Off-line diagnostic programs for system test, acceptance test, and field
maintenance of the 1BM 9020 multiprocessing system are executed under
control of the monitor under discussion.

The structure of the monitor is based on seven functional components
which are examined in detail.

A discussion of the debugging experience during the development of
the monator ts included.

An application-oriented multiprocessing system

V The diagnostic monitor
by R. Suda

The Multiprocessing Diagnostic Monitor (MbMm) is a special-purpose
control program for the 1BM 9020 system. Although MpM can con-
trol any problem program written to the proper specifications, the
primary developmental goal was to achieve a flexible capability for
controlling diagnostic programs in the course of system test, ac-
ceptance test, and field maintenance.

Our purpose here is to describe the structure of Mpm and the
main techniques used in its development. The Mpm-controlled diag-
nostic programs are not discussed. For the most part, the diagnostic
library is based on serviceability and diagnostic methods along the
lines of those described by Carter, et al., in a sYsTEM/360 context.!
Because the fault-reporting capabilities of the 9020 equipment ex-
tend the standard sysTEM/360 capabilities (see Part II of this pa-
per), the 9020 diagnostic library is larger, of course, than the stand-
ard library. For brevity in the sequel, an Mmpm-controlled diagnostic
program is called a section.

The minimum subsystem needed by Mmpum is a Computing Ele-
ment, I/O Control Element, Storage Element, Tape Control Unit,
and 1BM 1052 printer keyboard; additional elements can be con-
trolled up to the maximum system. For the sake of flexibility,
which is needed particularly during early system test and field
maintenance, MpM permits the operator to define a list of MpMm-
available elements, and then ensures that only these elements are
used or tested by themselves. This is necessary in the field, where
it is probable that one subsystem is active on the real-time task
and another one is performing maintenance. MbDM incorporates vari-

IBM SYSTEMS JOURNAL - VOL. 6 - NO. 2 - 1967




ous options for control of sections; these include options for cycling
through sections, for cycling on error, and many others of utility
to the field engineer.

MDM permits three modes of operation. The first is a sequential
mode in which no section executions are overlapped. The second is
a multiprogramming mode in which section loading, section execu-
tion, and output printing are overlapped, the intent being to give
the elements in the defined system a more thorough and realistic
system test and to help in tracking down intermittent failures. In
the third Mpm mode (which permits multiprocessing), two, three,
or four Computing Elements simultaneously execute a series of sec-
tions. Since the intent of multiprocessing is to heighten the degree
of simultaneity, multiprogramming is always used in the multi-
processing mode. The benefits derived from the multiprocessing
mode are similar to those of the multiprogramming mode.

Wherever possible, MDM was written in re-entrant code, viz., in
routines that are not modified during execution and hence can be
executed by two or more Computing Elements simultaneously.
Tables and work areas that are assigned to and can be modified by a
given Computing Element are located in a preferential-storage
area. Common tables, which are open to modification by more than
one Computing Element, are controlled by lock bytes; in conjune-
tion with the TEST AND SET instruction, a lock byte prevents ac-
cess by more than one Computing Element at a time.

The extensive error-checking facilities of the 9020 equipment are
complemented by an mpum error-handling module that gathers and
prints information when an error occurs. For most types of errors
(particularly for those that cause machine-check interrupts), re-
covery is not attempted; the program has accomplished its purpose
once an error is detected and diagnostic information printed.

Since some of the diagnostic sections require the use of specific
Storage Elements, MpM was given the ability to dynamically re-
locate itself (including re-entrant code as well as preferential-stor-
age areas). When a section makes a request that causes Mmpm to re-
locate itself, mpm idles all Computing Elements, relocates itself,
and resumes Computing Element operation at the point of inter-
ruption. MpM can be interrupted at any point and resumed at that
point in a new location in main storage.

