
This   paper describes  the  major  elements of a programmed  operating 
system  for a complex of five  computers  employed  at  the  Gemini  Mission 
Control  Center. The  system  was designed  for an  application  environ- 
ment  that  includes  real-time  space  missions,  simulated  real-time  ex- 
ercises,  and  extensive  job-shop  operations.  Relationships  among  pro- 
grams,  inputloutput  control,  and  various  operational  techniques  are 
described. T h e  characteristics o j  a  statistics-gathering  routine  are out- 
lined. 

Aspects of the Gemini real-time  operating system 

by J. H. Mueller 

Three generations of programming  systems  have  provided real- 
time  ground support  for  manned spaceflight programs. The first of 
these was the Mercury  system, which became operational  in 1960.' 
The  third  and  current  system  supports  the Apollo program. The 
subject of this  paper is the second in  the series, the Gemini  system, 
developed for NASA at  the Manned Spaceflight Center  in  Houston, 
Texas.2 

The  contract for this  system specified two  real-time  systems: 
one for mission support,  and one for vehicle and  network simula- 
tion. Since these  systems were to  operate  on identical  hardware 
configurations, there seemed no reason why a  suitably comprehen- 
sive set of control-program services could not serve both needs. 
Although the resultant  system is highly  application-orient'ed, the 
lessons learned in  the course of its design and operation  may  be of 
use to others who are developing large-scale real-t,ime operating 
systems. 

The real-time computer complex 

The computational  facility at  the Mission Control  Center  in Hous- 
ton is called the Real  Time  Conlputer Complex ( R T C C ) . ~ , ~  The 
Gemini RTCC configuration,  schematically  illustrated in Figure 1, 
consists of five IBM 7094-11 computers  connected to the System Se- 
lector  Unit, a plugboard-controlled  switching unit  that permits the 
computer  subsystems to be configured singly or in combination for 
various mission-support, simulation,  program-testing, and equip-. 
menbtesting functions of the RTCC. 
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Each of the 7094-11 systems  (Figure 2 )  has 6.5K words of main 
menlory and provisions for automatic relocation and memory pro- 
t e ~ t i o n . ~  At  no  degradation of CPU performance, the sixteen-bit re- 
location and protection  registers  permit  dynamic memory man- 
agement  without concern for the physical separation of the two 
32K memory boxes. The relocation method adds  the  contents of a 
base register to  the effective address  immediately  prior to memory 
reference. The eight low-order address  bits  are  ignored, giving a 
relocation precision of 256 words: consequently, an area  dealt  with 
in  dynamic  memory allocation consists of one or more contiguous 
256-word blocks. In  the protect mode, references within the upper 
and lower bounds are  permitted, whereas an  attempted reference 
outside the bounds is blocked and causes an  interruption. Protec- 
tion does not distinguish  among  fetches,  stores, or branches. When 
prot,ection is not  in effect, relocation may  be  applied at  the instruc- 
tion level. This  permits  the control  program to access operands in 
relocated storage  simply by  applying  the relative  displacement  in 
the problem  program to  the relocation register, eflective for that 
reference  only. 

Each 7094-11 has  one IBM 2361 Large  Capacity  Storage (LCS) unit 
with  a 524K-word capacity.6 Access to  the LCS is via the 7286 Chan- 
nel and  the effective transfer  rate between the LCS and main  stor- 
age  approaches 256K words per second. Real-time  information 
enters  and leaves the system  via the 7281 Data Communications 
Channel (except for television output  data, which is  transmitted 
over  a  direct-data connection a t  256K words per second). Data 
Channels A and B support  t,he card  reader, line printer,  and  tape 
drives. 

The 7281 also provides  timing facilities. An interrupt may  be 
generated a t  a program-specified number of 100-microsecond inter- 
vals;  concurrently,  a  synchronized,  exact one-second interrupt 
serves to  prevent  timing  drifts.  For  very precise timing, each 
7094-11 is equipped  with  a 36-bit register that increments a t  10- 
microsecond intervals.  This register can  be  read  or  reset  to zero 
under  program  control. 

Figure 2 RTCC 7094-11 system 
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Figure 3 Gemini  real-tlme  operating system 
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Program structure 

The Gemini real-time operating systems are composed of the three 
fundamental elements suggested in Figure 3: the Executive Con- 
trol  Program  (to  be called “Executive”), application programs, and 
data tables. “Resident” Executive is held permanently  in main 
storage to service interrupts, allocate core, and perform miscel- 
laneous frequently-used services. The resident Executive and  its 
associated tables occupy about 1511 words of main storage. For 
dynamic  display equipment allocation, LCS allocation, error mes- 
sage composition, system tape handling, and similar services, non- 
resident, or transient modules, are loaded into  main  storage as 
needed. These  transient modules contend on a  priority basis with 
the application programs for the remaining 50K of main storage. 

