

Figure 1 Methods of representing an activity network

n

of the arrow must be completed before the activity at the arrow-
head can start. Dimsdale' discusses how to transform the event-
node representation to the activity-node representation.

Figure 1 exemplifies the graphic and symbolic conventions cus-
tomarily employed to describe activity-node networks: Figure 1A
displays a directed graph and an associated table which gives dura-
tion times for each activity; Figure 1B represents the same net-
work by means of a precedence matrix, P, and a duration vector,
d . Both of these representations are used in this paper.

The major restrictions limiting the generality of CPMOOB, the
program described here, are concerned with numbering nodes and
representing times. Activity (node) numbers must be specified as
positive integers requiring no more than four decimal digits in their
representation (the upper limit on node numbers depends on mem-
ory allocation) ; times must be specified as integers in the range 0
to 32,767 inclusive. The program does not calculate times greater
than 32,767. This restriction does not seem unduly stringent: a net-
work whose activities are measured in calendar days can have a
maximum duration time of approximately ninety years; in work
days, t'he maximum time possible is, of course, even greater.

Networks in which activity numbers and times are not repre-
sented by integers in the appropriate range must have, in addition
to the single-pass calculation described below, two additional passes
to code and decode the original representations of activities and
times into the representations required by the program.

In discussing the figures in this paper, the following conven-
tions are used: a node with no arrows pointing to it, or with only
dashed arrows pointing to it, is called a source; a node with no ar-
rows pointing away from it, or with only dashed arrows pointing
away from it, is called a sink; the calculation consists of an itera-
tion of successive steps that associate time values (represented by
numbers) with sources and sinks; the time values for sources are
called forward times, those for sinks backward times; those sources
for which forward times have not been calculated at the start of

Fiaure 2 GraDh of an inconsistent precedence network I

PRECEDENCES

DURATLDNS

A PRECEDENCE NETWORK AND 6. PRECFDENCLMATRIX AND

an iteration are called new sources; in contrast, those for which
times have been calculated are called old sources; similarly, we
speak of new and old sinks determined by the calculation of back-
ward times.

The graph described in Figure 1 is consistent because it has no
sequence of arrows starting and ending at the same node. The graph
described in Figure 2 is inconsistent since one arrow leads from
Node 5 to Node 7 and another one from Node 7 back to Node 5.
Critical paths can be calculated only for consistent networks; thus,
a computer program to calculate critical paths must include some
provision for consistency checking.

When node numbers are arranged in a serial list such that each
node occurs earlier in the list than any of its successors, the nodes
are said to be arranged in topological order. Many critical-path pro-
grams facilitate the calculation of forward and backward times by
arranging the nodes in a topologically ordered list before doing the
time calculations. This is frequently called topological sorting.

I n calculating early and late start times for activities, most pro- program
grams have a forward time calculation phase followed by a back- features
ward time calculation phase. For large networks, both of these
phases are frequently separate tape passes, as are the consistency-
checking and topological-sorting phases described above.

The main features of C P M O O ~ are:

Consistency checking is a by-product of the basic procedure for

Topological sorting is not required.
Forward and backward time calculations are overlapped-i.e.,
done concurrently-in a manner described more fully below.
Information describing the precedence matrix and duration
vector is stored in the IBM 7090 computer in a manner that makes
it possible to calculate relatively large networks without writing
intermediate results on tape.

calculating forward and backward times.

CRITICALPATH CALCULATION 165 I

A

C

D

Figure 4 Graphic representation of steps in algorithm for inconsistent network

FORWARD BACKWARD

A

B

C

description. The latter program is included both in its ownright (as
the most concise, precise, and useful description the author can
provide of the basic calculations carried out by CPMOOS) and as an
indication of the nature of the research from which the program
derives. The program used here is an early form of the language
now implemented as the A ~ L \ 3 6 0 time-sharing system.

Figure 3 depicts successive stages in the basic algorithm used narrative
in CPMOOS, as they would occur in processing the consistent network description
described in Figure 1. Figure 4 depicts the stages that occur in
processing the inconsistent network of Figure 2.

The earliest time a t which an activity can start is the time at
which the latest of its predecessors is finished. The latest time at
which an activity can finish is the time at which the earliest of its
successors must start. This symmetry can be used to calculate
backward t,imes in a manner exactly analogous to calculating for-
ward times and concurrently with the calculation of forward times,

CRITICALPATH CALCULATION 167

i.e., without a prior determination of the critical-path or minimum
project duration time. Thus, the steps in Figures 3A, B, and C are
accomplished by CPMOOQ in three scans of the precedence matrix
rather than in the six scans that would be required if forward times
were calculated before backward times. It is important to keep this
point in mind throughout the following discussion.

The steps in the basic algorithm are described in terms of op-
erations on nodes and arrows.

Step 1. Locate new sources and new sinks. If there are none, the
algorithm is at an end. The ending procedure is described in Step
5. (Note the parallel treatment of forward and backward calcula-
tions in Figures 3 and 4.)

Step 2. Calculate folward times for new sources and backward times
for new sinks. A forward time is calculated for each new source as
the sum of its duration time plus the forward time of the one or
more of its predecessors, if any, whose forward time is greatest.
(Note that predecessors are connected to new sources by dashed
arrows pointing to the new source.) A backward time is calculated
for each new sink as the sum of its duration time plus the back-
ward time of the one or more of its successors, if any, whose back-
ward time is greatest. (Note that successors are connected to new
sinks by dashed arrows pointing away from the new sink.)

Step 3. Replace, by dashed arrows, all the solid arrows pointing
away from the new sources that have just been processed. Replace,
by dashed arrows, all the solid arrows pointing to the new sinks
that have just been processed. (For consistent networks, this either
develops new sources and sinks for the next iteration or, if no solid
arrows remain, indicates that the calculations are complete.)

Step 4. Repeat Step 1.

