
The possibility of applying an experimental dictionary and a digital
computer to a proofreading application was investigated. Because tech-
nical abstracts yield a high concentration of proofreading dificulties, a
sample of such text was used for study purposes.

The general features of the dictionary, as well as the main algorithms
used Jor dictionary search and text processing, are discussed. Methods
for classifying input words and Jlagging output words are described.
Approximately nineteen thousand words of keypunched abstracts were
experimentally processed, with results that are discussed. The verifica-
tion algorithms are evaluated in light of the results obtained, and
recommendations for additional improvement and refinement are then
presented.

An automatic dictionary and the verification of

machine-readable text*
by E. J. Galli and H. Yamada

As part of a broader study dealing with the conversion of docu-
ments into machine-readable form, a procedure for machine-as-
sisted proofreading was developed and investigated. The proof-
reading function was assumed to include correction of spelling er-
rors and standardization of spelling variants. The purpose here is
to describe the general procedure, which was based on an experi-
mental dictionary and various classification and processing algo-
rithms, and to comment on the results of the investigation. A com-
plete description of the larger study and its results appears in a
final report.’

In addition to the special dictionary, called the “English-Eng-
lish Dictionary,” several computer programs were developed. The
main functions of the English-English dictionary and these associ-
ated programs were (1) to verify every text word and symbol
against dictionary entries and (2) to produce an output document
in which all words were hyphenated if necessary, corrected in cer-
tain cases of misspelling, standardized in the case of spelling vari-
ants, and flagged for clerical attention if so required.

* This work was jointly supported by the U. S. Air Force Systems Com-
mand (under contract AF 30(602)-2860 with Rome Air Development Center,
Griffiss Air Force Base, New York) and the International Business Machines
Corporation.

192 IBM SYSTEMS JOURNAL * VOL. 6 . NO. 3 1967

The experiment employed an IBM 7094 coupled to a special-pur-
pose lexical data processing system known in brief as the AN/GYA

system. Programmed to perform the dictionary search and some
of the data processing, the AN/GYA contained the automatic dic-
tionary, which was stored mainly on a random-access photographic
memory (the photostore), partly on a magnetic drum, and partly
in a magnetic-core memory. Descriptions of the AN/GYA system,
photostore, and table-lookup procedures for natural language proc-
essing are given The 7094 provided overall control,
performed input and output editing functions, interpreted sub-
routine instructions from the AN/GYA system, and performed a
number of other miscellaneous tasks. An IBM 1401 computer
equipped with several tapes, a card reader/punch, a paper tape
reader, and a 120-character chain 1403 printer was used for prepar-
ing input to the 7094 and for producing edited or final copy.

Capabilities for the following functions were designed into the
English-English dictionary:

Automatic hyphenation
Spelling standardization
Word compounding
Correction of common spelling errors

With approximately 56,000 entries, the dictionary consisted of
English word stems, English endings, whole words, prefix combin-
ing forms, suffix combining forms, spelling standardization entries,
spelling-error correction entries, and control entries. Entries were
derived from several sources, including Webster’s New Collegiate
D i ~ t i o n a r y , ~ the U. S. Government Printing Ofice Style Manual16
the Steno-to-English d i ~ t i m a r y , ~ and various text samples.

Dictionary organization and search

The first requirement for an automatic dictionary is a vocabulary
large enough that few correct words will be treated as error words
due to absence from the dictionary. At the same time, the size of
the dictionary must be compatible with existing technology in both
speed and economy. Fortunately, the English language has a cer-
tain amount of declension, and many words are generated from
stem words by affixing a prefix and/or a suffix. Therefore, if con-
stituents such as prefixes, stems, and endings are listed separately
with appropriate generative features, less space is required than if
the words were listed in full form. It can be readily shown that a
constituent organization requires a t least an order of magnitude
less storage than a full dictionary.

The most general form for a dictionary entry consists of four
fields: argument confix, argument data, function data, and function
confix. A confix is a string of symbols inserted in the input stream
after a match is made that serves to modify the next search. Thus,
a confix performs a function similar to that of a branch instruction.

VERIFICATION OF MACHINE-READABLE TEXT

A general entry can be denoted by

C1Cz. . .Ci(Dl)AlAz. . .A?(Dz)F$'z. . .Fk(D3)C[Cz'. . .C,'(DS

where C1C2. . . Ci is the argument confix, AIAz. . . A j is the argu-
ment data, F1F2. . . F k is the function data, and C1'C;. . . C,' is the
function confix. The characters (Dl), (D2), (D3), and (D4) are con-
trol codes that serve as field delimiters.

