
This paper describes the kind of microprogram control that has been
used in several models of SYSTEM/~GO. A microprogramming language,
as well as some of the main techniques used in “assembling” and testing
microprograms, are discussed. Applications of microprogram con-
trol to the design of emulators, to compatibility features, and to special
modifications are summarized.

Microprogram control for System/360
by S. G. Tucker

Microprogram control has received a heavy design emphasis in sev-
eral of the SYSTEM/BGO models because it makes an extensive instruc-
tion set economically feasible in relatively small computers. Micro-
program control offers additional advantages for the designers of
emulators and compatibility modifications. This paper reports on
the main features of the microprogram design approach employed
in SYSTEM/~GO. To help place the subject in perspective, some of the
literature on microprogramming is briefly reviewed at the outset.
The outlines of a microprogram language are also discussed.

Background

The idea of microprogramming is normally attributed to Wilkes.1-3
He was clearly concerned with the rather ad hoc manner in which
computer controls had previously been designed. Especially for
computers with complex instruction sets, he foresaw both design
and maintenance benefits in a more orderly approach to the design
of the controls.

He noted that all of the instructions of the typical digital com-
puter were constructed from a number of more elementary opera-
tions. These elementary operations, he noted, consisted essentially
of transfers of numbers from one register to another, either direct
or via an adder, and with or without shifting. The mechanism he
suggested for controlling a sequence of these elementary orders to
form a machine instruction is shown in Figure 1. A micro-order
is placed in Register I, the output of which feeds a decoder. One and

222 IBM SYSTEMS JOURNAL * VOL. 6 . NO. 4 1967

of branching to break out of a microprogram loop was mentioned.
It was further noted that a similar branch before Matrix A would
permit data-dependent micro-orders to be performed.

Another significant suggestion was that the sequencing of a
microprogram for controlling a machine instruction could be started
by inserting the operation code of the instruction in Register I1 (and
placing zeros in the low order bits). In this way, Register I1 could
serve directly as the address of the first micro-order of the micro-
program for that machine instruction. This would eliminate the
need for any form of operation decoder. Wilkes and Stringer also
noted that the arithmetic unit could be designed to allow many or
few elementary operations. For a comprehensive instruction set, a
more flexible switching system (an arithmetic unit allowing more
elementary operations) was thought to offer potential savings in the
number of micro-orders required to microprogram the instruction
set. Other avenues toward efficiency were also ~uggested,~ one being
to use the same micro-operations for both fixed- and floating-point
division reduction, say, switching to and from them by branching.
I n effect, a microsubroutine is thus accomplished.

Since 1951, the literature has made many references to micro-
programming. Various forms of control are considered, most of
which stay close to Wilkes’ idea except in terms of what the ele-
mentary operations should be. Here, there seems to be a wide varia-
tion; frequently, i t is hard to determine just what elementary opera-
tions are assumed. Blankenbaker4 seems to be considering a system
in which the elementary operations are much simpler than those of
Willies. In fact, the elementary operations seem closer to basic
Boolean connectives. In 1958, Dinneen et 231.5 described the logical
design of the CG24 computer a t MIT Lincoln Labs. The CG24 is con-
trolled by a diode-matrix read-only store. All the elementary opera-
tions are described as register-to-register transfers, but in this con-
text the output of an adder with fixed inputs is considered a source
register. The diode matrix is read out every four machine cycles and
contains enough information to control four cycles.

Kampe (1960) mentioned two techniques of which we shall see
more.6 First, as part of the arithmetic and logical unit being con-
trolled, there is a unit that can form all sixteen Boolean connectives
between bit pairs. It is controlled by a four-bit field in the micro-
instruction (output of Matrix A in Wilkes’ model). Here we have,
explicitly, the grouping of bits in the output of a read-only store to
form a field which controls a particular function. Second, he men-
tioned groups of bits which have no predetermined use but serve as
emit fields (i.e. fields that can be gated into a data path). The micro-
programmer is free to use these fields as a source of constants.
Graselli (1962) was even more explicit about grouping fields in the
microinstruction and then decoding the fields to control particular
portions of the data path.7

The main motivation in the microprogramming reviewed thus
far seems to have been in an organized approach to the design of

224 s. G. TUCKER

controls. An offshoot of this line of thinking seems to have stemmed
from the desire to exploit the changeability of the microprogram
storage media and economically provide a selection of instruction
sets for a given machine. GlantzS (1956) suggested a machine that
has, in addition to its fixed instruction set, a section of control store
that can be written under program control. Thus for various ap-
plications, additional performance can be gained by tailoring
specialized machine instructions (microprogrammed via the writ-
able control store) to the application.