MDM components

The main functional modules of the Multiprocessing Diagnostic
Monitor are:

Initialization

Input message analysis
Storage allocation
Scheduler

1/0 1nitiation

Interrupt handling
Output message assembler

DTAGNOSTIC MONITOR

117




initialization

input
message
analysis

storage
allocation

The initialization module is designed to start sections in as
many as four Computing Elements. There are two phases in the
initialization process. The first occurs after 1pL (initial program
load) and initializes a system containing a single Computing Ele-
ment; the second, which follows certain operator input messages,
initializes additional Computing Elements. In the first phase, the
several actions completed before operator intervention include set-
ing crucial registers (base registers, program status words, con-
figuration control registers, address translation registers, preferen-
tial-storage base address registers, and the select register), clearing
logout areas, and establishing the 1pL system elements in mMpm
tables. The 1PL elements, which comprise a minimum system, in-
clude a Computing Element, I/O Control Element, Storage Ele-
ment, and loader control unit—usually a Tape Control Unit. After
being enabled for 1/0 and external interrupts, MpM is ready for an
input message from a 1052 printer keyboard or card reader. At an
attention interrupt, Mmpm assigns the 1052 as the input device and
primary output device. Through a eonsole interrupt, Mpm can de-
fine the card reader as the input device.

The second initialization phase is triggered by input message.
As each additional Computing Element is brought into the system,
a preferential-storage area is established and its eonfiguration con-
trol register and address translation register are set. Then a write-
direct external start signal is sent to the Computing Element,
thereby setting the program status word (psw) from the first eight
bytes of the configured Storage Element with the lowest address.
Initialization is then completed by the just-started Computing Ele-
ment. Looking for a task to perform, the Computing Element then
branches to the scheduler module.

The Input Message Analysis Module handles the decoding and
interpretation of input messages. Typical messages provide infor-
mation needed by Mpm while loading and running sections, chang-
ing equipment configurations, and setting monitor options. All
messages are first edited by a common routine that handles dele-~
tions, blanks, ete. Control is then passed to individual routines, as
indicated by the verb in the message (e.g., load, run). The indi-
vidual routines check for format errors and, if errors are found,
return appropriate messages to the operator.

Some of the actions requested by input message are stacked and
processed by other MmpM modules in normal sequence. For example,
a load message is passed on to the loader module. Other requested
actions may lead to an immediate transition in execution, as in the
case of messages that require a change in job sequence or equip-
ment configuration.

The Storage Allocation Module controls the assignment of main
storage with blocks of two sizes. In loading programs and setting
up work areas requested by programs, blocks of 4096 bytes are
used. Blocks of 128 bytes are assigned by Mpm for output and load
messages. This module accommodates the maximum storage al-
lowed by the system (twelve 128 K-byte Storage Elements).

R. SUDA




Each Storage Element is divided into 32 large blocks; a one-bit
indicator is maintained in MmpMm for each block in the system. Thus,
it takes one word (32 bits) to eontrol large-block allocation for each
Storage Element and twelve words to control a maximum of Storage
Elements. Requests for multiple contiguous large blocks can be
honored by mMpwm.

The 32 small blocks in each large block are chained together
such that the last block in the chain serves as a control area. If all
32 blocks are allocated and another request is made, a large block
is obtained, subdivided, and its control block is chained to the pre-
ceding control block. Only one small block can be requested at a
time. As small blocks are returned, a check is made to see if a large
block can be returned to the large block pool. In general, large-
block requests from the small-block routine are served with blocks
from upper storage and similar requests for section loading from
the lower end of storage. This tends to leave the middle of main
storage free to satisfy requests for multiple contiguous blocks.

Two of the six macroinstructions associated with main-storage
allocation, GET LARGE BLOCKS and RETURN LARGE BLOCKS,
allow requests for contiguous blocks. Two others, GET SMALL
BLOCKS and RETURN SMALIL BLOCKS, serve requests for one
block only. These four macroinstructions are self-explanatory. The
last two, GET DEFINED AREA and RETURN DEFINED AREA,
permit requests for one or more contiguous large blocks with a
specific storage address. If the requested area is not available, the
requesting program is delayed until the desired area is released. If
the requested area contains mpM, the preferential-storage area, or
the requesting program, then Mmpm relocates the contents of the de-
fined area to complete the request.

Two schedulers exist within mpm, the Task Scheduler and the
Section Scheduler. An mpm “task” is work that requires an Mpm
module. The mpm Task Scheduler has priority to complete all mpm
tasks that can be run before entering the Section Scheduler. The
Task Scheduler scans the task table (which contains one entry for
each MmpM module) for work to do. Work called for by a given entry
is queued to that entry and identified in a small storage block.

