


Figure 1 Methods  of  representing an activity  network 

n 

of the arrow must  be completed before the  activity  at  the arrow- 
head  can start. Dimsdale' discusses how to transform the event- 
node  representation to  the activity-node  representation. 

Figure 1 exemplifies the graphic and symbolic conventions cus- 
tomarily  employed to describe  activity-node  networks:  Figure 1A 
displays a directed  graph and  an associated table which gives  dura- 
tion  times  for  each  activity;  Figure 1B represents the same  net- 
work by means of a precedence matrix, P, and a duration  vector, 
d .  Both of these  representations  are used in  this paper. 

The major  restrictions  limiting the generality of CPMOOB, the 
program described here, are concerned with  numbering nodes and 
representing  times.  Activity  (node)  numbers must be specified as 
positive  integers  requiring  no  more than four  decimal  digits in  their 
representation  (the  upper  limit  on node  numbers  depends on mem- 
ory allocation) ; times  must  be specified as integers in  the range 0 
to 32,767 inclusive. The program does not calculate  times  greater 
than 32,767. This  restriction does not seem unduly  stringent: a net- 
work whose activities  are measured in calendar days  can  have a 
maximum  duration  time of approximately  ninety  years;  in work 
days,  t'he maximum time possible is, of course, even  greater. 

Networks  in which activity  numbers  and times are  not repre- 
sented  by integers in  the  appropriate  range  must  have,  in  addition 
to  the single-pass calculation described below, two  additional  passes 
to code and decode the original  representations of activities and 
times  into  the  representations required by  the program. 

In  discussing the figures in  this  paper,  the following conven- 
tions  are used: a node  with no arrows  pointing to  it, or with only 
dashed  arrows  pointing to  it, is called a source; a node with no ar- 
rows pointing  away  from it, or with only  dashed  arrows  pointing 
away  from it, is called a sink; the calculation consists of an itera- 
tion of successive steps  that associate time  values (represented by 
numbers)  with sources and  sinks;  the  time values  for sources are 
called forward  times, those  for  sinks backward  times; those sources 
for which forward  times  have not been  calculated at  the  start of 



Fiaure 2 GraDh of an inconsistent precedence  network I 
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an iteration  are called new sources; in  contrast, those  for  which 
times  have been calculated are called old sources;  similarly, we 
speak of new and old sinks  determined  by the calculation of back- 
ward  times. 

The  graph described in  Figure 1 is consistent because it  has no 
sequence of arrows starting  and  ending at   the same node. The  graph 
described in Figure 2 is inconsistent since one  arrow  leads  from 
Node 5 to Node 7 and  another one from  Node 7 back to Node 5. 
Critical paths  can be  calculated  only  for  consistent  networks; thus, 
a computer  program to calculate  critical  paths  must include some 
provision  for  consistency checking. 

When  node  numbers are  arranged  in a  serial  list  such that each 
node  occurs  earlier in  the list than  any of its successors, the nodes 
are said to  be  arranged  in topological  order. Many  critical-path pro- 
grams  facilitate the calculation of forward and  backward  times  by 
arranging the nodes in a topologically ordered  list before doing the 
time  calculations. This  is  frequently called topological  sorting. 

I n  calculating  early and  late  start times  for  activities,  most pro- program 
grams  have a  forward time calculation  phase followed by a  back- features 
ward  time calculation  phase. For large  networks, both of these 
phases are  frequently  separate  tape passes, as  are  the consistency- 
checking and topological-sorting phases described above. 

The main  features of C P M O O ~  are: 

Consistency checking is  a  by-product of the basic procedure for 

Topological sorting  is  not required. 
Forward  and backward  time  calculations are overlapped-i.e., 
done concurrently-in a  manner described more  fully below. 
Information  describing the precedence matrix  and  duration 
vector is stored  in  the IBM 7090 computer  in  a  manner that makes 
it possible to calculate  relatively  large  networks without writing 
intermediate  results  on  tape. 

calculating  forward and backward  times. 
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Figure 4 Graphic  representation  of steps in  algorithm  for inconsistent network 
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description. The  latter program is included both  in  its  ownright  (as 
the most concise, precise, and useful description the  author  can 
provide of the basic calculations  carried out  by CPMOOS) and  as  an 
indication of the  nature of the research  from which the program 
derives. The program used here is an early  form of the language 
now implemented as  the A ~ L \ 3 6 0  time-sharing  system. 

Figure 3 depicts successive stages in  the basic algorithm used narrative 
in CPMOOS, as  they would occur in processing the consistent  network description 
described in  Figure 1. Figure 4 depicts the stages that occur in 
processing the inconsistent  network of Figure 2. 

The earliest  time a t  which an  activity  can  start is the time at  
which the latest of its predecessors is finished. The  latest  time  at 
which an activity  can finish is the  time  at which the earliest of its 
successors must  start.  This  symmetry  can be used to calculate 
backward t,imes in a  manner  exactly  analogous to  calculating for- 
ward  times and concurrently  with the calculation of forward  times, 
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i.e., without a prior  determination of the critical-path or minimum 
project duration  time.  Thus,  the  steps  in Figures 3A, B, and C are 
accomplished by CPMOOQ in  three scans of the precedence matrix 
rather  than  in  the six scans that would be required if forward  times 
were  calculated before backward times. It is important  to keep this 
point  in  mind  throughout the following discussion. 

The steps  in  the basic algorithm are described in  terms of op- 
erations  on nodes and arrows. 

Step 1. Locate new sources and new sinks. If there  are none, the 
algorithm is at  an end. The ending  procedure is described in  Step 
5. (Note  the parallel treatment of forward and backward calcula- 
tions in Figures 3 and 4.) 

Step 2. Calculate  folward  times for new sources and backward  times 
for new sinks. A forward  time  is  calculated  for  each new source as 
the sum of its  duration  time plus the forward  time of the one or 
more of its predecessors, if any, whose forward time is greatest. 
(Note that predecessors are connected to new sources by dashed 
arrows  pointing to  the new source.) A backward  time is calculated 
for  each new sink as  the  sum of its  duration  time plus the back- 
ward  time of the one or more of its successors, if any, whose back- 
ward  time is greatest.  (Note  that successors are  connected to new 
sinks by dashed  arrows  pointing  away from the new sink.) 

