
program sections, which reduces overall assembly time, is described.

Also discussed are two techniquesused in generating channel programs
for direct-access devices. One of the techniques i s designed for random
addressing of records, the other for indexed sequential addressing.

The developmental work that led to these techniques was heavily
influenced by the objective of effectively minimizing the amount of
main storage required for the inputloutput wntrol functions in
D O S / ~ ~ O , the disk operating system for SYSTEM/~BO conjigurations
with intermediate amounts of main storage.

Internal data management techniques for D O S K ~ O
by D. H. Ricour and V. Mei

DOS/360, a disk operating system for intermediate SYSTEM/360

configurations, provides a set of data management routines' that
are collectively called the Logical Input/Output Control System
(LIOCS). The LIOCS permits a file to be organized either for random
access or for random and sequential access, the former being
referred to as the Direct Access Method (DAM) and the latter
as the Indexed Sequential Access Method (ISAM). The IOCS

routines can be used in creating and updating data files, thus
relieving users of a substantial programming effort.

The purpose of this paper is to describe the linkage between
tables and modules used in LIOCS, and the techniques by which
the LIOCS routines generate channel programs.2 Some of the
differences between D O S / ~ ~ O and the other two disk-oriented
operating systems for SYSTEM/B~O, B O S / ~ ~ O , and os/360, are re-
marked upon in passinga

Declarative macroinstructions of the type used in defining a
table and file (DTFDA for DAM files, DTFIS for ISAM files, etc.) permit the
module IOCS routines to generate tables of constants, called DTF (define
linkages the file) tables. Such tables (which are assembled internally but

may also be assembled with the user's routine) specify record
lengths, blocking factors, device identifications, processing modes,
buffer addresses, and the like. The subroutines that actually
perform deblocking, error recovery, buffer management, and I/O
operations are called LIOCS modules.

Because these modules are ordinary subroutines and store no
file parameters internally, several files of similar characteristics

38 IBM SYSTEMS JOURNAL ' VOL. 6 * NO. 1 1967

can share a single module, as shown in Figure 1. However, the
same module cannot be used asynchronously for several files,
since it performs temporary register-save operations within the
module, rather than within the file tables.

The user has the option of assembling logic modules by declara-
tive macroinstructions within his problem program. Usually, how-
ever, a DOS/360 installation generates a collection of LIOCS modules
while building a system-residence volume. These modules are
normally retained on-line to facilitate access and maintenance.

Assembly time can be reduced by individually preassembling
sections of the program. This makes it unnecessary to reassemble
the entire program each time one or more of the sections are
changed. Instead, only the changed sections need reassembly and
are then linked with the other preassembled program portions.

Each generated DTFDA or DTFIS table contains the name
of one LIOCS module, which is automatically generated from the
macroinstruction DAMOD or ISMOD, respectively. Each module
name is composed of a prefix, for example MOD, and a convenient
number of letters. Thus, the complete module name could be
MODxxx, in which the last three letters can be substituted and
define a great variety of subfunctions. For instance, the first
letter following the prefix could refer to the format of a record
to be processed. Thus, MODFxx might indicate a module only
for fixed-length records, and MODBxx a longer module processing
both fixed-length as well as undefined-length records. Conse-
quently, MODFxx is a subset of MODBxx.

If two DTF tables, DTFA and DTFB, are separately assembled,
DTFA can-for example-call for a MODFXX module name, and
DTFBXX for a MODBXX module name. When these two DTF tables
are link-edited into executable form, the Linkage Editor considers
the module names as external symbols in the usual sense: for
each external symbol, the Linkage Editor searches in the relocat-
able library for the associated module, places it into main storage,
and replaces the module name in the DTF table with the appro-
priate address of the module in main storage.

Since the Linkage Editor processes the external symbols in
alphabetical sequence, the MODBxx name is resolved first. The
associated MODBxx module in main storage contains an entry
point for its subset MODFXX. Thus, another module fetch operation
is eliminated, resulting in considerable main-storage savings.