The argument confix is compared with data stored in a confix
area, whereas the argument data field is compared with the input
string stored in an input area. When a match occurs, the function
data field is transferred to an output data area and the function
confix to the confix area. The function confix of a matched entry
becomes, in effect, a modifier of the next portion of the input string
to be searched. Thus the function confix acts to concatenate suc-
cessive searches by controlling the information that is prefixed to
the input data string. There are several permissible variations on
the most general form of an entry; for example, either or both
confixes may be absent.

Most entries consist of only argument data, function data, and
a function confix that specifies the ending class to search next if
the match were on a stem rather than a complete word. For a
stem, the next search is modified by the confix to examine only
that ending set which corresponds to the matched-on stem class; in
this case, we use a pair of arguments and confixes for a depth of
two. However, this concept can be extended to greater depth; that
is, any number of strings can be successively concatenated by the
repeated use of confixes.

To arrange dictionary entries in the file, each argument is
treated as a left-justified number that concatenates the numerical
codes of the argument characters. The entries are sorted numerical-
ly and stored in order, tightly packed. The direction of a dictionary
search is always from high to low.

The logic of dictionary processing is as follow^.^ Starting from
a character marked by an input pointer, the input is compared
with dictionary entries to find the entry whose argument matches
the longest string of confix and/or input characters. In other words,
a search finds the entry which represents the most significant match
possible, in a high-to-low ordered sense. Whenever a match is made,
the input pointer is updated to the character following the last
matched character of the input data stream. The function data is
then transferred to an area demarcated by an original-reference
pointer and a current-function pointer.

If the matched-on entry contains a function confix, then this
field is transferred to a confix area, and the next search begins a t
the confix area. During comparison, whenever delimiter (Dl) is en-
countered, the comparison is forced to continue at the position
specified by the input pointer. If the matched-on entry does not
contain a confix field, then the next search begins at the updated
position of the input pointer. A match-anything control character

Null-S NOLII~ -, -s, etc. law, nation, government [Ns]
Y -y, -ies, -ied, -ying, etc. __ apply, copy, P;ty [YI

-__.

Y Noun -y, -ies, etc. city, ability [NYl _ _ _
N11ll-ES -, -es, -ed, -kg, etc. possess, search [esl
Null-ES N o m -, -es, etc. church, hero [Nes] ~_
E -e, -es, -ed, -ing, etc. ”P base roduce, le1

demonstrate
Doubling -, -e, -(C)ed, -(C)ing, etc. bar, control, defer [DBGI

where (C) is the repeated
final consonant of the stem.

- ~ _ _

* The underlined portion of each example corresponds to the stem.

parisons. Similarly, a copy-not control character may be used any-
where in an entry function to allow skipping-without-modification
in the output data stream. These control codes are both designated
by the symbol p.

After a significant match is obtained for an input sequence and
all pointers are updated, control normally returns to the lookup
routine (to effect the next dictionary search). Exceptions occur if
the function is flagged for special treatment. In the event that no
significant dictionary entry is found for the input string, a match
on a breakpoint entry is obtained. Located a t points throughout
the dictionary, breakpoint entries contain special flags that send
the program to appropriate control routines.

Although the longest-match search algorithm works on English
text rather well,* exceptions such as “metalanguage,” “dishar-
monious,” etc., are handled by a special program called the Forced
Shorter Match Program.

The dictionary is capable of verifying not only normal English
text, but also punctuation and format control symbols embedded
in the input text.

Generative features of the dictionary
Most words consist of what can loosely be termed stems and end-
ings, although strict morphological decompositions are not adhered
to. In this sense, some stems are word roots while others are com-
pounds of roots, affixes and roots, and so on. The conventional way
of categorizing affixes into prefixes and suffixes was also found in-
adequate, and we adopted our own classification of affixes into
endings, prefixes, suffixes, etc.

the eight distinct classes summarized in Table 1. It should be noted and
that this classification is only a first-order approximation. Ulti- endings
mately, the English language may require many more word classes
to generate not all, but just those stem-ending combinations that

Stems and their corresponding ending sets were classified into stems

VERIFICATION OF MACHINE-READABLE TEXT 195

As an example of the stem-ending generative feature, consider
the word “part” belonging to the Null-S class. The ending set for
this class is capable of generating the following words, among
others: part-, part-s, part-ed, part-ing, part-ly, part-less, and part-
er. Thus, the stem “part,” as well as each of the six derivatives
listed above, may be verified by the dictionary with two searches-
one for the stem followed by one for the ending. The entire set of
ending entries contributes only a negligibly small amount to the
dictionary storage requirement. Therefore, as noted previously, a
large compaction factor is attained with this type of dictionary
structure as compared to one in which each derivative is listed as a
separate entry.