Step 3. Replace, by dashed arrows, all the solid arrows  pointing 
away  from the new sources that have  just been processed. Replace, 
by dashed  arrows,  all the solid arrows  pointing to  the new sinks 
that  have  just been processed. (For consistent  networks, this  either 
develops new sources and  sinks for the next  iteration or, if no solid 
arrows  remain,  indicates that  the calculations are complete.) 

Step 4. Repeat  Step 1. 

Step 5. This is the ending procedure. If all the nodes in  the network 
have  both forward and backward  times associated with  them,  the 
network is consistent. In  this case, an early start time  can  be cal- 
culated  for  each node by  subtracting  its  duration  time from its for- 
ward  time; a late  start  time  can be  calculated for each node by sub- 
tracting  its backward  time  from the largest  backward (or forward) 
time  found  in the network. This largest time is the critical-path or 
minimum  project  duration  time.  Those nodes whose early and  late 
start times are equal lie on  the critical path. 

If all the nodes do  not  have  both forward and backward  times, 
the network  is  inconsistent  (as described later). 

Let us first discuss the consistent case. Figures 3A, B, and C 
depict the  three  iterations required by  the basic algorithm to cal- 
culate  forward and backward times. These  iterations consist of 
repetitions of the above Steps 1 through 4. Figure 3D depicts the 
calculation of early  and  late  start times after  the basic algorithm 
is completed. 
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Iteration A .  The new sources (in this case, the original sources) are 
Nodes 2 and 6. The new sinks are Nodes 1 and 3. Since the new 
sources have  no predecessors and  the new sinks  have no successors, 
the forward and backward  times are merely the duration  times of 
each  activity.  These  are  written  above  their corresponding nodes, 
as  are all the times  calculated in subsequent  iterations. 

Iteratima B. New sources: Nodes 4 and 5. New sinks: Nodes 4 and 
5. Forward  times:  Node  4, predecessor time plus duration time: 
5 + 20 = 25; Node 5,  greatest predecessor time plus  duration 
time:  7 + 10 = 17. Backward  times: Node 4, successor time plus 
duration  time: 15 + 20 = 35; Node 5, greatest successor time  plus 
duration  time: 30 + 10 =. 40. 

Iteration C. New sources: Nodes 1 and 3.  New sinks: Nodes 2 and 
6. Forward  times:  Node 1, greatest predecessor time  plus duration 
time: 25 + 15 = 40; Node 3, predecessor time  plus  duration  time: 
17 + 30 = 47. Backward  times:  Node 2,  greatest successor time 
plus duration time: 40 + 5 = 45; Node 6, successor time  plus dura- 
tion time: 40 + 7 = 47. Since no new sources or sinks are developed 
by  iteration C, no further  iterations  are needed. The process of cal- 
culating  early and  late  start times  ends  with Step 5. 

Step 5. Early  start  times  are calculated by subtracting  activity 
durations  from the forward  times. Late  start  times  are calculated 
by  subtracting  the backward  times  from the project  duration  time 
(in this case 47-the longest time associated with any node either 
as  a  forward or a  backward  time). The critical path (indicated by 
solid arrows in Figure 3D) is made  up of those nodes for which 
early and  late  start  times  are equal. 

For the inconsistent case, the network in Figure  4 is basically 
the same as  that of Figure 3, except that  an extra  node (7) and  two 
arrows have been added  in such  a  way as  to  introduce inconsistent 
precedence relationships, called a circuit. As a result, the process 
again  terminates  after  three  iterations (since no new sources or 
sinks  can  be  found), but  this  time  without  having calculated both 
forward and backward  times  for  all nodes or-equivalently-with- 
out converting  all the solid arrows in  both diagrams to dashed 
arrows. (The reason for the termination at  iteration C is evident 
if the definitions of new sources and new sinks are recalled.) 

The information displayed in  the  two  graphs of Figure 4C per- 
mits  us to determine that  the network  contains an inconsistency 
(i.e., a circuit) and to divide  all the nodes in  the network into four 
groups: 

(1) Nodes with  both predecessors and successors in the circuit  (in 

( 2 )  Nodes with successors in  the circuit ( 2  and 6) 
(3) Nodes with predecessors in  the circuit  (1 and 3) 
(4) Nodes with  neither successors nor predecessors in  the circuit (4) 

this case, 5 and 7) 
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These are respectively: (1) nodes for which we have  calculated 
neither  forward  nor  backward  times; ( 2 )  nodes for which we have 
calculated  forward but  not backward times; (3) nodes for which 
we have  calculated  backward but  not forward  times; and (4) nodes 
for which we have  calculated both forward and backward times. 

The information given by  this subdivision can  clearly  be of 
great  value in locating the error or errors that caused the incon- 
sistency. 

Narrative descriptions are, a t  best, merely general indications 
of how a  program works. Converting the thinking  about nodes and 
arrows into  computer  program  steps that manipulate  bits, words, 
and  arrays  frequently requires  as  much hard work as devising the 
node-arrow descriptions in  the first place. It is also frequently  hard 
to  demonstrate the connection between the two. The same objec- 
tion applies to narrative  flowcharts of the kind displayed in Figure 
5 which describes the first six steps of the Iverson  program  shown 
in Figure 6. 

A properly  constructed Iver~on-language~~~ algorithm,  on the 
other  hand,  not only  describes what  has  to  be done concisely, pre- 
cisely, and vividly, it also guides efficient programming d e ~ i g n . ~  
This is done in Figure 6. A brief discussion of this figure and  its 
relation to CPMOOZ is now  offered. 