In at least four machines (References 9-12), the entire control
store is described as writable. The term “stored logic” is frequently
applied to these machines. The elementary operations resemble
simple machine instructions with an operation code and an address
field. The P~-440, for example, has 64 micro-orders stored in the low
locations of main core storage, which are designed with extra speed
t o aid performance. The T R W ~ uses the term “logand” to describe
the steps of a microprogram. Logands become as complicated as a
19-cycle divide.

These microprogrammed control systems were designed to meet
various objectives (e.g., custom-tailored instruction sets, cost re-
duction, control system simplification, etc.). This diversity of ob-
jectives resulted in such a great variation of “elementary opera-
tions” that the control systems, although all microprogrammed,
were indeed different.

SYSTEM/~BO microprogramming
n!hroprogramming in the SYSTEM/360 line is not meant to provide
the problem programmer with an instruction set that he can custom-
tailor. Quite the contrary, it has been used to help design a fixed
instruction set capable of reaching across a compatible line of
machines in a wide range of performances. The programmer has no
way of telling from the external specifications of a SYSTEM/360 proc-
essing unit whether or not it is microprogram controlled. The use of
microprogramming has, however, made it feasible for the smaller
models of SYSTEM/360 to provide the same comprehensive instruc-
tion set as the large models.

This is due to the following. As the instruction set of a conven-
tionally controlled processor is made more comprehensive, the cost
of the controls goes up in a roughly linear manner. In a Read-only
Store (ROS) microprogram-controlled processing unit, a base cost
for the ROS device and supporting hardware must be borne, after
which the marginal cost of adding the words needed to micropro-
gram more machine instructions is relatively small. Thus there is a
cross-over point. As an instruction set is made more comprehensive,
microprogram control becomes more attractive. Thus, in SYSTEM/360,

microprogramming stays largely in the province of the engineers
designing the processors; added flexibility is passed on to the pro-
grammer in the form of a more comprehensive instruction set and
special features that become economically feasible with ROS control.

Figure 2 Part of a SYSTEMI360 ROS microprogram control

""""""""""""""""""" ROS DEVICE

DECODER

DRIVE

Y
ROSDR

-FIELDS

"" """"" "" "" "" "__ "_ t t t t ~ - - - - - - -

"

-
\

> j

/

ROS
N O R E

LOGIC .I 1 1 I ,
FROM

DATA PATH

I t
DATA PATH
CONTROLS

The microprogram controls used in S Y S T E M / ~ ~ O are very similar
in technique to those described by Wilkes. A word from ROS not only
controls the arithmetic unit for a single cycle, but also contains in-
formation for accessing an ROS word to control the following cycle.

Figure 2 reflects the manner in which S Y S T E M / ~ ~ O ROS control
systems are usually shown. The unit within the dotted lines is an
ROS device. (Various physical devices are used on the different SYS-

TEM/360 models.) Typically, they contain a few thousand words
from 56 to 100 bits each. The longer words are used on the larger
models to control their more complex arithmetic units. In all cases,
the ROS cycle time is the same as the basic machine cycle time. (ROS

access times are somewhat less than machine cycle times.) On each
cycle, a word is read out of the ROS array into the Read-only Store
Data Register (ROSDR), where i t is latched up and held for the dura-
tion of the cycle. It might be noted a t this point that a significant
portion of the control section of the machine can be checked by
including in each ROS word one or more parity bits. Thus, the con-
tents of the ROSDR can be checked for correct parity on each cycle.
This much checking is difficult to accomplish on a conventionally
controlled machine.

226 s. G. TUCKER

Figure 3 Part of SYSTEMI360 data path

MICROPCOGRAM
CONTROL
DECODERS

I
I

%BIT ADDER

Thus far, the terms microinstruction, micro-order, and ele-
mentary operation have been used very loosely. We can now define
a microinstruction, as a single word, or if you prefer, the information
which is contained in a single word of the ROS. A microinstruction
controls a single basic processor cycle.

