
Computers  with  parallel  computing  capabilities  may  become  generally 
available in the  future.   Some  implications  for  the  f ield of numerical 
analysis  are  indicated. An analogue of the  bisection  algorithm  for root 
determination,  employing  redundancy in computation  as a means of 
developing  parallelism, i s  presented. An evaluation of the e$ect of re- 
dundant  parallel  computation  on  the speed and  eficiency  with  which 
results  are  obtained i s  given for this  algorithm. 

Evaluation of redundancy  in a  parallel  algorithm 
by G. S. Shedler  and M. M. Lehman 

Computing  systems  capable of simultaneously  executing  a  number 
of tasks  may become more important  in  the future.' This  paper 
considers an implication of this  trend  in  the field of numerical 
analysis. We aim to give an informal  description of one means 
whereby parallelism can be produced and exploited. A particular 
technique for the development of additional parallelism in conven- 
tional  sequential  algorithms  (the  introduction of redundancy)  is 
illustrated  by  a discussion of the bisection technique  for  determin- 
ing the roots of functions. 

A preliminary discussion of serial and parallel  algorithms is 
given in  the following section. The consideration of an algorithm 
as a  partially  ordered  set of tasks  enables  a  distinction to be drawn 
between them. A graphic notation for presenting  parallel algo- 
rithms is also introduced. The next  section takes  up  the develop- 
ment of parallel  numerical  algorithms. I n  a later section, a re- 
dundant parallel  algorithm that generalizes the bisection method 
for the determination of the value of an isolated  root is given. 
Finally, the effect of parallel  computation  on the speed and effi- 
ciency of obtaining  results  by  this algorithm  is  evaluated. 

Serial  and  parallel  algorithms 

An algorithm (or a  program to implement an algorithm) consists 
of a  set T of tasks TI, Tz ,  . e ,  T ,  and  a specification of any neces- 
sary ordering of the tasks. The logic of the algorithm may impose 
an ordering  among T I ,   T z ,  0 ,  T,. That is, the result  obtained 
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quence in which the tasks  are executed. In  this  event, a partial or 
complete ordering of the Ti will define a  “correct”  result. Specifi- 
cally, we can define an order relation < in T as follows. For i # j 
and i = 1, 2, . - a l  m;  a n d j  = 1 , 2 ,  . . e l  m 

Ti < T i  

if, in  the  algorithm,  task Ti must be  completed  before task T i  can 
be initiated.  In  such a case, it is  said that T i  precedes T i  or that 
Ti succeeds Ti. 

As traditionally  stated,  the  algorithms of numerical  analysis are 
serial  procedures; that is, the order of the  tasks  that comprise the 
algorithm  is  a  linear  ordering. There  appears  to be no  intrinsic 
reason  why  such  serial  algorithms should dominate. In  many cases, 
the reason seems to have been strictly historical in  that  throughout 
the development of the numerical calculus both  human  and ma- 
chine  calculators could execute  only  one task a t  a  timc.  Thus  there 
was, in  general, little  incentive  to  create or discuss non-serial com- 
putational sequences or to determine pcrmissible departures from 
sequential  execution.  Moreover,  such sequences are of the most ~i~~~~ 2 ~~i~ no& 

general  form  in the sense that  any parallel process can be expressed 
in  sequential form. 

Some  algorithms,  for  example the bisection  method  for  root  de- 
termination,  are  completely  ordered  procedures,  each  task  requir- 
ing the result of its predecessor. Such  algorithms  may  be  termed 
properly  serial. They  are, however, the exception rather  than  the 
rule. Within a  given  serial  algorithm,  one may  often find tasks or 
sets of tasks  that  are logically independent  and  can be computed 
simultaneously if the  appropriate  computing facilities are available. 
Such  independent  tasks  within an algorithm comprise an instance 
of what we refer to  as latent  parallelism. 