Steps 1 through 6 of Figure 6 describe the processing for the 
forward-time  calculation: Steps 7 through 12 describe exactly  anal- 
ogous processing for the backward-time  calculation; Step 13 is 
merely a  repetition of Step 2. This  is required by  the condition that 
the algorithm stop only  when both  the conditions v/r = 0 and 
V / U  = 0 are met, since we are  interested  in providing  informa- 
tion about circuits. (Only one of these three comparisons would be 
needed if  we knew the network was consistent since V / r  would 
then  attain  the value 0 at  the same iteration  as v/u.> 

Since the basic ideas  can  be  illustrated in  terms of Steps 1 
through 6, the following discussion concentrates  on  these  steps. 
The basic entities involved are: 

1. The precedence matrix, P (see Figure 1) 
2 .  The  duration  vector, d (see Figure 1) 
3. The predecessor vector, p 

N 

P = +//P, that is, P i  = P i i  

where N is the number of nodes in  the network 
i= 1 

4. The new-origin vector, r 
5. The old-origin vector, q (initialized so that its components are 

6. The forward-time  vector, a 

(In  the backward-time  calculation,  steps 7 through 12, the vectors 
analogous to p ,  r,  q, and a are s, u, f, and b.) 

P is a logical matrix, i.e., it  has components that  take on  only 
0 or 1 as values. The other  entities  are  vectors: logical in the case 

all zero prior to execution of the algorithm) 
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Figure 6 Iverson-language description of steps in  algorithm 

Begin - 

# 
End < - - 

1. r + i j A p = O  

2. 0 : V / r  

3. a t / a ;  r ;  d /  

4. a t a + r ~ a & P  

5. q t r v q  

6.  p t p  - r l ;  P 

7. u + " i A s = O  

8. 0 :  v / u  

9. b t / b ;  u;  d l  

10. b t b + u X P & b  

11. f + u  v t 

12. s t s " P ; u  

13. 0 : V / r  

of r and q ;  numerical in  the case of a, d, and p .  All the vectors have 
N components; P has N x N components. 

S tep  1. Calculate r ,  the new origin vector. Its components are 0, 
except  in positions corresponding to  the occurrence of 0's in  both 
the old-origin and predecessor vectors;  in  these positions, the com- 
ponents of r have the value 1. 

S tep  2. Test  to see if the new-origin vector  has a t  least one non- 
zero component. If it has  not, no further processing in the forward 
direction is possible and the forward calculation is suspended. 

Step 3. Copy  into vector a the components of d ,  the duration 
vector that corresponds in position to 1's in  the new-origin vector. 

S tep  4. Multiply the components of each column vector in P by 
the corresponding components of a. Form a  result  vector consist- 
ing of the maximum component in each column. Add to corre- 
sponding components of a those  components of this result  vector 
that correspond in position to 1's in the new-origin vector, r .  
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Step 5.  Convert  from 0 to  1 those  components of the old-origin 
vector, q, that correspond in position to  1’s in  the new-origin 
vector, Y. 

Step 6. AiIultiply P by r and  subtract  the result  vector,  component 
by component,  from the predecessor vector, p.  

The steps  constitute  a  formal,  functional  description of the 
basic algorithm  underlying CPMOOS. This  functional  description was 
used as a guide to more detailed Iverson-language programs. I n  
these  programs, the basic functions were realized by procedures 
that  attempted  to capitalize  on the equipment  features of the IBM 

7090 and  the  operating  system  features of the IBSYS/IBJOB com- 
piler, assembler, and loader. 

The  main  equipment  features of the 7090 relevant to  the pro- 
gram were word and register sizes and  the operations affecting 
partial words and  bits. These  equipment  features  permit a 36-bit 
configuration to be considered either as a  scalar (i.e., a vector  with 
only one component),  a four-component vector (prefix, decrement, 
tag, address), a 36-component vector,  or  a  combination of these. 

An  examination of the Iverson  program shows that we have 
two  variable numerical  vectors, a and p ,  and  that non-zero values 
for the first are defined only  when the second has  gone to zero. 
Since both  have  the same  number of components, this indicates 
that  the same  storage  locations  can be used to store  both of these 
vectors. This,  in  fact,  has been done. Predecessor counts  are  stored 
in  the decrement  portion of a series of 7090 words. As soon as the 
predecessor counts  have gone to zero, the same  decrement  portions 
are  used to  store corresponding values of the forward-time  vector, a. 

The remaining  variable  vectors are logical, i.e. they  take  on 
component  values  requiring  only one bit of storage. Since they  are 
functionally  related to  the p and a vectors (i.e., they  have  the same 
number of components, and corresponding index  values specify re- 
lated  status  and numerical  information), they  can be thought of as 
vectors of flag bits.  This is the way  they  are  treated.  The first bit 
of a 7090 word  stores  a  component of the r vector;  the second bit 
stores  a  component of the q vector. 

The 7090 permits fixed-point operations in several registers. 
Among  these, the accumulator  register and  the  three index  registers 
are  particularly  important.  The index  registers are fifteen bits long. 
If we can  restrict the maximum  result of an arithmetic  operation 
to 32,767, we can  do  arithmetic, comparison, and  information 
manipulation  much more efficiently than  by doing  our arithmetic 
only in  the accumulator. If we examine the characteristics of the 
class of problem we are  trying  to solve, we see that,  by  its very 
nature,  the components of the p vector  must  be less than 32,767, 
since we are  talking  about networks  with fewer than 10,000 nodes. 
‘We then  ask  whether we can  restrict  the  values of the a vector to  
lie in  the range 0 through 32,767 without loss of generality. 

As we have pointed out previously, this  range  permits  us to  
schedule  a 90-year project as a set of subprojects whose durations 
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are specified in  terms of days. Thus,  the  accuracy we can attain is 
much  greater  than  inevitable  errors  in  our  time  estimates  and,  for 
all  practical  purposes, the restriction of time  values to  32,767 time 
units  is  certain  to give  us  all the accuracy we can use. 

The question of calendar conversion, of course, remains; but it 
would do so in  any case. Calculation  from  calendar  days to  work 
days  and vice  versa is a  fairly  straightforward  operation  which  can 
be  done  in a variety of ways. 

From  the  symmetry of our  approach  to  the forward- and back- 
ward-time  calculation  problem, we see that-once we have de- 
termined that we can  store  all  the forward-time  information we 
need in seventeen bits of a 7090 word-we can  store  all  the back- 
ward-time  information  in  another  seventeen  bits. The  array C, dis- 
cussed later,  can be thought of as a collection of N 7090 words, each 
word being treated  as if it  had eight  components.  Conceptually, 
this  array  is a matrix C of dimension N X 8, and each of its col- 
umns  stores the following variable of our  functional  description: 

CI : r 

C3 : unused 
C4 : p ;  a 15-bit component 
cg : u l-bit  components 

C7 : unused 

cz : 4 1 
Cg : f 1 

l-bit components 

Cs : S; b l b b i t  component 

Having selected the way of storing the variable  information, 
the major design decision of how to store the  constant  information 
(precedence matrix, P, and  duration vector, d )  remains. 