In order to see how the information in a microinstruction is used
to control the action of the data path (arithmetic unit), it is in-
structive to look at a simplified portion of a particular SYSTEM/3GO

data path. Figure 3 shows three 32-bit registers: T, A, and B. Pro-
vision is made to gate the contents of these registers into a 56-bit
parallel adder in various ways. The output of the parallel adder is
fed into a shifter, which may shift i t left four bits, right four bits, or
pass it straight through. The shifter output can be returned to
either Register T or Register B. On a single machine cycle, we can
gate various fields from the registers into the adder, shift the result-
ing adder output, and return the result to a register.

Table 1 is a list of functions the data path can perform. Each of
these is given a symbol. The symbols are based on a few conventions
and are not too obscure after one gets a bit used to them. The adder
and shifter are generally indicated by the letter J. Entire registers

MICROPROGRAM CONTROL

Now, we are able to define what we mean by a micro-order. A
micro-order is a control function for which a code point in an ROS

word field is defined. A microinstruction is a collection of micro-
orders encoded in a single ROS word and controlling a single machine
cycle.

Sequencing ROS control is handled in a manner similar to
Wilkes’ model. Referring to Figure 2 again, notice that one of the
fields of the ROS word is returned to the Read-only Store Address
Register (ROSAR). Basically, the ROSAR is used to address the next
ROS word read. In this respect, the ‘‘next-address field” corresponds
to Matrix B in Wilkes’ model. There are, however, a few differences.

The number of bits in the next-address field is less than the nunl-
ber of bits required to address the full ROS. The next-address field is
used as the high-order part of an address in ROSAR. The low-order
bit or bits must be supplied by other means. Call the low-order bit
in the ROSAR the “Y bit.” We can then have a field in the ROS word
which specifies how the Y bit of the address is to be determined. If
we were to choose a three-bit field, there would be eight code points
available in the field. Two of the code points, 000 and 001, could be
used to force the Y bit directly to 0 and 1 respectively. Thus, by
using the next-address field and two code points of the Y bit con-
trol field, any address in the ROS could be specified for the next cycle.
The other six code points may now be used to specify other means
of determining the Y bit. For example, one code point might be
used to “make the Y bit 1 if there were a carry out of the adder.” I n
effect, the carry out of the adder is used as the low-order bit of the
address of the next ROS word. This provides a two-way branch in
the microprogram depending on a bit in the arithmetic unit. The
branch condition does not, of course, have to be restricted to a sin-
gle bit in the arithmetic unit. For example, another code point in
the “Y-branch field” might “make the Y bit 1 if bits 0-3 of Register
T are all 0’s.” This would be useful for normalizing a hexadecimal
number in Register T. Another type of condition that is frequently
tested might “make the Y bit 1 if Register T bit position 0 is the
same as Register A bit position 0.” Since the leftmost bit in a SYS-

T E M / % ~ fixed-point word is a sign bit, this amounts to a “branch-
on-signs-alike.” The three-bit Y-branch field now looks similar
to that shown in Table 4. What we have just done is to specify

Table 4 Code points for the Y-branch field

Code
point Symbol Function

000 YO Set Y bit to 0 unconditionally
001 Y1 Set Y bit to 1 unconditionally
010 YCJ Set Y bit to 1 if there is a carry out of the adder
011 YTO3Z Set Y bit to 1 if Register T bit positions 0-3 are all 0
100 YLS Set Y bit to 1 if Registers T and A have like signs

i.e., bit positions 0 are the same for both registers

S. Q. TUCKER

Figure 4 Timing of microinstruction flow

“””
CYCLE 1

I
I

I GATE
I

I CYCLE 1 MICROINSTRUCTION
OUT , ADD sHIF

I
I

SET
ROSDR ””“

I BRANCH
I - - - - - - - 1

LOGIC ACCESS ROS DECo

FOR CYCLE 2
-

SET

RDSDR I
LATE ------ .

I

+
I

some “Y-branch” micro-orders. By allowing one bit of the ROSAR

to be determined by the Y-branch field, we allow a two-way branch
in the microprogram for any data path condition for which we pro-
vide a micro-order. This technique is somewhat restrictive com-
pared to the branch Wilkes described in that only a single bit of the
next address is altered by the branch, whereas Wilkes’ model
showed a whole alternate address selected.

Since two-way branching turns out to be insufficient, the control
systems used in SYSTEM/^^^ generally allow two low-order bits to be
specified independently by two branch fields. This allows a four-
way branch based on two independent conditions.