Application programs are of two types: supervisors and processors; 
a supervisor program directs the execution of processor programs. 
(This  unusual terminology seems to have arisen out of historical 
accidents.) Processors act  at explicit directives from supervisors, 
much as closed subroutines respond to calls from a higher level. 
Processors are available to all supervisors. An elementary  hierarchy 
might be composed of Launch,  Orbit,  and  Re-entry supervisors 
that share Data Conversion, Numerical Integration, Differential 
Correction, and Display Generation processors. 
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Executive recognizes only two levels of hierarchy: all super- Figure A s‘pervisor-processor 

visors are  equal, as  are all processors. Supervisors may  transmit 
information to one another  and  may call upon a processor. How- 

sequence 

A - SUPERVISOR  CALLS PROCESSOR l 

ever, processors cannot call upon one another. A processor simply 
executes and  then  returns control to  its calling supervisor; more- 
over, it returns control via  Executive because it is unable to  identify 
the calling supervisor. A supervisor or processor may  embrace any 
number of subroutines. A processing sequence involving one super- 
visor and two processors is illustrated  in  Figure 4. 

Some special transient  Executive programs require  direct refer- 
encing into resident Executive data; consequently they are  not  sub- 
jected to protection,  although relocation is still applied. All non- 
resident  Executive modules are  structured  into processors and su- 

PROCESSOR 1 
I 

pervisors. The relocate and  protect scheme prohibits  direct refer- SuPERV’SoRCALLSPRoCESSoR2 

encing or calling between two programs. Consequently,  every  su- 
pervisor-to-supervisor or supervisor-to-processor call requires that 
the calling program invoke Executive to transmit  control.  Although 
this  detail is essential to  an understanding of the Gemini System, 
it is  convenient to suppress it in describing such  operations as 
“supervisor A called processor R . . .” 

In  the LCS, a  program exists as  though it were to be executed 
from an  area  starting  with memory location zero (00000). Such  a 
program  can  be placed in  any  area of main  storage;  let x denote 
the address of the first location in  the area.  When the program re- 

SWl;KCJR 
c-. 

PROCESSOR 1 

ceives control, the relocation register contains x, and  the program c - ~ ~ ~ C U ~ ~ ~ ~ ~ u R N S C o N T R o L  
PROCESSOR 1 is executed as if it  had been loaded in memory location zero. 

Since a  program is limited to references within itself, i.e., to 
references within the bounds  set by  the protection registers, Ex- 
ecutive is designed to provide facilities for inter-program communi- 
cation. The primary  means for communication  is  a ten-word table 
or “buffer,” called XTRANS, within each program. Before a  program 
receives control, its XTRANS buffer is filled by Executive.  Whenever 
a program requires the service of another  program, the calling pro- 
gram fills its own XTRANS with programmer-defined parameters. 

Each supervisor or processor is  represented by  an  entry  in  the 

SUPERVISOR 

Executive  priority  table. An entry reflects program status  in  terms I EXECUTIVEIRANSFERSCONTROL 

of the following information: 

*”“” EXECUTIVE  TRANSFERS  XTRANS 

program is (is not)  currently  operating 
work is (is not) defined in  the program  queue 
program  is (is not) in main  storage 
program is currently being loaded into main  storage 
program is available in LCS 

program is a supervisor (processor) 
program is an Executive extension that can  run  without pro- 
tection 

The order of the entries in  the priority table  is established prior 
t’o initialization.  During execution, when an XTRANS is  created for 
a program, an  entry for this  program  is  chained in  priority  order 
into an “active”  list.  Executive  scans the active  chain from the  top 

GEMINI OPERATING SYSTEM 153 



, 

Figure 5 Calls sent to processors 
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(highest priority) each time  a  status change occurs. Whenever Ex- 
ecutive discovers a  program  ready for execution, the scan  stops 
and that program receives control. 

We have  introduced a supervisor as  though  it were a single pro- 
supervisor gram.  This is an over-simplification; actually,  a supervisor can con- 
structure sist of one or more programs called supervisor "functions." Each 

function  has it,s own XTRANS area, but all share a common XTPERM. 