A  first temptation is to store P as an  array of bits. For networks 
of the size we are considering, however, this is clearly  impractical. 
A 3000-node network would require 9,000,000 bits or 250,000 
words. This is inconsistent  with our  objective to  design a  program 
that  can process large  networks  entirely in  the 32,785 words of 
high-speed storage  available on  the 7090. 

Here  again,  a  consideration of the characteristics of real-life 
problems is required.  Precedence  matrices  describing  real  problems 
are  customarily  extremely  sparse,  i.e.,  they  have few non-zero ele- 
ments. Assuming, for example, that we have  an average of ten non- 
zero elements per row, information  about 30,000 components must 

~ be  stored  in  the case of a network of 3000 nodes;  these  components 
would have  the  value 1 in  the conventional  representation of P, all 
others would have the value 0. Thus, we can specify P as  the  set 
of 30,000 (i, j) values specifying its non-zero components. 

A  consideration of 7090 specifics is helpful here. If we store  these 
(i, j) values as a row list, the i value  can  be  calculated  rather  than 
stored;  all we need do  is  store sequences of j values and indicate 
when we are  storing  either  the first or last non-zero j of a row. We 
have thus reduced  our  storage  requirements  from 30,000 (i, j) pairs 
t o  30,000 j values and 3000 flag bits. Since the j values  can  be 





in  Table 1. C P M O O ~  can process any  network of up  to 3000 nodes 
and 33,000 arrows. CPM004 can process any network of up  to 1000 
nodes and 10,000 arrows. As can  be seen  from the listing, the only 
difference in  the  two programs is in  the designation and  contents 
of the BLOCK DATA subprograms (A3000, B165C, C3000 for CPMOO~;  
A1000, €35000, ClOOO for CPM004) and  in  the  control  cards used  for 
overlay  purposes  in CPMOO~.  

gram calls in subroutines  in the sequence described by  the flow- subroutines 
chart of Figure 7. Briefly, the subroutines  perform the following 
functions: 

The  main  program is CPMOVR, written  in FORTRAN. This pro- basic 

1. STORNJ is  a MAP (Macro-Assembly Program)  subroutine that 
provides  heading  information (including the  date  on which the 
calculations are performed) common to all jobs. Figure 7 Subroutine  sequence 

2. RDCPIO/FRDCPM is a pair of subroutines of which the first is 
written  in MAP and  the second in FORTRAN. Their  joint  function 
is to  read  and  list all the  input required to define one critical- 
path job  and to  store  this  information  in the A and B  arrays. If 
the  input  information  is incorrect, the message INCORRECT 
DECK SETUP  CALCULATIONS OMITTED is  printed and suc- 
ceeding cards  are merely listed until a  card  starting a new job 
is encountered.  These  programs  read  cards whose functions  are 
specified by a code in column 4. Code 9 identifies an end-of- 
batch  card.  Before RDCPIO/FRDCPM returns control to  the 
main  program, it sets  a  variable L to zero if arrays A and B 
have been  properly  stored, and  to some nonzero value if it  has 
encountered an end-of-batch card. The main  program tests  this 
variable to  determine  whether or not  to  continue processing. 

3. PSCT is  a MAP subroutine that counts predecessors and suc- 
cessors and  stores  these  counts  in  the C array.  These  counts 
constitute  the vectors p and s of the Iverson  Program. 

4. LGTM is  a MAP subroutine that carries out  the basic algorithm. 
If the network  is  consistent,  a  variable I is  set to  zero. If the 
network  is  not  consistent, I is  set to  some nonzero value. The 
main  routine calls CCP  if I is zero, and CTOB  if i t  is  not. 

5. CCP is  a MAP subroutine that calculates  early and  late  start 
times. To permit  overlay, CCP also copies this  information  from 
the C array  to  the B array. I n  other words, the B array infor- 
mation  is  lost when  subroutine CCP is called. 

6. CPMOUT/WRCPM is a MAP-FORTRAN pair of subroutines that 
calculates  times and floats  for  a  consistent  network and  prints 
them  out. 

7. CTOB is  a MAP subroutine that merely copies the information 
stored  in  the C array  into corresponding  relative  positions in  the 
B array. Like subroutine CCP, its purpose is to  permit  overlay- 
ing the C array  with  input/output subroutines. Note  that  the 
B array  must be of a size greater than or equal to  the C array. 

8. WRBCKT/FWCT is a MAP-FORTRAN pair of subroutines that 
print,s  out  information  about inconsistent  networks. 

Q STORNJ 

(;)+I BATCH END ? 

ym CONSISTENT ? 

+q CPMOUT/WRCPM pq WRBCKT/FWCT 
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Input cards  are identified as  to function and  format  by one of 
input the following code numbers in card  column 4: 1,  2,  3, 4,  9. Cards 

cards not  having one of these codes in column 4 are  listed  as  input  but 
otherwise  ignored.  Comments  can thus  be interspersed  anywhere 
in a job or batch, For all  card  types, the  contents of columns 1 
through 3 are  listed  but otherwise ignored. The function of col- 
umns 5 through 80 for  each of the card  types  is now discussed. 

Card Code 1 
Format. Columns 6-11, job  identification code (6 alphameric 
characters).  Columns 13-24, requester or programmer  name (12 
alphameric  characters).  Columns 25-25, number of nodes in 
network (up  to 4 numeric characters). The job  identification 
code and  the requester  name are  printed  as  part of the heading 
for the output listing. The job  number  is  also  printed as part 
of the end-of-job identification.  Except  for the heading and 
end-of-job information, the number of lines of output  depends 
on  the  number  entered  in columns 25-28. 
Function. Card  type 1 is a start-job  card.  When it is  encoun- 
tered,  all  arrays  are initialized to  zero values, and  the  number- 
of-nodes information is stored to be used as a check that node 
numbers specified on succeeding cards  do  not exceed the maxi- 
mum  number specified by  the first  card. This  number itself is 
checked to see that it does not exceed the dinlension of the A 
and C  arrays. If i t  does not,  it is used as the working dimension 
of the A and C arrays. If it does, an error  notice is printed  and 
all subsequent  cards  are merely  read and listed until  either 
another  number 1 or a  number 9 is  encountered. 