The verification of a stem and ending is accomplished in one
segment of processing, consisting of two dictionary references. As
an example, matching of the word “copy” involves two dictionary
entries, cop(D2)cop(D3)[yI(D4) and [y](Dl)y(Dz)y’(-)r(Dq). The first
entry matches the input string up to “cop,” reads out “cop,” then
introduces the confix [y] before the remainder of the input string.
Now the dictionary must match with a modified input stream,
[y](Dl)y. . . , which the second entry above matches and reads out
Y’(-)T. Here, the apostrophe is a conditional hyphen, (-) is for pos-
sible compounding, and r signals the end of a processing segment.

We chose this example deliberately to illustrate a detail of ad-
ditional complexity that occurs for a relatively small number of
dictionary entries. If we represent “copy” in the above manner,
then entries for “cope” must be listed in their complete forms.
“Cop” can, at the same time, be a word by itself. To handle this
case, “cop” and “cops” should also be in the dictionary. However,
it is not possible to have two or more entries with identical argu-
ments. Therefore, for “cop,” we use cop@(D2)cop(D4). In this
entry, @ is a word-terminator code used before punctuation marks,
space, and format-control symbols.

Words of the doubling class take ending set [DBG]. When a
stem is used with an ending ‘I-ed” or “-ing,” the last consonant of
the stem must be doubled, such as “bar” into “barred” or “bar-
ring,” etc. This is accomplished with backup instructions (An-)
which cause the comparisons on the input string to back up by
n + 1 character positions, where n is a parameter given for each
entry.

In the English language, many words are generated by the
compounding compounding of two (or more) words. A list of some 15,000 com-

monly compounded words appears in the U . S. Government Print-
ing Ofice Style Manual (pp. 77-120), the majority of which are not
in Webster’s New Collegiate Dictionary. In order to verify com-
pound words, either all such words must be included in the dic-
tionary, or some procedure must allow these words to be formed
from their constituents. Our dictionary follows the latter approach.

196 E. J. GALLI AND E. YAMADA

Consider the word “dishwater.” If not listed in its full form,
the dictionary will match up to “dish,” introducing the confix
[Nes]. Since the next search is for “[Nes](DJ water,” and since
“water” is not an ending, the longest match will be on [Nes](Dl)
as an argument and ’(-)T will be read out. Upon detection of 7, the
program scans the output and detects (-), a control flag to initiate
a new search for the remainder of the word. Then the entries “water
wa’ter [SI” and “[s](D1)@ 7’’ yield “dish’(-)wa’ter,” the (-) code
being later deleted in an output editing stage. (For convenience in
these and subsequent examples of dictionary entries, we adopt the
convention that (Dz) and (D3) are represented by “space” and
(D4) is omitted.)

The compounding capability allows for the possibility of an
error in space omission between consecutive words. Most endings
are listed with a terminating code; non-canonical endings are listed
without this code but with a function confix [/-I that allows tenta-
tive compounding and then invokes corrective measures a t a later
stage. Words listed in full form are identified by their unique func-
tion confix code. The (-?) control flag signifies a conditional com-
pounding. The validity of the resulting compounding is checked a t
a later point in the program.

Over 900 prefixes and 600 suffixes are listed in the dictionary.
Most are of Greek or Latin origin, such as “anti-,” “demi-,”
“-logy,” “-tomy.” Prefixes are stored between an initiator flag
(Ip) and a terminator flag (Tp), a typical entry being “octa
(Ip)oc’ta’(Tp).” This format allows prefixes to be concatenated
with other prefixes, words, or suffixes without calling in compound-
ing subroutines. Since suffixes always terminate a word and do not
usually combine with other suffixes, not more than one suffix is
allowed after a prefix (or prefixes) or a word. Therefore, the confix
[/-I is utilized after a suffix to allow for possible missing-space
errors, as discussed before.