Step 5. This is the ending procedure. If all the nodes in the network
have both forward and backward times associated with them, the
network is consistent. In this case, an early start time can be cal-
culated for each node by subtracting its duration time from its for-
ward time; a late start time can be calculated for each node by sub-
tracting its backward time from the largest backward (or forward)
time found in the network. This largest time is the critical-path or
minimum project duration time. Those nodes whose early and late
start times are equal lie on the critical path.

If all the nodes do not have both forward and backward times,
the network is inconsistent (as described later).

Let us first discuss the consistent case. Figures 3A, B, and C
depict the three iterations required by the basic algorithm to cal-
culate forward and backward times. These iterations consist of
repetitions of the above Steps 1 through 4. Figure 3D depicts the
calculation of early and late start times after the basic algorithm
is completed.

168 M. MONTALBANO

Iteration A . The new sources (in this case, the original sources) are
Nodes 2 and 6. The new sinks are Nodes 1 and 3. Since the new
sources have no predecessors and the new sinks have no successors,
the forward and backward times are merely the duration times of
each activity. These are written above their corresponding nodes,
as are all the times calculated in subsequent iterations.

Iteratima B. New sources: Nodes 4 and 5. New sinks: Nodes 4 and
5. Forward times: Node 4, predecessor time plus duration time:
5 + 20 = 25; Node 5, greatest predecessor time plus duration
time: 7 + 10 = 17. Backward times: Node 4, successor time plus
duration time: 15 + 20 = 35; Node 5, greatest successor time plus
duration time: 30 + 10 =. 40.

Iteration C. New sources: Nodes 1 and 3. New sinks: Nodes 2 and
6. Forward times: Node 1, greatest predecessor time plus duration
time: 25 + 15 = 40; Node 3, predecessor time plus duration time:
17 + 30 = 47. Backward times: Node 2, greatest successor time
plus duration time: 40 + 5 = 45; Node 6, successor time plus dura-
tion time: 40 + 7 = 47. Since no new sources or sinks are developed
by iteration C, no further iterations are needed. The process of cal-
culating early and late start times ends with Step 5.

Step 5. Early start times are calculated by subtracting activity
durations from the forward times. Late start times are calculated
by subtracting the backward times from the project duration time
(in this case 47-the longest time associated with any node either
as a forward or a backward time). The critical path (indicated by
solid arrows in Figure 3D) is made up of those nodes for which
early and late start times are equal.

For the inconsistent case, the network in Figure 4 is basically
the same as that of Figure 3, except that an extra node (7) and two
arrows have been added in such a way as to introduce inconsistent
precedence relationships, called a circuit. As a result, the process
again terminates after three iterations (since no new sources or
sinks can be found), but this time without having calculated both
forward and backward times for all nodes or-equivalently-with-
out converting all the solid arrows in both diagrams to dashed
arrows. (The reason for the termination at iteration C is evident
if the definitions of new sources and new sinks are recalled.)

The information displayed in the two graphs of Figure 4C per-
mits us to determine that the network contains an inconsistency
(i.e., a circuit) and to divide all the nodes in the network into four
groups:

(1) Nodes with both predecessors and successors in the circuit (in

(2) Nodes with successors in the circuit (2 and 6)
(3) Nodes with predecessors in the circuit (1 and 3)
(4) Nodes with neither successors nor predecessors in the circuit (4)

this case, 5 and 7)

CRITICAL-PATH CALCULATION

Iverson-
language
description

Figure 5 Conventional flowchart

six steps of Iverson-
corresponding to first

language program

SEARCH FOR ACTIVITIES WHOSE
PREDECESSOR COUNTS WENT TO

ZERO ON THE LAST ITERATION
(CALL THESE "NEW SOURCES")

(h WERE NEW SOURCES
FOUND?

YES

r I
CALCULATE FORWARD TIMES FOR

NEW SOURCE ACTIVITIES BY ADDING

TO GREATEST FORWARD TIME AMONG
SOURCE ACTIVITY DURATION

THE PREDECESSORS OF
EACH NEW SOURCE

5 I AS OLD SOURCES ON SUCCEEDING
IDENTIFY CURRENT NEW SOURCES

ITERATIONS

6

1
THE SUCCESSORS OF CURRENT NEW
REDUCE PREDECESSOR COUNTS OF

SOURCES BY THE NUMBER OF
ARROWS LEADING FROM

CURRENT NEW SOURCES TO
THEIR SUCCESSOR NODES

170

These are respectively: (1) nodes for which we have calculated
neither forward nor backward times; (2) nodes for which we have
calculated forward but not backward times; (3) nodes for which
we have calculated backward but not forward times; and (4) nodes
for which we have calculated both forward and backward times.

The information given by this subdivision can clearly be of
great value in locating the error or errors that caused the incon-
sistency.

Narrative descriptions are, a t best, merely general indications
of how a program works. Converting the thinking about nodes and
arrows into computer program steps that manipulate bits, words,
and arrays frequently requires as much hard work as devising the
node-arrow descriptions in the first place. It is also frequently hard
to demonstrate the connection between the two. The same objec-
tion applies to narrative flowcharts of the kind displayed in Figure
5 which describes the first six steps of the Iverson program shown
in Figure 6.

A properly constructed Iver~on-language~~~ algorithm, on the
other hand, not only describes what has to be done concisely, pre-
cisely, and vividly, it also guides efficient programming d e ~ i g n . ~
This is done in Figure 6. A brief discussion of this figure and its
relation to CPMOOZ is now offered.