Card  Code 2 
Format. Columns 5-8, node  number  (up to 4 numeric  charac- 
ters).  Columns 9-12, activity  duration  (up  to 4 numeric 
characters). 
Function. Card  type 2 is  a  node (or duration)  card. The number 
found in columns 9-12 is  entered in  the decrement portion of a 
word in  the A array.  The  relative location of the word in  the A 
array is given by  the node  number  found  in  columns 5-8. 
Note. If more than one duration  card  is  entered for  a  given 
node, the  duration specified by  the  last one  is the one that will 
be used by  the program. 

Card  Code 3 
Format. Columns 5-8, node  number of predecessor node, i. 
Columns 9-12,  13-16, . . . 77-50, node  numbers of successor 
nodes, j .  
Function. Card  type 3 is an arrow (or precedence) card. The i 
value (specified by  the number  in columns 5-9) is used to lo- 
cate  the word in  the A array  in which a pointer is to  be  stored. 
The j values (specified by  the remaining  numbers on  the card) 
are  stored  in  the  next  available positions in  the B array.  These 
numbers  are  stored  in  the decrement and  address  portions of 
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successive  words in B. The last j value is identified by  a flag 
bit. The pointer is stored in  the A word and consists of an ad- 
dress and  a flag bit that indicates whether the first j value is 
to be found in  the decrement or address portion of the word at 
that address. 
Note.  If a node has more than 18 successors, they may be en- 
tered on as many more type-3 cards as needed.  All of these 
cards must be entered as one group, however,  i.e.,  no type-3 
cards with  a different i value may be interposed between cards 
of a like i value. In  other words, if a group of cards identifying 
all the successors of Node i were to be separated  into two sub- 
groups by  a  type-3 card for Node k ,  for example, only the in- 
formation about the second subgroup would be used by  the pro- 
gram. This is the only sequencing restriction on type-2 or type-3 
cards. Except for this,  they  can be entered in  any order, pro- 
vided they occur after  an  appropriate type-1 card and before 
an  appropriate type-4 card. 

Card Code 4 
Format. Except for  column  4, the information on a type-4 card 
is listed and ignored. 
Function. Card type  4 is an end-of-job card. It signals that in- 
put for a job is complete and processing should start. 

Card Code 9 
Format. Except for column  4, the information on a type-9 card 
is listed and ignored. 
Function. Card type 9 is an end-of-batch card. It signals that 
there  are no more CPM jobs to be processed. 

If any of the node numbers or times are less than four digits, 
they may be entered anywhere in  the four-digit field. In  particular, 
they  may be left-justified rather  than right-justified. However, no 
intervening blanks may separate the digits making up  a number. 
There  are  a  variety of checks on various parts of the  input process. 
All  precedence cards, for example, must  have an i value in columns 
5-8 and  a j value in columns 9-12. (Other j values, however, may 
be entered in any of the remaining 17  fields.) There is only one 
error message, but  it is issued immediately after the listing of the 
card on which the error was detected. Succeeding cards on the same 
job are  not checked. 

Except for the fields described above, alphabetic or numeric in- 
formation may be entered anywhere on any of the  input cards. 
This includes all the j fields, except the first one on the type-3 card, 
that is, all the fields after column 13, as long as  the information in 
any field cannot be interpreted  as  a decimal number of from one to 
four digits. If only alphabetic comments are  written to  the right 
of the  last successor value on a type-3 card, they  are ignored. This 
is also true for most other combinations of letters  and numbers. 

The BLOCK DATA subprograms reserve space for the maximum 
A, B, and C arrays that are needed for a  particular  batch of jobs. 
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Figure 8 Consistent network NETAS rn 

20 

If an  array is to  store N values, the dimension of the  array  is N + 1, 
and  the first word is used to  store  the integral  value N so that sub- 
routines  can  determine when array  bounds  are being exceeded. The 
array A stored  by  subprogram A3000 in  the C P M O O ~  package, for ex- 
ample, reserves 3001 words and uses the first to store the  number 
3000, giving the effective, usable  dimension of the  array. 

As examples, the  actual FORTRAN subprograms defining the  ar- 
rays used in C P M O O ~  are given in  Table 2. The dimensions of A and 
C are  determined  by  the  maximum  number of nodes to  be con- 
sidered. The dimension of B is determined  by  the  maximum num- 
ber of arrows. A and C each  require  one word per node. B requires 
a half word per arrow. The deck  names for  the  subprograms  are 
chosen to indicate the dimensions of the  arrays  they specify. Since 
the deck  names are  not referred to  by  any program in  any CPMOOQ 

package,  none of the functional  programs need be recompiled and 
the binary  decks  can  be used without  alteration. 

The operation of a CPMOOP program  is now illustrated. A con- 
program sistent  network NETA is  shown in Figure 8, and  an inconsistent  net- 
operation work CKTA in  Figure 9. The networks are identical  except  for the 

dashed  arrow  from 11 to 6 and  the  three disjoint nodes 19, 20, and 
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CPM 1 
CPM 2 
CPM 2 
CPM 2 
CPM 2 
CPM 2 
CPM 2 
CPM 2 
CPM 2 
CPM 2 
CPM 2 
CPM 2 
CPM 2 
CPM 2 
CPM 2 
CPM 2 
CPM 2 
CPM 2 
CPM  2 
CPM 3 
CPM 3 
CPM 3 
CPM 3 
CPM 3 
CPM 3 
CPM 3 
CPM 3 
CPM 3 
CPM 3 
CPM 3 
CPM 3 
CPM 3 
CPM 3 
CPM 3 
CPM 3 
CPM 3 
CPM 4 

