The functions of disk and tape operating sysiems for SYSTEM /360
configurations with as litile as sixteen thousand bytes of main storage
are discussed. The two related systems are designed to provide a
range of services that include input/output conirol, stacked-job con-
trol, symbolic device assignments, and library maintenance. A set
of language translators, a set of sort/merge programs, and various
other programs go far toward minimizing the effort required of
program preparation.

Design objectives, system definitions, and functional capabilities are
stressed. The design of the control program is discussed in some detazl.

Function and design of pos/seo and TOs/360
by G. Bender, D. N. Freeman, and J. D. Smith

Prior to third-generation computers, few systems programmers
had tried to implement full-function operating systems for small-
storage computers. True, most installations had many of the
functional requirements that justified operating systems, but
storage limitations made it impractical to meet these needs on
an integrated basis. At present, however, two forces are clearly
at work to change the trend. First, the new computers bring
with them a degree of device modularity and flexibility that
intensifies the need for integrated operating systems, and second,
these same computers possess a degree of efficiency that makes
operating systems practical for smaller main-storage areas.

The purpose of this paper is to discuss the Disk Operating
System (pos/360) and the Tape Operating System (Tos/360) for
IBM’S SYSTEM/360. Despite their frugal use of main storage, these
systems offer functional services comparable to the 1BM 1410
Operating System or 18BM 7090 1BsYs." The basic objectives of the
systems are to systematize stacked-job processing, support a wide
range of input/output devices, provide the full advantages of
high-level languages, and ease upward extensibility in languages
and operating environments.

Each of the systems is designed for the standard sysTEM /360 in-
struction set® and requires approximately six thousand (6K) bytes
of main storage for system residence. A minimum configuration
consists of a 16K MODEL 30, an 18M 1052 printer keyboard, a card

IBM SYSTEMS JOURNAL * VOL. 6 * NO. 1 * 1967

reader (or equivalent magnetic tape), a printer (or tape), a punch
(or tape), and either four 1BM 2400-series magnetic tape units
for Tos/360 or one 13M 2311 disk drive for pos/360.

TFFor the configuration with more main storage but a fairly
straightforward set of operating needs, the systems are possible
alternatives to the more modular and versatile 0s/360 operating
system.? Tor configurations with 32K or more bytes of main
storage, the systems offer a form of fixed-priority multiprogram-
ming in which one or two “foreground’” programs can be executed
concurrently with a low-priority background program. In pos/360,
a telecommunication application can also be executed as either
a foreground or a background program.

Kach system, intended to assist the user in program prepara-
tion, data management, and device control, consists of a control
program and a set of supporting programs. The latter include
translators for five programming languages; general-purpose pro-
grams for sorting and merging; a number of utility programs;
a generalized program that assists in program debugging and
correction; and service programs for creating and maintaining
the system libraries.

The control program consists primarily of an Initial Program-
Load (1pL) routine, a Supervisor, and a Job Control routine. 1pL
is called and used whenever system operation is initiated; among
its functions is the loading of the Supervisor into main storage
and the branching to the Supervisor. The Job Control routine,
which is executed between jobs, is loaded by the Supervisor as
needed. The Supervisor launches input/output operations, services
interruptions, and performs various other functions.

Although part of the Supervisor remains in main storage

throughout system operation, many segments of the Supervisor,
called transient routines, are executed in a main storage ‘“‘transient
area’’ that is allocated to the Supervisor. When a routine is
called, it simply overlays the existing contents of the transient
area.

System elements

Translators are provided for the Assembler Language, cosoL,
FORTRAN, PL/1, and rpG (Report Program Generator). In general,
the languages follow the syntactical rules of the corresponding
languages in 0s/360. The pr/r translator is designed for 32K
systems. The 16K Assembler Language differs from the full
SYSTEM /360 Assembler Language in minor ways; e.g., bit-length
specifications in DC and DS statements are not allowed. The
system macroinstructions used by the control program are
available in the Assembler Language.* The translators use either
2400-series tapes (Dos /360 and Tos/360) or 2311 disk storage (pos/360
only) as intermediate work files.

Although executable programs in the system are essentially
images of main storage, they may be either absolute or self-relocat-
ing. Programs are called self-relocating if they initialize (set up)

DOS/TOS FUNCTION AND DESIGN

program
structure

the
librarian

their own address constants so that they can be fetched or loaded
into any main-storage area and executed there. Most problem
programs, as well as the non-transient part of the Supervisor,
are stored in absolute form. Transient routines are self-relocating.

A set of statements written as input to a language translator
is referred to as a source module and the translator output as an
object module. The object module consists of one or more control
sections and a control dictionary. A control section is a segment
of code intended for one contiguous area of main storage; a control
dictionary contains information needed when the object modules
are link-edited to produce phases. An executable program con-
sists of one or more phases.

Programs can be written as source modules in any of the five
programming languages. Object modules from different transla-
tions of different languages can be link-edited to produce one
phase. The necessary linkage conventions, based on the traditional
CALL-SAVE-RETURN concept, are essentially a subset of the
0s/360 set. Direct linkage is available with Assembler Language,
CcOBOL, FORTRAN, and prL/1 for routines that always appear in
main storage together as a single phase.