The Section Scheduler is entered after all Mpm tasks are com-
pleted. It scans a program-status table, which contains one entry
for each section in the system, for sections to be run. An entry
contains information the scheduler needs about a section, such as
starting address, psw setting, and section options. In sequential
mode, each section is run to completion and no monitor 1/0, such
as loading, is overlapped with section execution. In multiprogram-
ming or multiprocessing mode, each time the monitor gains con-
trol, it steps to the next entry in the program-status table. Thus,
each section being multiprogrammed gets a somewhat random
share of running time, a circumstance that is often desirable in a
diagnostic system.

Once each pass through the schedulers, 1/0 and external inter-
rupts are allowed, so that new tasks can enter the system and

DIAGNOSTIC MONITOR

scheduler




1/0
initiation

interrupt
handling

120

interrupts from any pending sections can be processed. At other
times, MpM is run with interrupts disabled, whereas sections are
normally run with interrupts enabled.

The 1/0 Initiation Module is concerned with 1/0 for both mpm
and 1/0 section use. Within mowm itself, there are two primary 1/0
needs, section loading and message output. The section loader em-
ploys a Load Message Table which contains, among other things,
the identities of sections to be loaded. The entries in the table are
set upon receipt of a load message from the operator or upon re-
quest from a section via an sve (sYsTEM/360 supervisor-call instrue-
tion) interrupt. Sections appear on a library tape with their identi-
ties in collating sequence. There are three records per section—the
header, text, and relocation records. To load a section, the library
tape is searched on header records until the desired record is found,
storage is requested, and the text and relocation records are read.
The relocation record contains relocation data that permit re-
specification of address constants in the text. If the section requires
1/0 devices, these are assigned next. If the requested 1/0 equip-
ment is not assigned, the section run is delayed until the equip-
ment becomes available. A storage protection key is set for the
section, and an entry is completed in the first open cell of the pro-
gram-status table. The section is then ready to run.

The message-output portion of 1/0 initiation is responsible for
messages from both Mpm and the sections (message formatting is
governed by another module); it directs device operations and
checks for 1/0 error conditions. Another portion of the I/0 Initia-
tion Module is normally responsible for the main 1/0 operations of
sections. (However, a section can choose to run in the supervisor
state and thereby take responsibility for initiating all operations
and handling the resulting interrupts.) This portion gains control
from the Interrupt Handling Module (described later) as a result of
an 1/0 operation for a section running in the problem state. A check
is made to see if the device specified in the 1/0 operation has been
assigned to the section. If the path to the device is not busy, the
1/0 operation is executed. However, if the path is busy, the 1/0 op-
eration is queued for later execution, and control returns to the
mpM scheduler.

MDM has one interrupt-processing routine for each of the five
types of 9020 interrupts. Initial handling, such as saving general-
purpose registers, is done before control is passed to one of the five
interrupt routines. Optionally, a section can be set up to handle
its own interrupts, but they are typically handled by mMpwm.

Machine-check interrupt. If a machine check oceurs during the op-
eration of a section, a test is made to see if the section wants this
type of interrupt returned. If yes, a return is made to the section
via its machine-check psw. If no, the logout occasioned by the ma-
chine check is printed and the section aborted. If the error oc-
curred during the operation of mpMm, the logout is printed, the run
is terminated, and MpM must be reloaded.

R. SUDA




1/0 interrupt. There are three classes to consider: MpM device, sec-
tion device, and unassigned device interrupts. At normal-comple-
tion interrupt from an mpm device, control passes to the proper
mpM module (I/0 Initiation or Input Message Analyzer). Channel
and control unit completion interrupts from moum devices are queued
until device completion is received. If a unit check oceurs on an
MDM input device, a repeat message is printed.

Whenever an 1/0 interrupt oceurs in a section enabled for 1/0
interrupts, return is made to the section via its new 1/0 psw. If the
section 1s disabled for 1/0 interrupts, the interrupt is queued until
the section is again enabled. If an 1/0 interrupt occurs that does
not belong to MpM or a section, an error message is printed and
processing continues.

External interrupts. Two types of external interrupts are automat-
ically handled by mpm: (1) the READ/WRITE DIRECT instructions
if used when mbpMm is starting or stopping processing in another
Computing Element during initialization, and (2) the Console In-
terrupt Key used in signalling to MpM to read an input message
from the card reader when the reader is used as the input device.
At other times, these and all other external interrupts can be used
by the sections. Diagnose-accessible register interrupts, when not
used by a section, indicate that a malfunction has occurred; these
interrupts are handled in MpM by printing an error message.