NETA 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

Table 5 Network NETA input 

MONTALBANO 18 TEST NETWORK A 
5 

15 
30 
20 
12 
6 

24 
8 
4 

10 
11 
9 

14 
21 
10 
12 
7 
3 
5 

10 
13 
14 
7 
8 

11 
11 
12 
12 
17 
15 
15 
16 
17 
18 
18 

6 

12 
9 10 

13 14 

16 
17 

END  TEST  NETWORK A 

21 in CKTA. Both networks are used in  the  test decks available with 
the C P M O O ~  as well as  the C P M O O ~  package. Tables  3  and 4 give the 
outputs to be expected from NETA and CKTA, respectively. Table 5 
displays the input required for NETA; that for CKTA would, of 
course, be similar. Although the node numbering in NETA is  in 
topological order, it should be clear from the preceding  discussion 
that this is unnecessary. Node numbers can be reassigned in  any 
way, the type-2 and type-3 cards  can be entered in  any sequence, 
and the program produces the same results as long as duplicate 
node numbers are avoided, the node numbers are reassigned  con- 
sistently, and no node number higher than 18 is used-the number 
specified as maximum on the type-1  card for this job. If larger node 
numbers are used and the maximum node number is changed to 
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Table 6 Stages in processing NETA 

A B C C C 

(RDCPIO) ( RDCPIO) (PSCT) ( LGTM) (ccp) 

1. 0 00005 0 00001 1. 0 00005  4  00006 1. 0 00000 0 00002 1. 2  00005  2  00076 1. 2  00005  2  00002 
2. 0 00017 0 00002 2. 4  00012  4  00015 2. 0 00000 0 00001 2. 2  00017  2  00075 2. 2  00017  2  00003 
3. 0 00036 1 00002 3. 4  00016 0 00007 3. 0 00000 0 00001 3. 2  00036  2  00100 3. 2  00036  2 00000 
4. 0 00024 0 00003 4.  4  00014 0 00010 4. 0 00000 0 00001 4.  2  00024  2  00070 4. 2  00024  2  00010 
5. 0 00014 1 00003 5. 0 00011 4  00012 5. 0 00001 0 00002 5. 2 00021 2  00071 5.  2 00021 2  00007 
6. 0 00006 1 00004 6. 4  00013  4  00013 6. 0 00001 0 00003 6. 2 00013 2  00064 6. 2  00013  2  00014 
7. 0 00030 0 00006 7.  4  00014 0 00014 7. 0 00001 0 00001 7.  2 00051 2 00055 7.  2  00051  2  00023 
8. 0 00010 1 00006 8.0 00015  4  00016 8. 0 00001 0 00001 8. 2  00023  2  00035 8. 2  00023  2  00043 
9. 0 00004 0 00007 9. 4 00021 4  00017 9. 0 00001 0 00001 9. 2  00017  2 00041 9. 2  00017  2  00037 

10. 0 00012 1 00007  10. 0 00017  4  00020  10. 0 00002 0 00003  10.  2  00031  2  00056  10.  2  00031  2  00022 
11. 0 00013 0 00011 11. 0 00020  4 00021 11. 0 00002 0 00001 11. 2  00064  2  00025 11. 2  00064  2 00053 
12. 0 00011 1 00011 12.  4 00021 4  00022  12. 0 00003  0 00001 12.  2  00042  2 00035 12.  2  00042  2  00043 
13. 0 00016 0 00012  13.  4  00022 0 00000 13. 0 00002 0 00002 13. 2  00054  2  00042  13.  2  00054  2  00036 
14. 0 00025 0 00013  14. 0 00002 0 00002  14.  2  00056  2  00044  14.  2  00056  2  00034 
15. 0 00012 0 00014  15.  0  00002  0 00001 15.  2  00066  2  00024  15.  2  00066  2  00054 
16. 0 00014 1 00014  16. 0 00002 0 00001 16. 2  00072 2 00017  16.  2  00072  2 00061 
17. 0 00007 0 00015  17. 0 00003 0 00001 17. 2  00075  2  00012  17.  2  00075  2  00066 
18. 0 00003 0 00000 18. 0 00002 0 00000 18. 2 00100 2  00003 18. 2  00100  2  00075 

be  greater  than or equal to  the largest  node  number about which in- 
formation is entered, the program  works  properly, but  prints  out 
vacuous  information  about  all  node  numbers that  are  not actually 
used in  the problem. 

Table 6 shows how the A and B arrays  are  stored  for NETA, and 
what  is  stored  in  the C array  at  the  end of the PSCT, LGTM, and 
CCP subprograms. Note  that  the digits  displayed are octal and 
that a 4 in a prefix or tag digit  represents  a flag bit  in  the  leftmost 
position,  a 2 represents  a flag bit  in  the middle  position and a 1 
represents a flag bit  in  the  rightmost position. 

For illustration,  consider the  entry  in  the  third row of the A 
column. The octal 36 in  the decrement  portion of the word repre- 
sents  the decimal  number 30, the  duration of activity 3 in NETA. 

(Duration times are shown  above the nodes  in both  the NETA and 
CKTA diagrams.) The 1 in  the  tag  portion of this word signals that 
the index  identifying the first successor to  Node 3 can be  found in 
the righthand  portion of the word whose relative  position in  the B 
array is given by  the  number 2 in  the  address  portion of the same 
word. 

Going to  the second word of the B array, we find that  the  ad- 
dress  portion  contains  octal 15 (decimal 13). From  either  the dia- 
gram or input listing, we can  verify the  fact  that node 13 is  indeed 
an immediate successor of node 3. 

The 4 in  the  tag position of the second word in  the B array sig- 
nals that  the successor in  the  address  portion  is  the  last of this 
particular  set of successors-in this case, the only one. Again, we 
can  verify  this. 
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the critical-path  calculation. C, however, is variable.  At the end 
of the PSCT subprogram,  a word in  the C array specifies the nunz- 
ber of predecessors and successors possessed by the node whose 
number  is  equal to  the relative  position of the word in  the C array. 
The number of predecessors is to be  found in  the decrement por- 
tion of the C word; the number of successors in  the  address por- 
tion. For example, the  tenth word in  the C array  has 2 stored  in 
its decrement and 3 stored  in  its address. This informs  us that 
Node  10 has  two predecessors and  three successors in NETA. 