Steps 1 through 6 of Figure 6 describe the processing for the
forward-time calculation: Steps 7 through 12 describe exactly anal-
ogous processing for the backward-time calculation; Step 13 is
merely a repetition of Step 2. This is required by the condition that
the algorithm stop only when both the conditions v/r = 0 and
V / U = 0 are met, since we are interested in providing informa-
tion about circuits. (Only one of these three comparisons would be
needed if we knew the network was consistent since V / r would
then attain the value 0 at the same iteration as v/u.>

Since the basic ideas can be illustrated in terms of Steps 1
through 6, the following discussion concentrates on these steps.
The basic entities involved are:

1. The precedence matrix, P (see Figure 1)
2 . The duration vector, d (see Figure 1)
3. The predecessor vector, p

N

P = +//P, that is, P i = P i i

where N is the number of nodes in the network
i= 1

4. The new-origin vector, r
5. The old-origin vector, q (initialized so that its components are

6. The forward-time vector, a

(In the backward-time calculation, steps 7 through 12, the vectors
analogous to p , r, q, and a are s, u, f, and b.)

P is a logical matrix, i.e., it has components that take on only
0 or 1 as values. The other entities are vectors: logical in the case

all zero prior to execution of the algorithm)

M. MONTALBANO

Figure 6 Iverson-language description of steps in algorithm

Begin -

End < - -

1. r + i j A p = O

2. 0 : V / r

3. a t / a ; r ; d /

4. a t a + r ~ a & P

5. q t r v q

6. p t p - r l ; P

7. u + " i A s = O

8. 0 : v / u

9. b t / b ; u; d l

10. b t b + u X P & b

11. f + u v t

12. s t s " P ; u

13. 0 : V / r

of r and q ; numerical in the case of a, d, and p . All the vectors have
N components; P has N x N components.

S tep 1. Calculate r , the new origin vector. Its components are 0,
except in positions corresponding to the occurrence of 0's in both
the old-origin and predecessor vectors; in these positions, the com-
ponents of r have the value 1.

S tep 2. Test to see if the new-origin vector has a t least one non-
zero component. If it has not, no further processing in the forward
direction is possible and the forward calculation is suspended.

Step 3. Copy into vector a the components of d , the duration
vector that corresponds in position to 1's in the new-origin vector.

S tep 4. Multiply the components of each column vector in P by
the corresponding components of a. Form a result vector consist-
ing of the maximum component in each column. Add to corre-
sponding components of a those components of this result vector
that correspond in position to 1's in the new-origin vector, r .

CRITICAL-PATH CALCULATION 171

Step 5. Convert from 0 to 1 those components of the old-origin
vector, q, that correspond in position to 1’s in the new-origin
vector, Y.

Step 6. AiIultiply P by r and subtract the result vector, component
by component, from the predecessor vector, p.

The steps constitute a formal, functional description of the
basic algorithm underlying CPMOOS. This functional description was
used as a guide to more detailed Iverson-language programs. I n
these programs, the basic functions were realized by procedures
that attempted to capitalize on the equipment features of the IBM

7090 and the operating system features of the IBSYS/IBJOB com-
piler, assembler, and loader.

The main equipment features of the 7090 relevant to the pro-
gram were word and register sizes and the operations affecting
partial words and bits. These equipment features permit a 36-bit
configuration to be considered either as a scalar (i.e., a vector with
only one component), a four-component vector (prefix, decrement,
tag, address), a 36-component vector, or a combination of these.

An examination of the Iverson program shows that we have
two variable numerical vectors, a and p , and that non-zero values
for the first are defined only when the second has gone to zero.
Since both have the same number of components, this indicates
that the same storage locations can be used to store both of these
vectors. This, in fact, has been done. Predecessor counts are stored
in the decrement portion of a series of 7090 words. As soon as the
predecessor counts have gone to zero, the same decrement portions
are used to store corresponding values of the forward-time vector, a.

The remaining variable vectors are logical, i.e. they take on
component values requiring only one bit of storage. Since they are
functionally related to the p and a vectors (i.e., they have the same
number of components, and corresponding index values specify re-
lated status and numerical information), they can be thought of as
vectors of flag bits. This is the way they are treated. The first bit
of a 7090 word stores a component of the r vector; the second bit
stores a component of the q vector.

The 7090 permits fixed-point operations in several registers.
Among these, the accumulator register and the three index registers
are particularly important. The index registers are fifteen bits long.
If we can restrict the maximum result of an arithmetic operation
to 32,767, we can do arithmetic, comparison, and information
manipulation much more efficiently than by doing our arithmetic
only in the accumulator. If we examine the characteristics of the
class of problem we are trying to solve, we see that, by its very
nature, the components of the p vector must be less than 32,767,
since we are talking about networks with fewer than 10,000 nodes.
‘We then ask whether we can restrict the values of the a vector to
lie in the range 0 through 32,767 without loss of generality.

As we have pointed out previously, this range permits us to
schedule a 90-year project as a set of subprojects whose durations

172 M. MONTALBANO

are specified in terms of days. Thus, the accuracy we can attain is
much greater than inevitable errors in our time estimates and, for
all practical purposes, the restriction of time values to 32,767 time
units is certain to give us all the accuracy we can use.

The question of calendar conversion, of course, remains; but it
would do so in any case. Calculation from calendar days to work
days and vice versa is a fairly straightforward operation which can
be done in a variety of ways.

From the symmetry of our approach to the forward- and back-
ward-time calculation problem, we see that-once we have de-
termined that we can store all the forward-time information we
need in seventeen bits of a 7090 word-we can store all the back-
ward-time information in another seventeen bits. The array C, dis-
cussed later, can be thought of as a collection of N 7090 words, each
word being treated as if it had eight components. Conceptually,
this array is a matrix C of dimension N X 8, and each of its col-
umns stores the following variable of our functional description:

CI : r

C3 : unused
C4 : p ; a 15-bit component
cg : u l-bit components

C7 : unused

cz : 4 1
Cg : f 1

l-bit components

Cs : S; b l b b i t component

Having selected the way of storing the variable information,
the major design decision of how to store the constant information
(precedence matrix, P, and duration vector, d) remains.

A first temptation is to store P as an array of bits. For networks
of the size we are considering, however, this is clearly impractical.
A 3000-node network would require 9,000,000 bits or 250,000
words. This is inconsistent with our objective to design a program
that can process large networks entirely in the 32,785 words of
high-speed storage available on the 7090.