Each supervisor has one entry in the Executive  priority table; each 
function  has  a second-level priority and contends for control within 
its supervisor. 

As a simple example of a multi-function supervisor, a super- 
visor dedicated to  the processing of launch data  may  contain one 
function for each class of data.  The  function concept is intended to 
endow the supervisor with  a  capability for generating  concurrent 
requests of processors. Multiprogramming  can occur almost with- 
out  the application programmer's being aware of it.  With a  number 
of concurrent  requests for processing, the Executive  can  at,tempt 
to maximize the effective utilization of the CPU. 

The supervisor function  can call a processor in several different 
ways. One method uses a processor as a closed subroutine  with 
control  returning to  the function at  the point  immediately follow- 
ing the call. In this method, the function is out of operation  until 
the processor returns  control. An alternative  approach allows bhe 
function to  send a call to a processor (Figure 5 ) .  The function gives 
up control only while Executive enqueues the XTRANS for the speci- 
fied supervisor. In  this  manner, a function  may  sequentially call a 
number of processors before any of the called processors begins op- 
erating. A call having been sent to a processor, the processor is 
given the option of determining  whether or not a return is to be 
made. If a return is not  intended,  the processor simply  represents 
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an  “orphan”  task  in  multiprogramming; when the processor com- 
pletes, the  task completes and disappears. In  a typical case, a  func- 
tion calls a processor to  update a specific display. The function ex- 
pects no  return unless something  unexpected develops in  the proc- 
essor’s computat,ions. If the unexpect,ed occurs, the function will 
receive control at  its  entry point-at which time  its XTRANS will 
contain  information  from the processor’s XTRANS. 

For data  it  must access frequently,  each  supervisor  contains  a 
private  table called an XTPERM.  Whenever the main  storage occu- 
pied by a  supervisor must  be  made available  for  other uses, the 
Executive preserves the affected XTPERM. At  the time the super- 
visor again receives control, its XTPERM is restored. The size of an 
XTPERM is  established by  the programmer who designs the super- 
visor. As a simple example, consider a  supervisor that needs to 
know the elapsed t,ime since its most  recent execution. Assume that 
a t  each instance the supervisor receives control, the second word 
of XTRANS contains the current  time.  This  supervisor would com- 
pute  the elapsed time  by  subtracting the previous entry  time (saved 
in XTPERM) from the new time  in XTRANS, and  then  update  the 
entry  in XTPERM with the new time  from XTRANS. 

Although XTPERM has  many uses,  a  facility  for  handling  much 
larger quarhties of data is provided by  “data tables.” A data  table 
is dimensioned prior to  run initialization and is dimensionally static 
during  a  run. It is  unrelated to  any program,  except on a  dynamic 
basis, i.e., data  table information belongs to  the system. Executive 
help is required  in  reading  from  or  writing into a data  table be- 
cause table reference generally involves input/output operations. 

Data tables  are  meant  to  be “device independent”  in the sense 
that a  programmer need not know which device contains  a data 
table. The conventional  methods of record processing are  sup- 
ported  by  the Executive IOCS services-a data  table  may  be com- 
posed of one or more record blocks. However, the  data tables  may 
be used, and  are commonly used, as simple extensions of core stor- 
age data areas or, in  the FORTRAN idiom, “bufferable  common.” 
The programmer who has been using a data  table assigned to  tape 
is confronted  with  no difficulties if that  data  table is reassigned to 
the LCS. However, the programmer using the word-level referencing 
permitted  by LCS finds himself “unsupported” if t.he data  table  is 
reassigned to  tape.  In RTCC practice,  almost  all  z-tables are  located 
in  the LCS. The fact that system data  and, generally,  all of the pro- 
grams needed for the  current processing phase, are available in LCS 
permits  operation  with  a  main  storage significantly smaller than 
would be necessary with  conventional  auxiliary devices, such  as 
drums or disks. Moreover,  programs may  read or write  individual 
words of the  data table. 

The use of a dat’a  table  can be  illustrated  with a simple example 
of a  typical  input processing cycle. Such  a cycle entails  preliminary 
computation  on  t,he  raw  input data, merging of new and old data, 
extensive computation on combined data,  and updating  operations 
that propagate the effect, if any, of the new data throughout  the 
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system. The cycle is accompanied by frequent real-time inputs, but 
relatively  little data. (Until the recent  capacity increases in telem- 
etry  rates, RTCC real-time inputs rarely exceeded 111 words per 
second, and  much of that was redundant.  The LCS data tables and 
programs produced the real I/O load,  frequently exceeding lOOIi 
words per second.) 