Normal branching allows up to a four-way branch. Higher-order
branches are also used. They are referred to as “function branches.”
A micro-order that specifies a function branch gates several data
conditions to the ROSAR. Function branching, for example, is used
during instruction fetch (I fetch) to effect a multiway branch on
some of the operation code bits.

Thus far, the ROS control system has been discussed as though,
for any given machine cycle, an ROS word were read out at the start
of the cycle and held in the ROSDR until the cycle was completed.
When designing a machine for the minimum cycle, a particular ROS

device, and a particular circuit family in the arithmetic unit, it soon
becomes apparent that this is not the best design approach.

The second line in Figure 4 shows the basic machine clock pulse.
The data path in Figure 3 relates to the clock pulse as follows.
Registers T, A, and B are set by the clock pulse. During the portion
of the cycle immediately after the rise of the clock pulse, informa-
tion flows through dc logic to the adder. During the center portion

MICROPROGRAM CONTROL

of the cycle, it goes through the shifter and back to a register. In
general, information must be latched so that it is held at the register
input through the duration of the following clock pulse.

Now consider the ROS relative to Cycle 2. If the gating-out of
the registers for Cycle 2 is to start during the clock pulse numbered
“I,” the microinstruction for Cycle 2 must be in the ROSDR some
time before clock pulse 1 in order to allow time to decode the micro-
orders that control the outgating. Hence, the pulse that sets the
ROSDR is shown somewhat before the main clock pulse. The ROS

address must be available in the ROSAR long enough before the clock
pulse to allow for the access time of the ROS. Furthermore, a data
condition that controls a branch must be available before this to
allow time for the logic which controls the branch. It is now obvious
that if a data condition is to be branched on, it must be available
very early in the cycle. Normally, a carry which occurs late in Cycle
1 is saved in a trigger. The Cycle 2 microinstruction may then speci-
fy a branch on the carry trigger which determines what microin-
struction is read out to control Cycle 3. Needless to say, this can be
a frustration to the microprogrammer who normally likes to branch
on the result of the current cycle. However, the alternative is a
large increase in the basic cycle time.

Where performance is degraded too much by the time taken to
branch, the situation can be helped with added hardware. In the
example, Cycle 2 could contain a micro-order which is conditional
on the state of the carry trigger. Thus, Cycle 2 can perform the re-
complement function by means of the following micro-order: “Gate
out in true form if the carry trigger is on; gate out in complement
form if the carry trigger is off .”

Note that, since the ROSDR is set some time before the clock
pulse, provision must be made for saving the micro-orders which
control the gate-in during the clock pulse. This is done by transfer-
ring them into the LATE ROSDR before the ROSDR is set to the next
microinstruction (see Figure 2) .

Other control techniques

bit Several ROS control techniques are used regularly and seem worthy
saving of brief mention. Considerable effort is normally devoted to trying

to reduce the number of bits in the ROS word to reduce the ROS cost.
Most of this effort goes into an attempt to find the best possible
grouping of micro-orders into fields. Care must be taken not to
overly restrict the micro-orders which can be used together or make
decoding them too complex. Another bit-saving trick is called “dual
usage.” The SYSTEM/~W Model 50, for example, has an I/O mode
which is entered when the CPU data path is used to handle multiplex
channel functions. When in I/O mode, some of the code points take
on a different meaning. Here some added complexity in the de-
coding of micro-orders is traded for a savings in ROS word length.

I 232 s. G . TUCKER

Much effort is also devoted to reducing the number of words of
ROS required, that is to say, using as few microinstructions as possi-
ble. Many times, this not only results in using fewer microinstruc-
tions, but also saves cycles. It is the practice to use the same series
of microinstructions for things like normalization that are common
to more than one instruction. Allowing microprogrammed branches
on some operation code bits allows breaking out of the common
sequence.

Status triggers (called STATS) are also very useful. Rather than
branching on a data condition when it is first available, the condi-
tion can be set into a STAT. This frequently allows a branch to be
taken on the STAT several cycles later, thus avoiding unnecessary
duplication of microinstructions before the branch is actually
necessary. Frequently, the microprogrammer may explicitly set a
STAT he may want to branch on later. In essence, the STAT allows
some of the sequence information to be held external to the NOS

control in order to save ROS words.
Another word-saving technique involves branching on a coun-

ter’s going to zero to break out of a microprogrammed loop. Thus,
when a cycle is to be repeated several times, a loop can be used
rather than a straight-line coding of the microinstructions. Here
again, sequencing information is held external to the ROS control in
order to save ROS words. The use of a counter in the microprogram
is very similar to the use of an index register in a regular program.