Hyphenation rules differ slightly from one authority to another;
therefore, Webster’s New Collegiate Dictionary was used as a guide.
Every possible hyphenation point in a function was indicated by a
conditional hyphen (coded as an apostrophe). These codes were
deleted in final processing unless hyphenation was required for
right-margin justification, in which case a conditional hyphen a t
the most appropriate point was converted to a hyphen. Certain
exceptions are easily programmed, such as: (1) leave no less than
n letters when hyphenating (n > l), (2) hyphenate proper names
for narrow column widths only, etc.

Under certain conditions, some endings require that the hyphen-
ation pattern of a stem be modified due to a change in the ac-
centuation point. As an example, the stem for “compute” is listed
as “comput com’put [e].” Since the ending “ing” reads out ‘‘ ’ing,”
the word “computing” is properly hyphenated as “com’put’ing.”
The same is true of most other derivatives. But the ending “ation”
requires that the hyphenation pattern of the last syllable of the
stem be altered, so as to obtain “com’pu’ta’tion.’’ Additional gen-

VERIFICATION OF MACHINE-READABLE TEXT

erative entries are included in the ending sets to modify the final
portion of the stem readout whenever this is required.

Other occasions where conditional hyphens are used are (1) be-
tween two compounded words; (2) after a prefix (sometimes omit-
ted because of variations, such as “aer’o” in ‘(aer’o’dy’nam’ics’’ or
“aer’om’e’ter’’); and (3) before a suffix when i t is compounded
with a word. There are a number of words which change hyphena-
tion patterns when the part of speech and the accent change, e.g.,
pro’gress (verb) and prog’ress (noun). These are listed in the dic-
tionary without conditional hyphens.

Various hyphenation algorithms have been reported to be be-
tween 70 and 98 percent effective? The hyphenation provisions
described above, coupled with hyphenation algorithms for words
which cannot be verified by the dictionary but which require
hyphenation, can be expected to yield hyphenation accuracies far
exceeding those attainable solely by algorithms. For example, if
95 percent of the words (in context) are verified and if the hyphena-
tion algorithm utilized is 95 percent effective, then accurate
hyphenation can be expected in 99.75 percent of words hyphenated.

The dictionary includes entries for the processing of numerals
numerals and for checking the boundary conditions of numerals for the pos-

sibility of missing-space errors between numerals and words. For
the processing of Arabic numerals, the confix [#] is introduced upon
matching the first digit of a numeral string. If there are punctua-
tion marks such as a period or comma in a string of numerals, the
string is subdivided by (@ codes and the substrings are processed
as separate segments.

If a space is missing before a numeral string, the preceding
word lookup would have resulted in a compound flag (-), (/-), or
(-?). Subsequently, the first digit is preceded by (/-). At a later
stage the Compound Test Program will insert a dummy space (),
which in turn will be converted into a space in the final program
stage. A space error occurring after a numeral is directly treated
by the dictionary, by matching on the entry “[#](Dl) ()” which
inserts the dummy space () at the appropriate point.

The dictionary is not able to verify certain symbols involving
numerals, such as “6SN7.” It is the function of the Symbolism
Test Program (to be discussed later) to recognize the existence of
symbols in the input text. However, one case requiring special
treatment is that exemplified by ‘ila,” “2a,” etc. Since “a” is a
valid word, a dummy space would normally be inserted before it.
An entry “[#](Dl)a@ a” is included in the dictionary to prevent
this.

Provisions are included to verify the occurrence of Roman
numerals in text up to 3999 when written in Roman numeral form.
Also included are provisions for rejecting improper sequences of
Roman numerals, such as CXLXX.

The dictionary has nearly 2000 entries dealing with words that
spelling often present difficulties caused by spelling variations. (The sec-
variations tion on Orthography in Webster’s New Collegiate Dictionary was

198 E. J. GALLI AND H. YAMADA

used as a guide.) Entries were based on the results of a previous
analysis of spelling variations occurring in a large sample (6000
documents) of scientific and technical abstracts. The entries stand-
ardize spelling variations to the preferred standard, correct non-
acceptable variations, and flag certain spellings which are accept-
able but are second-choice preferences.

1. A non-preferred spelling is transformed into the preferred form
and flagged { N) ; e.g., “moveable { N}mov’a’ble”

2 . A British spelling with a preferred U. S. form is transferred into
the preferred form and flagged (B } ; e.g., “colour { B) col’or [SI”

3. An allowable second-choice preference spelling is not altered
but is flagged {U} ; e.g., “commandoes {UJcam’man’does”

4. Equally acceptable variants are listed in both forms without
any flags; e.g., “sirup” and “syrup”

5 . Correct spellings of rare or archaic words which could be mis-
spellings of more common words are not altered but are flagged
(R } ; e.g., “calender {R}cal’en’der” compared to “calendar”

Spelling standardizations were also included for certain pre-
fixes, suffixes, and stem-ending combinations, with the appropriate
flags.

