

Figure 1 Relationship of NAS
programs

OPERATIONAL
SUBPROGRAMS

OPERATIONAL
ERROR

ANALYSIS

flow of
control

control
program
re-entrance

96

Whenever a subprogram requires an instance of execution, an
available Computing Element is allocated according to the sub-
program’s priority. The appropriate scheduling table entry is
updated to reflect the allocation. With the aid of its scheduling
table, the control program ensures that the subprogram operations
of a given Computing Element do not conflict with each other or
with the operations of other Computing Elements.

Organizationally, the entire monitoring and control function is
accomplished by two system programs: the control program and
the Operational Error Analysis Program (OEAP). Only the multi-
processing features of the control program are discussed here,
whereas the OEAP is described in detail in Part IV. The schematic
in Figure 1 shows the general relationship among system and ap-
plication programs.

I n general, the control program gains control of a Computing
Element as the result of an interruption in a subprogram. After
appropriate action is taken by the control program, control is either
returned to the interrupted subprogram or to another subprogram,
depending upon the type of interruption and subprogram priority.
Error indications are passed on to the Operational Error Analysis
Program, which identifies the malfunctioning element and passes
its identity back to the control program to effect system recovery
and resume normal processing. The approach to system recovery
is fairly straightforward; if an element has failed, it is replaced with
a redundant element through reconfiguration control. During nor-
mal system operation, checkpoints are established and critical data
are stored on magnetic tape. In the course of a recovery operation,
data for the last checkpoint are used to reload suspect Storage
Elements. To avoid possible confusion, only one Computing Ele-
ment is active during the recovery process; others are held in the
wait state until normal operation has been resumed.

During subprogram execution, all interruptions are enabled (per-
mitted to occur) and the subprograms operate in the problem state.
The interrupt-service routines of the control program, on the other
hand, are executed with interruptions disabled. Thus, once inter-
rupted, a given Computing Element will not be interrupted again
until the current interruption is processed. Although this limits
the number of possible simultaneous instances of control program
execution to one per Computing Element, the possibility of simul-
taneous instances of control program execution by different Com-
puting Elements places other restrictions on the design of the con-
trol program. The principal restriction is that routines that are not
re-entrant, as well as routines that access common control data,
must be protected against overlapped execution. This protection
is provided with the aid of the TEST AND SET instruction. If the
code or data related to the TEST AND SET instruction are not avail-
able (i.e., are already allocated for control program execution by
another Computing Element), the waiting Computing Element
loops until the desired code or data are available. To preclude a
hung system, countdowns are built into the TEST AND SET loops,

J. A. DEVEREAUX

Figure 2 Dynamic scheduling
EVENTS 1 2 3 4 5

I I I I I

CONTROL PROGRAM

SUBPROGRAM A

SUBPROGRAM B

1 SUBPROGRAM A
OPERATION CONTINUED
BY AVAILABLE CE

TIME-

COMPUTING ELEMENTS EVENT DESCRIPTION

0 CE1

CE2

1 CONTROL PROGRAM ASSIGNS CEZ TO SUBPROGRAM A
2 SUBPROGRAM A INTERRUPTION
3 CONTROL PROGRAM ASSIGNS CE1 TO SUBPROGRAM A
4 CONTROL PROGRAM ASSIGNS CEZ TO SUBPROGRAM B
5 SVC FINIS SUBPROGRAM A

allowirlg a loop to be bypassed after a reasonable delay. This en-
sures that Computing Elements will eventually reach a stage where
external interruptions are enabled so that an element failure can be
detected.

The operation of the system, as described thus far, is similar to
that observed i n any single processor system using multiprogram-
ming techniques. However, there is a more interesting aspect of the
operation with multiple Computing Elements. While an interrupted
Computing Element is executing one of the interrupt routines of
the control program, an idle Computing Element can be allocated
to continue the execution of the interrupted subprogram. Poten-
tially, this form of dynamic scheduling can reduce the overall ex-
ecution time for the subprogram. An example of this is suggested
by Figure 2.

Overlapped operations, in general, imply a requirement for cen-
tral control of all common storage resources. One of the principal
implications of this requirement for subprogram design is that sub-
programs must use the storage allocation services of the control
program.

Dynamic storage allocation is implemented by svc, the super-
visor-call instruction, which generates a distinctive interruption.
During its execution, let us say, a subprogram needs a particular
storage resource. At this point, the subprogram identifies its re-
quirements to t8he control program with the aid of SVC. If the
storage resource is available, the control program allocates the re-
source and returns computing Element control to the subprogram.
When the subprogram no longer requires the allocated storage re-
source, it identifies the resource as available-again communicating

CONTROL PROGRAM

Figure 3 Dynamic storage allocation

EVENTS 1 2 3 4 5 6 7 8
I I I I l l I l l 1

SUBPROGRAM A

SUBPROGRAM B

"
SUBPROGRAM B

LOCK 1 IS AVAILABLE
SUSPENDED UNTIL

TIME-

COMPUTING ELEMENTS EVENT DESCRIPTION

0 CE1

@ CE2

1 CONTROL PROGRAM ASSIGNS CEZ TO SUBPROGRAM A

3 SUBPROGRAM A SVC LOCK 1
2 CONTROL PROGRAM ASSIGNS CEl TO SUBPROGRAM B

4 CONTROL PROGRAM REASSIGNS CE2 WITH LOCK 1 TO A

6 SUBPROGRAMASVCUNLOCK 1
5 SUBPROGRAM B SVC LOCK 1

7 CONTROL PROGRAM REASSIGNS C E I WITH LOCK 1 TO B
8 CONTROL PROGRAM REASSIGNS CE2 TO A

with the aid of SVC. If a requested storage resource is already in
use, the operation of the subprogranl is suspended until the re-
source becomes available. An example of this is shown in Figure 3.

