This paper describes the major elements of a programmed operating
system for a complex of five computers employed at the Gemini Mission
Control Center. The system was designed for an application environ-
ment that includes real-time space missions, simulated real-time ex-
ercises, and extensive job-shop operations. Relationships among pro-
grams, input/oulpul control, and various operational techniques are
described. The characteristics of a statistics-gathering routine are out-
lined.

Aspects of the Gemini real-time operating system

by J. H. Mueller

Three generations of programming systems have provided real-
time ground support for manned spaceflight programs. The first of
these was the Mercury system, which became operational in 1960.!
The third and current system supports the Apollo program. The
subject of this paper is the second in the series, the Gemini system,
developed for NASA at the Manned Spaceflight Center in Houston,
Texas.?

The contract for this system specified two real-time systems:
one for mission support, and one for vehicle and network simula-
tion. Since these systems were to operate on identical hardware
configurations, there seemed no reason why a suitably comprehen-
sive set of control-program services could not serve both needs.
Although the resultant system is highly application-oriented, the
lessons learned in the course of its design and operation may be of
use to others who are developing large-scale real-time operating
systems,.

The real-time computer complex

The computational facility at the Mission Control Center in Hous-
ton is called the Real Time Computer Complex (rrcc).® The
Gemini rTec configuration, schematically illustrated in Figure 1,
consists of five IBM 7094-11 computers connected to the System Se-
lector Unit, a plugboard-controlled switching unit that permits the
computer subsystems to be configured singly or in combination for
various mission-support, simulation, program-testing, and equip-
ment-testing functions of the rrcce.

IBM SYSTEMS JOURNAL + VOL. 6 + NO. 3 - 1967




Each of the 7094-11 systems (Figure 2) has 65K words of main
memory and provisions for automatic relocation and memory pro-
tection.® At no degradation of cpPu performance, the sixteen-bit re-
location and protection registers permit dynamic memory man-
agement without concern for the physical separation of the two
32K memory boxes. The relocation method adds the contents of a
base register to the effective address immediately prior to memory
reference. The eight low-order address bits are ignored, giving a
relocation precision of 256 words: consequently, an area dealt with
in dynamic memory allocation consists of one or more contiguous
256-word blocks. In the protect mode, references within the upper
and lower bounds are permitted, whereas an attempted reference
outside the bounds is blocked and causes an interruption. Protec-
tion does not distinguish among fetches, stores, or branches. When
protection is not in effect, relocation may be applied at the instruc-
tion level. This permits the control program to access operands in
relocated storage simply by applying the relative displacement in
the problem program to the relocation register, effective for that
reference only.

Each 7094-11 has one 18M 2361 Large Capacity Storage (Lcs) unit
with a 524 K-word capacity.® Access to the Les is via the 7286 Chan-
nel and the effective transfer rate between the Lcs and main stor-
age approaches 256K words per second. Real-time information
enters and leaves the system via the 7281 Data Communications
Channel (except for television output data, which is transmitted
over a direct-data connection at 256K words per second). Data
Channels A and B support the card reader, line printer, and tape
drives.

The 7281 also provides timing facilities. An interrupt may be
generated at a program-specified number of 100-microsecond inter-
vals; concurrently, a synchronized, exact one-second interrupt
serves to prevent timing drifts. For very precise timing, each
7094-11 is equipped with a 36-bit register that increments at 10-
microsecond intervals. This register can be read or reset to zero
under program control.