The dictionary has been provided with a degree of automatic spelling
spelling error correction capability by the inclusion of close to 2000 error
entries designed to correct misspellings.10 In each entry,ll the argu- correction
ment contains the incorrect spelling and the function contains the
correct spelling together with a flag {E) which indicates that a
dictionary correction has been performed.

Several other types of entries are included to serve specific
functions.

Breakpoint entries. The function of a breakpoint entry is to notify miscellaneous
the control program that an input sequence cannot be verified by entry types
the dictionary. There are two classes of breakpoint entries. Stem
breakpoints have the form “x A < (B) T” for all single-character in-
put codes “x” which have no other significance (punctuation codes
are excluded, for example, because they must be appropriately in-
terpreted). (B) is a program control flag indicating that a stem-
type breakpoint has been matched. Stem breakpoints for double
characters are also included to decrease dictionary search time;
e.g., “rkAl- (B) 2’. Ending breakpoints are of the form “[e](D1)
(Be) 7” for confixes [e], [y], [Ny], and [DBD]. The program control
flag (Be) distinguishes this class of breakpoints, indicating that a
partial match on a stem has been made but no valid ending can be
found.

Capitalized entries. Some 3,500 entries are included to allow the
verification of common names of persons, places, etc. They are
preceded by a $ code, and are terminated by the word terminator
code @ to ensure that a capitalized word will not be partially
matched (as, for example, $eliminate and $eli).

VERIFICATION OF MACHINE-READABLE TEXT 199

0 START

DICTIONARY

SEGMENT MATCH
SEARCH FOR

VALIDITY
CHECK

f
PARTIEGII

COMPOUNDING
INTERRUPT

SEARCH FOR
CONTINUED

SEGMENT MATCH

ENDING
BREAKPOINT
INTERRUPT

PART (B e)

BREAKPOINT
INTERRUPT

(8) FLAG

MATCHED
LENGTH

7-
1 I I I 1 WHIPPOORWILL: SLEEKFASHlON&BLEP THEREOPON# 1 1

SIMPLE
WORD

ISOLATED ISOLATED
PREFIX SUFFIX

ILLEGAL NORMAL
PREFIX

COMPOUNDING
INTERRUPT INTERRUPT

ENDING
BREAKPOINT BREAKPOINT
INTERRUPT INTERRUPT

SOME
CHARACTERS

MATCHED
NO CHARACTERS

MATCHED

(IP)PARA(TP)GLIDERT (Ip)ACRO(Tp)T (Is)LOGUET (lP)ANTI(TP)(-I)WAST STEEL(-)MAKER7

PARTST
WHIP(-)POOR(-) SLEEK(")FASHION(-lB. THERE(1-)B ISO(B) (6)

000 1\
S x, x, C 0 P 6 B

r-

, L"""
(-) COMPOUNDINGPERMITTED [eg.STEEL(-)MAKERI

(-?I COMPOUNDING VALIDITY MUST BE FURTHER CHECKED [ep.WHICH(-?)ARE]
(I -) COMPOUNDlNGTOTHERlGHTISNOTPERMlTTEDleg.THREE(I-)COMPONEN~

("IALSOPRODUCESTHESEGMENTTERMlNATORT
INPUT POINTER USED BEFORE AND AFTER INPUT WORD

(- 1) COMPOUNDINGTOTHE LEFTISNOTPERMITTED

- ERRORlNDlCATOR(NOTPART0FTHEINPUT)
! WORDSEGMENTOIVIDER(NOTPART0FINPUT)

Punctuation and controls. Dictionary entries are also included to
properly interpret punctuation and format control symbols that
may occur in the input stream, such as period, comma, tabulation,
paragraph, etc. These symbols are recognized, transformed into ap-
propriate output codes, and subsequently interpreted by an output
editing routine that performs the necessary output composition.
Input mnemonics designed to handle Greek and mathematical sym-
bols and specialized formatting (such as centering, underlining,
superscripting and subscripting, all capitals, etc.) are treated in a
similar manner.

