Computers with parallel compuling capabilities may become generally
avatlable in the future. Some implications for the field of numerical
analysts are indicated. An analogue of the bisection algorithm for root
determination, employing redundancy in computation as a means of
developing parallelism, is presented. An evaluation of the effect of re-
dundant parallel computation on the speed and efficiency with which
results are obtained is given for this algorithm.

Evaluation of redundancy in a parallel algorithm

by G. S. Shedler and M. M. Lehman

Computing systems capable of simultaneously executing a number
of tasks may become more important in the future.! This paper
considers an implication of this trend in the field of numerical
analysis. We aim to give an informal description of one means
whereby parallelism can be produced and exploited. A particular
technique for the development of additional parallelism in conven-
tional sequential algorithms (the introduction of redundancy) is
illustrated by a discussion of the bisection technique for determin-
ing the roots of functions.

A preliminary discussion of serial and parallel algorithms is
given in the following section. The consideration of an algorithm
as a partially ordered set of tasks enables a distinction to be drawn
between them. A graphic notation for presenting parallel algo-
rithms is also introduced. The next section takes up the develop-
ment of parallel numerical algorithms. In a later section, a re-
dundant parallel algorithm that generalizes the bisection method
for the determination of the value of an isolated root is given.
Finally, the effect of parallel computation on the speed and effi-
ciency of obtaining results by this algorithm is evaluated.

Serial and parallel algorithms

An algorithm (or a program to implement an algorithm) consists
of a set T of tasks T'y, Ty, - - -, T and a specification of any neces-
sary ordering of the tasks. The logic of the algorithm may impose
an ordering among Ty, T3, - - -, Ty. That is, the result obtained

IBM SYSTEMS JOURNAL *© VOL. 6 + NO. 3 - 1967




by executing the set of tasks 7" may depend on the order or se-
quence in which the tasks are executed. In this event, a partial or
complete ordering of the 7; will define a “correct’” result. Specifi-
cally, we can define an order relation < in T as follows. For 7 = j
and7=1,2, ---,m;andj =1,2, - -+, m

T:<T;

if, in the algorithm, task 7'; must be completed before task 7'; can
be initiated. In such a case, it is said that 7'; precedes T'; or that
T, succeeds T'.

As traditionally stated, the algorithms of numerical analysis are
serial procedures; that is, the order of the tasks that comprise the
algorithm is a linear ordering. There appears to be no intrinsic
reason why such serial algorithms should dominate. In many cases,
the reason seems to have been strictly historical in that throughout
the development of the numerical calculus both human and ma-
chine calculators could execute only one task at a time. Thus there
was, in general, little incentive to create or discuss non-serial com-
putational sequences or to determine permissible departures from
sequential execution. Moreover, such sequences are of the most
general form in the sense that any parallel process can be expressed
in sequential form.

Some algorithms, for example the bisection method for root de-
termination, are completely ordered procedures, each task requir-
ing the result of its predecessor. Such algorithms may be termed
properly serial. They are, however, the exception rather than the
rule. Within a given serial algorithm, one may often find tasks or
sets of tasks that are logically independent and can be computed
simultaneously if the appropriate computing facilities are available.
Such independent tasks within an algorithm comprise an instance
of what we refer to as latent parallelism.

If the task ordering specified for an algorithm is explicitly par-
tial, it may be termed a parallel algorithm. For if there exist distinct
indices 7 and 7 such that 7; € T;and T; € T4, then T'; and T;
can be performed concurrently.

A parallel algorithm can be described by a directed graph in
which each node of the graph is associated with a task of the algo-
rithm or with one of three control functions: split, join, or termi-
nate. Each branch of the directed graph is associated either with
unconditional or conditional data flow.