Another handy technique involves the “emit field,” i.e., a field in
ROS that can be gated into a data path and has no one assigned func-
tion. Some provision is made for gating the ernit field into the data
path. The microprogrammer is then free to put whatever constants
or bit patterns he desires in the emit field.

A final-word saving device is called a ‘(function register.” The
SYSTEM/3GO Model 50 has an eight-bit data path which can AND, or
OR, or Exclusive-OR. I ts function is controlled by SL “function
register.” All the storage-to-storage (SS) logical instructions on the
Model 50 are controlled by the same microprogram except for the
first microinstruction, which uses the emit field to set the function
register appropriately.

In Summary, the microinstruction used in SYSTEM/~~O controls a
single cycle. However, the structure of the data path being con-
trolled tends to be fairly complex, and this is reflected in the struc-
ture of the microinstruction. The microprogrammer tailors each
microinstruction by choosing the micro-orders he desires. Whereas
Wilkes implies that there are fewer microinst’ructions than machine
instructions, this is not the case in SYSTEM/~BO. For example, the
Model 65 has 378 micro-orders, which can be used to form about
5 X loz1 different microinstructions. The Model 30 microprogram-
mer can construct about 1Olo microinstructions. It is a matter of
conjecture how many of these are reasonable.

Also, the approach was not to design a universal data path and
then microprogram the S Y S T E M / ~ ~ O instruction set on it. Rather,
the data path was specifically designed for the efficient execution of

MICROPROGRAM CONTROL

SYSTEM/BBO instructions. Fields were grouped and micro-orders as-
signed to permit efficient microprogramming of the SYSTEM/~~O in-
struction set. As design proceeded, the data path and micro-orders
were changed when microprogramming showed that poor choices
had been made.

Microprogram language

Microprograms for SYSTEM/^^^ are written in a flowchart language.
A box is drawn for each microinstruction and contains the symbols
for all the micro-orders that make up the microinstruction.

Using the data path of Figure 3 and the micro-orders developed
for it, a three-cycle, three-microinstruction microprogram (to add
the contents of Register A to the contents of Register T and place
the result shifted right one place into Register T) might appear as
shown in Figure 5 . Reading the microprogram from left to right,
the first microinstruction adds the contents of Registers A and T
and puts the result in Register T. The second microinstruction puts
the contents of Register T, shifted left one bit position, into
Register B. In the simplified data path of Figure 3, the leftmost bit
is shifted off the end and lost. The third microinstruction shifts the
contents of Register B right two bit positions (i.e. left two bit posi-
tions into the adder and right four bit positions in the shifter) and
puts the result into Register T.

Notice that where no micro-orders are explicitly stated for one
of the fields, the null-state micro-order is implied. For example, in
the first two microinstructions, no micro-order is given for the
shifter field; this implies a “00” bit coding or no shift. Similarly, the
second microinstruction has no micro-order for the right-side adder
input field ; this implies a “000” coding or zeros into the right side of
the adder.

Table 5 A higher-level microprogram language

Symbols

AJ
TJ
JT
JB
TJL1
BJL2
JSR4

Higher-level symbols and
print positions

1

A

BL2

0

2

+ T

+TL1

+O

-T

3

,R4 -+
”*

Figure 5 Simple microprogram

Figure 6 Higher-level microprogram in printer format

r-------"~ r-----""l r---------l

1 A+T-T I I I O + T L I - B I I BL2+0, R4-T
"""J L""-J L----"i

I
r--"--

I I I I I

L _"""" J L """_" _1 L _""_"_ -i
I I I

The microprogram can be given the appearance of a somewhat
higher-level language by a mere change in the symbols chosen for
some of the micro-orders. Taking the three-microinstruction exam-
ple, we can substitute symbols as shown in Table 5 .

Each of the micro-orders is part of an expression in a kind of
algorithmic language, and our three-microinstruction micropro-
gram now looks as shown in Figure 6. Notice that T is used to indi-
cate both "Register T to adder gate" and the "shifter to Register T
gate." With a language of this form, meaning is derived not only
from the symbols, but also from their positions within an expression.
This becomes a consideration when a program is written to "com-
pile" the microprogram. In practice, microprogram languages for
the various SYSTEM/360 models include a number of variations.