Here again, a consideration of the characteristics of real-life
problems is required. Precedence matrices describing real problems
are customarily extremely sparse, i.e., they have few non-zero ele-
ments. Assuming, for example, that we have an average of ten non-
zero elements per row, information about 30,000 components must

~ be stored in the case of a network of 3000 nodes; these components
would have the value 1 in the conventional representation of P, all
others would have the value 0. Thus, we can specify P as the set
of 30,000 (i, j) values specifying its non-zero components.

A consideration of 7090 specifics is helpful here. If we store these
(i, j) values as a row list, the i value can be calculated rather than
stored; all we need do is store sequences of j values and indicate
when we are storing either the first or last non-zero j of a row. We
have thus reduced our storage requirements from 30,000 (i, j) pairs
t o 30,000 j values and 3000 flag bits. Since the j values can be

in Table 1. C P M O O ~ can process any network of up to 3000 nodes
and 33,000 arrows. CPM004 can process any network of up to 1000
nodes and 10,000 arrows. As can be seen from the listing, the only
difference in the two programs is in the designation and contents
of the BLOCK DATA subprograms (A3000, B165C, C3000 for CPMOO~;
A1000, €35000, ClOOO for CPM004) and in the control cards used for
overlay purposes in CPMOO~.

gram calls in subroutines in the sequence described by the flow- subroutines
chart of Figure 7. Briefly, the subroutines perform the following
functions:

The main program is CPMOVR, written in FORTRAN. This pro- basic

1. STORNJ is a MAP (Macro-Assembly Program) subroutine that
provides heading information (including the date on which the
calculations are performed) common to all jobs. Figure 7 Subroutine sequence

2. RDCPIO/FRDCPM is a pair of subroutines of which the first is
written in MAP and the second in FORTRAN. Their joint function
is to read and list all the input required to define one critical-
path job and to store this information in the A and B arrays. If
the input information is incorrect, the message INCORRECT
DECK SETUP CALCULATIONS OMITTED is printed and suc-
ceeding cards are merely listed until a card starting a new job
is encountered. These programs read cards whose functions are
specified by a code in column 4. Code 9 identifies an end-of-
batch card. Before RDCPIO/FRDCPM returns control to the
main program, it sets a variable L to zero if arrays A and B
have been properly stored, and to some nonzero value if it has
encountered an end-of-batch card. The main program tests this
variable to determine whether or not to continue processing.

3. PSCT is a MAP subroutine that counts predecessors and suc-
cessors and stores these counts in the C array. These counts
constitute the vectors p and s of the Iverson Program.

4. LGTM is a MAP subroutine that carries out the basic algorithm.
If the network is consistent, a variable I is set to zero. If the
network is not consistent, I is set to some nonzero value. The
main routine calls CCP if I is zero, and CTOB if i t is not.

5. CCP is a MAP subroutine that calculates early and late start
times. To permit overlay, CCP also copies this information from
the C array to the B array. I n other words, the B array infor-
mation is lost when subroutine CCP is called.

6. CPMOUT/WRCPM is a MAP-FORTRAN pair of subroutines that
calculates times and floats for a consistent network and prints
them out.

7. CTOB is a MAP subroutine that merely copies the information
stored in the C array into corresponding relative positions in the
B array. Like subroutine CCP, its purpose is to permit overlay-
ing the C array with input/output subroutines. Note that the
B array must be of a size greater than or equal to the C array.

8. WRBCKT/FWCT is a MAP-FORTRAN pair of subroutines that
print,s out information about inconsistent networks.

Q STORNJ

(;)+I BATCH END ?

ym CONSISTENT ?

+q CPMOUT/WRCPM pq WRBCKT/FWCT

CRITICAL-PATH CALCULATION 175

Input cards are identified as to function and format by one of
input the following code numbers in card column 4: 1, 2, 3, 4, 9. Cards

cards not having one of these codes in column 4 are listed as input but
otherwise ignored. Comments can thus be interspersed anywhere
in a job or batch, For all card types, the contents of columns 1
through 3 are listed but otherwise ignored. The function of col-
umns 5 through 80 for each of the card types is now discussed.

Card Code 1
Format. Columns 6-11, job identification code (6 alphameric
characters). Columns 13-24, requester or programmer name (12
alphameric characters). Columns 25-25, number of nodes in
network (up to 4 numeric characters). The job identification
code and the requester name are printed as part of the heading
for the output listing. The job number is also printed as part
of the end-of-job identification. Except for the heading and
end-of-job information, the number of lines of output depends
on the number entered in columns 25-28.
Function. Card type 1 is a start-job card. When it is encoun-
tered, all arrays are initialized to zero values, and the number-
of-nodes information is stored to be used as a check that node
numbers specified on succeeding cards do not exceed the maxi-
mum number specified by the first card. This number itself is
checked to see that it does not exceed the dinlension of the A
and C arrays. If i t does not, it is used as the working dimension
of the A and C arrays. If it does, an error notice is printed and
all subsequent cards are merely read and listed until either
another number 1 or a number 9 is encountered.

Card Code 2
Format. Columns 5-8, node number (up to 4 numeric charac-
ters). Columns 9-12, activity duration (up to 4 numeric
characters).
Function. Card type 2 is a node (or duration) card. The number
found in columns 9-12 is entered in the decrement portion of a
word in the A array. The relative location of the word in the A
array is given by the node number found in columns 5-8.
Note. If more than one duration card is entered for a given
node, the duration specified by the last one is the one that will
be used by the program.