Figure 2 RTCC 7094-1l system

65K WORD
MAIN
MEMORY

DIGITALTO TV

TOSYSTEM 5221; gé(gwo

SELECTOR CAPRGITY

o STORAGE CPUWITH

DATA INSTRUCTION

COMMUNICATIONS RELOCATION
CHANNEL

GEMINI OPERATING SYSTEM

Figure 1 RTCC configuration

MISSION
CONTROL
ROOM 1
DISPLAYS

AND
REQUESTS

NETWORK
DATA

TIME
SIGNALS

MISSION
CONTROL
ROOM 2
DISPLAYS

AND
REQUESTS

SYSTEM
SELECTOR
UNIT

7094-11
SYSTEM

151




Figure 3 Gemini real-time operating system

524K WORD
65K WORD LARGE CAPACITY
MAIN MEMORY STORAGE

NETWORK
COMMUNICATIONS

RESIDENT
DISPLAYS EXECUTIVE 15K WORDS NON-RESIDENT
EXECUTIVE

PROCESSOR

DATA TABLES

PROC;SSOR
CARD
READER
APPLICATION

PROGRAMS
PRINTER SUPERVISOR

CURRENTLY
UNASSIGNED
STORAGE

Program structure

The Gemini real-time operating systems are composed of the three
fundamental elements suggested in Figure 3: the Executive Con-
trol Program (to be called “Executive”), application programs, and
data tables. “Resident” Executive is held permanently in main
storage to service interrupts, allocate core, and perform miscel-
laneous frequently-used services. The resident Executive and its
associated tables occupy about 15K words of main storage. For
dynamic display equipment allocation, Lcs allocation, error mes-
sage composition, system tape handling, and similar services, non-
resident, or transient modules, are loaded into main storage as
needed. These transient modules contend on a priority basis with
the application programs for the remaining 50K of main storage.

Application programs are of two types: supervisors and processors;
a supervisor program directs the execution of processor programs.
(This unusual terminology seems to have arisen out of historical
accidents.) Processors act at explicit directives from supervisors,
much as closed subroutines respond to calls from a higher level.
Processors are available to all supervisors. An elementary hierarchy
might be composed of Launch, Orbit, and Re-entry supervisors
that share Data Conversion, Numerical Integration, Differential
Correction, and Display Generation processors.

J. H. MUELLER




Executive recognizes only two levels of hierarchy: all super-
visors are equal, as are all processors. Supervisors may transmit
information to one another and may call upon a processor. How-
ever, processors cannot call upon one another. A processor simply
executes and then returns control to its calling supervisor; more-
over, it returns control via Executive because it is unable to identify
the calling supervisor. A supervisor or processor may embrace any
number of subroutines. A processing sequence involving one super-
visor and two processors is illustrated in Figure 4.

Some special transient Executive programs require direct refer-
encing into resident Executive data; consequently they are not sub-
jected to protection, although relocation is still applied. All non-
resident Executive modules are structured into processors and su-
pervisors. The relocate and protect scheme prohibits direct refer-
encing or calling between two programs. Consequently, every su-
pervisor-to-supervisor or supervisor-to-processor call requires that
the calling program invoke Executive to transmit control. Although
this detail is essential to an understanding of the Gemini System,
it is convenient to suppress it in describing such operations as
“supervisor A called processor R . . .”

In the Lcs, a program exists as though it were to be executed
from an area starting with memory location zero (00000). Such a
program can be placed in any area of main storage; let x denote
the address of the first location in the area. When the program re-
ceives control, the relocation register contains «, and the program
is executed as if it had been loaded in memory location zero.

Since a program is limited to references within itself, i.e., to
references within the bounds set by the protection registers, Ex-
ecutive is designed to provide facilities for inter-program communi-
cation. The primary means for communication is a ten-word table
or “buffer,” called XTRANS, within each program. Before a program
receives control, its XTrRANS buffer is filled by Executive. Whenever
a program requires the service of another program, the calling pro-
gram fills its own XTrRANS with programmer-defined parameters.

Each supervisor or processor is represented by an entry in the
Executive priority table. An entry reflects program status in terms
of the following information:

program is (is not) currently operating

work is (is not) defined in the program queue

program is (is not) in main storage

program is currently being loaded into main storage

program is available in Lcs

program is a supervisor {processor)

program is an Executive extension that ean run without pro-
tection

The order of the entries in the priority table is established prior
to initialization. During execution, when an XTRANS is created for
a program, an entry for this program is chained in priority order
into an “active” list. Executive scans the active chain from the top