For circumstances in which some phases of a program are
to be stored externally and then called during program execution
to overlay other parts of the program in main storage, the user
can define an overlay structure for the linkage editor by means
of control statements. coBoL or FORTRAN overlay structures can
be handled by a short Assembler Language program that invokes
the Supervisor through FETCH or LOAD macroinstructions; the
Supervisor reads a phase into main storage and optionally branches
directly to it. pr/1 contains facilities of its own for loading multiple
phases of a single program.

An independent program is normally executed as a job. It is
superfluous to connect two programs within an overlay structure
and execute them consecutively as one job if the programs are
related only by results recorded on external storage media. For
such cases, job steps are defined. For instance, the only relation
between a compilation and a subsequent link-edit is the object
module resulting from the compilation, which the system always
stores on an external device. Therefore, a compilation followed
by a link-edit is typically viewed as two steps of one job. The
system permits the remnant steps of a job to be ignored if one
step fails.

The routines comprising the Librarian facilitate insertion,
deletion, and replacement of elements of any of the three libraries:
core-image, relocatable, and source-statement libraries. Further-
more, tables of contents can be printed, modules from the re-
locatable library or the source-statement library can be punched,
and listings of modules can be obtained. The librarian stores
relocatable and source-statement modules in a compressed format.

It is the primary function of the Linkage Editor to combine
object modules supplied in the job input stream, and object

BENDER, FREEMAN AND SMITH

modules from the relocatable library into executable programs.
One phase can contain one or several object modules, and one
object module can supply control sections to several phases.
It is of interest that the Linkage Editor allows the same control
section to occur in different phases of the same overlay structure.
Thus, a program may use the same input/output routines in
its first and last phases without sacrificing main storage for these
routines during intermediate program phases.

Inasmuch as four higher-level programming languages are
offered, many small-system users will be encouraged to code
fewer applications in the Assembler Language. When using coBor,
the user can request test information in the higher-level language.
When using FORTRAN or PL/I, the user may insert temporary
READ or WRITE statements to monitor test data.

A program-testing aid called “Autotest’” is provided. Autotest
is particularly suited to Assembler output, although it can also
help in the debugging of object modules from other translators.
Since most programs are link-edited and loaded to the same
absolute addresses, testing tools need not be fully symbolic.
Print requests can be inserted in a program when it is link-edited
under Autotest control. As each such request is honored, its
storage-area limits can be displayed in symbolic form if assembly
symbol tables have been furnished to the Linkage Editor. Other
functions of Autotest include paiching that reduces the number
of reassemblies required during testing, dumping at the termination
of a job step, recording of phase calls, and linking to utility pro-
grams before or after test execution.

Programs are provided for sorting and merging either tape
or disk files. The tape sort/merge programs take advantage of
the read-while-write feature and the tape-switching device. The
sorting algorithm, a generalized polyphase merge for three to
six tapes, uses the read-backward feature and allows the user to
specify the final output drive without requiring a copy-only pass.

The utility programs can be used to move data between card
readers, card punches, printers, tapes, disks, and data cells. Fields
can be rearranged and records can be reblocked during the data
transfers.

The system allows sequential, indexed sequential, and direct
file organization. Card, printer, and tape files are always sequential;
pAsD (Direct-Access Storage Device) files may be sequential. To
write or read a record in a direct-file organization, the DAsD
location of the record must be given; sequential reading can yield
a completely arbitrary sequence of records. The indexed sequential
file organization is used with direct-access storage devices to
retain the advantages of a file that is ordered on data keys while
galning some of the advantages of random access. Direct access
is accomplished with the aid of index tables, which contain the
addresses of selected keys in the ordered file.

Macroinstructions designed for use with the control program
are called system macroinstructions. Many of these provide for

DOS/TO$ FUNCTION AND DESIGN

linkage
editor

debugging
aids

sort/merge

utilities

file
organization

macro-
instructions

supervisor

input/output control, supervisor communication, and direct link-
age. Depending upon the indicated file organization, input/output
control macroinstructions may take different parameters and
create different coding. Macroinstructions intended for use in
system generation, multiprogramming, and teleprocessing ap-
plications are also provided.

Control-program structure

The pos/Tos /360 Supervisor is the key component of the control
program. Its functions include:

¢ Invoking necessary setup functions for each job

» Furnishing a description of the machine configuration for the
machine operator and the problem programs
Performing 1/0 services at the most elementary level
Issuing messages to the operator whenever his intervention
is required
Responding to interruptions, taking the system default action
whenever a job is unconcerned with the interruption
Fetching phases of an overlay program
Taking user-directed checkpoints, prints, and post-mortem
dumps
Task switching and task selection for multiprogramming
(scheduling of the highest priority partition that is not in
a waiting condition)

The Supervisor resides in the first 6K bytes of main storage.
Slightly larger or smaller variants of the Supervisor can be gen-
erated, depending upon optional machine features and certain
processing options. Rarely will a basic Supervisor either exceed
6500 bytes or be less than 5900 bytes. Supervisors furnishing
multiprogramming and/or telecommunication support range up
to 10K bytes.