A split node (Figure 1) indicates permissible simultaneous initi-
ation of all the tasks or functions that are the immediate successors
of the split node. A join node (Figure 2) indicates that all tasks or
functions associated with nodes that are direct predecessors of the
join node must be completed before control passes beyond that
node. A terminate node (Figure 3) indicates the immediate inter-
ruption of all tasks or functions associated with the nodes specified
at the terminate node that are being executed when the terminate
occurs. Subsequent initiation and execution of these tasks or func-
tions is not inhibited by the terminate node. Dotted lines with

REDUNDANCY IN A PARALLEL ALGORITHM

Figure 1 Split node

Figure 2 Join node

Figure 3 Terminate node




&

Conditional node

4

4
e

'
4

4

o
®

\
N\

N\,

N\,
N\,

©

144

arrowheads are used to indicate branches associated with condi-
tional data-flow (Figures 4), and solid lines with arrowheads are
used to indicate branches associated with unconditional data-flow.

A node associated with a task 7;is denoted by (7). Split nodes
are denoted by (), and join nodes by (., or by (5) and () when
there is no ambiguity. A node associated with the termination of
tasks T'; and T'; is denoted by (\)r,r,. A stop task is used to
indicate the end of an algorithmic procedure.

The configuration in Figure 1 means that upon completion of
task 7', tasks 7’2 and T'; are initiated simultaneously. Task 7' is
said to split to tasks 7> and T's. The interpretation of Figure 2 is
that task 7', is initiated as soon as tasks 7'y, T's, and 7'; have been
completed. Tasks T'1, T, and T'; are said to join at J. Figure 3
shows that if task 7'; is being executed at the completion of task
T, then T 1s interrupted immediately. Figure 4 requires that upon
completion of task T';, one of the tasks T's, or T';, or T4 is initiated.

Parallel algorithms and numerical analysis

In an attempt to increase the speed of numerical computation, ever
faster computers have been built through efforts in the areas of
technological improvement and computer organization. At the
same time, improved computational procedures were being de-
veloped. At the mathematical level, attempts to speed up numerical
computation were almost exclusively in the direction of decreasing
the amount of work to be done. Another mathematical approach
involves the development of techniques that make efficient use of
multiple computing facilities that a parallel processing system
would provide. Algorithmic procedures composed of tasks, many
of which can be performed in the absence of results from other
tasks, are referred to as highly parallel algorithms. Each task com-
prises an ordered or partially ordered sequence of instructions or
operations. This type of parallelism has been called macro-paral-
lelism ;2 that is, meaningful strings of consecutive instructions de-
fine a task that can be performed simultaneously with similarly
defined tasks. This is to be distinguished from micro-parallelism in
which partial ordering is exploited among instructions by the simul-
taneous execution of independent instructions.

The first source of highly parallel algorithms is the set of stand-
ard algorithms of numerical analysis. Preliminary investigations!
of such algorithms indicate that although many of these have gen-
erally and implicitly been accepted as serial, they do contain a
great deal of latent parallelism.

One approach to the construction of parallel algorithms has been
described by Nievergelt.? He suggests that reduced turnaround
time can be obtained from a parallel-processing device by intro-
ducing redundant computation into a serial algorithm to obtain a
highly parallel algorithm. Such a technique requires more work to
obtain a particular result, but it takes advantage of a machine’s
parallel-processing capability to obtain the result more rapidly.

G. S. SHEDLER AND M. M. LEHMAN




Figure 5 Bisection method for finding an isolated root

(2a + b)/3
(a + 2b)/3

m; =
m, =

> a’=m,

-
7Y =l —a| -
-

OUTPUT : m,
STOP

Moreover, it is expected that new, efficient, highly parallel algo-
rithms can be developed. For example, Dorn* has been able to de-
velop an efficient parallel algorithm for evaluating polynomials by
generalizing Horner’s rule. Karp and Miranker® have found parallel
search policies for the maximum of a unimodal function. Also,
Miranker and Liniger® have derived a class of numerical integration
formulas of a parallel type for ordinary differential equations.

Redundancy and the bisection method

Redundancy was applied by Nievergelt® to the solution of ordinary
differential equations. We present a redundant analogue of the
bisection method for finding an isolated root of a function. A rep-
resentation of this algorithm is given in Figure 5.