If the  task ordering specified for an algorithm  is  explicitly  par- 
tial,  it  may  be termed  a parallel  algorithm. For if there exist distinct 
indices i and j such that T i  d: T i  and T j  d: Ti ,  then T i  and Ti 
can  be performed concurrently. 

A parallel  algorithm  can be described by a  directed  graph in 
which each  node of the  graph  is associated with a task of the algo- 
rithm or with one of three control  functions: split,   join, or termi- 
nate. Each  branch of the directed graph is associated  either with 

A split node (Figure 1) indicates permissible simultaneous  initi- 
ation of all the tasks or functions that  are  the immediate  successors 
of the split  node. A join  node  (Figure 2 )  indicates that  all  tasks  or I \  

functions associated with nodes that  are direct predecessors of the 
join node must  be completed before control  passes  beyond that 
node. A terminate node  (Figure 3) indicates the immediate  inter- 
ruption of all  tasks or functions  associated with  the nodes specified 
at  the  terminate node that  are being  executed  when the  terminate 
occurs. Subsequent  initiation  and  execution of these  tasks or func- 
tions  is  not  inhibited  by  the  terminate node. Dotted lines with 

Terminate node 
~ unconditional or conditional data flow. 

I \  



Figure 4 Conditional  node 

144 

arrowheads  are used to indicate  branches  associated  with condi- 
tional data-flow (Figures 4), and solid lines with  arrowheads  are 
used to indicate  branches  associated with unconditional data-flow. 

A node associated with  a  task T i  is  denoted by T). Split nodes 
are denoted  by 0, and join  nodes by 0, or by @ and @ when 
there  is no  ambiguity. A node  associated with  the  termination of 
tasks T i  and T j  is  denoted by ~ T ~ , T ~ .  A stop  task is used to  
indicate the end of an algorithmic  procedure. 

The configuration in  Figure 1 means that upon  completion of 
task TI, tasks T2 and Ta are  initiated simultaneously. Task T1 is 
said to split to  tasks Tz and TI. The  interpretation of Figure 2 is 
that  task T 4  is initiated as soon as  tasks TI, T2, and TI have been 
completed. Tasks TI, T2, and T 3  are said to join at J .  Figure 3 
shows that if task T 1  is being executed at   the completion of task 
T s ,  then TI is interrupted  immediately.  Figure 4 requires that upon 
completion of task T1,  one of the  tasks T2 ,  or T I ,  or T q  is  initiated. 

Parallel  algorithms  and  numerical analysis 

In  an  attempt  to increase the speed of numerical  computation,  ever 
faster  computers  have been built  through  efforts  in  the  areas of 
technological improvement  and  computer organization. At  the 
same  time,  improved  computational  procedures were being de- 
veloped. At  the mathematical level, attempts  to speed up numerical 
computation were almost exclusively in  the  direction of decreasing 
the  amount of work to be  done.  Another  mathematical  approach 
involves the development of techniques that make efficient use of 
multiple  computing  facilities that a  parallel processing system 
would provide. Algorithmic procedures composed of tasks,  many 
of which can  be performed in  the absence of results  from  other 
tasks,  are referred to  as highly parallel algorithms. Each  task com- 
prises an ordered or partially  ordered  sequence of instructions or 
operations. This  type of parallelism  has been called macro-paral- 
lelism;2 that is, meaningful  strings of consecutive  instructions  de- 
fine a task  that  can be  performed  simultaneously with similarly 
defined tasks.  This  is  to be  distinguished  from micro-parallelism in 
which partial  ordering  is exploited among  instructions by the simul- 
taneous  execution of independent  instructions. 

The first  source of highly  parallel  algorithms is the  set of stand- 
ard algorithms of numerical  analysis.  Preliminary  investigations' 
of such  algorithms  indicate that although  many of these  have gen- 
erally  and implicitly been accepted as serial, they  do  contain a 
great  deal of latent parallelism. 