Each installation generates one or more Supervisors tailored
to its needs. Specifically, each Supervisor is defined by a set of
macroinstructions whose parameters describe the configuration,
options, and special supervisory services of the installation. The
Supervisor is the only major component of pos/T0s/360 requiring
on-site assembly; all other processors adapt to the installation
by interrogating parameters assembled into Supervisor tables.
This procedure minimizes the effort expended by each installation
for generating and maintaining its system.

Above the Supervisor is the problem-program area, divided
into the background partition (or batch-processing partition) and,
optionally, one or two foreground partitions. If neither of the
lIatter is needed, the entire problem-program area is available
to the user for batch-job processing. The Supervisor never
“borrows” from it. (The Autotest monitor does borrow from
upper main storage for the testing of programs.)

During the execution of each program, one or more transient
supervisory functions may be requested, e.g., routines to print

BENDER, FREEMAN AND SMITH

main storage, open data files, ete. Other transient functions are
called by the Supervisor when exceptional 1/0 conditions oceur
(such as a stacker-empty condition for a card punch). These
transient routines are retrieved from systems residence into the
Supervisor, where 1700 bytes are reserved for this purpose in
pos/360, and 1500 bytes in Tos/360. Certain complex roulines,
such as direct-access storage device (pasp) file OPEN, require
several segments which overlay each other in this transient area.
Such multisegment operations normally require from 0.5 to 5.0
seconds.

The nucleus of the basic Supervisor (i.e.,, without multipro-
gramming/telccommunication capability) is approximately 4500
bytes, whereas the transient funections aggregate 30,000 to 40,000
bytes. The Supervisor is a schematic “iccberg,” whose “visible”
main storage comprises only functions which cither are used con-
tinually during problem-program execution or are necessary to
access the “invisible” transients.

The Supervisor responds to all five classes of machine inter-
ruptions on SYSTEM/360:

M achine check (hardware jailure). The standard system diagnostic
procedure is followed and the machine operator is notified; opera-
tion cannot continue.

Program check (problem-program failure). The current job is can-
celled unless the user has requested that control be directed to
his private, asynchronous routine.

Supervisor call. Dos/T0s/360 defines a fixed set of supervisory
services, corresponding to approximately thirty different Super-
visor-call instructions. Users can augment these services only by
source-level modification of the rBM-supplied Supervisor.

Ezxternal. The Supervisor optionally supports the interval timer
in two distinct ways; as a real-time clock for time-stamping printed
output, and for interrupting a user program when a pre-set
interval elapses. In the latter event, the Supervisor posts a user-
specified event block, yields control to a user-specified routine,
or ignores the interruption if no linkage exists. The interrupt
key is supported in a similar fashion, i.e., either by ignoring the
interruption or by linking to a user-specified routine for this
asynchronous interruption.

Input/Output. sYsTEM/360 offers a wide variety of different 1/0
devices which collectively return a multitude of status indications
to the cpu whenever interruptions occur. This machine design
facilitates thorough checking for exceptional conditions, efficient
parallel processing, and great flexibility in configurating various
systems. Nevertheless, programming the equipment directly to
utilize all the features and respond to all interruptions is a very
complicated and specialized task; all neecessary functions are

DOS/TOS FUNCTION AND DESIGN

interruptions

Table 1

10CS units

Logical
unit

Function

Device
type

Remarks

[SYSRES

SYSLOG

SYSRDR
SYSIPT
SYSPCH
SYSLST

SYSLNK
SYSRLB

SYSSLB

SYS000

SYS001
SYS002
SYS003

SYS004
SYS005

SYS000
SYS001

SYS000
SYS001

On-line residence

Two-way operator
communication

Control-card reader

Input stream

Punched-output
stream

Printed-output
stream

Linkage-editor input

Relocatable-module
library

Source-statement
library

Utility file

Utility file

Utility file

Utility file

Utility file

Disk or mag tape**

Printer keyboard (or
line printer for emer-
gency output only)

Card-reader, disk,* or
mag tape**

Card-reader, disk,* or
mag tape**

Card-punch, disk* or
mag tape**

Printer, disk,* or mag
tape***

Disk or mag tape**

Mag tape

Mag tape

Any supported device

Any supported device

Any supported device

Any supported device

Any supported device

Accessible by all programs: Supervisor, batched
jobs, and foreground jobs

Operator uses SYSLOG to initiate foreground
job

Used primarily by Job Control; not available to
foreground jobs****

Standard format: 80-byte records; monitored by
Supervisor for special job-step delimiters****

Standard format: 81-byte records (asa first-
character control for stacker selection)****

Standard format: 121-byte records (Asa carriage
control)¥***

Also contains tape linkage editor output****

Distinct from SYSRES; must be a private tape
reel (TOS/360)%***

Distinct from SYSRES; must be a private tape
reel (TOS/360)****

Arbitrary usage by background programs
Normally assigned to scratch storage on
tape or disk; used by compilers, librarian, ete.
Arbitrary usage by background programs
Arbitrary usage by foreground-two
programs*¥***

Arbitrary usage by foreground-one
programg¥rr*

* pos/360 systems w/minimum 32K main storage

** O-track or 7-track w/data-convert feature

**+* 9-track or 7-track; data-convert feature is
unnecessary

*#xx A ccessed only by background partition

*xkx JYS000 is used for foreground dumps
and job termination messages if assigned
to a printer or tape

included in the Supervisor. Those functions which schedule over-
lapped 1/0 operations, accept 1/0 interruptions, and service ex-
ceptional conditions of 1/0 devices are collectively called physical
10Cs.
All requests for 1/0 service, whether from the Supervisor, batch
jobs, foreground, or telecommunication jobs, are directed to the

BENDER, FREEMAN AND SMITH

Figure 1 Sample network of 10CS tables

JOB INFORMATION BLOCKS (JIB)
LOGICAL UNIT BLOCKS (LUB)

SR
SYSROR —e NO 1B .