Suppose that a continuous function f of a real variable x has a
single root in the interval (a, b) and that f(a)f(b) < 0. Without
loss of generality, we may assume that f(@) < 0 and f() > 0 and
proceed as follows. Having calculated m: = (2¢ + b)/3 and

REDUNDANCY IN A PARALLEL ALGORITHM

standard
algorithm




generalized
algorithm

146

ms = (a + 2b)/3, split to two parallel tasks, 7', and T3, for the
computation, respectively, of f(mi) and f(ms). If f(mi) > 0, ter-
minate 7'; and the join J of T3 and T, set b equal to my, and
repeat the procedure. If f(m;) = 0, the output m, is the required
root, and the computation stops. If f(m.) < 0, join at J with task
Ts. If f(ms) < 0, terminate T, and the join J, set o’ equal to ma,
and repeat the procedure. If f(msz) = 0, the output m. is the re-
quired root, and the computation stops. If f(ms) > 0, join with
task 7's at J. When the join J is satisfied, set @ equal to m; and b
equal to me, and repeat the procedure. The procedure is continued
until the root is determined to the desired accuracy. Note that re-
dundant computations are terminated when it is known that their
outputs will not be needed.

The above procedure may be generalized in the following way.
Let N be a positive integer greater than or equal to two. Having
computed

[((N — 24+ Da + ib]
N+1

split to N parallel tasks for the computation, respectively, of
fimy), - -+, f(my). Forany 7 = 1, 2, ---, N, if f(m;) = 0, then
m; is the required root and the computation stops. Otherwise,
terminate redundant tasks in accordance with the sign change of
the function, and join with the remaining members of the set of N
tasks. When the join of these tasks is satisfied, set a equal to m
(where m is the greatest element of the set a, m1, ms, - - -, mn, b
such that f(m) < 0), and set b equal to m’ (where m’ is the least
element of the set a, mi, ms, - -, my, b such that f(m') > 0).
Having set a and b, repeat the procedure, continuing in this way
until the root is found to the desired accuracy. The choice of N = 2
yields the previously described algorithm.

It is perhaps appropriate to mention at this point that the
standard Newton-Raphson algorithm is an inherently parallel algo-
rithm ; that is, a function value and its derivative can be computed
simultaneously. Since the Newton-Raphson procedure converges
quadradically, we expect it to be superior to the N = 2 redundant
bisection algorithm deseribed above. For larger values of N, how-
ever, the redundant algorithm could approach the performance of
the (parallel) Newton-Raphson method, at the same time avoiding
the difficulties associated with the choice of a first approximation.
Limited computational experience with polynomials supports this
assertion.”

m; = 7:=1,2,"',N

Speed estimates

Under the assumption that the time required to initiate and ter-
minate parallel tasks is small compared to the time required for a
task, an iteration of one of the redundant algorithms takes ap-
proximately the same amount of time as an iteration of the stand-
ard algorithm. Therefore, it is possible to obtain a measure of the

G. S. SHEDLER AND M. M. LEHMAN




relative speeds of these procedures by calculating the expected value
of the number of iterations required for a prescribed accuracy.

The validity of our assumption depends on the nature of the
function involved. IFor example, in the case of polynomials of de-
gree perhaps greater than fifty, we expect it to be valid.

Tor the purpose of this analysis, we consider an interval of
length d and assume that the occurrence of a root of the function
is uniformly distributed within that interval. Let an accuracy (error
tolerance) of e < 0 be given.