Three types of storage resources-areas, blocks, and lines-are
defined:

Areas. An area is a portion of storage containing data or code that
are common to two or more subprograms and that cannot be ac-
cessed simultaneously without potential loss of information. Areas
are locked and unlocked by subprograms.

Blocks. A block is a section of contiguous storage within a general
storage pool. The general storage pool is subdivided into subpools,
each subpool consisting of a specified number of fixed-size blocks.
Blocks are leased and released by subprograms. When allocated to
the subprogram, a block may be used as a temporary work area
for a particular instance of the subprogram's execution or as a
storage area for data to be queued to a subprogram or device. Dy-
namic block allocation eliminates some of the inherent duplication
in assigning separate work areas for each subprogram and increases
the value of re-entrant subprograms.

Lines. A line is a section of storage used to identify communication
paths to subprogram and device queues. A limited number of lines
are associated with each subprogram and device; data to be com-
municated must reside in a general storage block. A subprogram
can transfer control of an allocated block of storage to a subpro-
gram or device queue via an appropriate line. Lines are reserved
and canceled by subprograms.

98 J . A. DEVEREAUX

The control program ensures that storage requests are made in
a consistent manner, thereby guarding against the possibility of
mutual suspensions. For example, if Subprogram A requests all of
one type of storage and Subprogram B requests all of another type,
both subprograms could be permanently suspended if each re-
quested storage of the type currently allocated to the other. To
avoid this, the control program ensures that lines are requested
before blocks, which in turn must be requested before areas. If a
particular type of storage is allocated to a subprogram, additional
storage of the same type cannot be requested by the subprogram
until all of that type storage is appropriately released or unlocked.
A violation of these conventions is treated in the same way as a
program interruption error, and execution is terminated. When
storage is properly requested and is available in the amount re-
quested, the control program returns control of the Computing
Element to the requesting subprogram. If the desired storage re-
sources are not available, the control program suspends execution
of the requesting subprogram until they become available; it also
reschedules the Computing Element that had been executing the
requesting subprogram.

At an early stage in the design of the control program, a de-
cision was made to incorporate a trace feature a t critical points in
the control program logic. Because the feature has proved to be
significant in evaluating and checking multisystem operation, a de-
script,ion of it and some of the results obtained are mentioned.

The trace procedure generates timing analysis records (TAR’S)
that reflect many of the critical events and actions occurring dur-
ing system operation. The TAR’S are assembled sequentially in a
buffer; when full, the buffer is recorded on magnetic tape. TWO or
more buffers are provided to allow TAR assembly and recording to
proceed concurrently. (In the event that too little buffer storage is
available, overflow counts are updated in the header of the last-
filled buffer to reflect the number of TAR’S per Computing Element
that were not recorded. No attempt is made to delay control pro-
gram operation because of inadequate buffer storage.)

Before the first TAR is stored in an empty buffer, the overflow
counts are reset t o zero and the elapsed time since startup/startover
is stored in the buffer header. The elapsed time is measured in units
of l / 2 second. In the event of buffer overflow, the elapsed time
allows proper alignment of recorded buffers with regard to time.

The data in a TAR includes an event code, a Computing Ele-
ment identity, and the identity of the time interval during which
the event occurred. The time interval is obtained from a designated
interval timer that is reset every 1/2 second to cause a timer inter-
ruption every 1/2 second. The units of the interval timer are 1/300
second with resolution of 1/60 second (i.e., the value in the timer
is reduced by 5 every 1/60 second). Depending upon the type of
event, additional data in a T - ~ R may include a subprogram identity,
a storage address, and an interruption code. Regardless of event
type, each TAR requires two words (eight bytes) of buffer storage.

CONTROL PROGRAM

Figure 5 Trace of integration test

EVENTS 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4
1 1 1 1 1 1 1 1 1 1 1 1 1 1

MASTER INTERVAL TIMER VALUE

INTERVAL TIMER VALUE
RESET TO 091 AFTER

UNDERFLOW

I
1

Timing analysis records generated by the control program pro-
vide a useful tool for system evaluation and checkout. The data
provided by these records permit detailed time traces of the sys-
tem’s operation and performance statistics.

CITED REFERENCES

1. System Description of National Airspace System Enroule Stage A , Federal
Aviation Administration, Washington, L). C. (April 1965).

2. M. E. Conway, “Multiprocessor system design,” AFIPS Conference, Pro-
ceedings of the Fall Joint Computer Conference 24, 139-146, Spartan Books,
Washington, D. C. (1983).

102 J. A. DEVEREAUX

