSDR before the ROSDR is  set to  the next 
microinstruction (see Figure 2 ) .  

Other  control  techniques 

bit Several ROS control  techniques are used regularly and seem worthy 
saving of brief mention. Considerable effort is normally  devoted to trying 

to reduce the number of bits  in  the ROS word to reduce the ROS cost. 
Most of this effort goes into  an  attempt  to find the best possible 
grouping of micro-orders into fields. Care  must be taken  not  to 
overly restrict the micro-orders which can  be used together or make 
decoding them  too complex. Another  bit-saving  trick  is called “dual 
usage.” The SYSTEM/~W Model 50, for example, has an I/O mode 
which is entered when the CPU data  path is used to handle multiplex 
channel  functions.  When in I/O mode, some of the code points  take 
on a different meaning. Here some added complexity in  the de- 
coding of micro-orders is traded for a savings in ROS word length. 
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Much effort is also devoted to  reducing the number of words of 
ROS required, that is to  say, using as few microinstructions as possi- 
ble. Many times, this  not  only  results  in using fewer microinstruc- 
tions, but also saves cycles. It is the practice to  use the same series 
of microinstructions  for  things like normalization that  are common 
to more than one  instruction. Allowing microprogrammed  branches 
on some operation code bits allows breaking out of the common 
sequence. 

Status triggers (called STATS) are also very useful. Rather  than 
branching on a data condition when it is first available, the condi- 
tion  can  be  set  into a STAT. This frequently allows a branch  to be 
taken  on  the STAT several cycles later,  thus avoiding  unnecessary 
duplication of microinstructions before the  branch  is  actually 
necessary. Frequently, the microprogrammer may explicitly  set a 
STAT he may  want  to  branch  on  later. In  essence, the STAT allows 
some of the sequence information to be  held  external to  the NOS 

control  in order to save ROS words. 
Another word-saving technique involves branching  on a coun- 

ter’s going to zero to  break out of a  microprogrammed loop. Thus, 
when a cycle is to be  repeated  several  times, a loop can  be used 
rather  than a straight-line coding of the microinstructions.  Here 
again, sequencing information is held external to  the ROS control  in 
order to  save ROS words. The use of a  counter  in the microprogram 
is  very similar to  the use of an index register in a regular  program. 

Another  handy  technique involves the “emit field,” i.e., a field in 
ROS that can  be  gated  into  a data  path  and  has no  one assigned func- 
tion. Some provision is made  for  gating the ernit field into  the  data 
path.  The microprogrammer is then free to  put whatever  constants 
or  bit  patterns  he desires in the emit field. 

A final-word saving device is called a  ‘(function register.” The 
SYSTEM/3GO Model 50 has  an eight-bit data  path which can AND, or 
OR, or Exclusive-OR. I ts  function is controlled by SL “function 
register.” All the storage-to-storage (SS) logical instructions  on the 
Model 50 are controlled by  the same  microprogram  except  for the 
first microinstruction,  which uses the emit field to  set  the function 
register appropriately. 

In  Summary, the microinstruction used in SYSTEM/~~O controls a 
single cycle. However, the  structure of the  data  path being con- 
trolled tends  to  be fairly complex, and  this is reflected in  the struc- 
ture of the microinstruction. The microprogrammer  tailors  each 
microinstruction by choosing the micro-orders he desires. Whereas 
Wilkes implies that  there  are fewer microinst’ructions than machine 
instructions,  this  is  not  the case in SYSTEM/~BO. For example, the 
Model 65 has 378 micro-orders, which  can  be  used to form  about 
5 X loz1 different  microinstructions. The Model 30 microprogram- 
mer  can  construct  about 1Olo microinstructions. It is a matter of 
conjecture how many of these  are reasonable. 

Also, the approach was not  to design a  universal data  path  and 
then microprogram the S Y S T E M / ~ ~ O  instruction  set on it.  Rather, 
the  data  path was specifically designed for the efficient execution of 
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SYSTEM/BBO instructions.  Fields were grouped and micro-orders as- 
signed to permit efficient microprogramming of the SYSTEM/~~O in- 
struction  set. As design proceeded, the  data  path  and micro-orders 
were changed when microprogramming showed that poor choices 
had been made. 