The verification and classification program

This program verifies each input word against the dictionary and
classifies it into one of seven categories: simple word, compound
word, shorter-match word, proper name, symbolism, foreign phrase,
and unclassified word. The unclassified word is a word which does
not fall into any of the other six categories, such as a possible error
word, or a word missing in the dictionary. There is a program
option for either transliterating this class or sending it to the Spell-
ing Error Correction Program (which is not discussed in this paper).

The Word Classification Program is divided into primary and
secondary programs. The primary program (Figure 1) proceeds to
look up the input stream piece by piece until one of the dictionary
entries produces the segment terminator 7. At this point, the dic-
tionary entry defines one of four possible cases : the normal interrupt
with no flag; the compounding interrupt with either one of three
flags, (-), (/-), or (-?) ; the ending breakpoint interrupt with flag
(Be) ; and the breakpoint interrupt with flag (B).

Excluding some special cases, a normal interrupt is generally
associated with the end of a word. However, some unorthographic
cases (improper spellings) may result in a normal interrupt; the
program then checks the readout flags and further classifies the
result into subcategories. Examples are given in Figure 1. The sub-
classification serves to expedite further treatment in the secondary
program.

A compounding interrupt is generally associated with the end
of the first word in a compound word (such as “steelmaker”). The
program is so designed that, after detecting this interrupt, it pro-
ceeds with the lookup of the rest of the input word. Since this sec-
ond lookup may terminate in any one of the four interrupt cases,
the program is equipped to further classify a word according to the
outcome of the second lookup segment. If this results in a normal
interrupt, the whole word is classified temporarily as a compound
word and is passed on to the secondary program for further process-
ing. For all other cases, the program acknowledges the partial
matching and passes the word on to the secondary program.

The ending breakpoint interrupt with flag (Be) is another case
of a partial match which is noted before being passed on to the
secondary program. Finally, a breakpoint interrupt with flag (B)

VERIFICATION OF MACHINE-READABLE TEXT

Figure 2 Word classification program

u-

I

PRIMARY WORD CLASSIFICATION PROGRAM

x, x, C P B

i lMPLE
VORD

1r
-8 1

CT

COMPOUND
W’ORD Y N R

8 4

jHORTER MATCH
WORD

4 4 c
SY SY SY

Y N Y N Y
I

N

I

SYMBOLISM

PROPER
NAME

POSSIBLE WORD” I y, STORETHE = Yll(V I * I 1
I u I I
I I

STORE THE I PROCESSING
ADDITIONAL

DESIRED?

,1.1 ,x UNCLASSIFIED

I
N

I
Y

i

ERROR
CORREC-

FOREIGN PHRASE

signifies either a total failure in matching or a success in matching
only up to one or more prefixes. The latter case is treated as a
partial match, while the former case is noted separately.12

The secondary program processes the output of the primary
program. Its main subprograms are: Compound Test, Forced
Shorter Match, and a set of three routines designed to test for non-
English words-the Symbolism Test, the Proper Name Test, and
the Foreign Phrase Test. The detailed version (Figure 2) of the
Word Classification Program shows the relationship between these
subprograms and the primary program.

The function of the Compound Test Program is to test the
validity of the words, which the primary program accepted as com-
pound words, by checking their apparent form of juxtaposition.

Without semantic information, such a test is never complete.
Nevertheless, we have analyzed the list of commonly compounded
words given in the U. S. Government Printing Ofice Style Manual
and have arrived a t a set of test rules based on certain character-
istic properties of compound words, such as (1) not more than two
words are compoundable; (2) more than one prefix may be com-
pounded with a word or suffix; (3) certain classes of words should
never allow compounding; (4) certain endings do not combine; (5)
suffixes of Latin or Greek origin (such as -logue, -cracy, etc.) sel-
dom take another suffix; (6) some suffixes of Anglo-Saxon origin
may combine after other suffixes (e.g., -ism-wise); (7) nouns of
Anglo-Saxon origin combine with ease (e.g.; arrow-head, etc.)

The Compound Test Program checks for the existence of flags
and utilizes rules, such as the aforementioned, to classify the words
which are tentatively compounded words into three categories: (1)
permissible compounding; (2) compounding not permissible; and
(3) total rejection (such as “the-logy”).

Most English compound words can be looked up by the longest
match technique. However, this algorithm occasionally fails, as
exemplified by bowlight, metalanguage, etc.13

The Forced Shorter Match Program is designed to handle such
possibilities. With some exceptions, cases of either total rejection
or conditional space separation resulting from the Compound Test
Program and cases of partial match resulting from the primary
program are subjected to the Forced Shorter Match Program. The
basic principle of the program is to insert an asterisk (unique con-
trol character) in the input stream which forces a shorter match to
occur up to the asterisk if such a match is possible. When such a
shorter match is obtained, an attempt is made to match the re-
mainder of the word. By moving this asterisk along the input
stream, all possible matches are attempted by the algorithm.