I n his application programs, each user generates machine-
language linkages for OPEN, GETPUT, READmRITE, and other
IOCS imperative macroinstructions, as suggested by the schematic
in Figure 2. In an assembler-language program, these must be
coded explicitly; for COBOL, FORTRAN, PL/I, and RPG programs,
the necessary linkages to file tables and IOCS modules can be
system-generated.

S Y S T E M / ~ ~ O I/O operations are normally performed by channels
and control units operating under control of a supervisor program.
Each channel is an autonomous computing unit, capable of

DOS DATA MANAGEMENT TECHNIQUES

Fiaure 1 Several files share a
single logic module

DTFlS

PARAMETERS 1
ISMDD

DTFlS

GENERALIZED
READ ONLY

LOGIC PARAMETERS

DTFlS

PARAMETERS

I /o
operations

39

SUPERVISOR

STORAGE
PROTECTION

KEY: 0

TRANSIENT AREA

PROTECTION
STORAGE

K E Y 0

PROBLEM PROGRAM

STORAGE
PROTECTION

KEY: 1

PERMANENT STORAGE LOCATIONS USED BY THE CPU

110 UNITS CONTROLS TABLES (LUBIPUB, ETC)

COMMUNICATIONS REGION

110 QUEUING ROUTINE

PHYSICAL 110 ROUTINE

STORAGE PROTECTION (OPTIONAL)

SUPERVISOR CALL ROUTINE
PROGRAM CHECK ROUTINE
MACHINE CHECK ROUTINE
EXTERNAL INTERRUPTION ROUTINE

TIMER SERVICES (OPTIONAL)

SYSTEM LOADER (PROGRAM FETCH AND LOAD)

IMPERATIVE IOCS DECLARATIVE I
IOCS MACRO- I MACROINSTRUCTIONS I INSTRUCTIONS , I

FlLEA DTF

COMMAND
CONTROL

GET FlLEA BLOCK

BUFFER
ADDRESSES,

COUNTS, WORKING

I I

IOCS
LOGIC MODULE

PUT LOGIC

CNTRL LOGIC

channel program per file because most intermediate system ap-

To conserve the amount of time required in servicing I/O

interrupts, charmel programs can be written to permit the channel
, and the device to operate completely autonomously (without
~ attention from the central processor) until the pertinent record

is retrieved or written. I n general, DOS/360 management avoids
this tactic. Such channel programs not only require more main
storage than simple-retrieval channeI programs, but they are also
more difficult to generate. Moreover, SYSTEM/360 channels neces-

~ sarily claim some main-storage cycles in performing comparisons
on counts and keys and in fetching ccw’s; this loss of storage
cycles is called channel interference. Direct-access-device channel
programs produce a significant amount of interference on medium-
performance configurations, such as the SYSTEM/%O Model 30.
Even on high-performance central processors, the interference is
not negligible and can reduce processor throughput for fast
direct-access devices such as megacycle drums.

Each ccw has the format shown in Figure 3, and two or more
ccw’s are normally executed in sequence. A Transfer I n Channel
(TIC) ccw permits unconditional branching, and a No Operation
(NOP) ccw is functionally redundant. TIC’S and NOP’S can be
helpful in the manipulation of a single generalized program;
with them, buffer addresses, key addresses, lengths, and file-index
addresses can be substituted as needed. As each READ/WRITE
operation is requested by the application program, TIC/NOP com-
mands can be used to “gate” a particular sequence of ccw’s. At
the conclusion of this operation, the next operation can be accepted
with its particular gating of TIC’S and NOP’S as shown in Table 1.
Maximum use of this technique has been made in the os/360
Data Control Block, which is the equivalent of DTF in DOS/360.

While one or more TIC or NOP commands are being sequentially
interpreted by a channel, the channel claims main-storage cycles
at such a high rate that little processing can proceed concurrently
in other channels or in the central processor. Time-critical opera-
tions may be required on these other channels at the same instant
that a sequence of TIC’S and NOP’S is being interpreted by the
channel attached to the direct-access device. I n such cases, there
may be a non-zero probability of overrun-a loss of data on another
channel during the transfer to or from the given device. Although
the chance of overrun is normally a negligible factor in the design
of channel programs for high-performance systems, it cannot be
dismissed in the case of medium-performance processing units.
Hence, BOS/360 and DOS/360 channel programs are invariably