),__7

, Y
SYSIPT — ST U8 | aLTERNATE

SYSPCH UNASSIGNED NO Jte LAST JiB TAPE DRIVES,
EXTENTS ON

LAST JIB DASD STORAGE;‘
UNUSED ETC.

I

SYS000
SYS001

CHANNEL QUEUE (CHANQ)
PHYSICAL UNIT BLOCKS (PUB)

NOT TAPE ¢

Db B
NOT TAPE LAST REQUEST r J
[I +CCB POINTERS;
GNIT: ADDAESS, LAST REQUEST |REQUESTS FOR |
[DEVICE TYPE, ONE DEVICE
— MODIFIER BITS . |CHAINED N
TOGETHER

NOT TAPE .]

NOT TAPE | FIAGS, ETC.

TAPE ERROR BLOCKS (TEB)

STATISTICS PER TAPE
DRIVE PER JOB;

WRITE ERRORS

[—— GAPS ERASED, ETC.
S

Channel Scheduler, the principal component of physical 1ocs
(which in turn represents over sixty percent of the basic Super-
visor nucleus). Dos/T0s/360 responds to any interruption from
any device, even if totally unknown to the Supervisor. For each
“anticipated” interruption, i.e, resulting from a previous 1/0
request, Dos/T0s /360 posts the appropriate status information to
the requestor’s Command Control Block (ccB). Identical ccp’s
and 1/0 requests are issued by foreground and background pro-
grams; the Supervisor distinguishes these requests only by the
protection keys of the requestors. Specifically, the Supervisor
runs under protection key 0, background jobs under key 1, and
foreground jobs under keys 2 and 3.

Since the assignment of unit numbers to sysTeEM/360 devices
may vary between and within installations, it is tactically un-
desirable to use such physical addresses in programming; other-
wise, each application can run only on a single configuration and
cannet operate if any single 1/0 device in that configuration
becomes unavailable.

Thus, two classes of symbolic units in the form SYSxxx are
defined as shown in Table 1. Each ccB references precisely one
symbolic unit. Any device can be assigned to any symbolic unit
except as noted in Table 1. Several symbolic units can be assigned
to a single 1/0 device, although most programs do not ordinarily
use several “aliases” simultaneously. For example, consecutive
cards are usually read using a single symbolic unit. Figure 1
shows a sample set of 10cs tables in the Supervisor nucleus, and
Figure 2 indicates in detail how two symbolic units (i.e., Logical
Unit, Blocks, or Luw’s) point to one Physical Unit Block (rus).

Symbolic names are primarily for the convenience of the
machine operator. Knowing the symbolic names required by a

DOS/TOS FUNCTION AND DESIGN

channel
scheduler

symbolic
units

Figure 2 Physical/logical unit
correspondence:
2 LUB’s to 1 PUB

Physical/logical unit
correspondence:
1 LUB to 3 PUB’s

1

1/0
queuing

file
protection

stream of programs, he makes assignments from a pool of 1/0
devices. With appropriate assignments, he can substantially reduce
his effort to mount and dismount tape reels, disk packs, etc.
Also, he can greatly improve system throughput by assigning
faster tapes to certain functions for each program. For example,
the Tos/360 systems-residence tape should be one of the faster
tapes, whereas program listings should ordinarily be diverted to
a slower tape (en route to a printer).

Another type of physical-symbolic correspondence is possible.
Two or more physical devices, ordinarily magnetic tape drives,
can be assigned to a single symbolic name, so that user programs
need not handle end-of-volume conditions. Figure 3 gives an
example of this: one Lub attached to three pus’s. The Supervisor
automatically closes and rewinds each reel of a multi-reel file
then opens the reel on the next alternate drive, together with
all requested label checking and label creation.

The Channel Scheduler queues the requests for each 1/0
device and serves them in First-In First-Out (F1ro) order. Further-
more, the Channel Scheduler services each selector channel in
FIro order except when an impending request is to a busy device.
In such cases, the Channel Scheduler dequeues out of order until
the busy device becomes free. For example, a rewind-and-read
sequence of commands to a tape drive can be performed without
interlocking 1/0 operations on other tapes.