GEMINI OPERATING SYSTEM

Figure 4 A supervisor-processor
sequence

A - SUPERVISOR CALLS PROCESSOR 1
PROCESSOR 1

XTRANS

SUPERVISOR

XTRANS

PROCESSOR 2

XTRANS

B — SUPERVISOR CALLS PROCESSOR 2
PROCESSOR 1

XTRANS

SUPERVISOR

XTRANS

PROCESSOR 2

XTRANS

€ —~ PROCESSOR 2 RETURNS CONTROL
TOSUPERVISOR PROCESSOR 1

XTRANS

SUPERVISOR

XTRANS

PROCESSOR 2

XTRANS

EXECUTIVE TRANSFERS XTRANS
a——————— EXECUTIVE TRANSFERS CONTROL




supervisor
structure

154

Figure 5 Calls sent to processors

XTRANS OF XTRANS OF
FUNCTION 2 FUNCTION 1

£
QUEUE FOR QUEUE FOR
PROCESSOR 1 PROCESSOR 2

XTRANS OF XTRANS OF
PROCESSOR 1 PROCESSOR 2

RETURN NO REgHgN
XTRANS TO TO FUN N1
XTPERM FUNCTION 1

SUPERVISOR PROCESSOR 1 PROCESSOR 2

(highest priority) each time a status change occurs. Whenever Ex-
ecutive discovers a program ready for execution, the scan stops
and that program receives control.

We have introduced a supervisor as though it were 4 single pro-
gram. This is an over-simplification; actually, a supervisor can con-
sist of one or more programs called supervisor “functions.” Each
function has its own XTRANS area, but all share a common xTPERM.
Each supervisor has one entry in the Executive priority table; each
function has a second-level priority and contends for control within
its supervisor.

As a simple example of a multi-function supervisor, a super-
visor dedicated to the processing of launch data may contain one
function for each class of data. The function concept is intended to
endow the supervisor with a capability for generating concurrent
requests of processors. Multiprogramming can occur almost with-
out the application programmer’s being aware of it. With a number
of concurrent requests for processing, the Executive can attempt
to maximize the effective utilization of the cpu.

The supervisor function can call a processor in several different
ways. One method uses a processor as a closed subroutine with
control returning to the function at the point immediately follow-
ing the call. In this method, the function is out of operation until
the processor returns control. An alternative approach allows the
function to send a call to a processor (Figure 5). The function gives
up control only while Executive enqueues the xTrans for the speei-
fied supervisor. In this manner, a function may sequentially call a
number of processors before any of the called processors begins op-
erating. A call having been sent to a processor, the processor is
given the option of determining whether or not a return is to be
made. If a return is not intended, the processor simply represents

J. H. MUELLER




an “orphan” task in multiprogramming; when the processor com-
pletes, the task completes and disappeats. In a typical case, a func-
tion calls a processor to update a specific display. The function ex-
pects no return unless something unexpected develops in the proc-
essor’s computations. If the unexpected occurs, the function will
receive control at its entry point—at which time its XTRANS will
contain information from the processor’s XTRANS.

Tor data it must access frequently, each supervisor contains a
private table called an xTpPERM. Whenever the main storage occu-
pied by a supervisor must be made available for other uses, the
Executive preserves the affected xTPERM. At the time the super-
visor again receives control, its XTPERM is restored. The size of an
XTPERM is established by the programmer who designs the super-
visor. As a simple example, consider a supervisor that needs to
know the elapsed time since its most recent execution. Assume that
at each instance the supervisor receives control, the second word
of XTRANS contains the current time. This supervisor would com-
pute the elapsed time by subtracting the previous entry time (saved
in xTPERM) from the new time in XTrRANS, and then update the
entry in XTPERM with the new time from xTrANS.

Although xtpERM has many uses, a facility for handling much
larger quantities of data is provided by “data tables.” A data table
is dimensioned prior to run initialization and is dimensionally static
during a run. It is unrelated to any program, except on a dynamie
basis, i.e., data table information belongs to the system. Executive
help is required in reading from or writing into a data table be-
cause table reference generally involves input/output operations.

Data tables are meant to be ‘“‘device independent”’ in the sense
that a programmer need not know which device contains a data
table. The conventional methods of record processing are sup-
ported by the Executive 1ocs services—a data table may be com-
posed of one or more record blocks. However, the data tables may
be used, and are commonly used, as simple extensions of core stor-
age data areas or, in the FORTRAN idiom, ‘‘bufferable common.”
The programmer who has been using a data table assigned to tape
is confronted with no difficulties if that data table is reassigned to
the Lcs. However, the programmer using the word-level referencing
permitted by Lcs finds himself ‘“‘unsupported” if the data table is
reassigned to tape. In RTcc practice, almost all z-tables are located
in the Lcs. The fact that system data and, generally, all of the pro-
grams needed for the current processing phase, are available in Lcs
permits operation with a main storage significantly smaller than
would be necessary with conventional auxiliary devices, such as
drums or disks. Moreover, programs may read or write individual
words of the data table.