One approach to  the construction of parallel  algorithms  has been 
described by  Ni~vergelt .~  He suggests that reduced turnaround 
time  can be  obtained  from  a parallel-processing device by intro- 
ducing redundant  computation  into a  serial  algorithm to  obtain a 
highly  parallel  algorithm.  Such a technique  requires  more  work to 
obtain a  particular  result, but  it  takes  advantage of a machine's 
parallel-processing capability to  obtain  the result  more  rapidly. 
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computation,  respectively, of f(m1) and f(m2). If f (m l )  > 0, ter- 
minate T 3  and  the join J of T2 and T3,  set b equal  to ml, and 
repeat the procedure. If f(m1) = 0, the  output ml is the required 
root,  and the computation  stops. If f(m1) < 0, join a t  J with  task 
T 3 .  If f(m2) < 0, terminate T2 and  the join J ,  set a’ equal to mz, 
and  repeat  the procedure. If f(m2) = 0, the  output m2 is the re- 
quired  root, and  the  computation  stops. If f(m2) > 0, join with 
task T z  a t  J .  When  the join J is satisfied, set a equal to ml and b 
equal to m2, and  repeat  the procedure. The procedure  is  continued 
until  the  root is determined  to  the desired  accuracy.  Note that re- 
dundant  computations  are  terminated when it is  known that  their 
outputs will not be  needed. 

The above  procedure may be generalized in  the following way. 
generalized Let N be  a  positive  integer greater  than or equal to two.  Having 
algorithm computed 

split  to N parallel tasks for the computation,  respectively, of 
f (ml) ,  . . ., f ( m ~ ) .  For any i = 1, 2,  . . ., N ,  if f(mi) = 0, then 
mi is the required  root and  the  computation  stops. Otherwise, 
terminate  redundant  tasks  in accordance  with the sign  change of 
the  function,  and join with the remaining  members of the  set of N 
tasks.  When  the join of these  tasks  is satisfied, set a equal to m 
(where m is the greatest  element of the  set a, ml, m2, . . 1 ,  mN, b 
such that j (m) < 0)) and  set b equal  to m’ (where m’ is the least 
element of the  set a, ml, m2, . . . , mN, b such  that f(m’) > 0). 
Having  set a and b, repeat the procedure,  continuing  in this  way 
until  the  root  is found to  the desired  accuracy. The choice of N = 2 
yields the previously  described  algorithm. 

It is  perhaps  appropriate  to  mention at  this point that  the 
standard  Newton-Raphson  algorithm is an inherently  parallel algo- 
rithm;  that is,  a  function  value  and  its  derivative  can be computed 
simultaneously.  Since the Newton-Raphson  procedure converges 
quadradically, we expect it  to be  superior to  the N = 2 redundant 
bisection  algorithm  described  above. For larger  values of N ,  how- 
ever, the  redundant algorithm could approach the performance of 
the (parallel)  Newton-Raphson  method, at  the same time  avoiding 
the difficulties associated  with the choice of a first approximation. 
Limited  computational experience with polynomials supports  this 
assertion.? 

Speed estimates 
Under the assumption that  the time  required to  initiate  and  ter- 
minate parallel tasks  is small  compared to  the  time required for a 
task,  an  iteration of one of the  redundant  algorithms  takes  ap- 
proximately the same  amount of time  as  an  iteration of the  stand- 
ard algorithm.  Therefore, it is possible to  obtain a  measure of the 
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relative speeds of these  procedures by calculating the expected value 
of the number of iterations required for a prescribed accuracy. 

The validity of our assumption  depends  on the  nature of the 
function  involved. For example, in  the case of polynomials of de- 
gree perhaps  greater than fifty, we expect it  to be valid. 