i plications process a single transaction at a time.4
I

Figure 3 Format of o CCW

COMMAND
CODE DATA ADDRESS FLAGS 000 COUNT

I) 7 8 1
1 1 3 2 36 I7 19 40 I , 48 6

DOS DATA MANAGEMENT TECHNIQUES 41

Generalized Channel Program

SEEK CYLINDER1
SEARCH KEY1
TIC * -8
READ DATAl

SEARCH KEY2
TIC * -8
READ DATA2

GATEl TIC/NOP

GATE2 TIC/NOP
SEARCH KEY3
TIC
WRITE DATA3

*-8

GATE3 TIC/NOP

Tailored Channel Program
-___

SEEK CYLINDER1
SEARCH KEY1
TIC
READ DATAl

SEARCH KEY2
TIC * -8
READ DATA2

* -8
GATEl TIC GATE2 +8

(END OF CHAIN)
GATE2 TIC/NOP

SEARCH KEY3
TIC
WRITE DATA3

* -8
GATE3 TIC GATEl +8

“net,” i.e., they avoid NOP commands and extraneous TIC com-
mands. Net channel programs are particularly appropriate to
Models 30 and 40 of SYSTEM/~~O, where the exposure to overrun
is significantly greater than on the Models 50’65, and up.

BOS/360 generates net channel programs at assembly time.
Thus, file processing requires little manipulation of the channel
programs other than substituting buffer addresses and keys as
requested. However, an application needing more channel pro-
grams has a correspondingly larger main-storage requirement.
On systems with small main storage, this requirement may force
division of the application into several overlays, increasing both
the programming task and the running time of the finished
program.

D O S / ~ ~ O generates net channel programs from the following
elements: (1) a small number of generalized ccw’s, (2) main-
storage addresses of buffers and work areas, (3) file storage
addresses of indices and record addresses, and (4) channel-program
descriptors (table entries) interpreted by a channel-program gen-
erator which is a routine that starts with parameters and fashions
a suitable channel program.

DOS/360 enqueues one I/O request at a time for each DTF
table; therefore, storage sufficient for the largest channel program
is required in a work area of each DTF table. This area is called
BPA (Building Program Area). All imperative macroinstructions
for the same file share this BPA so that each channel program
overlays its predecessor. Whenever a record must be retrieved,
the channel-program generator in the logic module is accessed one
or more times during the READ/WRITE operation.

In B O S / ~ ~ O and D O S / ~ ~ O , the problem program can specify up
to six different READ/WRITE imperative macroinstrunctions per

42 RICOUR AND MEI

file. Each of these instructions can perform a basic function
(e.g., retrieve a record by key and update it) and several addi-
tional subfunctions (e.g., returning the address of the next record
or verifying the updating). Thus, there are several possible channel
programs for each imperative macroinstruction and a total of
more than fifty for the six possible imperative macroinstructions,
requiring the use of sixty different channel control words. With
B O S / ~ ~ O , all these channel programs are cataloged in the macro
library; for each imperative macroinstruction, the correct channel
program is selected at assembly time by the DTF macroinstruction
statements and then entered in the DTF table. Since only one of
these six channel programs in the DTS table is used at any given
time, DOS/XO uses only one channel program at any time, gen-
erating it from tables at I/O time.

The sixty different ccw’s required for the six READ/WRITE
macroinstructions of DAM can be readily generated from eleven
basic ccw’s, changing only the command bytes and/or flag bits.
Of these eleven ccw’s, five are required for initial loading of the
file; six are required for normal file maintenance processing.
TIC ccw’s are generated directly from storage addresses.

To each desired ccw corresponds an eight-bit byte as follows:
Field a, (1 bit) determines the command byte, Field a2 (4 bits)
selects one of the eleven basic ccw’s, Field a, (3 bits) further
defines the command byte and inverts the flag bits of the basic
ccw. If both a, and a, are zero, the desired ccw is a TIC. In this
case, az determines the required relative address, *f8n. For
DTFDA, channel-program descriptors (which are strings of single
bytes in this case) are generated into each table at program-
assembly time, depending upon which imperative macroinstruc-
tions are used to access the file.