Throughout  a cycle, whenever a  program needs “old” data,  the 
Real  Time  Input/Output Control  System (RTIOCS) brings the in- 
formation  from LCS (Figure 6). Whenever a program must  update 
information in a data table, the RTIOCS writes the  data  into  the 
specified data table. An application  program  simply calls Execu- 
tive  with  the  name of the  data table, the location in  main storage 
from which data is to be written or into which data is to be  read, 
and  the  amount of data involved. 

To support a reference to  an RTIOCS service, one or more small 
Executive  subroutines  are included in  the user’s program when the 
system tape is  constructed.  During execution, a call upon RTIOCS 

gives control to  the appended  subroutine. The subroutine executes 
a Store-and-Trap  instruction (STR), where the relocation mode is 
turned off and control passes to  the resident  Executive. The STR 
instruction  is used for all  requests for Executive  support; a code in 
the STR identifies the service required. 

Normally,  a  program  requesting  data-table service is  not re- 
started until the service operation  has been completed. I n  some 
cases involving very slow output devices, RTIOCS provides some 
buffering, and control  is  returned to  the program before the phy- 
sical operation  has been completed. On the other  hand, for the 
usual  data-table  operation involving LCS, the program simply waits 
until  the operation  has been completed. 

Programmers  are given no control over buffering. Design dis- 
cussions all  ultimately led to  the same conclusions: (1) Executive 
could be  equipped to decide when and how much buffering was re- 
quired, and (2 )  most  application  programmers prefer to leave this 
complication to  the control  system. The decision was also consistent 
with  a decision to use FORTRAN. Approximately half of the code in 
the manned-support  systems was written in FORTRAN;  every  Ex- 
ecutive service is FORTRAN compatible and invokable by  the stand- 
ard CALL statement.  The XTPERM facility of the supervisors could 
easily have been simulated by  data tables. The two  approaches re- 
flect a trade-off between time  and space; the more frequently data 
is referenced by a supervisor, the more likely the  data is to be kept 
in  the  XTPERM;  the greater the space needed, the more likely the 
data is to be  kept  in  a data table. Also, data  in XTPERM are  private 
to a supervisor, whereas data tables  are  not. 

Since the names of data tables  can be handled as data,  there is 
virtually no limit to  the amount of data a processor can access 
from the information supplied in XTRANS. I n  fact,  many of the 
trajectory processors for the Gemini-Agena mission systems op- 
erate  on  data  from tables  named by  the calling supervisors, but 
which do not  appear  in the processor’s program. 
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The process by which Executive delivers real-time data  to  the 
application  programs  is  termed  “routing.” Consider a  supervisor 
that must produce display output every second. This supervisor 
instructs  Executive to give it control a t  every second. The Ex- 
ecutive then files the request in a “routing  directive” that remains 
operative  until modified or cancelled. Every second thereafter, 
while scanning its time-routing directives, the Executive  creates  a 
distinctively identified XTRANS and immediately attempts  to give 
the XTRANS to  the specified supervisor. But  this is not always pos- 
sible; the supervisor may  not be in main  storage, it may  currently 
be  operating, or work of higher priority may  have intervened. I n  
such an event,  the XTRANS is placed in a first-in, first-out queue for 
the program. When a resident program  with work in  its queue re- 
ceives the highest active  priority, the XTRANS is moved into  the 
program and control passes from  Executive to  that program. 

The  data-routing process is similar to  the routing of timing in- 
formation. A data-routing  directive issued by  an application pro- 
gram is of two  parts: the first identifies the  data  to be saved;  the 
second defines the action to be  taken when designated data have 
entered the system.  Two  options  are available: “direct  routing” 
and  ‘(store  routing.” 

Direct  routing  takes  advantage of the  fact  that RTCC has few 
variable-length messages. Some messages are  small enough to fit 
within an XTRANS: for these, the programmer usually specifies di- 
rect  routing  (Figure 7). When the  interrupt occurs, Executive sim- 
ply creates an XTRANS block, dumps  the  data  into  it,  and places 
this XTRANS int’o the queue for the program  named in  the routing 
directive. When the program reaches this  XTRANS,  the  data  are im- 
mediately  available for processing. If the message exceeds the 
XTRANS space,  Executive places it  in  an Executive buffer and  stores 
the buffer address in XTRANS. Using the information in  the XTRANS, 

the program  obtains the message by calling upon RTIOCS to move 
the message into the program’s area. 