For the standard algorithm, define n’ to be the greatest positive
integer such that

S = 226 + 21(2€) + -+ - + 212 < d

Then E(e), the expected value of the number of iterations required
to obtain accuracy e, is computed as

Ei(e) = ;Pk(k) + <1 — ZP,-)(n’ +1) if
0 .

where

Py =

and

< k—1 ) 2ke k
1 -- 3 p )| —= =23 --,n
' 2P l:d— (z’C—Q)G:I ’

TFor the Nth order redundant algorithm, define m’ to be the
greatest positive integer such that

Sw = (N 4+ 1)°@Ne) + -+ + (N + 1)"'(2Ne) < d

The expected value Ex(e) of the number of iterations of the Nth
order redundant algorithm required to obtain accuracy e is com-
puted as

Ex(e) = :zi;Pk(k) + <(<1 - Z,P,-)(m’ +1) i
- N T .

where

_ 2N

» ) [+ n7eNg |
Jld = o(N + D) — 1]e|

{

REDUNDANCY IN A PARALLEL ALGORITHM

147




Table 1 Expected value of number ot iterations

Accuracy
€

Number of processors
4 5 6

10~
1078
107®
1077
1078

Table 2 Execution time compared to a single processor

Accuracy
€

1

2

Number of processors

10
108
10-¢
1077
1078

100.0
100.0
100.0
100.0
100.0

64.6
64.1
63.9
63.6
63.7

Table 3 Redundancy compared to a single processor

Accuracy
€

Number of processors
4 5 6

10
1073
1076
1077
108

183.7 206.4 234 .4
180.0 200.2 229.1
178.8 204.1 224.8
178.4 201.6 219.7
174.9 197.9 220.4

148

The values of E;(¢) and Ex(e) have been computed for a range
of € from 10~ to 10~2 and for N ranging from two to 10. The re-
sults of these computations are given in Table 1. The length d is
equal to one.

For the same ranges of ¢ and N, execution times compared to
the standard (single-processor) algorithm are tabulated in Table 2.
These figures indicate the substantial increase in speed that can be
obtained from parallel processing by means of the redundant algo-
rithms.

A measure of the amount of redundant computation contained
in these algorithms appears in Table 3. Again for the same ranges
of e and N, the amount of computation compared to the single-
processor algorithm is tabulated. These figures represent worst-case
estimates since savings due to termination are not considered.

G. S. SHEDLER AND M. M. LEHMAN




Summary

The development of computing systems with highly parallel facili-
ties suggests the study and development of techniques of numerical
analysis designed to exploit the capabilities of such systems. Such
investigations should aim to produce algorithms that result in
faster computations than are now possible using conventional ma-
chines and standard algorithms. On the basis of the work described
here and the referenced investigations, approaches that can be ex-
pected to succeed are the reformulation of classical procedures to
expose latent parallelism, the introduction of computational re-
dundancy into algorithms, and the development of new parallel
algorithms.

CITED REFERENCES

1. M. M. Lehman, “A survey of problems and preliminary results concerning
parallel processing and parallel processors,”’ Proceedings of the IEEE 54,
No. 12, 1889-1901 (1966).

. M. M. Lehman, ‘“Serial-mode operation and high-speed parallel process-
ing,” Information Processing 1965, Proceedings of IFIP Congress 1965,
North-Holland Publishing Co., Part 2, 631-632 (1966).

. J. Nievergelt, ‘“Parallel methods for integrating ordinary differential equa~
tions,” Communications of the Assoctation for Compuiing Machinery 7, No.
12, 731-733 (1964).

. W. 8. Dorn, “Generalization of Horner’s rule for polynomial evaluation,”
IBM Journal of Research and Development 6, No. 2, 239-245 (April 1962).

. R. M. Karp and W. L. Miranker, ‘“Parallel minimax search for a maxi-
mum,” to be published in Journal of Combinatorial Theory.

. W. L. Miranker and W. M. Liniger, “Parallel methods for the numerical
integration of ordinary differential equations,” Mathematics of Computation
21, No. 99, 304-320 (July 1967).

. G. 8. Shedler, “Parallel numerical methods for the solution of equations,”
Communicaiions of the Association for Computing Machinery 10, No. 5,
286-291 (1967).

REDUNDANCY IN A PARALLEL ALGORITHM

149