After LGTM (the  main  algorithm), the C array contains-in the 
case of a  consistent network-the value 2 in  the prefix and  tag 
portions of all its words. (This  is  equivalent to q and t vectors 
whose components have all  been  made 1.) The decrement  portions 
then  contain forward  times, the address  portions  backward  times. 

After CCP, the decrement  portions of the A array  contain  early 
start times  (not  shown). The decrement  portions of the C array 
contain  early finish times  (equivalent to  what we have  been calling 
forward  times). The address  portions of the C array  contain  late 
start times. The C array  as shown in  Table 4 is also copied into 
corresponding  relative  positions in  the B array. 

The overwriting of A and B positions was inspired by  the prime 
motivation of this  particular programming effort-to make  as 
much  space as possible available for  storing  information  about  the 
network.  Minor modifications to  the CCP and CTOB routines would 
eliminate the overwriting and  retain  the precedence information 
for  such  future  applications  as resource allocation. 

From  the information  stored by CCP in the A and B arrays,  the 
output  subprograms CPMOUT/WRCPM produce the report  shown 
in  Table 3. Most of the column  headings in  the  report  are self- 
explanatory,  except for TFLOAT and FFLOAT. TFLOAT is the 
difference between  early and  late  start times. In   the  case of activi- 
ties  on  the critical path,  this difference is  zero;  these  activities are 
identified by rows of asterisks  on the report. FFLOAT is the differ- 
ence  between an early finish time  for an  activity  and  the  early  start 
time of that one or more of its successors whose early start  time is 
smallest.  Node 4, for example, has  an early finish time of 20. I t s  
successor, Node  14,  has an early start time of 25. The difference is 
shown as FFLOAT for  Node 4. 

In  the case of inconsistent  networks,  subprogram LGTM cannot 
store the value 2 in all the prefixes and  tags of the C array. For 
example, Table 7 shows how the C array is  left at   the end of the 

A prefix of 2 indicates that a  forward  time  has been successfully 
calculated; a tag of 2  indicates that a  backward  time  has been 
successfully calculated. I n  these cases, the corresponding decre- 
ments  and addresses  display  times. Prefixes and  tags of 0, however, 
indicate that time  calculations could not be  made. In these cases, 
the decrements  corresponding to 0 prefixes contain  a  number  that 
specifies how many predecessor arrows  (pointing  directly a t  a  given 

~ LGTM program  for CKTA. 





Table 9 CPM002 calculation times (in seconds) for networks of various Sizes 

Subroutine NETA CKTA D l 0  Dl00  

RNC/RNDMl . . . .  . . . .  3.902  3.946 
PSCT 0.016  0.016  1.868  1.909 
LGTM 0.034  0.031  35.554  344.622 
CCP 0.004 . . . .  2.075  2.107 
TOTAL (incl. I/O) 10 85 395 

of unremoved predecessors and  the second is  backward  time. The 
printout  for CKTA thus tells  us that Nodes 6, 8, and 11 form  a 
circuit; Nodes 1, 5, and 7 point  (directly or indirectly) to nodes in 
a circuit,  Nodes 9, 10, 12, 13, 14, 15, 16, 17, and IS are pointed a t  
(directly or indirectly) by nodes in a  circuit, and  the remaining 
nodes have no  connection with  any circuit. 

The  primary purpose of program CPMOOS is high-speed calcula- 
tion of the critical paths of large  networks.  However, the resulting 
program is relatively  efficient on small  networks if enough of these 
are batched to  make economical use of a large  computer. To illus- 
trate calculation  speeds for small  networks,  times for NETA and 
CKTA calculations  performed  on  a 7090 are shown in  Table 9. No 
CCP time is shown for CKTA since subroutine CCP is not called for an 
inconsistent  network. 

To  test calculation  speeds on large  networks,  two  subroutines 
were written: RNC (which generates and  stores a precedence ma- 
trix)  and RNDMl (which generates  a  duration  vector).  The charac- 
teristics of the matrix  and  vector  are  determined  by  parameter 
values set  by  the  main  program. As a matter of interest, the times 
required by these  programs to generate  two  large  networks, DIO 

and DIOO, are also shown in  Table 9. 
The basic calculation time (exclusive of input/output) required 

by C P M O O ~  depends  primarily  on  two  factors, the size of the basic 
arrays  and  the  number of iterations of subroutine LGTM required 
for a  solution. The  latter depends  upon the “diameter” of the net- 
work-the largest number of consecutive  arrows  connecting  a 
source and a sink.  Network DIO consists of 3000 nodes and 32,400 
arrows; it has a  diameter of 10, i.e., 10 iterations  are required by 
the LGThl subroutine.  Network DIOO consists of 3000 nodes and 
32,670 arrows; it has a  diameter of 100. Since DIOO is virtually of the 
same size as DIO and requires ten times as  many  iterations,  the 
LGTM calculation time  for DIOO is-as would be expected-approxi- 
mately  ten  times  as long as  for DIO. 

NETA and CKTA were run  as a batch;  the  total  time of just  under 
10 seconds included the time  required to  read 80 card images and 
write 300 lines. The  total  time required for DIO was about a minute 
and a  half, and  for DIOO about six minutes  and a  half;  in  both cases, 
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this included the writing of about 4000 lines; the ratio of the 
LGTM calculation  times (35 seconds for  the  first,  and 345 seconds 
for  the second) was  approximately  as  expected. 

To  test  the program’s efficiency in detecting  and providing 
information  about circuits in large  networks,  a  program  was 
written  that introduced an inconsistency into  network DIO. The 
inconsistency was a  circuit  containing  nodes 400,709,710,711, and 
1020. As a  consistent  network, DIO had a total calculation time of 
just  under 55 seconds; as  an inconsistent  network, this  time was 
reduced to  just  under 57 seconds. This included the time to  print 
out node  information  for  all 3000 nodes in  the  format shown in 
Table 4. The  author  has no  direct  connection  with the  actual use of 
large  critical-path  networks and,  as a consequence, no  way to de- 
termine  whether the smaller or larger  diameter is more  character- 
istic of a  network of the size of DIO or DIOO. 