BIicroprogram branching is shown by a split in the flow lines
connecting the microinstruction boxes, and branch micro-orders
indicate which path is to be taken. Again a simple example is in
order, based upon the data path shown in Figure 3 and branch
micro-orders shown in Table 4.

Consider the microprogram in Figure 7 to add the contents of
Registers A and B and put the result in Register T if there is no
overflow, or set Register T to all 1's (maximum value) if there is an
overflow. The address of each microinstruction is shown in the top
line of the box in two parts. The 0 or 1 on the left indicates, in ab-

I
box, the high-order bits of the address are represented symbolically.
Actual bit patterns are assigned when the microprogram is “com-
piled.” The branch micro-orders (Yo, Y1, YCJ) are shown at the
bottom of the blocks.

The microprogram involves the following operations. lMovement
of the contents of Register B to Register T is indicated by the first
block, and the second block shows the addition. In the third block,
0’s are entered into Register T in case there is a carry. If so, the 0’s
are complemented to give the required 1’s. Block three also specifies
a branch (YCJ) on the carry out of the add, which took place during
the preceding cycle. Thus, which of the next two microinstructions
is used depends on the carry. If there is no carry, the upper block is
used, and the sum, which is held in Register B, is moved to Register
T. If there is a carry, the lower block is used, and the 0’s in Register
T are gated out in complement form to provide the required l’s,
which are returned to Register T.

Since only the low-order bit is determined by the branch, the
high-order portion of the addresses of the two blocks branched to
are the same. The two blocks (NAMEDO and NAMEDI) are referred to
collectively as a “branch set” (NAMED-). The next-address field of
the third microinstruction is NAMED, and the low-order bit is sup-
plied by the branch condition.

A similar specification is made in the non-branching micro-
instructions. For example, the second microinstruction specifies YO
(set low-order address bit to 0) , and goes to the microinstruction a t
NAMECO. Both of the branch-set microinstructions specify Y l and

Thus, the “compiler” assigns unique bit-values to the high-
order portion of the address, and the microprogrammer handles the
low-order portion when required for branching.

Although the SYSTEM/360 models that use a microprogram Ian-
guage have a structure similar to the one illustrated in this paper,
the various models have different data paths and different sets of
micro-orders and associated symbols for them. The differences be-
tween microprograms written for the various SYSTEM/360 models are
somewhat analogous to the differences in assembly-language pro-
grams written for computers with different instruction sets.

There has been much talk, but little success, in providing higher-
higher-level level languages for microprograms. There seem to be a number of
languages factors which contribute to this. Primarily, almost no inefficiency

is tolerated in microprograms. The mere fact that something is
worth microprogramming is an indication that high usage is ex-
pected. Furthermore, there is a problem of compiling efficiently into
a language which has the flexibility inherent in the structure of
SYSTEM/~BO microinstructions. Basically, a compiler would generally
be forced to compete with a microprogrammer who can justifiably
spend hours trying to squeeze a cycle out of his code and who may
make changes in the data path to do so. As long as microprograms
continue to be written in this environment, a successful higher-
level microprogram language seems unlikely.

go to NAMEE1.

I

236 s. G. TUCKER

Design automation

Although the design automation supporting a microprogram system
is often overlooked, its importance to the success of the design of an
ROS control system is great. Basically, microprogram design auto-
mation consists of three parts: a file-update system for maintaining
microprograms, a simulation system for assuring their accuracy,
and a program which generates the bit pattern used to manufacture
the ROS device.

Microprograms for a computing system are written in flow-
chart form similar to Figure 7, and each flowchart page is given
a number. As a microprogram exceeds the size of a page, flow lines
connecting the blocks are brought to the edge of the page, and their
page-block destination is indicated on the edge of the page. This
information is key-punched, and a master file of all pages is formed.
The microprogram for each machine instruction has its last micro-
instruction go to the instruction-fetch microprogram, which
branches out to the individual microprogram for each instruction.
In this manner, all the individual microprograms are built up into a
single large microprogram which controls all machine functions.
The file-update system is able to provide for:

Automated printing of all pages
Changing any page
Checking for reasonableness of information on a single page and

Retaining a current master file from which informxtion can be
connections between pages

extracted by other programs
A rather general simulation program is provided. In order for a

particular microprogram designer to make use of the simulator he
must have a “machine-description” of the particular data path and
micro-orders to be simulated. The machine description names each
facility and specifies its length in bits. (For the data path of Figure
3, the facilities are Registers A, B, and T, the left input to the adder,
the right input to the adder, the adder output, and the shifter out-
put.) The machine description also states, in terms of the facilities
named, the action of each micro-order to be simulated and how i t
moves data between these facilities. Generally, the facilities also
include several words of main storage.