The Channel Scheduler fully utilizes the byte-multiplexing
capabilities of low-speed devices (such as card readers and punches,
printers, and terminals) when attached to the multiplexor channel
by restarting these devices as soon as each becomes free (as long
as there are pending requests). If burst-mode devices are attached
to the multiplexor channel, only non-overrunable devices are
multiplexed. For example, if magnetic tapes are attached to the
multiplexor channel, the 1BM 2540 card reader and punch can be
byte-multiplexed but the 1BM 1442 card reader and punch is started
only when no tapes are transmitting data.

Often an 1/0 request cannot be started because the channel
leading to a device is busy, even if the device itself is idle. If two
channels lead to the same device, the Channel Scheduler auto-
matically attempts to start the idle device using the second
channel if the first channel is busy. This technique fully utilizes
the switching capabilities of the 1BM 2404, 2804, and 2816 tape
control units.

Since different programs, operating either concurrently or
successively, can validly use the same direct-access volume, a
method is required to prevent one program from overwriting
information belonging to another program. pos/3eo offers the
following optional facility. Every channel program for a direct-
access device must start with a SEEK Bin Cylinder Head (Long
Seek) command addressing a eylinder previously assigned to the
program issuing the 1/0 request. If this Seek command should
address an unauthorized cylinder, the program is automatically

BENDER, FREEMAN AND SMITH

cancelled. Likewise, any Long Seek command embedded in a
channel program results in job cancellation. Cylinders are as-
signed, i.e., ‘“authorized,” by the pAsD open-file routine after
verifying user-supplied control statements against the label and
Volume Table of Contents (vroc) on the volume itself.

Before a valid Long Seek command is issued, it is moved into
the Supervisor. The Channel Scheduler starts the complete
channel program, after setting a file mask to restrict further
movement of the access mechanism.

Other important protective features are built in. For instance,
records starting with /* or /& in the system input stream (SYSRDR
and SYSIPT) are always considered delimiters and cannot be used as
data. Thus, one job cannot erroneously overread SYSRDR/SYSIPT
and destroy the succeeding job. This protection is performed by
the Channel Scheduler.

Most application programs are written in higher-level languages
or in the Assembler Language, using pre-defined data files. In
either case, available 10cs logic is linked into application programs.
The user need not concern himself with machine-language 1/0
requests, ccB’s, and channel programs, which are discussed later.
However, certain specialized 1/0 devices (or infrequently-used
functions on standard devices) are not supported by the higher-
level 10cs. Users write simple macroinstructions in their Assembler
Language programs to execute channel programs (EXCP), await
their completion (WAIT), and test various status bits to validate
each 1/0 operation. Figure 4 displays the three levels of 10Cs
offered in pos/360 and Tos/360: the lowest one is at the physical
1ocs level (error retry, etc.), the intermediate one consists of
the lowest level plus error processing and automatic generation
of channel programs, and the highest one consists of a combination
of the intermediate level, buffer management services, and de-
blocking services.

Using the 1052 printer keyboard, the operator can, at any time,
initiate a foreground program in an idle partition and cancel
any currently executing job or force a pause after its completion.
At cancellation, the cpu registers and main storage can be op-
tionally dumped out on SYSLST (SYS000 for foreground programs)
to provide diagnostic information for the programmer.

During the execution of assecmbler-language programs, the
programmer can request additional dumps of registers and selected
portions of main storage. These PDUMP’s (prints of main storage)
destroy general registers 0 and 1 but do not otherwise interfere
with system status. The Supervisor prints the diagnostic output
directly on SYSLST, thus providing a selective on-line trace of
program flow.

Between job steps, the operator can use a wider selection
of commands:

1. Assign new symbolic units temporarily or permanently—for
the duration of a single job or for the entire job stream. For

DOS/TOS FUNCTION AND DESIGN

levels
of 10CS

operator-
to-system
commands

Figure 4 Levels of 1OCS

A. LOWEST LEVEL

.
.

CCB NAME

EXCP CCB NAME
WAIT CCB NAME

CHANNEL
SCHEDULER

(ENTER MACHINE WAIT STATE
UNTIL 1/0 OPERATION 1S
COMPLETE)

B. INTERMEDIATE LEVEL

cCcw LIST

CCW = LIST

FILENAME

READ FILENAME ——————

C. HIGHEST LEVEL

CCB NAME

ADDRESS OF 10CS LOGIC

10CS LOGIC

FILENAME

GET FILENAME

PUT FILENAME

CCB NAME

BRANCH VECTOR FOR
READ, CHECK, ETC.

|- # READ LOGIC

EXCP CCB NAME

—» CHECK LOGIC

WAIT CCB NAME

ADDRESS OF 10CS LOGIC

——

10CS LOGIC

BENDER, FREEMAN AND SMITH

BRANCH VECTOR FOR
GET, PUT, CNTRL, ETC.

— GET LOGIC

EXCP CCB NAME

WAIT CCB NAME

—= PUT LOGIC

L e

example, the operator can assign SYSIPT (a card reader, tape,
or disk) for a job stream, whereas each programmer can affect
only his own job by any reassignments.