The use of a data table can be illustrated with a simple example
of a typical input processing cycle. Such a eycle entails preliminary
computation on the raw input data, merging of new and old data,
extensive computation on combined data, and updating operations
that propagate the effect, if any, of the new data throughout the

GEMINI OPERATING SYSTEM

system
data




Figure 6 Processor getting data
from LCS

EXECUTIVE
Ly STEP 3 (RETURN)

STEP 1 (CAL

MAIN
MEMORY
(PROCESSOR)

XTRANS

GET (DATAé
<
5]

LARGE
CAPACITY
STORAGE

L~
/
{(MOVE)

.

156

system. The cycle is accompanied by frequent real-time inputs, but
relatively littie data. (Until the recent capacity increases in telem-
etry rates, rrcc real-time inputs rarely exceeded 1K words per
second, and much of that was redundant. The Lcs data tables and
programs produced the real 1/0 load, frequently exceeding 100K
words per second.)

Throughout a cycle, whenever a program needs ‘“‘old” data, the
Real Time Input/Output Control System (rTiocs) brings the in-
formation from recs (Figure 6). Whenever a program must update
information in a data table, the rTIOCS Writes the data into the
specified data table. An application program simply calls Execu-
tive with the name of the data table, the location in main storage
from which data is to be written or into which data is to be read,
and the amount of data involved.

To support a reference to an RT10CS service, one or more small
Executive subroutines are included in the user’s program when the
system tape is constructed. During execution, a call upon RTIOCS
gives control to the appended subroutine. The subroutine executes
a Store-and-Trap instruction (STR), where the relocation mode is
turned off and control passes to the resident Executive. The STR
instruction is used for all requests for Executive support; a code in
the STR identifies the service required.

Normally, a program requesting data-table service is not re-
started until the service operation has been completed. In some
cases involving very slow output devices, rTIOCS provides some
buffering, and control is returned to the program before the phy-
sical operation has been completed. On the other hand, for the
usual data-table operation involving Lcs, the program simply waits
until the operation has been completed.

Programmers are given no control over buffering. Design dis-
cussions all ultimately led to the same conclusions: (1) Executive
could be equipped to decide when and how much buffering was re-
quired, and (2) most application programmers prefer to leave this
complication to the control system. The decision was also consistent
with a decision to use FORTRAN. Approximately half of the code in
the manned-support systems was written in FORTRAN; every Ex-
ecutive service is FORTRAN compatible and invokable by the stand-
ard CALL statement. The xTPERM facility of the supervisors could
easily have been simulated by data tables. The two approaches re-
flect a trade-off between time and space; the more frequently data
is referenced by a supervisor, the more likely the data is to be kept
in the xTPERM; the greater the space needed, the more likely the
data is to be kept in a data table. Also, data in XTPERM are private
to a supervisor, whereas data tables are not.

Since the names of data tables can be handled as data, there is
virtually no limit to the amount of data a processor can access
from the information supplied in xTRANS. In fact, many of the
trajectory processors for the Gemini-Agena mission systems op-
erate on data from tables named by the calling supervisors, but
which do not appear in the processor’s program.

J. H. MUELLER




The process by which Executive delivers real-time data to the
application programs is termed “routing.” Consider a supervisor
that must produce display output every second. This supervisor
instructs Executive to give it control at every second. The Ex-
ecutive then files the request in a ‘‘routing directive” that remains
operative until modified or cancelled. Every second thereafter,
while scanning its time-routing directives, the Executive creates a
distinctively identified xTrRANS and immediately attempts to give
the XTRANS to the specified supervisor. But this is not always pos-
sible; the supervisor may not be in main storage, it may currently
be operating, or work of higher priority may have intervened. In
such an event, the XTRANS is placed in a first-in, first-out queue for
the program. When a resident program with work in its queue re-
ceives the highest active priority, the XTrRANS is moved into the
program and control passes from Executive to that program.