For the purpose of this analysis, we consider an  interval of 
length d and assume that  the occurrence of a  root of the  function 
is uniforndy  distributed  within that interval.  Let  an accuracy  (error 

~ tolerance) of e < 0 be given. 
~ For the  standard algorithm, define n' to be the greatest  positive 

integer  such that 

&' = 2 ' (2~)  + 2'(26) + * * . + 2n"1(2~) 5 d 

Then El(€) ,  the expected value of the number of iterations required 
to  obtain  accuracy E ,  is computed as 

where 

and 

For the  Nt8h  order  redundant algorithm, define m' to be the 
greatest  positive  integer  such that 

= ( N  + 1)0(2N€) + * * + ( N  + 1)""'(2N€) 5 d 

I 
The expected value E N ( € )  of the number of iterations of the  Nth 

' order  redundant algorithm  required to  obtain accuracy E is com- 

puted  as 
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Table 1 Expected  value of number  ot  iterations 

Accuracy  Number of processors 
2 3 4  5  6  7 8 9 10 

10-4 
10-5 
10-6  

10-8 
10-7 

” 

11.4 7 .3  5.9 5.2 4.7 4.4 4 .1  3.8 3 .8  3 .7  
14.7 9 .4  7.6 6.6 5.9 5.6 5 . 3  4.9 4.8 4.7 
18.0 11.5 9 .3  8.0 7.3 6 .7  6.4 5.9 5 . 8  5 .6  
21.3 13.6 10.8 9 .5  8.6 7.8 7 .5  6.9 6 .8  6 . 6  
24.7 15.7 12.6 10.8 9.8 9 .1  8 .6  8.0 7.8 7.6 

Table 2 Execution time  compared to a single processor 

Accuracy 

10-4 
10-5 

10-7 
10-6 

10-8 

Number of processors 
1 2 3 4 5 6  7 8 9 10 

100.0 64.6 52.0 45.9 41.3 39.1 35.8 33.8 33.2 32.6 
100.0 64.1 51.5 45.0 40.0 38.2 35.7 33.0 32.5 31.8 
100.0 63.9 51.8 44.7 40.8 37.5 35.6 32.5 31.8 31.0 
100.0 63.6 51.0 44.6 40.3 36.6 35.3 32.5 31.8 31.0 
100.0 63.7 50.9 43.7 39.6 36.7 35.0 32.6 31.5 30.7 

~ ~~ 

Table 3 Redundancy  compared to a  single processor 

Accuracy  Number of processors 
2 3 4  5  6 7 8 9 10 

10-4 
10-5 

1 0 - 7  
10-6 

10-8 

100.0 129.2 156.0 183.7 206.4 234.4 250.4 270.1 299.3 326.3 
100.0 128.1 154.5 180.0 200.2 229.1 250.2 264.2 292.7 318.5 
100.0 127.8 155.4 178.8 204.1 224.8 249.6 261.5 289.7 314.5 
100.0 127.2 153.1 178.4 201.6 219.7 246.9 260.0 286.1 310.0 
100.0 127.4 152.7 174.9 197.9 220.4 244.6 260.6 283.9 307.1 

The values of E ~ ( E )  and EN(€)  have been computed for a range 
of E from to 10-8 and for N ranging from two to 10. The re- 
sults of these  computations  are given in  Table 1. The length d is 
equal to one. 

For the same ranges of E and N ,  execution times compared to 
the  standard (single-processor) algorithm are  tabulated  in  Table 2. 
These figures indicate the  substantial increase in speed that can be 
obtained from parallel processing by means of the  redundant algo- 
rithms. 

A measure of the  amount of redundant  computation  contained 
in  these algorithms appears  in  Table 3. Again for the same ranges 
of E and N ,  the amount of computation compared to  the single- 
processor algorithm is tabulated.  These figures represent worst-case 
estimates since savings due  to  termination  are  not considered. 
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I 1 Summary 
The development of computing systems with highly parallel facili- 
ties suggests the  study  and development of techniques of numerical 
analysis designed to exploit the capabilities of such systems. Such 
investigations should aim  to produce algorithms that result  in 
faster computations than  are now  possible using conventional ma- 
chines and  standard algorithms. On the basis of the work described 
here and  the referenced investigations, approaches that can be ex- 
pected to succeed are  the reformulation of classical procedures to 
expose latent parallelism, the introduction of computational re- 
dundancy  into algorithms, and the development of new parallel 
algorithms. 
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