Microprogram language 

Microprograms for  SYSTEM/^^^ are  written  in a  flowchart  language. 
A box is drawn  for each microinstruction and contains the symbols 
for all the micro-orders that make up  the microinstruction. 

Using the  data  path of Figure 3 and  the micro-orders developed 
for it, a three-cycle, three-microinstruction  microprogram (to  add 
the contents of Register A to  the  contents of Register T and place 
the result  shifted  right  one place into  Register T) might  appear as 
shown in Figure 5 .  Reading the microprogram from  left to right, 
the first microinstruction adds  the  contents of Registers A and T 
and  puts  the result  in  Register T. The second microinstruction puts 
the  contents of Register T, shifted  left  one bit position, into 
Register B. In the simplified data  path of Figure 3, the leftmost  bit 
is  shifted off the end  and lost. The  third microinstruction  shifts the 
contents of Register B right  two  bit positions (i.e. left two  bit posi- 
tions  into  the  adder  and  right four bit positions in  the shifter) and 
puts  the result into Register T. 

Notice that where no micro-orders are explicitly stated  for one 
of the fields, the null-state micro-order is implied. For example, in 
the first  two  microinstructions,  no micro-order is given  for the 
shifter field; this implies a “00” bit coding or no  shift.  Similarly, the 
second microinstruction has no micro-order for the right-side adder 
input field ; this implies a “000” coding or zeros into  the  right side of 
the  adder. 

Table 5 A higher-level  microprogram  language 

Symbols 

AJ 
TJ 
JT 
JB 
TJL1 
BJL2 
JSR4 

Higher-level symbols and 
print  positions 

1 

A 

BL2 

0 

2 

+ T  

+TL1 

+O 

-T 

3 

,R4 -+ 
”* 



Figure 5 Simple  microprogram 

Figure 6 Higher-level  microprogram  in  printer  format 
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The microprogram  can be given the appearance of a somewhat 
higher-level language by a mere  change in  the symbols chosen for 
some of the micro-orders. Taking  the three-microinstruction exam- 
ple, we can  substitute symbols as shown in  Table 5 .  

Each of the micro-orders is part of an expression in a  kind of 
algorithmic  language, and  our three-microinstruction micropro- 
gram now looks as shown in  Figure 6. Notice that T is used to indi- 
cate  both "Register T to adder gate" and  the "shifter to Register T 
gate." With a  language of this  form, meaning  is  derived not only 
from the symbols, but also from  their positions  within an expression. 
This becomes a consideration  when  a  program  is written  to "com- 
pile" the microprogram. In  practice,  microprogram  languages for 
the various SYSTEM/360 models include  a  number of variations. 

BIicroprogram branching  is  shown by a  split in  the flow lines 
connecting the microinstruction boxes, and branch micro-orders 
indicate which path is to be  taken.  Again a simple  example  is in 
order,  based  upon the  data  path shown in Figure 3 and branch 
micro-orders shown in  Table 4. 

Consider the microprogram in  Figure 7 to  add  the  contents of 
Registers A and B and  put  the result  in  Register T if there  is  no 
overflow, or set  Register T to all 1's (maximum  value) if there  is  an 
overflow. The  address of each  microinstruction is shown in  the  top 
line of the box in  two  parts.  The 0 or 1 on the left  indicates, in  ab- 



I 
box, the high-order bits of the address  are represented symbolically. 
Actual  bit  patterns  are assigned when the microprogram  is “com- 
piled.” The branch micro-orders (Yo, Y1, YCJ) are shown at   the 
bottom of the blocks. 

The microprogram involves the following operations. lMovement 
of the contents of Register B to  Register T is indicated  by  the first 
block, and  the second block shows the addition. In  the  third block, 
0’s are  entered  into Register T in case there is a  carry. If so, the 0’s 
are complemented to give the required 1’s. Block three also specifies 
a  branch (YCJ) on the carry  out of the add, which took  place  during 
the preceding cycle. Thus, which of the next  two  microinstructions 
is used depends on  the  carry. If there is no carry,  the  upper block is 
used, and  the  sum, which is  held in Register B, is moved to  Register 
T. If there is a  carry, the lower block is used, and  the 0’s in  Register 
T are  gated  out  in complement form to provide the required l’s, 
which are  returned  to  Register T. 