The data-routing process is similar to the routing of timing in-
formation. A data-routing directive issued by an application pro-
gram is of two parts: the first identifies the data to be saved; the
second defines the action to be taken when designated data have
entered the system. Two options are available: “direct routing”
and ‘‘store routing.”

Direct routing takes advantage of the fact that rrcc has few
variable-length messages. Some messages are small enough to fit
within an xTrANS: for these, the programmer usually specifies di-
rect routing (Figure 7). When the interrupt occurs, Executive sim-
ply creates an XTRANS block, dumps the data into it, and places
this XTRANS into the queue for the program named in the routing
directive. When the program reaches this xTraNs, the data are im-
mediately available for processing. If the message exceeds the
XTRANS space, Executive places it in an Executive buffer and stores
the buffer address in xTrRANS. Using the information in the XTrRANS,
the program obtains the message by calling upon rTIOCS t0o move
the message into the program’s area.

Real-time processing usually involves a collection phase fol-
lowed by a processing phase, and frequently these phases overlap.
Data collection is handled by Executive in response to a routing
directive that identifies the data and requests that the data be
placed in a specified data table. A separate routing directive causes
Executive to generate a periodic XTRANS as a function of time.
When the designated program receives this XTrRANS, the rRT1OCS is
called to read the collected data from the data table.

Store-mode routing provides an interesting use of a particular
RTIOCS service. A data table can be defined as “circular,” in which
case data are stored sequentially and overflow data displace data
at the beginning of the table. Hence, the contents of the table are
always that most recently received. This feature has proved useful
in periods of heavy loads. Data collection proceeds continuously as
real-time data arrives. It is desirable to process all input data, but
when the system is heavily loaded, less frequent processing of in-
puts is acceptable. Under heavy loads, more important work may

GEMINI OPERATING SYSTEM

data
routing

Figure 7 Direct-mode routing

REAL-TIME
DATABUFFER

DATA ROUTING
DIRECTIVE

SUPERVISOR

EXECUTIVE

XTRANS

XTRANS OF

SUPERVISOR




I/O control

displace some of the input processing. When the load decreases,
processing of input resumes with the latest data.

The goals for the design of the RTI0CS Were convenience and
simplicity. Basically, the user has two rrIoCS calls: GET and PUT.
Each GET or PUT is defined by one or more ‘“argument sets.” An
argument set must contain three parameters and may have as many
as five, namely,

data table name

internal buffer location

word count

block or table subseript (optional)
block identifier (optional).

The latter two parameters apply to blocked data tables. A data
table of 500 words may be defined as one 500-word block, five 100-
word blocks, 100 five-words blocks, ete. If zxamex is defined as
two 250-words blocks, the following call

CALL GET (zNAMEX, internal buffer, 2, 3, 2)

will yield the 253rd and 254th words of the table. However, if znaMEX
were defined as 100 five-word blocks, the call would “get”’ the eighth
and ninth words of the table. In system creation, the data-table name
is transformed into a pointer to a control block within Executive.
Control-block information is used to allocate the data table to a
physical device at initialization time and to translate GET’s and
PUT’s during execution. Each 1/0 device supported by the Execu-
tive is represented by one or more control blocks. Control blocks
are used in the allocation of main storage, L.cs, magnetic tapes, the
on-line printer, the direct data-to-TV connection, and the sub-
channels of the 7281.

Operational considerations

Virtually all of the 7094 computing at the RTcc operates either under
Executive or gAJoB (Gemini-Apollo 1BJOB), a modified 1BsYS/1BJOB
system.” With FORTRAN and 1BMAP, gaJoB is used to build and test
programs. The Editor in gaJoB provides master-library and system-
tape services. All real-time systems have binary and symbolic
master files. With the Editor, decks may be altered against the
binary or symbolic masters, and individual source cards may be
altered against the symbolic master. Although there are various
modes and methods of testing programs, subsystems, and full real-
time systems, it is significant that the programs being tested need
never be changed to satisfy the testing environment.