Card Code 3
Format. Columns 5-8, node number of predecessor node, i.
Columns 9-12, 13-16, . . . 77-50, node numbers of successor
nodes, j .
Function. Card type 3 is an arrow (or precedence) card. The i
value (specified by the number in columns 5-9) is used to lo-
cate the word in the A array in which a pointer is to be stored.
The j values (specified by the remaining numbers on the card)
are stored in the next available positions in the B array. These
numbers are stored in the decrement and address portions of

176 M. MONTALBANO

successive words in B. The last j value is identified by a flag
bit. The pointer is stored in the A word and consists of an ad-
dress and a flag bit that indicates whether the first j value is
to be found in the decrement or address portion of the word at
that address.
Note. If a node has more than 18 successors, they may be en-
tered on as many more type-3 cards as needed. All of these
cards must be entered as one group, however, i.e., no type-3
cards with a different i value may be interposed between cards
of a like i value. In other words, if a group of cards identifying
all the successors of Node i were to be separated into two sub-
groups by a type-3 card for Node k , for example, only the in-
formation about the second subgroup would be used by the pro-
gram. This is the only sequencing restriction on type-2 or type-3
cards. Except for this, they can be entered in any order, pro-
vided they occur after an appropriate type-1 card and before
an appropriate type-4 card.

Card Code 4
Format. Except for column 4, the information on a type-4 card
is listed and ignored.
Function. Card type 4 is an end-of-job card. It signals that in-
put for a job is complete and processing should start.

Card Code 9
Format. Except for column 4, the information on a type-9 card
is listed and ignored.
Function. Card type 9 is an end-of-batch card. It signals that
there are no more CPM jobs to be processed.

If any of the node numbers or times are less than four digits,
they may be entered anywhere in the four-digit field. In particular,
they may be left-justified rather than right-justified. However, no
intervening blanks may separate the digits making up a number.
There are a variety of checks on various parts of the input process.
All precedence cards, for example, must have an i value in columns
5-8 and a j value in columns 9-12. (Other j values, however, may
be entered in any of the remaining 17 fields.) There is only one
error message, but it is issued immediately after the listing of the
card on which the error was detected. Succeeding cards on the same
job are not checked.

Except for the fields described above, alphabetic or numeric in-
formation may be entered anywhere on any of the input cards.
This includes all the j fields, except the first one on the type-3 card,
that is, all the fields after column 13, as long as the information in
any field cannot be interpreted as a decimal number of from one to
four digits. If only alphabetic comments are written to the right
of the last successor value on a type-3 card, they are ignored. This
is also true for most other combinations of letters and numbers.

The BLOCK DATA subprograms reserve space for the maximum
A, B, and C arrays that are needed for a particular batch of jobs.

CRITICALPATH CALCULATION

Figure 8 Consistent network NETAS rn

20

If an array is to store N values, the dimension of the array is N + 1,
and the first word is used to store the integral value N so that sub-
routines can determine when array bounds are being exceeded. The
array A stored by subprogram A3000 in the C P M O O ~ package, for ex-
ample, reserves 3001 words and uses the first to store the number
3000, giving the effective, usable dimension of the array.

As examples, the actual FORTRAN subprograms defining the ar-
rays used in C P M O O ~ are given in Table 2. The dimensions of A and
C are determined by the maximum number of nodes to be con-
sidered. The dimension of B is determined by the maximum num-
ber of arrows. A and C each require one word per node. B requires
a half word per arrow. The deck names for the subprograms are
chosen to indicate the dimensions of the arrays they specify. Since
the deck names are not referred to by any program in any CPMOOQ

package, none of the functional programs need be recompiled and
the binary decks can be used without alteration.

The operation of a CPMOOP program is now illustrated. A con-
program sistent network NETA is shown in Figure 8, and an inconsistent net-
operation work CKTA in Figure 9. The networks are identical except for the

dashed arrow from 11 to 6 and the three disjoint nodes 19, 20, and

178 M. MONTALBANO

CRITICALPATH CALCULATION 179

CPM 1
CPM 2
CPM 2
CPM 2
CPM 2
CPM 2
CPM 2
CPM 2
CPM 2
CPM 2
CPM 2
CPM 2
CPM 2
CPM 2
CPM 2
CPM 2
CPM 2
CPM 2
CPM 2
CPM 3
CPM 3
CPM 3
CPM 3
CPM 3
CPM 3
CPM 3
CPM 3
CPM 3
CPM 3
CPM 3
CPM 3
CPM 3
CPM 3
CPM 3
CPM 3
CPM 3
CPM 4

NETA
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Table 5 Network NETA input

MONTALBANO 18 TEST NETWORK A
5

15
30
20
12
6

24
8
4

10
11
9

14
21
10
12
7
3
5

10
13
14
7
8

11
11
12
12
17
15
15
16
17
18
18

6

12
9 10

13 14

16
17

END TEST NETWORK A

21 in CKTA. Both networks are used in the test decks available with
the C P M O O ~ as well as the C P M O O ~ package. Tables 3 and 4 give the
outputs to be expected from NETA and CKTA, respectively. Table 5
displays the input required for NETA; that for CKTA would, of
course, be similar. Although the node numbering in NETA is in
topological order, it should be clear from the preceding discussion
that this is unnecessary. Node numbers can be reassigned in any
way, the type-2 and type-3 cards can be entered in any sequence,
and the program produces the same results as long as duplicate
node numbers are avoided, the node numbers are reassigned con-
sistently, and no node number higher than 18 is used-the number
specified as maximum on the type-1 card for this job. If larger node
numbers are used and the maximum node number is changed to

CRITICAL-PATH CALCULATION 181

Table 6 Stages in processing NETA

A B C C C

(RDCPIO) (RDCPIO) (PSCT) (LGTM) (ccp)