Since only the low-order bit is determined by  the branch, the 
high-order portion of the addresses of the  two blocks branched to 
are  the same. The two blocks (NAMEDO and NAMEDI) are referred to  
collectively as  a  “branch  set” (NAMED-). The next-address field of 
the  third microinstruction is NAMED, and  the low-order bit  is  sup- 
plied by  the branch  condition. 

A similar specification is  made  in the non-branching micro- 
instructions. For example, the second microinstruction specifies YO 
(set low-order address bit to  0 ) ,  and goes to  the microinstruction a t  
NAMECO. Both of the branch-set  microinstructions specify Y l  and 

Thus,  the “compiler”  assigns  unique  bit-values to  the high- 
order  portion of the address,  and  the microprogrammer  handles the 
low-order portion when required  for  branching. 

Although the SYSTEM/360 models that use a  microprogram Ian- 
guage have a structure similar to  the one illustrated  in  this  paper, 
the various models have  different data  paths  and different sets of 
micro-orders and associated  symbols for  them.  The differences be- 
tween  microprograms written for the various SYSTEM/360 models are 
somewhat  analogous to  the differences in assembly-language pro- 
grams  written for computers  with different instruction  sets. 

There  has been much  talk,  but  little success, in providing higher- 
higher-level level languages  for  microprograms. There seem to  be a  number of 
languages factors which contribute to  this. Primarily,  almost no inefficiency 

is tolerated in microprograms. The mere fact  that something  is 
worth  microprogramming  is an indication that high usage is ex- 
pected.  Furthermore,  there  is  a  problem of compiling efficiently into 
a  language which has  the flexibility inherent  in the  structure of 
SYSTEM/~BO microinstructions.  Basically,  a compiler would generally 
be forced to compete  with  a  microprogrammer who can  justifiably 
spend  hours trying  to squeeze a cycle out of his code and who may 
make changes in the  data  path  to  do so. As long as microprograms 
continue to be written  in  this  environment, a successful higher- 
level microprogram  language seems unlikely. 

go to NAMEE1. 

I 
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Design automation 

Although the design automation  supporting a  microprogram  system 
is often overlooked, its importance to  the success of the design of an  
ROS control  system  is  great. Basically,  microprogram design auto- 
mation  consists of three  parts: a file-update  system  for  maintaining 
microprograms, a  simulation  system  for  assuring their accuracy, 
and a  program which generates the  bit  pattern used to manufacture 
the ROS device. 

Microprograms  for  a  computing  system are  written  in flow- 
chart  form similar to  Figure 7, and  each flowchart page is given 
a number. As a microprogram exceeds the size of a page, flow lines 
connecting the blocks are  brought  to  the edge of the page, and  their 
page-block destination is indicated  on the edge of the page.  This 
information is key-punched, and a master file of all  pages is formed. 
The microprogram  for  each  machine  instruction has  its  last micro- 
instruction go to  the instruction-fetch  microprogram, which 
branches  out  to  the  individual microprogram  for  each  instruction. 
In  this  manner,  all  the  individual microprograms are  built  up  into a 
single large  microprogram which controls  all  machine  functions. 
The file-update  system is able to provide  for: 

Automated  printing of all  pages 
Changing any page 
Checking  for reasonableness of information  on  a single page and 

Retaining  a  current  master file from which informxtion  can  be 
connections  between pages 

extracted  by  other programs 
A rather general simulation  program  is  provided. In  order  for  a 

particular  microprogram designer to  make use of the simulator  he 
must  have a  “machine-description” of the  particular  data  path  and 
micro-orders to  be  simulated.  The machine  description  names each 
facility and specifies its length  in  bits.  (For  the  data  path of Figure 
3, the facilities are Registers A, B, and T, the left input  to  the  adder, 
the right  input to the adder, the  adder  output,  and  the  shifter  out- 
put.)  The machine  description also states,  in  terms of the facilities 
named, the action of each micro-order to be  simulated  and how i t  
moves data between  these facilities. Generally, the facilities also 
include  several  words of main  storage. 

Once a machine  description  is  available, the simulator  can  be 
driven  by a  set of initial  conditions (starting  contents of some of the 
facilities) and microprograms that  are extracted  from the master 
file. 