. Close any tape file manually and manipulate tape drives by
simple commands, as for example,

CLOSE 5YS002 Using standard label procedure
MTC WTM, SYS003,2 Write two tape marks on SYS003
MTC RUN, SYS003 Then rewind and unload it

. List 1/0 assignments selectively. LISTIO SYS prints on the
1052 the following display:

CHAN UNIT LOGICAL NAME

0 oC SYSRDR
0 0D SYSPCH
0 0E SYSLST
1 81 SYSRES

Also, the operator can respond to various system queries
during the running of each job. For example, the operator can
override certain label mismatches for tape reels and disk packs,
e.g., by typing ¢gnore. If he judges the discrepancy to be serious,
he can type cancel, thereby terminating the entire job. Likewise,
when a print check, punch check, or other 1/0 error occurs that
cannot be corrected by programming, the operator can ignore,
cancel, or normally retry the operation, presumably after per-
forming any necessary manual correction procedures. The options
available to the operator are dependent upon the type of error.

The System Loader (also called Program Fetch) is part of
the resident Supervisor. During execution of an overlay program,
the System Loader searches the core-image library for each phase
as requested. If the job is executed in a compile-and-go situation,
phases are retrieved from the tape or disk containing the just-
linked program. Otherwise, the permanent library is addressed
as described in the following paragraphs.

With 9-track tape for Tos/360 residence, the System Loader
“remembers” the SYSRES position whenever possible, 1.e., if other
programs do not reposition SYSRES. Each phase of a user program
requests the next phase, using the FETCH macroinstruction
(or EOJ, the request for End-of-Job). FETCH interruptions give
control to the Supervisor, furnishing the name of the requested
phase to the System Loader, which compares this name to the
name of the current linear position. On high-compare, the System
Loader searches forward in the permanent library; on low-compare,
the System Loader searches backward, using the read-backward
capability of 9-track tape.

DOS/T0S FUNCTION AND DESIGN

system
loader

Table 2 Result of a library maintenance run updating phases PAYROLL2 and
PAYROLL3 of the PAYROLL program

Core image Phase directory
directory (built when requested)

Phase name Location Phase name Location

. PAYROLL

PAYROLL PAYROLL3
otherphase 1 PAYROLL2
otherphase 2 .

PAYROLL3

PAYROLL2

PAYROLL PAYROLL
- PAYROLL2
PAYROLL3

PAYROLL2 CHR M
PAYROLL3 CHR N
End-of-Library CHR P

CHR = Cylinder Head Record

With 7-track tape residence (or for compile-and-go executions),
the System Loader cannot read phases backward. Instead it
rewinds SYSRES (or SYSLNK) and searches forward for each phase.
The same tactic is required when problem programs reposition
SYSRES, e.g., rewind it to save inter-job time. For example,
when the 1BM-supplied Librarian searches for books outside the
core-image library (i.e., in the relocatable library or in the source-
statement library), this repositioning is detected by the Channel
Scheduler which sets a “SYSRES moved” switch for the System
Loader. However, rewind-and-search-forward is often faster than
read-backward, particularly if the Librarian is searching far down
the system tape.

The pos/360 System Loader consults an abbreviated phase
directory for the location of each phase on system residence.
This directory is built by Job Control as each program is re-
quested. The phase directory is merely an abstract of the core-
image directory, the latter being a one-level catalog for all phases

BENDER, FREEMAN AND SMITH

in the core-image library. The basic cataloging unit for the core-
image library is a phase rather than an entire program, thus
facilitating program maintenance, reducing the size of program
FETCH (in the 6K Supervisor), and achieving superior FETCH
speeds. The phase directory facilitates fast phase lookup, since
it is one-level, compact, and completely current, as shown in
Table 2. The pos/380 compilers and large application programs
would suffer significantly with additional FETCH overhead.

Programs can retrieve instructions and/or data from the core-
image library without yielding control, using the LOAD macro-
instruction. Such a text can be loaded into any part of the problem-
program area, using either a program-specified load address or
its linkage-edited address by default. User programs can thus
rapidly access tables or subroutines outside of main storage—the
core-image library consists of 1700-byte blocks on the disk system
and at least 4000-byte blocks on the tape system.

Since pos/360 and Tos/360 are designed for small-to-inter-
mediate sYsTEM/360 configurations, a checkpoint facility is re-
quired for “rollback” of prolonged jobs if such jobs are deliberately
or inadvertently interrupted.

Checkpoints can be taken either on disks, private tapes,
or—in the case of sort/merge and other programs using all avail-
able drives—on output or work tapes. The user generates check-
point requests into his program, which can be honored either
unconditionally or under operator control: the operator sets one
of the user-program switch indicators, which can be interrogated
by checkpoint requests in the object program.

Programs are restarted by operator action. The desired check-
point generation, i.e., serial number, is keyed in to select precisely
the desired degree of “rollback.” Tape files are automatically re-
positioned during program restart. pasp files are self-repositioning.

Job Control is a program alternating with each job step in
the background job stream and furnishing a diversity of services
to the job stream:

¢ Setting of switches to control execution-time options

e Assignment of 1/0 devices

e Partial verification and temporary storage of label information
(tape, disk, ete.)

Job Control is the key element for batch processing of arbitrary
jobs (in contrast to batch processing of identical jobs, e.g., multiple
FORTRAN compilations). In other words, each programmer uses
Job Control statements describing his options and data to either
his own programs or to standard processor programs. Job Control
furnishes special services to certain processor programs:

For the Linkage Editor. Copying object modules from SYSIPT to
a special intermediate file (SYSLNK).

