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Whenever a subprogram  requires an instance of execution, an 
available  Computing  Element  is  allocated according to  the sub- 
program’s  priority. The  appropriate scheduling table  entry  is 
updated  to reflect the allocation. With  the  aid of its scheduling 
table, the control  program  ensures that  the subprogram  operations 
of a given Computing  Element  do  not conflict with  each  other or 
with the operations of other  Computing  Elements. 

Organizationally, the entire  monitoring and control  function is 
accomplished by  two  system  programs: the control  program and 
the Operational Error Analysis  Program (OEAP). Only the multi- 
processing features of the control  program  are discussed here, 
whereas the OEAP is described in  detail  in  Part IV. The schematic 
in Figure 1 shows the general relationship  among  system and  ap- 
plication  programs. 

I n  general, the control  program  gains  control of a  Computing 
Element  as the result of an  interruption  in a  subprogram.  After 
appropriate  action is taken  by  the control  program,  control is either 
returned to  the  interrupted  subprogram  or  to  another  subprogram, 
depending  upon the  type of interruption  and  subprogram  priority. 
Error  indications  are passed on  to  the Operational  Error Analysis 
Program, which identifies the malfunctioning  element and passes 
its  identity back to  the control  program to effect system recovery 
and resume normal processing. The approach to  system recovery 
is fairly  straightforward; if an element  has failed, it is replaced with 
a redundant  element  through reconfiguration  control.  During nor- 
mal  system  operation,  checkpoints  are  established  and  critical data 
are  stored  on  magnetic  tape. In   the course of a recovery operation, 
data for the  last checkpoint are used to  reload  suspect  Storage 
Elements. To avoid possible confusion, only  one  Computing  Ele- 
ment is active  during the recovery process; others  are held  in the 
wait state  until  normal  operation  has been resumed. 

During  subprogram  execution,  all  interruptions  are enabled (per- 
mitted  to occur) and  the subprograms  operate  in  the problem state. 
The interrupt-service  routines of the control  program, on  the  other 
hand,  are executed  with  interruptions  disabled. Thus, once  inter- 
rupted, a given Computing  Element will not be interrupted again 
until  the  current  interruption is processed. Although  this limits 
the number of possible simultaneous  instances of control  program 
execution to  one per Computing  Element,  the possibility of simul- 
taneous  instances of control  program  execution by different Com- 
puting  Elements places other restrictions on  the design of the con- 
trol program. The principal  restriction is that routines that  are  not 
re-entrant,  as well as routines that access common control data, 
must be  protected  against  overlapped execution. This  protection 
is provided with  the aid of the TEST AND SET instruction. If the 
code or data related to  the TEST AND SET instruction are  not  avail- 
able  (i.e., are  already allocated for control  program  execution  by 
another  Computing  Element), the waiting  Computing  Element 
loops until  the desired code or  data  are available. To preclude  a 
hung  system,  countdowns  are  built  into the TEST AND SET loops, 
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Figure 2 Dynamic scheduling 
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allowirlg a loop to be bypassed after a reasonable delay. This en- 
sures that Computing  Elements will eventually  reach  a  stage where 
external  interruptions  are  enabled so that  an element  failure  can  be 
detected. 

The operation of the system,  as described thus  far, is similar to 
that observed i n  any single processor system using multiprogram- 
ming techniques.  However, there is a more interesting  aspect of the 
operation  with  multiple  Computing  Elements.  While an  interrupted 
Computing  Element is executing  one of the  interrupt routines of 
the control  program, an idle  Computing  Element  can be  allocated 
to  continue the execution of the  interrupted subprogram.  Poten- 
tially, this form of dynamic  scheduling  can  reduce the overall ex- 
ecution time for the subprogram. An example of this is suggested 
by  Figure 2. 

Overlapped  operations,  in  general,  imply  a  requirement  for cen- 
tral control of all common storage resources. One of the principal 
implications of this  requirement for subprogram  design is that sub- 
programs must use the storage  allocation services of the control 
program. 

Dynamic  storage  allocation is implemented  by svc, the super- 
visor-call instruction, which generates  a  distinctive  interruption. 
During  its execution, let  us  say, a  subprogram  needs  a  particular 
storage resource. At  this point, the subprogram identifies its re- 
quirements to t8he  control  program  with the aid of SVC. If the 
storage resource is available, the control  program  allocates the re- 
source and  returns  computing  Element control to  the subprogram. 
When the subprogram  no longer requires the allocated  storage re- 
source, it identifies the resource as available-again communicating 
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Figure 3 Dynamic  storage  allocation 
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with the aid of SVC. If a  requested  storage resource is already in 
use, the operation of the subprogranl is suspended until  the re- 
source becomes available. An example of this is shown in  Figure 3. 