Once a machine description is available, the simulator can be
driven by a set of initial conditions (starting contents of some of the
facilities) and microprograms that are extracted from the master
file.

Thus, cycle-by-cycle simulation of microprograms becomes pos-
sible. To test his microprogram, a microprogrammer sets up initial
data conditions in main storage and/or in the registers. The result is
a cycle-by-cycle trace. The microprogrammer can also specify
facility contents he wants printed with the trace. Any facility can
be requested either for selected cycles or for all cycles, and the
microprogrammer need not be inundated with useless output. Gen-
erally speaking, the microprogrammer looks at the last line to see if

MICROPROGRAM CONTROL

he got the expected results. If he did not, he goes back through the
cycle-by-cycle printed output to see where his microprogram went
astray.

This form of simulation is a t a high enough level to be conveni-
ent because whole machine instructions, and sometimes even small
groups of instructions, are simulated. The technique is successful in
debugging microprogram before hardware is built.

Once the simulation is complete, the master file contains reason-
bit-pattern ably debugged microprograms. Another program translates them
generation into the bit pattern used in the ROS device. This process is essentially

a table lookup on all the micro-orders to determine their bit codings
and fields. Also, in a manner analogous to an assembly program,
actual addresses can be assigned to the symbolic addresses (e.g.,
NAMEB) and the next-address fields can be filled in using this infor-
mation. Finally, this bit-pattern information can be further trans-
lated into instructions to control a piece of automated equipment
which produces the physical ROS device.

The automation system, thus, provides means for maintaining a
master file, checking the validity of the master file, and building
physical devices which accurately represent the microprograms on
the master file. A more detailed description of the automation sys-
tem is available. l3

After-the-fact microprograms

Thus far the discussion of microprograms has centered around the
task of simultaneously developing a data path and an ROS control
system to accomplish the predetermined task of implementing the
 SYSTEM/^^^ instruction set. The problems of writing microprograms
for some other function, after-the-fact, on a system which has al-
ready been designed presents some significantly different problems.

Generally speaking, the smaller SYSTEM/360 models have more
general data paths. The larger models have data paths which are
more closely tailored to efficient execution of the SYSTEM/~~O in-
struction set. Thus, adding new functions on the smaller machines
tends to be easier. In either case, a new function that stays close to
the S Y S T E M / ~ ~ O data formats is easier to implement than one which
differs radically. A function using eight-bit bytes is simpler than
one which uses six-bit bytes, and a ten-bit byte structure is much
more difficult to handle. The SYSTEM/360 data paths were not built
for ten-bit bytes. Similarly, the handling of a 36-bit data format
presents significant problems within the 8-32-64-bit structure of
 SYSTEM/^^^. Nevertheless, the compatibilit'y features and emulators
on S Y S T E M / ~ ~ O attest to the flexibility provided by an ROS system.

The S Y S T E M / ~ ~ O Model 30 is microprogrammed to run IBM 1401
compatibility programs.14 To do this, each six-bit 1401 character is represented by

its equivalent eight-bit EBCDIC (Extended Binary-Coded-Decimal
Interchange Code) equivalent. Thus, the basic Model 30 eight-bit
data path can move 1401 characters. The first bit position of the
EBCDIC code (which is 1 for all 1401 characters) is used to hold the

238 s. G. TUCKER

r

1401 word marks. Although almost no change was made in the Model
30 data path, a branch micro-order was added to assist in recogniz-
ing word marks. The decimal 1401 addresses are converted to binary
by a microprogram that uses table lookup of the binary equivalents
of the decimal address digits. In order to provide space for the addi-
tional microinstructions, an extra module of ROS was provided. The
success of the 1401 compatibility feature indicates both the flexibility
of the Ros-controlled Model 30 and the ingenuity of the designers of
the compatibility feature.