Real-time processing usually involves a collection phase fol- 
lowed by a processing phase, and frequently  these phases overlap. 
Data collection is handled  by  Executive in response to a  routing 
directive that identifies the  data  and requests that  the  data be 
placed in a specified data table. A separate  routing  directive causes 
Executive to generate a periodic XTRANS as a function of time. 
When the designated program receives this XTRANS, the RTIOCS is 
called to read the collected data from the  data table. 

St’ore-mode rout,ing provides an interesting use of a particular 
RTIOCS service. A data table  can be defined as “circular,” in which 
case d a h  are  stored  sequentially  and overflow data displace data 
at the beginning of the table.  Hence, the  contents of the  table  are 
always that most  recently received. This  feature  has  proved useful 
in periods of heavy loads. Data collection proceeds continuously as 
real-time data arrives. It is desirable to process all  input  data,  but 
when the system  is heavily loaded, less frequent processing of in- 
puts is acceptable. Under  heavy  loads, more important work may 
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displace some of the  input processing. When the load decreases, 
processing of input resumes with  the  latest  data. 

The goals for the design of the RTIOCS were convenience and 
I/O control simplicity. Basically, the user has  two RTIOCS calls: GET and PUT. 

Each GET or PUT is defined by one or more “argument sets.’’ An 
argument  set  must  contain  three  parameters  and  may  have  as  many 
as five, namely, 

data  table  name 
internal buffer location 
word count 
block or table subscript  (optional) 
block identifier (optional). 

I 
The  latter  two  parameters  apply  to blocked data tables.  A data 

table of 500 words may  be defined as one 500-word block, five 100- 
word blocks, 100 five-words blocks, etc. If ZNAMEX is defined as 
two 250-words blocks, the following call 

CALL GET (ZNAMEX, internal buffer, 2, 3, 2)  

will yield the 253rd and 254th words of the table.  However, if ZNAMEX 

were defined as 100 five-word blocks, the call would “get” the eighth 
and  ninth words of the table. In  system  creation, the data-table  name 
is transformed  into a  pointer to  a  control block within  Executive. 
Control-block information  is used to allocate the  data  table  to a 
physical device a t  initialization time  and  to  translate GET’S and 
PUT’S during execution. Each I/O device supported by  the Execu- 
tive is represented by one or more control blocks. Control blocks 
are used in  the allocation of main  storage, LCS, magnetic  tapes, the 
on-line printer, the direct  data-to-TV  connection,  and the sub- 
channels of the 7281. 

Operational considerations 

Virtually  all of the 7094 computing at  the RTCC operates  either  under 
Executive or GAJOB (Gemini-Apollo IBJOB), a modified IBSYS/IBJOB 

system.’ With FORTRAN and IBMAP, GAJOB is used to build and  test 
programs. The  Editor  in GAJOB provides  master-library and system- 
tape services. All real-time  systems have  binary  and symbolic 
master files. With  the  Editor, decks may  be  altered against the 
binary or symbolic masters,  and  individual source cards  may  be 
altered  against the symbolic master.  Although  there  are  various 
modes and  methods of testing  programs,  subsystems, and full real- 
time  systems, i t  is significant that  the programs being tested need 
never  be  changed to  satisfy the testing  environment. 

Since all the Executive services are provided via  the CALL state- 
ment, a  simulator of the real-time  environment was easily provided 
under GAJOB by means of library  subroutines. This  capability per- 
mits  the  testing of a single processor or supervisor,  or of a super- 
visor and several processors, in a  hatched-job  system. Some of the 
special features of Executive’s multiprogramming  facility  cannot 
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be simulated  adequately in a  sequential  environment, but for most 
unit,  string, or subsystem  testing, the simulator is very effective. 
The fact that processing is sequential  often makes it possible to 
identify  programming  mistakes before the environment changes 
completely (a  constant problem in multiprogramming debugging). 
Moreover, a  capability for significant debugging in a batch mode 
greatly economizes the computer  time required for delivery of 
checked-out systems. 

When unit,  string,  and subsystem  tests  have been completed, 
the programs  can move unchanged into  the real-time system  test- 
ing  environment, the first step being to create a real-time system 
tape. 