When a lookup of an input word is attempted and fails (i.e.,
results in a compound test rejection, a partial match, or a break-
point return), it is suspected first that the particular word may not
be an English word. Although we have a set of three crude pro-
grams to check such possibilities, an ultimate decision would re-
quire semantic information.

VERIFICATION OF MACHINE-REbDABLE TEXT

The Symbolism Test Program checks the existence of non-word
terminating characters consisting of Arabic numerals, certain punc-
tuation marks, etc. The existence of such a character within a word
indicates that the word is most likely a code name or symbolism of
some kind.

Many capitalized names of common usage are in the dictionary.
However, uncommon names which are rejected by the dictionary
may be detected by looking for such clues as initial capitalization
occurring at some point other than at the beginning of a sentence.
Note that this is a necessary, but not a sufficient, test. Our Proper
Name Test Program does not check beyond this point, but it is
possible to make a number of rather sophisticated tests as Bor-
kowski,14 and more recently, Altman,15 have shown.

If a string of several words is rejected by the dictionary, it is
highly probable that a phrase of a foreign language is present. The
Foreign Phrase Test Program checks for this condition.

The relative positions of the subprograms in the entire system
(shown in Figure 2) are a result of a trial and error procedure in
our experiment. An optimum structure would be established with
reasonable certainty only after analyzing large samples of various
kinds of text.

Verification experiment

The experimental dictionary and the Word Classification Program
were tested on machine-readable documents from a file of 6000
technical abstracts (furnished by the Air Force). Briefly, the key-
punched documents were first subjected to an input pre-edit pro-
gram in order to make the information compatible with the input
requirements of our program. This involved character code con-
version, document format changes, end-of-line hyphenation stand-
ardization, and other input modifications. Then the documents
were subjected to the verification experiment. The results of the
dictionary verification were stored on magnetic tape, and later
processed with an edit program to obtain copies for inspection.

The main experiment involved 130 documents (about 19,000
words). Of all words processed, 89 percent were properly verified.
Of the 11 percent not properly verified, approximately six percent
were not found in the dictionary. These were subsequently trans-
literated, but were also flagged by the Word Classification Program
as proper names, parts of foreign phrases (mostly strings of Russian
words), or symbols. The remaining five percent were not found in
the dictionary, escaped program verification or classification, and
were transliterated (and flagged as such). These consisted of: (1)
error words or (2) valid words which could not be verified because
of inadequacies of the dictionary and/or programs.

Category 1 excludes error words verified and corrected by the
dictionary and/or program. The missing-space type of error oc-
curred fairly frequently in the keypunched documents and many
of these were corrected. Examples are “keptat,” “threecomponent,”

204 E. J. GALLI AND II. YAMADA

Figure 3 Sample document* with verification examples

FOREIGN PHRASE SYMBOLISM

COMPOUND WORD

(PREFIX) + (WORD)

MULTIPLE PREFIXES
FOLLOWED BY A WORD

(PREFIX) + (SUFFIX)

i
AC1LIS .

COMPOUND WORD

SPELLING
tmn of Free Hydroxyl and Oxygen with Acetic Acid V‘ . . STANDARDIZATION -
I 8UU9 7 - h

THIS INFORMATION IS FROM A SOURCE DOCUMENT USED IN
THE EXPERIMENT AND TI+% SET TO SIMULATE THE DOCUMENT

and “whichare.” Some of the more common misspellings were cor-
rected, such as “analyse” and “independant.” Many of the spell-
ing variations which occurred were properly standardized, such as
“colour,” “vapour,” and some of the more common less-preferred
spellings were detected, such as “grey,” “disc,” and L‘inclosure.l’

Category 2 consisted mainly of foreign-language words that
were not capitalized and did not constitute a long-enough phrase
to be picked up by the foreign phrase test, specialized English tech-
nical terms (such as “betatronic”), and abbreviations such as
“cond.,” “temp.,” etc.

The algorithm for handling compound words processed such
rare technical words as “coverbounded,” “explosionproof,” “hy-
droxyapatite,” “nonmiscible,” etc., which are well beyond the
range of an ordinary dictionary of only 56,000 words. Some error
words, however, may not be verified because of the relatively wide
latitude allowed by the compounding capability. An example is
“nucieon” (error of “nucleon”). Only by means of a semantic
analysis could this sort of error be detected, since “nucieon” is a
valid word.