Three  types of storage resources-areas, blocks, and lines-are 
defined: 

Areas. An area is a  portion of storage  containing data or code that 
are common to two or more subprograms and  that cannot be ac- 
cessed simultaneously without  potential loss of information. Areas 
are locked and unlocked by subprograms. 

Blocks. A block is a  section of contiguous  storage  within  a general 
storage pool. The general  storage  pool is subdivided into subpools, 
each  subpool consisting of a specified number of  fixed-size blocks. 
Blocks are leased and released by  subprograms.  When  allocated to 
the subprogram,  a block may  be used as a  temporary  work  area 
for  a  particular  instance of the subprogram's  execution or as a 
storage  area  for data  to be  queued to a subprogram or device. Dy- 
namic block allocation eliminates  some of the inherent  duplication 
in assigning separate work areas for each  subprogram and increases 
the value of re-entrant  subprograms. 

Lines. A line is a  section of storage used to identify communication 
paths to subprogram and device queues. A limited  number of lines 
are associated with each subprogram  and device; data  to be com- 
municated must reside in a general storage block. A  subprogram 
can  transfer control of an allocated block of storage to a subpro- 
gram or device queue via an appropriate line. Lines are reserved 
and canceled by subprograms. 
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The control  program  ensures that storage  requests  are  made in 
a consistent manner,  thereby  guarding  against the possibility of 
mutual suspensions. For  example, if Subprogram A requests  all of 
one type of storage and Subprogram B requests all of another  type, 
both  subprograms could be permanently suspended if each re- 
quested  storage of the  type currently  allocated to  the other. To 
avoid this, the control program ensures that lines are  requested 
before blocks, which in turn  must  be requested  before  areas. If a 
particular type of storage is allocated to a  subprogram,  additional 
storage of the same type  cannot  be requested by  the subprogram 
until all of that  type storage is appropriately released or unlocked. 
A violation of these  conventions  is treated  in  the same way as a 
program interruption  error,  and execution is  terminated.  When 
storage is properly  requested and is available in  the amount re- 
quested,  the control  program returns control of the Computing 
Element to  the requesting  subprogram. If the desired storage re- 
sources are  not available, the control  program  suspends execution 
of the requesting  subprogram until  they become available; it also 
reschedules the Computing  Element that  had been executing the 
requesting subprogram. 

At  an early  stage  in the design of the control  program,  a de- 
cision was made to incorporate a trace  feature a t  critical points  in 
the control  program logic. Because the feature  has proved to be 
significant in  evaluating  and checking multisystem  operation, a de- 
script,ion of it  and some of the results  obtained are mentioned. 

The  trace procedure generates  timing  analysis records (TAR’S) 
that reflect many of the critical events  and actions occurring dur- 
ing system  operation. The TAR’S are assembled sequentially  in a 
buffer; when full, the buffer is recorded on  magnetic tape. TWO or 
more buffers are  provided to allow TAR assembly and recording to 
proceed concurrently. (In the  event  that  too  little buffer storage is 
available, overflow counts  are  updated in the header of the last- 
filled buffer to reflect the number of TAR’S per  Computing  Element 
that were not recorded. No attempt is  made to delay  control pro- 
gram  operation because of inadequate buffer storage.) 

Before the first TAR is stored in  an  empty buffer, the overflow 
counts  are  reset t o  zero and  the elapsed time since startup/startover 
is stored  in the buffer header. The elapsed time is measured in  units 
of l / 2  second. In  the event of buffer overflow, the elapsed time 
allows proper  alignment of recorded buffers with regard to time. 

The  data  in a TAR includes an event code, a Computing Ele- 
ment  identity,  and the identity of the time  interval during which 
the  event occurred. The  time  interval is obtained  from  a  designated 
interval  timer that is  reset  every 1/2 second to cause  a  timer  inter- 
ruption  every 1/2 second. The  units of the interval  timer  are 1/300 
second with resolution of 1/60 second (i.e., the value  in the timer 
is reduced by 5 every  1/60 second). Depending  upon the  type of 
event,  additional  data in  a T - ~ R  may include  a  subprogram  identity, 
a  storage address, and an interruption code. Regardless of event 
type, each TAR requires two words (eight  bytes) of buffer storage. 
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Figure 5 Trace of integration test 
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Timing analysis records generated by the control  program pro- 
vide  a useful tool for system  evaluation and checkout. The  data 
provided by these records permit  detailed time  traces of the sys- 
tem’s operation  and performance statistics. 
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