Thus, cycle-by-cycle simulation of microprograms becomes pos- 
sible. To  test his microprogram, a microprogrammer  sets up  initial 
data conditions in main  storage  and/or  in  the registers. The result is 
a cycle-by-cycle trace.  The microprogrammer  can also specify 
facility  contents he  wants  printed  with  the  trace. Any  facility  can 
be requested either for selected cycles or for  all cycles, and  the 
microprogrammer need not  be  inundated  with useless output. Gen- 
erally  speaking, the microprogrammer looks at   the last  line to see if 
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he  got the expected results. If he did not,  he goes back through the 
cycle-by-cycle printed output  to see where his microprogram went 
astray. 

This form of simulation is a t  a high enough level to be conveni- 
ent because whole machine instructions, and sometimes even small 
groups of instructions, are simulated. The technique is successful in 
debugging microprogram before hardware is built. 

Once the simulation is complete, the master file contains reason- 
bit-pattern ably debugged microprograms. Another program translates  them 
generation into  the bit pattern used in the ROS device. This process  is essentially 

a table lookup on all the micro-orders to determine their  bit codings 
and fields.  Also, in a manner analogous to  an assembly program, 
actual addresses can be assigned to  the symbolic addresses (e.g., 
NAMEB) and the next-address fields can be filled in using this infor- 
mation. Finally, this  bit-pattern  information can be further  trans- 
lated  into  instructions to control a piece of automated  equipment 
which produces the physical ROS device. 

The automation system, thus, provides means for maintaining a 
master file, checking the validity of the master file, and building 
physical devices  which accurately represent the microprograms on 
the master file. A more detailed description of the automation sys- 
tem is available. l3 

After-the-fact  microprograms 

Thus  far  the discussion of microprograms has centered around the 
task of simultaneously developing a data  path  and  an ROS control 
system to accomplish the predetermined task of implementing the 
 SYSTEM/^^^ instruction  set. The problems of writing microprograms 
for some other function, after-the-fact, on a system which has al- 
ready been  designed presents some significantly different problems. 

Generally speaking, the smaller SYSTEM/360 models have more 
general data  paths.  The larger models have data  paths which are 
more  closely tailored to efficient execution of the SYSTEM/~~O in- 
struction  set.  Thus, adding new functions on  the smaller machines 
tends  to be  easier. In either case, a new function that stays close to 
the S Y S T E M / ~ ~ O  data formats is easier to implement than one which 
differs radically. A function using eight-bit bytes is simpler than 
one which  uses  six-bit bytes, and a ten-bit byte  structure is much 
more  difficult to handle. The SYSTEM/360 data  paths were not  built 
for ten-bit bytes. Similarly, the handling of a 36-bit data format 
presents significant problems within the 8-32-64-bit structure of 
 SYSTEM/^^^. Nevertheless, the compatibilit'y features  and  emulators 
on S Y S T E M / ~ ~ O  attest  to  the flexibility provided by an ROS system. 

The S Y S T E M / ~ ~ O  Model  30  is microprogrammed to  run IBM 1401 
compatibility programs.14 To do this, each six-bit 1401 character is represented by 

its equivalent eight-bit EBCDIC (Extended Binary-Coded-Decimal 
Interchange Code) equivalent. Thus,  the basic Model 30 eight-bit 
data  path can move 1401 characters. The first bit position of the 
EBCDIC code  (which is 1 for all 1401 characters) is used to hold the 
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1401 word marks. Although almost no change was made in the Model 
30 data  path, a branch micro-order was added to assist in recogniz- 
ing word marks. The decimal 1401 addresses are converted to binary 
by a microprogram that uses table lookup of the binary  equivalents 
of the decimal address digits. In  order to provide space for the addi- 
tional microinstructions, an extra module of ROS was provided. The 
success of the 1401 compatibility feature  indicates  both the flexibility 
of the Ros-controlled Model 30 and  the ingenuity of the designers of 
the compatibility  feature. 