External interrupts assigned to a section cause a return to the
section if it is enabled or cause the interrupt to be queued if it is
temporarily disabled for those interrupts. External interrupts
which do not belong to Mbpum or a section cause the printing of an
€r7or Mmessage.

Program interrupts. Two classes of program interrupts are consid-
ered—those that occur in MmpMm and those that occur in a section.
Because a program interrupt in MpM is viewed as an error condi-
tion, a non-recoverable wait state is entered ; MpM must be reloaded
to continue. Program interrupts in a section are subclassified into
four categories by Mbm. Privileged-operation interrupts (other than
1/0), such as SET SYSTEM MASK or LOAD PSW, cause MDM to sim-
ulate the privileged operation and return to the section at the next
instruction. In the case of LOAD PSW, return is made to the address
in the new psw. At program interrupt on an 1/0 instruction, Mpm
transfers control to its I/0 Initiation Module. Other program in-
terrupts are returned to the section if it has so requested. If return
is not requested by the section, other program interrupts are con-
sidered errors, an error message is printed, and the routine is
aborted.

Supervisor-call interrupts. sve interrupts are the basic method by
which the section requests MbM services such as terminate section,
print message, or load new program. Normally, MpM returns con-
trol to the section. In the case of a “section end” svec, control
passes to the next section. A section can always request a return of
control after an sve interrupt.

DIAGNOSTIC MONITOR




output
message
assembler

122

Various types of output-message requests can be made by a
section via an svc interrupt, the distinctions usually being one of
format. This module’s responsibility is merely to format the data
passed to it by a section and then pass control to the output portion
of the I/0 Initiation Module.

Debugging experience

The Multiprocessing Diagnostic Monitor was debugged on the first
9020 system. Since equipment and programs were tested at the same
time, the technique found most useful was simply to run in a ‘“hard
stop”” mode that stopped the machine immediately upon detection
of an equipment error. This facilitated tracing whether errors were
in equipment or program.

Individual MmpM modules were debugged in conventional ways,
largely by simulating inputs and checking outputs. The first pack-
age of modules put together enabled Mpm to cycle itself and respond
to input messages, no program loading or running function having
yet been attempted. A useful debugging tool at this point was a
built-in trace. As each module was run, it would record that fact
for later investigation. Built into each module were validity checks
on data transfers and table references. An error at one of these
checks could be combined with the trace to help in pinpointing
problems. The simplex mpm was completed by gradually adding
other modules, the various options being checked last.

Duplex debugging presented a more novel situation. The most
common single problem stemmed from failures to properly use lock
indicators in modifying or referencing tables, as a result of which
two Computing Elements would operate on the same table at the
same time. Because the symptom usually was a loop of some sort
in mpMm, these problems were difficult to resolve. It was usually
fruitless to trace through the loop since the damage was done be-
fore the loop started. The best method seemed to depend upon a
close examination of tables for some impossible or improbable con-
dition. With knowledge of the entire program in mind, such exam-
inations would finally lead to the error. It appears that special at-
tention to lockout during the planning and coding phases of multi-
processing programs may repay itself several times over. A lockout
failure can be difficult to detect since it may take hours before the
conditions that create the failure again occur. On the other hand,
MpM code associated with multiprocessing control funections, such
as starting or stopping other Computing Elements, turned out to
be fairly straightforward to debug.

The step from debugging mpm in duplex to debugging in triplex
turned out to be an easy one because all the problems had been
solved during duplex debugging. While a configuration with four
Computing Elements has not been built or tested, it is felt that
little or no special mpm program debugging would be needed for
this step.

R, SUDA




Summary

The Multiprocessing Diagnostic Monitor was a successful vehicle
for testing the 9020 system at various levels of assembly and integra-
tion. It has also been used successfully in acceptance testing. Be-
cause its use as a field maintenance tool is still under evaluation,
along with many other tools, it is difficult to assess its role in the
field environment. It is being used daily at the sites, a continuing
improvement program is under way, and no extensive changes have
been necessary.

CITED REFERENCE

1. W. C. Carter, H. C. Montgomery, R. J. Preiss, and H. J. Reinheimer,
“Design of serviceability features for the 1BM sYsTEM/360,”” IBM Journal of
Research and Development 8, No. 2, 115-125 (April 1964).

DIAGNOSTIC MONITOR

123