Since all the Executive services are provided via the CALL state-
ment, a simulator of the real-time environment was easily provided
under GAJOB by means of library subroutines. This capability per-
mits the testing of a single processor or supervisor, or of a super-
visor and several processors, in a batched-job system. Some of the
special features of Executive’s multiprogramming facility cannot

J. H. MUELLER




be simulated adequately in a sequential environment, but for most
unit, string, or subsystem testing, the simulator is very effective.
The faet that processing is sequential often makes it possible to
identify programming mistakes before the environment changes
completely (a constant problem in multiprogramming debugging).
Moreover, a capability for significant debugging in a batch mode
greatly economizes the computer time required for delivery of
checked-out systems.

When unit, string, and subsystem tests have been completed,
the programs can move unchanged into the real-time system test-
ing environment, the first step being to create a real-time system
tape.

The Executive has been described as a single control program
serving many real-time applications systems. The linkages between
the Executive and the application system are resolved by the
Editor. The user defines his application system for the Executive
by building tables in the Executive. This is accomplished by insert-
ing macrostatements into a special Executive deck. When this deck
is assembled, the user’s section of Executive is created. Basically,
these macrostatements define:

® Application program priorities
File control blocks (for z-tables)
® Initial routing directives

The Editor combines this user’s deck with the Executive code
and produces the Executive nucleus. In the process, all symbolic
names (program names, z-table names, ete.,) are translated into
indexes. Essentially, the translation trades pre-execution time to
avoid translation in real time. The Editor writes the nucleus on
the real-time system tape and copies the remainder of non-resident
Executive and the application programs. As a non-nucleus program
is placed on the real-time system tape, each reference to the trans-
lated symbols is replaced by that symbol’s assigned index. There-
after, corrections may be made to programs on the tape at little
expense, provided no changes are made to the nucleus indexes on
the tape.

After the real-time system tape is loaded, the monitor takes
control, loads the Les with z-tables and programs, and performs
machine diagnostics. The user can then select among a variety of
options. The first significant option is whether or not the user re-
quires clock synchronization. Unless external devices (including
other computers and/or people) are involved, synchronized time is
rarely used. Unsynchronized or simulated time uses an internal
clock; when the computer becomes idle, this clock 1s set forward
to the next clock interrupt. Using this feature, an orbit of 90 min-
utes is often simulated in a few minutes without changes to the
orbit program. In fact, there is no way an application program can
tell that a simulated clock is being used.

When running in the simulation mode, the user can specify that
any or all real-time inputs be simulated with fabricated data from

GEMINI OPERATING SYSTEM




160

one device. Real-time inputs can be simulated, accept live data, or
go unused—in any combination. Furthermore, the real-time out-
put devices ean be used or their outputs diverted (by modifying the
file control block) to the Lcs. It should be noted that only when
all input is under its control can the simulation monitor guarantee
that input data will appear exactly as it would in a similar syn-
chronized real-time run. However, for most runs that combine real-
time and simulated devices, this restriction presents no problems.

The rrce version of the 1BJoB debugging system, heavily used
in job-shop runs, is also available when running a real-time system
in the simulation mode. The debugging package operates with the
simulated clock turned off, so that the application programs can-
not recognize that the debugging operations are taking place. When
a synchronized, or true, real-time run is specified, initialization
automatically removes any debugging requests.

For real-time runs, a Statistics Gathering System (sas) is op-
tional. This option applies only to the synchronized mode and gen-
erally requires about 5 percent of the cpu time in overhead. (The
RTCC experience has been that if 5 percent is the difference between
success and failure in a real-time run, there really is no difference.)
Statistics are accumulated in three categories:

® Internal Executive Logic—frequency of use, average execution
time, allocation attempts and successes, ete.
Supervisor and Processor—number of uses, average execution
time, number of executions per fetch from wLcs, number of Ex-
ecutive CALL's, ete.
cpu Utilization—total execution time, time for waiting for 1/0,
and idle time

The sas recording routine is part of resident Executive. sas is
activated through branches inserted at selected locations in Ex-
ecutive. Thereafter, when the location counter reaches one of the
locations, control passes to the recording routine, which updates
the appropriate sas tables. Periodically, transient low-priority sas
programs produce output from the tables. Originally conceived to
support the extensive apss modeling activities of rTcc, the sas op-
tion has proved useful to many of the programmers as a tool for
analyzing their systems.