Since the first ccw in each DOS/~BO channel program must be a
Seek command (to support the file-protect feature and to permit
asynchronous access to several files on the same device), the
Seek ccw is assembled at the top of the BPA and never modified.
As each channel program is requested, the channel-program
generator moves an appropriate ccw into the BPA, then performs
certain logical operations to alter the command and flag bits.
The same procedure is repeated with each successive ccw until
the generator detects the absence of command chaining and
stops the generating process. The generator is about 100 bytes
long and requires two milliseconds to build an average channel
program in a S Y S T E M / ~ ~ O Model 30. The generating operation,
which is performed during the cylinder access time, slightly in-
creases the load on the computer, but does not affect the average
access time to a track; this is very important for a random-access
file.

An example demonstrates the DAM channel program generator
on the following task: read a certain keyed record on a cylinder
specified by SEEKADR into IOAREAl (according to the key at
KEYARG) and return the corresponding track-record identifier

DOS DATA MAN.4GEMENT TECHNIQUES

3. If a, = 1 and a3 = xx0, turn on the Multiple-Track bit of
the command byte of the a,th basic ccw, as the latter is
moved into the generated channel program.

4. If a, = 1 and a3 = xxl, change a Read command byte to
Write, as the a,th basic ccw is moved into the generated
channel program.

5. If a, = 1 and a3 = 111, move the a,th basic ccw without
change into the generated channel program. Basic ccw’s are
given in Table 3.

The first two ccw’s are generated as follows:

SRCHHA CCW. Since a, = 1, a,=0100, and a8 = 111, X’A7’
means “move the fourth basic ccw without change’’ (Rule 5).

TIC *-8. Since al=O, a,=0011, and a,=000, X’18’ means
“generate a TIC instruction whose relative address is 8 (3-4)”
(Rule 1).

Consider two different DTFDA’s, one using four imperative DAM
macroinstructions or about 30 ccw’s (average), and one using storage
the six possible imperative macroinstructions or about 60 ccw’s requirements
(maximum). We now compare two of the three techniques for
direct-access programming: the Assembled Channel Program Tech-
nique using B O S / ~ ~ O , and the Generated Channel Program Tech-
nique using DOS/XO. For applications requiring only one average
DTFDA table, the two approaches are equivalent:

Assembled Channel Program Technique:
DTF table TAl 240 bytes

30 ccw’s

Generated Channel Program Technique:
DTF table Tal 140 bytes

6 basic ccw’s, 48 bytes
BPA of 8 ccw’s, 64 bytes
4 information strings, 28 bytes

Channel program generator 100 bytes
240 bytes

If three different DTFDA tables of average size are used in
the same application, approximately 200 bytes are saved:

Assembled Channel Program Technique:
DTF tables

3 T A l 720 bytes

Generated Channel Program Technique:
DTF tables

3 Tal 420 bytes
Channel program generator 100 bytes

ISAM
channel
programs

Figure 4 Flowchart of channel
program generator
for ISAM

INITIALIZATION

ANALYZE NEXT

ADD 2 TO

4 YES

For an application using maximum DTFDA tables, considerable
storage savings result, particularly if the application uses several
files simultaneously :

Assembled Channel Program Technique:
DTF tables

3 TA2 (60 ccw’s each) 1,440 bytes

Generated Channel Program Technique:
DTF tables

3 TGz (240 bytes each) 720 bytes
Channel program generator 100 bytes

820 bytes

The Indexed Sequential File Management System for DOS/360
permits processing of disk records in any order by control in-
formation stored in a set of indices. The imperative macroin-
structions-GET, PUT, READ, WRITE, and WAITF-allow the user
to load the file and also to add, read, and update individual
records randomly, and retrieve them sequentially.

The generation of channel programs into DTFIS tables is
significantly different from that for DTFDA tables. There are
more imperative macroinstructions and distinct channel programs
than in DTFDA, several of which are used to perform each GET/PUT
or READ/WRITE function. If all the channel programs were
entered into the DTF table at assembly time, this would amount
to more than 30 channel programs requiring up to 15 ccw’s each,
aggregating 2000 bytes, although not all channel programs are
required for each application. However, D O S / ~ ~ O uses a channel-
program generator with DTFIS. This generator is more gen-
eralized, slower, and somewhat larger than the generator for
DTFDA; however, it has more flexibility and may reduce the size
of the DTF tables because the basic ccw list is not required.