SYSTEM/360 Model 65 ran  into  three  areas of difficulty. Since the 
data  paths of the 7000 series machines and the Model 65 are more 
tailored to high speed in executing their own instruction  sets, gross 
inefficiencies  were encountered in the microprograms required to 
overcome the differences.  Also, it was physically impractical to add 
another module of ROS to  the Model 65.  Only ROS words that were 
not used by the base machine could  be used. Since the Model 65 did 
not  have microprogrammed channels, other means had to be found 
to handle I/O. In  the emulation of large systems, these difficulties 
were  overcome with a combination of  technique^.'^ 

Some hardware was added to  the  data  path. For example, in the 
case of the IBM 7090 emulator, triggers were added to hold the sign 
of the 7090 accumulator and MQ register (Sac, Solo). A special gate 
was added t o  shift a 7090 address field into the S Y S T E M ~ ~ O  address 
field. A special decoder  was added to convert 7090 operation codes 
to either an ROS address or a main memory address, which held 
routines to simulate them with either a microprogram or a S Y S T E M / ~ ~ O  

program. In all, thirty-six new micro-orders  were added and four- 
teen were  modified. In addition, the local store, which holds the gen- 
eral-purpose registers and floating-point registers in the S Y S T E M / ~ ~ O  

mode,  was made explicitly addressable with an emit field. Thus, 
inasmuch as the  data  path was  modified, the 7090 emulator does not 
constitute an after-the-fact microprogram. 

Functions that can not be done fast enough by program are done 
by microprograms using both existing micro-orders and  those  added 
specifically  for the 7090 emulator. Many functions are accom- 
plished by program. These included most of the I/O (except charac- 
ter translation and packing into 36-bit words), the interpretive 
console routine, and many of the easy-to-simulate or low-usage 7090 
instructions. 

Although the ROS controls made the 7090 emulator economically 
reasonable, the emulator was by no means an all-microprogram 
function. Hardware, microprogramming, and software are all used 
where they work  well. 

A similar approach to running IBM 7000 series programs on the emulation 

Concluding remarks 
There is  no doubt that a microprogram control system makes it 
easier to  add special functions to a machine to tailor it  to a particu- 
lar application. There are already  many cases  where features  have 
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been added which would have been impractical  on  a  conventionally 
controlled machine. However, the feeling that  anything  can be 
microprogrammed a t  greatly improved  performance is overly op- 
timistic.  This is particularly the case for large machines. 

The concept  of  microprogram and ROS control discussed here is 
in  no  way  dependent  upon the control  store’s  being an  ROS. Al- 
though  there  are economic and  practical considerations which may 
dictate  that  the control  store  be  made  read  only,  this is by no  means 
logically required. It is  quite feasible to make  a  control store writ- 
able  under  program  control. The potential benefits and  dangers of 
this  are being debated  and will probably  continue to be  for  some 
time.  Although i t  might  be  reasonable if kept  under  tight  systems 
program  control, the remarks of Wilkes at   the 1958 Eastern  Joint 
Computer Conference still seem to warrant  attention.  In reference 
to changeable  control  stores he said, “. . . the  many problems in- 
volved in  running a computing  laboratory  are  bad enough as  it is 
without the additional license which would be  created  by a  system 
of private  order codes.” 

Probably the primary  reason  for  the use of ROS control in SYS- 
T E M / ~ ~ O  is one of economics. A microprogram-controlled system has 
a  base cost for the ROS and  support  hardware;  after  that,  the mar- 
ginal cost of an additional ROS word is relatively small. Thus, ROS 

becomes attractive  for controlling a comprehensive instruction  set, 
particularly  on  a  small machine. Furthermore, the low marginal 
cost of additional  function  in an Ros-controlled system  makes com- 
patibility  features  and  emulators feasible where they might  not  have 
been in a conventionally controlled system. 

Additional  benefits  accrue from  the more orderly  approach to 
control design. Checking  a  large part of the control  system be- 
comes feasible, and printed  microprogram pages are excellent con- 
trol  documentation  and worthwhile service documents. Also, simu- 
lation  has proved to  be  a  significant  design  aid, and debugging time 
on engineering models is  thereby reduced. 

iVh”program  control  in S Y S T E N / ~ ~ O  is  not used to provide  prob- 
lem  programmers  with  tailored  instruction  sets. It is, rather, hidden 
from  direct view of the programmer. It remains in  the province of 
the design engineer and  is used to  economically provide the pro- 
grammer  with  a comprehensive instruction  set  for  the series of com- 
patible  computers  having  a wide range of performance. 
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