Summary comment

The Gemini system became operational in early 1964; it supported
the remainder of the Gemini project and the 1966 Apollo missions.
Its simplicity permitted several hundred programmers—of wide ex-
perience ranges and many with no prior experience at all—to learn
and apply the Gemini concepts and facilities in a short time.

The use of FORTRAN facilitated rapid responses to NASA’s con-
stantly changing requirements—change is the norm in a develop-
mental project such as manned spaceflight. The routing and data-

J. H. MUELLER




table facilities have been expanded and incorporated into the
Gemini System’s successor.

Finally, without its ses measurement tools, the programming
system could not have reached the desired performance levels, and
its designers would have had less self-assurance regarding the suc-
cess of the system.

ACKNOWLEDGMENTS

While the rrce system described in this paper represents the efforts
of many people in both design and implementation, the author par-
ticularly wishes to acknowledge the contributions of Mr. Charles
T. Mullins for many of the initial design concepts and Mr. Robert
L. Hoffman, who managed the system design, analysis, and im-
plementation activities from mid-Mercury to Apollo.

CITED REFERENCES AND FOOTNOTES

1. “Project Mercury real-time computational and data-flow system.”

S. I. Gass, “The role of digital computers in Project Mercury,” AFIPS
Conference Proceedings, Eastern Joint Computer Conference, Macmillan
Co., New York, 33-46 (December 1961).

M. B. Scott and R. Hoffman, ‘“The Mercury programming system,”
wbid., 47-53.

W. K. Green and A. Peckar, “Real-time simulation in Project Mercury,”
ibid., 54-65.

R. D. Peavey and J. E. Hamlin, “Project Mercury launch monitor sub-
system (Lmss),”’ tbid., 66-78.

2. J. E. Hamlin, “A general description of the National Aeronautics and Space
Administration Real-Time Computing Complex located at the Manned
Spacecraft Center, Houston, Texas, '’ Association for Computing Machinery,
Proceedings of the 19th National Conference, Philadelphia, Pennsylvania,
A2.2-1-A2.2-22, (August 1964).

. A. M. Pfaff and C. C. Rawlins, “Nasa-Msc’s real-time computer complex,”
Proceedings of the Real-Time Systems Seminar, Houston, Texas, Inter-
national Business Machines Corporation (November 1966).

. W. S. Harner, J. F. Dinwoodie, and R. D. Compenni, ‘“The role of real-
time computer complexes in support of manned spaceflight,” <bid.

The Real Time Computer Complex gathers and processes data and gen-
erates displays for all non-military manned spaceflights. During mission
support, radar tracking and telemetry information are the major inputs.
The major computations performed are trajectory analysis and prediction,
recommended powered thrusts and maneuvers, generation of digital com-
mands for transmission to the spacecraft, logging of events, and main-
tenance of continuous displays of a variety of data categories for flight
controllers.

Although mission support is the major element determining the rrcc con-
figuration, it accounts for a small fraction of total computer utilization.
Other computational activities include spaceflight simulation, astronaut
and flight controller training, and development and testing of programs to
support all Mission Control Center activities.

The programming effort at rrcc involves two classes of programs: the op-
erating-system programs, and the application programs designed to run
under operating system control. Program development and testing involves
non-real-time batch processing. Successful assembly or compilation does
not yield mission-ready program systems; extensive program testing is nor-

GEMINI OPERATING SYSTEM




mally required, and this testing in turn requires special programs and
equipment.

. The basic relocation hardware package was derived from mrr’s Project
mac. The 65K extensions and the capability to invoke or ignore relocation
on an individual instruction basis were the sole creations of Mrs. Jane G.
Jodeit.

. T. A. Humphrey, “Large core storage utilization in theory and in practice,”
AFIPS Conference Proceedings, Spring Joint Computer Conference 30, Aca-
demic Press, 719-727 (April 1967).

7. “Design of an integrated programming and operating system.”
A. 8. Noble, Jr., “Part I, System considerations and the monitor,”” IBM
Systems Journal 2, 153-161 (June 1963).
R. B. Talmadge, “Part II, The assembly program and its language,”
1bid., 162-179.
R. Hedberg, “Part III, The expanded function of the loader,” IBM Sys-
tems Journal 2, 298-310 (September-December 1963).

162 J. H. MUELLER