For the compilers. Setting switches in the Supervisor nucleus
to control object-module output (DECK/NODECK), symbol-table

DOS/TOS FUNCTION AND DESIGN

checkpoint

job
control

1/0
assignments

label
processing

output (SYM/NOSYM), listings (LIST/NOLIST, LISTX /NOLISTX),
admissible character set (48C/60C), compile-and-go facility
(LINK/NOLINK).

Forthe Program FETCH subroutines. A description of where to find
executable programs: the tape drive (for compile-and-go jobs)
or a special directory giving the disk address of every phase in
the requested program. A program being defined as any collection
of phases whose names have a common four-character prefix, one
program can exit to another program merely by issuing a FETCH
macroinstruction for its first phase.

A second major function of Job Control is to assign physical
1/0 devices to symbolic names. This function, illustrated in
Figure 5, is directed by: (1) the programmer who anticipates
standard assignments of a single type, e.g., tapes; (2) the machine
operator who assigns devices out of pools; and (3) the standard-
configuration description (which is generated into the system).
The machine operator has ultimate control of assignments. If
Job Control detects a discrepancy, it asks him to correct the
assignment or cancel the job.

The operator exercises this control only by exception. The
standard configuration usually assigns specific devices to all
required symbolic names. Of course, this standard configuration
is appropriate to a single machine. If the system volume is moved
to another machine, the operator must furnish a set of new as-
signments. These assignments can be entered by control card as
well as through the printer keyboard, avoiding prolonged keyboard
tedium for the operator whenever the system must be reloaded.

The third major function of Job Control is to accumulate
label information and move it (in compressed format) to a fixed
area, thus making it available for OPEN processing. On the tape-
resident system, this area is a small block of main storage at
the beginning of each program partition (since no external
read/write storage is necessarily available, all tapes may be
committed to the current application program). On the disk-
resident system, the label area is part of the system volume from
which label information is read into the transient area of the
Supervisor by OPEN.

There are two types of label statements. Volume (VOL) state-
ments establish the correspondence between symbolic units and
named files. Tape label (TPLAB) and disk label (DLAB) statements
furnish the actual volume and file-label data to be checked against
input file labels or written on output files. Disk-label statements
are supplemented by extent (XTENT) statements which confirm
or assign tracks to each input/output file on direct-access devices.

A distinctive characteristic of disk and tape operating systems
is programmer or operator control of label and extent information.
(In o0s/360, much of the burden is assumed by the control pro-
gram.) Since each job furnishes this information,® the Dos /Tos /360
control program need not retain it internally. On the tape-resident

BENDER, FREEMAN AND SMITH

Figure 5 Sample sequence of 1/0 assignments

CARDS OR
KEYBOARD

JOB CONTROL
FOR JOB A

CARDS OR
KEYBOARD

EXECUTION OF
JOB STEP 1 OF
JoB A

JOB CONTROL
FOR JOB STEP 2

EXECUTION OF
JOB STEP 2 OF
JOB A

END OF JOB A

JOB CONTROL
FOR JOB B
ASSEMBLY

EXECUTION
JoB B

END OF JOB B

JOB CONTROL
FOR JOB C
(A SORT)

END OF JOB C

JOB CONTROL
FOR JOB D

BEGIN
EXECUTION OF
JOB D

'

OPEN MACRO
ISSUED FOR
S$YS004

KEYBOARD

RESUME
EXECUTION OF
JoB D

ASSIGNMENTS

SYSRES SYSIPT
SYSRDR SYSPCH
SYSLOG SYSiST

SYSLNK $YS002
SYS001 SYS003

5YS004
SYS005
$YS006

SYS004

SYS005

$YS004
SYS005
SYS006

SYS001-5Y5005

SYS001-SYS005

SYS004

COMMENTS

LOADED WITH THE SUPERVISOR

STANDARD TAPE WORK FILES FOR COMPILERS, ETC.

PROGRAMMER ASSIGNS THREE TAPES FOR
APPLICATION PROGRAM

OPERATOR OVERRIDES, REASSIGNS SYS004
T0O SPECIAL TAPE DRIVE

PROGRAMMER REASSIGNS S$YS005 TO
ANOTHER DRIVE

JOB CONTROL CANCELS THESE ASSIGNMENTS AT
END OF JOB (THEY SURVIVE JOB STEPS)

STANDARD ASSIGNMENTS ASSUMED FOR SYSLNK
AND $YS001-SYS003

NO CHANGE

CHANGES DENSITY AND MODE OF SYS001-
SYS003 WHILE ADDING ASSIGNMENTS FOR
$YS004-SY5005

DENSITY AND MODE OF SYS001-SYS003
REVERT TO EARLIER STATE, SYS004-SYS005
ASSIGNMENTS CANCELLED

NG NEW ASSIGNMENTS

OPERATOR MAKES NECESSARY ASSIGNMENT
(OR CANCELS JOB IF UNABLE/UNWILLING TO
CONTINUE)

DOS/TOS FUNCTION AND DESIGN

system
libraries

system, the 6K Supervisor is far too small to catalog the tape
files of an installation. Many disk installations are unwilling to
commit much external storage to catalog their tape and disk files.
DOS/T0s /360 serves these requirements by matching the labels
on tape reels, disk packs, etc. against control statements, subject
to operator-override actions. This places significant responsibility
on machine operators in installations dependent upon informa-
tion security. Such installations will doubtless require sterner
pos/T0s/360 audit trail procedures than would be necessary with
0s/360’s data management,.