About 1400 words were required to  store  the  programs  that 
miscellaneous make  up CPMOOQ. I n  addition,  about 2100 words were needed for 
programming the portions of IBSYS that were constantly in residence in t.he 7090 
comments for which the program was written,  and  about 7000 words were 

required for FORTRAN input/output subroutines. This left about 
22,000 words for  the  storage of arrays  and buffers. For  the calcula- 
tion of DIO and DIOO on  the 7090, 22,500 words were reserved for 
array  storage;  this was made possible by  the overlay feature of the 
IBSYS loader. Use of the overlay  made about 1500 words  available 
for I /O buffers. Even more  storage  can  be  made  available  by  several 
methods, as-for example-specifying ALTIO on  the LIBJOB card. 

The calculation  subroutines (PSCT, LGTM, and CCP) require 
only 280 words of storage; the longest of them, LGTM, requires 
half of this.  Readers  interested  in processing much  larger  networks 
than those discussed in  this  paper  may find i t  useful to  consider a 
three-pass  operation which would generate the A and B arrays  and 
store  them  on  tape  in  binary  form, read them  back  in  for process- 
ing, and  then  write  out  the results. 

C P M O O ~  requires two words of storage  per node. The  duration 
vector d is  stored  in  the  left  half of the words  making up  the A 
array. Vectors T ,  q, p ,  a, u, f, s, b have  their  individual  components 
combined into single words in  the C array.  The remaining half- 
word  is used for a ((pointer”  to  the first successor of the node which 
it describes. It is  stored in  the right half of a word in  the A array. 
An  earlier  version of this  program did not use this  pointer  and  thus 
required  only 1 1/2 7090 words of storage  per node. The pointer 
was introduced to gain  greater efficiency in using the subroutines 
for problems  more  general than critical-path  calculations. For 
critical-path  calculations  even  larger than those considered here, 
the storage  requirements  can  be reduced to one word per  node by 
doing  forward and backward  calculations  consecutively rather  than 
concurrently. 

C P M O O ~  does not include a check to determine  whether  input 
information exceeds the bounds of the B array. However, i t  would 
be  fairly  easy  to  incorporate such a check. 
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incorporated in a subroutine called STIM. For directed  graphs 
without  circuits,  use of this  subroutine  permits calculation of the 
shortest  rather  than  the longest path  through a network. 

If all the activity  durations  are considered to be unity, CPMOOQ 

can  be used to give information about  the  structure of any directed 
graph. Using this  idea,  a  program  named IRA (Identify  Redundant 
Arcs) is  available which, in conjunction  with PSCT and LGTM, 
flags all  redundant  arrows  (arcs) in the B  array. 

Concluding remarks 

The objective in writing CPMOOQ was to investigate  ideas rather  than 
to develop programs (which are,  in a sense, incidental). The utility 
of network  programs  intended for actual use is measured primarily 
by how effectively they provide  information to management and 
how  well they  can be used as  instruments of management  control. 
Readers  interested in these  aspects of critical-path  programs are 
referred to  the publications of the Construction  Institute,  Stanford 
University.6s7 

To  the best of the  author's knowledge, the  time required by 
CPMOOQ to calculate the critical paths of networks D ~ O  and DIOO is 
shorter than  that of many programs that  just do topological sorting 
of networks of this size. Kahn,8  for example, gives an estimated 
time of 40 to 50 minutes  on  the 7090 for topological sorting of a net- 
work of 30,000 arrows. I n  contrast, it takes CPMOOQ only 1 1/2 
minutes  for Dlo-and 6 1/2 minutes  for D1oo"to do the entire 
calculation, and 57 seconds to locate the loop and  to  print  out 
diagnostic information  for the inconsistent DIO case. However, it  is 
not  clear that a  direct comparison of this kind is valid, since Kahn's 
algorithm  is concerned with  event node networks whereas CPMOOQ 

works on activity node  networks. The size comparison is valid, but 
the activity  numbering  conventions in  the  event node  representa- 
tion  are such that, since two nodes are required to represent an 
activity, the CPMO02 scheme of using node  numbers as relative 
addresses is not directly applicable. Actual use of CPMOOQ would, 
in  any  event, require input/output routines to provide  alphabetical 
information and displays of the kind provided by SPRED-CPM, the 
program described in Baker.' The  author believes that conversion 
of an event  node  representation to  an activity  node  representation 
could be  programmed in such  a way as to  add  an insignificant 
amount of time to these  routines; but no programming has been 
done to support  this conjecture. 
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2.  0: v / r  = + 7  
0: v / ~ l , O , ~ , ~ , O , O )  
0: 1(#) No Branch 

3. a t  / a ;  r ;  d /  
a+/(0,5,0,25,17,7); (l ,O,l ,O,O,O); (15,5,30,20,10,7)/ 
a + (15,5,30,25,17,7) 

4 . a t a + r ~ a & ~  
at(15,5,30,25,17,7) + (1,0,1,0,0,0) X  (15,5,30,25,17,7) & 

at(15,5,30,25,17,7) + (1,0,1,0,0,0) X (25,0,17,5,7,0) 
a+(15,5,30,25,17,7) + (25,0,17,0,0,0) 
a + (40,5,47,25,17,7) 

5. q + r V  9 
9 + (1,0,1,0,0,0) v (0,1,0,1,1,1) 
9 +- (1,1,1,1,1,1) 

6 . p t p - r ; P  
p+(0,0,0,0,0,0) - (1,0,1,0,0,0) ; '000000' 

000110 
000000 
100000 
101000 

,000010, 
P + ~0,0,0,0,0,0) - ~0,0,0,0,0,0~ 
P + ~~,0,0,0,0,0) 
(END OF ITERATION 3) 

I . r + - q A p = O  
r + ~~,0 ,0 ,0 ,0 ,0~  A (1,1,1,1,1,1) 
r +" ~0,0,0,0,0,0) 

2.  0: v /r = "-f 7 
0: v /(0,0,0,0,0,0~ 
0: 0 (=) Branch to  7. Forward  calculation  complete. 

Note  that  Step 4 in each of the iterations  leaves  forward  times 
in  the a vector.  These  forward  times  are  those  associated  with the 
nodes in the successive iterations  pictured  in  Figure 3. 

'000000 
0001  10 
000000 
100000 
101000 

,000010 
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