1. 0 00005 0 00001 1. 0 00005 4 00006 1. 0 00000 0 00002 1. 2 00005 2 00076 1. 2 00005 2 00002
2. 0 00017 0 00002 2. 4 00012 4 00015 2. 0 00000 0 00001 2. 2 00017 2 00075 2. 2 00017 2 00003
3. 0 00036 1 00002 3. 4 00016 0 00007 3. 0 00000 0 00001 3. 2 00036 2 00100 3. 2 00036 2 00000
4. 0 00024 0 00003 4. 4 00014 0 00010 4. 0 00000 0 00001 4. 2 00024 2 00070 4. 2 00024 2 00010
5. 0 00014 1 00003 5. 0 00011 4 00012 5. 0 00001 0 00002 5. 2 00021 2 00071 5. 2 00021 2 00007
6. 0 00006 1 00004 6. 4 00013 4 00013 6. 0 00001 0 00003 6. 2 00013 2 00064 6. 2 00013 2 00014
7. 0 00030 0 00006 7. 4 00014 0 00014 7. 0 00001 0 00001 7. 2 00051 2 00055 7. 2 00051 2 00023
8. 0 00010 1 00006 8.0 00015 4 00016 8. 0 00001 0 00001 8. 2 00023 2 00035 8. 2 00023 2 00043
9. 0 00004 0 00007 9. 4 00021 4 00017 9. 0 00001 0 00001 9. 2 00017 2 00041 9. 2 00017 2 00037

10. 0 00012 1 00007 10. 0 00017 4 00020 10. 0 00002 0 00003 10. 2 00031 2 00056 10. 2 00031 2 00022
11. 0 00013 0 00011 11. 0 00020 4 00021 11. 0 00002 0 00001 11. 2 00064 2 00025 11. 2 00064 2 00053
12. 0 00011 1 00011 12. 4 00021 4 00022 12. 0 00003 0 00001 12. 2 00042 2 00035 12. 2 00042 2 00043
13. 0 00016 0 00012 13. 4 00022 0 00000 13. 0 00002 0 00002 13. 2 00054 2 00042 13. 2 00054 2 00036
14. 0 00025 0 00013 14. 0 00002 0 00002 14. 2 00056 2 00044 14. 2 00056 2 00034
15. 0 00012 0 00014 15. 0 00002 0 00001 15. 2 00066 2 00024 15. 2 00066 2 00054
16. 0 00014 1 00014 16. 0 00002 0 00001 16. 2 00072 2 00017 16. 2 00072 2 00061
17. 0 00007 0 00015 17. 0 00003 0 00001 17. 2 00075 2 00012 17. 2 00075 2 00066
18. 0 00003 0 00000 18. 0 00002 0 00000 18. 2 00100 2 00003 18. 2 00100 2 00075

be greater than or equal to the largest node number about which in-
formation is entered, the program works properly, but prints out
vacuous information about all node numbers that are not actually
used in the problem.

Table 6 shows how the A and B arrays are stored for NETA, and
what is stored in the C array at the end of the PSCT, LGTM, and
CCP subprograms. Note that the digits displayed are octal and
that a 4 in a prefix or tag digit represents a flag bit in the leftmost
position, a 2 represents a flag bit in the middle position and a 1
represents a flag bit in the rightmost position.

For illustration, consider the entry in the third row of the A
column. The octal 36 in the decrement portion of the word repre-
sents the decimal number 30, the duration of activity 3 in NETA.

(Duration times are shown above the nodes in both the NETA and
CKTA diagrams.) The 1 in the tag portion of this word signals that
the index identifying the first successor to Node 3 can be found in
the righthand portion of the word whose relative position in the B
array is given by the number 2 in the address portion of the same
word.

Going to the second word of the B array, we find that the ad-
dress portion contains octal 15 (decimal 13). From either the dia-
gram or input listing, we can verify the fact that node 13 is indeed
an immediate successor of node 3.

The 4 in the tag position of the second word in the B array sig-
nals that the successor in the address portion is the last of this
particular set of successors-in this case, the only one. Again, we
can verify this.

182 M. MONTALBANO

the critical-path calculation. C, however, is variable. At the end
of the PSCT subprogram, a word in the C array specifies the nunz-
ber of predecessors and successors possessed by the node whose
number is equal to the relative position of the word in the C array.
The number of predecessors is to be found in the decrement por-
tion of the C word; the number of successors in the address por-
tion. For example, the tenth word in the C array has 2 stored in
its decrement and 3 stored in its address. This informs us that
Node 10 has two predecessors and three successors in NETA.

After LGTM (the main algorithm), the C array contains-in the
case of a consistent network-the value 2 in the prefix and tag
portions of all its words. (This is equivalent to q and t vectors
whose components have all been made 1.) The decrement portions
then contain forward times, the address portions backward times.

After CCP, the decrement portions of the A array contain early
start times (not shown). The decrement portions of the C array
contain early finish times (equivalent to what we have been calling
forward times). The address portions of the C array contain late
start times. The C array as shown in Table 4 is also copied into
corresponding relative positions in the B array.

The overwriting of A and B positions was inspired by the prime
motivation of this particular programming effort-to make as
much space as possible available for storing information about the
network. Minor modifications to the CCP and CTOB routines would
eliminate the overwriting and retain the precedence information
for such future applications as resource allocation.

From the information stored by CCP in the A and B arrays, the
output subprograms CPMOUT/WRCPM produce the report shown
in Table 3. Most of the column headings in the report are self-
explanatory, except for TFLOAT and FFLOAT. TFLOAT is the
difference between early and late start times. In the case of activi-
ties on the critical path, this difference is zero; these activities are
identified by rows of asterisks on the report. FFLOAT is the differ-
ence between an early finish time for an activity and the early start
time of that one or more of its successors whose early start time is
smallest. Node 4, for example, has an early finish time of 20. I t s
successor, Node 14, has an early start time of 25. The difference is
shown as FFLOAT for Node 4.

In the case of inconsistent networks, subprogram LGTM cannot
store the value 2 in all the prefixes and tags of the C array. For
example, Table 7 shows how the C array is left at the end of the

A prefix of 2 indicates that a forward time has been successfully
calculated; a tag of 2 indicates that a backward time has been
successfully calculated. I n these cases, the corresponding decre-
ments and addresses display times. Prefixes and tags of 0, however,
indicate that time calculations could not be made. In these cases,
the decrements corresponding to 0 prefixes contain a number that
specifies how many predecessor arrows (pointing directly a t a given

~ LGTM program for CKTA.