SYSTEM/360 Model 65 ran into three areas of difficulty. Since the
data paths of the 7000 series machines and the Model 65 are more
tailored to high speed in executing their own instruction sets, gross
inefficiencies were encountered in the microprograms required to
overcome the differences. Also, it was physically impractical to add
another module of ROS to the Model 65. Only ROS words that were
not used by the base machine could be used. Since the Model 65 did
not have microprogrammed channels, other means had to be found
to handle I/O. In the emulation of large systems, these difficulties
were overcome with a combination of technique^.'^

Some hardware was added to the data path. For example, in the
case of the IBM 7090 emulator, triggers were added to hold the sign
of the 7090 accumulator and MQ register (Sac, Solo). A special gate
was added t o shift a 7090 address field into the S Y S T E M ~ ~ O address
field. A special decoder was added to convert 7090 operation codes
to either an ROS address or a main memory address, which held
routines to simulate them with either a microprogram or a S Y S T E M / ~ ~ O

program. In all, thirty-six new micro-orders were added and four-
teen were modified. In addition, the local store, which holds the gen-
eral-purpose registers and floating-point registers in the S Y S T E M / ~ ~ O

mode, was made explicitly addressable with an emit field. Thus,
inasmuch as the data path was modified, the 7090 emulator does not
constitute an after-the-fact microprogram.

Functions that can not be done fast enough by program are done
by microprograms using both existing micro-orders and those added
specifically for the 7090 emulator. Many functions are accom-
plished by program. These included most of the I/O (except charac-
ter translation and packing into 36-bit words), the interpretive
console routine, and many of the easy-to-simulate or low-usage 7090
instructions.

Although the ROS controls made the 7090 emulator economically
reasonable, the emulator was by no means an all-microprogram
function. Hardware, microprogramming, and software are all used
where they work well.

A similar approach to running IBM 7000 series programs on the emulation

Concluding remarks
There is no doubt that a microprogram control system makes it
easier to add special functions to a machine to tailor it to a particu-
lar application. There are already many cases where features have

MICROPROGRAM CONTROL 239

been added which would have been impractical on a conventionally
controlled machine. However, the feeling that anything can be
microprogrammed a t greatly improved performance is overly op-
timistic. This is particularly the case for large machines.

The concept of microprogram and ROS control discussed here is
in no way dependent upon the control store’s being an ROS. Al-
though there are economic and practical considerations which may
dictate that the control store be made read only, this is by no means
logically required. It is quite feasible to make a control store writ-
able under program control. The potential benefits and dangers of
this are being debated and will probably continue to be for some
time. Although i t might be reasonable if kept under tight systems
program control, the remarks of Wilkes at the 1958 Eastern Joint
Computer Conference still seem to warrant attention. In reference
to changeable control stores he said, “. . . the many problems in-
volved in running a computing laboratory are bad enough as it is
without the additional license which would be created by a system
of private order codes.”

Probably the primary reason for the use of ROS control in SYS-
T E M / ~ ~ O is one of economics. A microprogram-controlled system has
a base cost for the ROS and support hardware; after that, the mar-
ginal cost of an additional ROS word is relatively small. Thus, ROS

becomes attractive for controlling a comprehensive instruction set,
particularly on a small machine. Furthermore, the low marginal
cost of additional function in an Ros-controlled system makes com-
patibility features and emulators feasible where they might not have
been in a conventionally controlled system.

Additional benefits accrue from the more orderly approach to
control design. Checking a large part of the control system be-
comes feasible, and printed microprogram pages are excellent con-
trol documentation and worthwhile service documents. Also, simu-
lation has proved to be a significant design aid, and debugging time
on engineering models is thereby reduced.

iVh”program control in S Y S T E N / ~ ~ O is not used to provide prob-
lem programmers with tailored instruction sets. It is, rather, hidden
from direct view of the programmer. It remains in the province of
the design engineer and is used to economically provide the pro-
grammer with a comprehensive instruction set for the series of com-
patible computers having a wide range of performance.

ACKNOWLEDGMENT

The author wishes to note that the work of many people, too nu-
merous to mention here, has been reported.

I CITED REFERENCES

1. M. V. Wilkes, “The best way to design an automatic calculating machine,”
Manchster University Computer Inaugural Conference, 16-18 (July 1951).

2. M. V. Wilkes and J. B. Stringer, “Microprogramming and the design of the
control circuits in an electronic digital computer,’’ Proceedings of the Cam-
bridge Philosophical Society 49, Part 2, 230-238 (1953).

I 240 s. G . TUCKER