Because of the relatively high occurrence of proper names, for-
eign words, symbols, and specialized technical terms in these docu-
ments, most words of the 11 percent that were not found by the
dictionary lookup procedures were non-dictionary words, not input
errors. It should be noted that the sample text used in the experi-
ment was quite complex both in nature and in structure. With
more standard types of text, one would expect this percentage to
be lower. A sample document is illustrated in Figure 3, in which
some typical examples of verification types are marked and defined.

Because this demonstration was limited in scope, no quanti-
tative conclusions regarding the potential cost reductions possible
with computer-assisted editing were drawn. However, in view of
the inaccuracies and costs associated with clerical editing,I6 it seems

VERIFICATION OF XIACHINE-READABLE TEXT 205

event, the approach herein described, the types of problems indi-
cated by the test demonstration, and the generally encouraging re-
sults may serve as a guide for other studies.

ACKNOWLEDGMENT

The authors gratefully acknowledge the efforts of F. L. Barone,
-

support for the project and for contributing many valuable sug- 1
gestions.

CITED REFERENCES AND FOOTNOTES

1. F T D Semi-Automatic File Conversion System, Final Report on Contract
AF 30(602)-2860, Volumes 1, 2, and 3 (March 1965). Available as DDC
Documents, AD 476682 (Volume l), AD 476699 (Volume 2), and AD 476683
(Volume 3).

2. Computer Storage Integration Group AN/GYA“(), Final Report on Contract
AF 30(602)-2754 (October 1964). Available as DDC Document AD 451972.

3. G. Shiner, “The USAF automatic language translator, MARK I,” 1958 I R E
National Convention Record, Part 4, 296-304.

4. J. L. Craft, E. H. Goldman, and W. B. Strohm, “A table lookup machine
for processing of natural languages,” I B M Journal of Research and Devel-
opment 5, No. 3, 192-203 (July 1961).

5. Webster’s New Collegiate Dictionary, (Based on Webster’s New International
Dictionary, Second Edition), G. C C. Merriam Company (1961).

6. U. S. Government Printing Ofice Style Manual, Revised Edition (1959).
7. E. J. Galli, “The stenowriter-a system for the lexical processing of sten-

otypy,” IRE Transactions on Electronic Computers EC-11, No. 2, 187-199
(April 1962).

8. G. W. King, “Table lookup procedures in language processing,” I B M
Journal of Research and Development 5, No. 2, 86-92 (April 1961).

9. See, for example: (a) E. Yasaki, “The computer and newsprint,” Datama-
tion 9, No. 3, 27-32 (March 1963); (b) F. J. Damerau, “Automatic hy-
phenation scheme,” U. S. Patent Office, Serial No. 375714 (June 1964).

10. Many of the entries were based on actual document file spelling errors.
Many others were collected from errors made by secretaries in typing.
The Printing Office Style Manual (Reference 6) contributed some, and the
following books were consulted: J. Lasky, Proofreading and Copy-Prepara-
tion, Mentor Press, (1954); J. 0. Bailey, Proper Words in Proper Places,
American Book Company (1952); N. Foerster, e t al., Writing and Think-
ing, Fifth Edition, Houghton M a i n Company (1952).

11. Many of these entries are for words containing frequently misspelled let-
ter patterns. Some examples are: “preceeding (E} pre’ced’ing,” “sacre-
ligious (E) sac’ri’le’gious,” “surpriz (E) sur’pris [e].” Words ending in
“-ible,” “-able,” "-cable," and derivatives of these are especially trouble-
some. Words which take “-ible” and its derivatives are rather few in num-
ber. Therefore, all such words are listed in the dictionary in their full cor-
rect form and also in misspelled form with the correct function readout,
e.g., [‘abhorrible” and “abhorrable (error).” This ensures that no matter
how these words are spelled their correct form is always produced by the
dictionary. Error correction ending entries are included to correct errors
involving the “-able” ending and its derivatives, e.g., “[es] (Dl)eable@
’a’ble (E J 7,” “[es] (Dl)ible@ ’a’ble (E} 7;’’ etc. Errors involving the "-cable"
class are handled in a similar manner. Ending-error-correction entries are

206 E. J. GALLI AND H. YAMADA

VERIFICATION OF MACHINE-READABLE TEXT 207