Table 9 CPM002 calculation times (in seconds) for networks of various Sizes

Subroutine NETA CKTA D l 0 Dl00

RNC/RNDMl 3.902 3.946
PSCT 0.016 0.016 1.868 1.909
LGTM 0.034 0.031 35.554 344.622
CCP 0.004 2.075 2.107
TOTAL (incl. I/O) 10 85 395

of unremoved predecessors and the second is backward time. The
printout for CKTA thus tells us that Nodes 6, 8, and 11 form a
circuit; Nodes 1, 5, and 7 point (directly or indirectly) to nodes in
a circuit, Nodes 9, 10, 12, 13, 14, 15, 16, 17, and IS are pointed a t
(directly or indirectly) by nodes in a circuit, and the remaining
nodes have no connection with any circuit.

The primary purpose of program CPMOOS is high-speed calcula-
tion of the critical paths of large networks. However, the resulting
program is relatively efficient on small networks if enough of these
are batched to make economical use of a large computer. To illus-
trate calculation speeds for small networks, times for NETA and
CKTA calculations performed on a 7090 are shown in Table 9. No
CCP time is shown for CKTA since subroutine CCP is not called for an
inconsistent network.

To test calculation speeds on large networks, two subroutines
were written: RNC (which generates and stores a precedence ma-
trix) and RNDMl (which generates a duration vector). The charac-
teristics of the matrix and vector are determined by parameter
values set by the main program. As a matter of interest, the times
required by these programs to generate two large networks, DIO

and DIOO, are also shown in Table 9.
The basic calculation time (exclusive of input/output) required

by C P M O O ~ depends primarily on two factors, the size of the basic
arrays and the number of iterations of subroutine LGTM required
for a solution. The latter depends upon the “diameter” of the net-
work-the largest number of consecutive arrows connecting a
source and a sink. Network DIO consists of 3000 nodes and 32,400
arrows; it has a diameter of 10, i.e., 10 iterations are required by
the LGThl subroutine. Network DIOO consists of 3000 nodes and
32,670 arrows; it has a diameter of 100. Since DIOO is virtually of the
same size as DIO and requires ten times as many iterations, the
LGTM calculation time for DIOO is-as would be expected-approxi-
mately ten times as long as for DIO.

NETA and CKTA were run as a batch; the total time of just under
10 seconds included the time required to read 80 card images and
write 300 lines. The total time required for DIO was about a minute
and a half, and for DIOO about six minutes and a half; in both cases,

CRITICALPATH CALCULATION

this included the writing of about 4000 lines; the ratio of the
LGTM calculation times (35 seconds for the first, and 345 seconds
for the second) was approximately as expected.

To test the program’s efficiency in detecting and providing
information about circuits in large networks, a program was
written that introduced an inconsistency into network DIO. The
inconsistency was a circuit containing nodes 400,709,710,711, and
1020. As a consistent network, DIO had a total calculation time of
just under 55 seconds; as an inconsistent network, this time was
reduced to just under 57 seconds. This included the time to print
out node information for all 3000 nodes in the format shown in
Table 4. The author has no direct connection with the actual use of
large critical-path networks and, as a consequence, no way to de-
termine whether the smaller or larger diameter is more character-
istic of a network of the size of DIO or DIOO.

About 1400 words were required to store the programs that
miscellaneous make up CPMOOQ. I n addition, about 2100 words were needed for
programming the portions of IBSYS that were constantly in residence in t.he 7090
comments for which the program was written, and about 7000 words were

required for FORTRAN input/output subroutines. This left about
22,000 words for the storage of arrays and buffers. For the calcula-
tion of DIO and DIOO on the 7090, 22,500 words were reserved for
array storage; this was made possible by the overlay feature of the
IBSYS loader. Use of the overlay made about 1500 words available
for I /O buffers. Even more storage can be made available by several
methods, as-for example-specifying ALTIO on the LIBJOB card.

The calculation subroutines (PSCT, LGTM, and CCP) require
only 280 words of storage; the longest of them, LGTM, requires
half of this. Readers interested in processing much larger networks
than those discussed in this paper may find i t useful to consider a
three-pass operation which would generate the A and B arrays and
store them on tape in binary form, read them back in for process-
ing, and then write out the results.

C P M O O ~ requires two words of storage per node. The duration
vector d is stored in the left half of the words making up the A
array. Vectors T , q, p , a, u, f, s, b have their individual components
combined into single words in the C array. The remaining half-
word is used for a ((pointer” to the first successor of the node which
it describes. It is stored in the right half of a word in the A array.
An earlier version of this program did not use this pointer and thus
required only 1 1/2 7090 words of storage per node. The pointer
was introduced to gain greater efficiency in using the subroutines
for problems more general than critical-path calculations. For
critical-path calculations even larger than those considered here,
the storage requirements can be reduced to one word per node by
doing forward and backward calculations consecutively rather than
concurrently.

C P M O O ~ does not include a check to determine whether input
information exceeds the bounds of the B array. However, i t would
be fairly easy to incorporate such a check.

186 M. MONTALBANO

incorporated in a subroutine called STIM. For directed graphs
without circuits, use of this subroutine permits calculation of the
shortest rather than the longest path through a network.

If all the activity durations are considered to be unity, CPMOOQ

can be used to give information about the structure of any directed
graph. Using this idea, a program named IRA (Identify Redundant
Arcs) is available which, in conjunction with PSCT and LGTM,
flags all redundant arrows (arcs) in the B array.