To each desired ccw corresponds a 2-byte string: the first
of four 4-bit fields selects the command byte, the second the
flag field, the third the address field, and the fourth the count
field. At program assembly time, the storage addresses for buffers,
keys, etc. are ordered into one vector of 4-byte entries, the relevant
count fields are ordered into another vector of 2-byte entries,
and the relevant command bytes are ordered into a third vector
of l-byte entries. Channel programs are generated from ele-
mentary fields in DTFIS, rather than from selected preassembled
ccw’s, as shown in the general flowchart for the channel-program
generator of Figure 4.

Figure 5 shows the generation of a typical channel program
using the command-byte vector, address vector, count vector,
and channel-program descriptor string.

The internal data management techniques for DOS/XO aim
at economizing the use of main storage. Overall assembly time

46 RICOUR AND ME1

Figure 5 Typical solution for ISAM

r-+l"

COMMAND VECTOR

X'07'.SEEKADR,flagl. 6
x'69' KEYARG flae2. 15

X'07'
I

110 area 2

key argument

ADDRESS VECT
-
OR E 25 1

X'08'.*-8,fIag3, 1-
X'06',10AREAl.flag4. 25 CHANNEL PROGRAM DESCRIPTORS COUNT VECTOR

is reduced by individual preassembly of program sections, which
makes it unnecessary to reassemble the entire program if some
portions are changed. Only the changed sections are reassembled
and then linked with the unchanged ones.

Different techniques for generating channel programs are
appropriate to the direct-access and indexed-sequential file organ-
izations in D O S / ~ ~ O . One technique selects preassembled CCW'S

and modifies selected fields, the other generates ccw's entirely
from their constituent fields. Both of these techniques require
more processing time per I/O request than required by BOS/360

or 05/360, although much of this time can be overlapped with
seek time for random I/O requests.

BOS/360 preassembles channel programs that contain no ex-
traneous TIC or NOP ccw's. This minimizes both the processing
time per I/O request and the probability of overrun, but would
require more main storage if several files in the same program
were used. os/360 preassembles generalized channel programs,
which are gated by TIC/NOP commands as appropriate to each
I/O request. D O S / ~ ~ O , however, generates net channel programs
as needed. This method conserves main storage, a particularly
important consideration for applications requiring several files
on direct-access storage; the more files in use, the more main
storage is saved.

ACKNOWLEDGMENT

The authors are greatly indebted to Dr. D. N. Freeman for his
helpful suggestions during the preparation of the paper.

FOOTNOTES

1. The general data management concepts for ~ O s / 3 6 0 (and TOS/360, a similar
tape operating system) are outlined by A. R. Cenfetelli in "Data manage-
ment concepts for nos/360 and TOS/36O," IBM Systems Journal 6, No. 1,
22-37 (1967).

summary
comment

DO8 DATA MANAGEMENT TECHNIQUES 47

2. A similar technique is being developed for the D O S / ~ ~ O Basic Teleprocessing
Access Method (BTAM).

3. The operating systems for IBM SYSTEM/~BO configurations are the Basic
Operating System ~ 0 ~ 1 3 6 0 for small configurations with a t least 8K bytes
of main storage, the Disk and Tape Operating Systems DOS/360 and T O S / ~ ~ O
for intermediate configurations with at least 16K bytes of main storage,
and the Operating System os/360 for intermediate and large configurations
with a t least 32K bytes of main storage.

4. An alternative method for conserving main storage allocates a block of
main storage, possibly several thousand bytes, to a partial or complete
index for the file, substantially increasing retrieval speeds. It is also per-
missible to allocate several channel programs to a file and to process the
file by one or more of the following queuing disciplines: (1) First-In First
Out, which reduces interrupt-servicing overhead; (2) nearest cylinder or . . .

cylinder sweep, which reduces theaverage seek time per transaction; and(3)
priority class, which permits servicing of urgent requests out of sequence. -

48 RICOUR AND ME1