The Executive  has been described as  a single control  program 
serving  many real-time applications systems. The linkages between 
the Executive and  the application  system  are resolved by  the 
Editor.  The user defines his application  system for the Executive 
by building tables in  the Executive.  This is accomplished by  insert- 
ing  macrostatements  into  a special Executive deck. When  this deck 
is assembled, the user’s section of Executive is created. Basically, 
these  macrostatements define: 

Application program priorities 
File control blocks (for z-tables) 
Initial routing directives 

The  Editor combines this user’s deck with the Executive code 
and produces the Executive nucleus. In  the process, all symbolic 
names (program names, z-table names, etc.,)  are  translated into 
indexes. Essentially, the  translation  trades pre-execution time to 
avoid translation in real time. The  Editor writes the nucleus on 
the real-time system tape  and copies the remainder of non-resident 
Executive and  the application programs. As a non-nucleus program 
is placed on  the real-time system tape, each reference to  the  trans- 
lated symbols is replaced by that symbol’s assigned index. There- 
after, corrections may  be  made to programs on  the  tape  at  little 
expense, provided no changes are made to  the nucleus indexes on 
the  tape. 

After the real-time system tape is loaded, the monitor  takes 
control,  loads the LCS with z-tables and programs, and performs 
machine diagnostics. The user can  then select among  a  variety of 
options. The first significant option  is  whether  or  not the user re- 
quires clock synchronization. Unless external devices (including 
other  computers  and/or people) are involved, synchronized time is 
rarely used. Unsynchronized or simulated  time uses an internal 
clock; when the computer becomes idle, this clock is  set  forward 
to the next clock interrupt. Using this  feature, an orbit of 90 min- 
utes  is  often  simulated  in  a few minutes  without changes to  the 
orbit  program. In  fact,  there  is no way an application  program  can 
tell that a  simulated clock is being used. 

When  running in  the simulation mode, the user can specify that 
any or all real-time inputs be simulated  with  fabricated data from 



one device. Real-time  inputs  can  be  simulated,  accept live data, or 
go  unused-in any combination. Furthermore, the real-time  out- 
put devices can be used or their  outputs diverted  (by modifying the 
file control block) to  the LCS. It should be  noted that only when 
all input is under its control  can the simulation  monitor  guarantee 
that  input  data will appear  exactly  as it would in a similar syn- 
chronized real-time run. However, for most  runs that combine real- 
time  and  simulated devices, this restriction  presents no problems. 

The RTCC version of the IBJOB debugging system,  heavily used 
in job-shop runs,  is also available when running a real-time system 
in  the simulation mode. The debugging package operates  with the 
simulated clock turned off, so that  the application programs can- 
not recognize that  the debugging operations  are  taking place. When 
a synchronized, or true, real-time run is specified, initialization 
automatically removes any debugging requests. 

For real-time runs, a  Statistics  Gathering  System (SGS) is op- 
tional. This option applies only to  the synchronized mode and gen- 
erally requires about 5 percent of the CPU time in overhead.  (The 
RTCC experience has been that if 5 percent  is the difference between 
success and failure in a real-time run,  there  really  is no difference.) 
Statistics  are  accumulated  in  three categories: 

Internal Executive Logic-frequency of use, average execution 
time,  allocation attempts  and successes, etc. 
Supervisor and Processor-number of uses, average execution 
time,  number of executions per fetch  from LCS, number of Ex- 
ecutive CALL’S, etc. 
CPU Utilization-total execution time,  time for waiting for I/O, 

and idle time 

The SGS recording routine is part of resident  Executive. SGS is 
activated  through  branches  inserted a t  selected locations in Ex- 
ecutive.  Thereafter, when the location  counter reaches one of the 
locations, control passes to  the recording routine, which updates 
the  appropriate SGS tables. Periodically, transient low-priority SGS 
programs produce output from the tables. Originally conceived to 
support the extensive GPSS modeling activities of RTCC, the SGS op- 
tion  has proved useful to  many of the programmers as a tool for 
analyzing  their systems. 

Summary comment 

The Gemini system became operational in early 1964; it supported 
the remainder of the Gemini project and  the 1966 Apollo missions. 
Its simplicity permitted  several  hundred programmers-of wide ex- 
perience ranges and  many  with no prior experience at all-to learn 
and  apply  the Gemini concepts and facilities in a short  time. 

The use of FORTRAN facilitated  rapid responses to NASA’s con- 
stantly changing requirements-change is the norm in a develop- 
mental  project  such as manned spaceflight. The  routing  and  data- 
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table facilities have been expanded and incorporated  into the 
Gemini System’s successor. 

Finally,  without its SGS measurement tools, the programming 
system could not  have reached the desired performance levels, and 
its designers would have  had less self-assurance regarding the suc- 
cess of the system. 
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