Concluding remarks

The objective in writing CPMOOQ was to investigate ideas rather than
to develop programs (which are, in a sense, incidental). The utility
of network programs intended for actual use is measured primarily
by how effectively they provide information to management and
how well they can be used as instruments of management control.
Readers interested in these aspects of critical-path programs are
referred to the publications of the Construction Institute, Stanford
University.6s7

To the best of the author's knowledge, the time required by
CPMOOQ to calculate the critical paths of networks D ~ O and DIOO is
shorter than that of many programs that just do topological sorting
of networks of this size. Kahn,8 for example, gives an estimated
time of 40 to 50 minutes on the 7090 for topological sorting of a net-
work of 30,000 arrows. I n contrast, it takes CPMOOQ only 1 1/2
minutes for Dlo-and 6 1/2 minutes for D1oo"to do the entire
calculation, and 57 seconds to locate the loop and to print out
diagnostic information for the inconsistent DIO case. However, it is
not clear that a direct comparison of this kind is valid, since Kahn's
algorithm is concerned with event node networks whereas CPMOOQ

works on activity node networks. The size comparison is valid, but
the activity numbering conventions in the event node representa-
tion are such that, since two nodes are required to represent an
activity, the CPMO02 scheme of using node numbers as relative
addresses is not directly applicable. Actual use of CPMOOQ would,
in any event, require input/output routines to provide alphabetical
information and displays of the kind provided by SPRED-CPM, the
program described in Baker.' The author believes that conversion
of an event node representation to an activity node representation
could be programmed in such a way as to add an insignificant
amount of time to these routines; but no programming has been
done to support this conjecture.

ACKNOWLEDGMENT

The program described in this paper is a specific outgrowth of re-
search on the general topic of "problem definition methods"
started in collaboration with Professor Teichroew of the Graduate

CRITICAGPATH CALCULATION 167

School of Business, Stanford University (now at Case Institute of
Technology), in 1963. At that time, Mr. J. P. Seagle, a GSB gradu-
ate student, programmed a FORTRAN 11 version of the basic algo-
rithm described in this paper for purposes of comparison with a
MAP (Macro-Assembly Program) version, called cPMoo1, pro-
grammed by me. This and other early work has been reported in
oral presentations a t various times, but the present write-up of a
derivative program (CPMOOQ) is the first written report to describe
any part of our work together.

Though the program and this paper are the results of work done
on my own, I would like to acknowledge my indebtedness to Pro-
fessor Teichroew and Mr. Seagle for the stimulating partnership
which they provided in the early stages; it contributed substantially
to this paper.

The early stages of my research work at Stanford University
were made possible by a grant of the University’s Computation
Center. I should like to express my gratitude both for the grant it-
self and for the cooperation and helpfulness of the Computation
Center staff.

CITED REFERENCES AND FOOTNOTES

1. B. Dimsdale, “Computer construction of minimal project networks,” IBM
Systems Journal 2, 24-36 (March 1963).

2. K. E. Iverson, A Programming Language, John Wiley (1962).

3. K. E. Iverson, “Formalism in programming languages,” Communications
of the Association for Computing Machinery 7, 2, 80-88 (February 1964).

4. It is hoped that this brief discussion conveys some idea of what an efficient
notation can contribute to formalizing the design of efficient programs. Since
the objective of this paper is primarily to describe a specific program, those
interested in the question of efficient equipment and programming design
are referred to References 2 and 3. The Appendix gives a step-by-step dis-
play of the operation of Steps 1 t,hrough 6 of the Iverson algorithm for the
three iterations required to produce a new-origin vector with no non-zero
components

5. This figure has been copied with minor modifications from John W. Fondahl,
A Non-Computer Approach to the Critical Path Method for the Construction
Industry, Technical Report No. 9, The Construction Institute, Stanford
University.

6. The consistent network NETA was taken directly from J. W. Fondahl, Ibid.

7. C. W. Baker, SPRED-CPM, A Computer Program for the Solution of the Pre-
cedence Diagram using Critical Path Methods, Technical Report No. 56,
The Construction Institute, Stanford University, Stanford, California. This
report describes an extremely efficient and flexible program which provides
excellent project timing information in the form of labelled bar charts,
resource schedule information in both graphical and digital form, flexible
subreports, and a variety of other useful features. The computer program
itself is currently available only to members of the Construction Institute,
but the description of the program in the Baker report is, in it,self, informa-
tive and useful.

8. A. B. Kahn, “Topological sorting of large networks,” Communications of
the Association for Computing Machinery 5, 11, 558-562 (November 1962).

188 M. MONTALBANO

2. 0: v / r = + 7
0: v / ~ l , O , ~ , ~ , O , O)
0: 1(#) No Branch

3. a t / a ; r ; d /
a+/(0,5,0,25,17,7); (l ,O,l ,O,O,O); (15,5,30,20,10,7)/
a + (15,5,30,25,17,7)

4 . a t a + r ~ a & ~
at(15,5,30,25,17,7) + (1,0,1,0,0,0) X (15,5,30,25,17,7) &

at(15,5,30,25,17,7) + (1,0,1,0,0,0) X (25,0,17,5,7,0)
a+(15,5,30,25,17,7) + (25,0,17,0,0,0)
a + (40,5,47,25,17,7)

5. q + r V 9
9 + (1,0,1,0,0,0) v (0,1,0,1,1,1)
9 +- (1,1,1,1,1,1)

6 . p t p - r ; P
p+(0,0,0,0,0,0) - (1,0,1,0,0,0) ; '000000'

000110
000000
100000
101000

,000010,
P + ~0,0,0,0,0,0) - ~0,0,0,0,0,0~
P + ~~,0,0,0,0,0)
(END OF ITERATION 3)

I . r + - q A p = O
r + ~~,0 ,0 ,0 ,0 ,0~ A (1,1,1,1,1,1)
r +" ~0,0,0,0,0,0)

2. 0: v /r = "-f 7
0: v /(0,0,0,0,0,0~
0: 0 (=) Branch to 7. Forward calculation complete.

Note that Step 4 in each of the iterations leaves forward times
in the a vector. These forward times are those associated with the
nodes in the successive iterations pictured in Figure 3.

'000000
0001 10
000000
100000
101000

,000010

CRITICAL-PATH CALCULATION 191