Other functions of Job Control include: (1) acecumulate input
for the Linkage Editor, i.e., copy it from SYSIPT to SYSLNK;
(2) manipulate magnetic tapes, e.g., write tape mark(s), rewind
unload, space forward files and/or records, ete. (this convenience
is also available to the machine operator, who needs it for various
emergencies); (3) list 1/0 assignments to aid the machine operator
in making routine assignments out of a pool and resolving as-
signment discrepancies; (4) initiate each processor, after building
its Phase Directory (on the disk-resident system).

Auxiliary functions

p0s/360 and Tos/360 offer three on-line libraries, into which ele-
ments can be inserted, retrieved by name, or used explicitly/im-
plicitly in application programs.

The core-image library contains executable programs which
are blocked into records several thousand bytes long. This format
reduces the overhead for program retrieval to a minimum. This is
extremely significant for such processor programs as the coBor and
PL/1 compilers, which require numerous retrievals of logic per
compilation. Thanks to the large blocking factor, most retrievals
require no more than five records from disk systems residence.

Furthermore, the core-image library requires relatively little
external storage. The tape must be searched, with other processing
suspended, whenever any library element is retrieved. With disk
residence, pack capacity is the important consideration rather
than speed of access. Many users may wish to retain all executable
programs on a single pack, allocating remaining cylinders to work
files or data storage. The pos/360 libraries offer a fairly tight
utilization of external storage.

The relocatable library contains object modules in a com-
pressed format, i.e., increasing the density of text bytes per block
above the 56/80 ratio of ordinary object-module punched cards.
The relocatable library furnishes a high-speed source of input
to the Linkage Editor, whose AUTOLINK feature automatically
retrieves subroutines to resolve external-symbol linkages. Modules
can be inserted, retrieved, and replaced by name. They can be
explicitly included as well as implicitly included (by way of the
AUTOLINK function) into program phases.

BENDER, FREEMAN AND SMITH

The source-statement library contains arbitrary collections of
80-character records (called books), principally for compile-time
inclusion in Assembler Language and coBoL programs. System
macro definitions are normally retained in this library, e.g.,
OPEN, GET, DTFxx, FETCH, etc. Many users augment these macro
definitions with those standard to their installation. Definitions
used infrequently and/or by a single programmer can be furnished
at assembly time rather than from the source-statement library.

In addition to Assembler Language and coBown books, users
may retain test data, object decks, elements of other programs,
etc. in the source-statement library for security and ease of
access. The Assembler Language, coBoL, and Librarian programs
retrieve named elements readily. Other uses of the source-state-
ment library require detailed assembler-language programming
and knowledge of the library format. The Librarian extracts
blanks as it blocks the original 80-character card images into
books which are inserted into the library. Blank extraction
normally reduces the internal representation of each card to less
than 80 characters. When books are retrieved, the original card
images are exactly reconstructed. Blocking records reduces the
inter-record gaps (conserving external storage) and improves the
speed of book retrieval.

In contrast to previous practice, none of the compilers
use the assembler as an intermediate language. pos/T08/360 com-
pilers (Macro Assembler, FORTRAN, COBOL, PL/I, and RPG) convert
source programs directly to machine language. This method is
used to avert machine-language patches by furnishing satisfactory
compilation speeds and bypassing an intermediate representation
suitable for patching,

Code generated by the pos/T0s/360 compilers uses a common
set of data management (1ocs) subroutines, which are defined
in the Macro Assembler language. Thus, improvements in 10cs
can be implemented as quickly as the 1/0 device support for
higher languages is available (where this support is appropriate
to the language).

For configurations with at least 32K bytes of main storage,
a fixed-partition form of multiprogramming permits concurrent
execution of up to three programs. Unless a program is self-relocat-
ing, each program is assigned to a fixed location when cataloged.
The total amount of main storage available to a program may
be specified at the time of system generation, or by the operator
each time a program is loaded for execution. Storage protection
is required.

An application program is classified either as a background
or a foreground program. Background programs are initiated by
Job Control from the ordinary input stream, whereas each fore-
ground program is individually initiated by the operator via the
printer keyboard and special service routines. In the operating
sense, background and foreground programs are completely in-
dependent of each other.

DOS/’I‘OS FUNCTION AND DESIGN

compilers

multi-
programming

tele-
communications

One background and one or two foreground programs can
be executed concurrently. In problem-program requests for the
cru, the foreground-one program has highest priority, the fore-
ground-two program is next, and the background program is last
in priority. Control passes to a program when the program with
next-higher priority encounters an event that temporarily suspends
crU processing. If all three programs are suspended at the same
time, the crU is placed into the wait state—enabled, of course, for
interruptions.

In their conventions, the FORTRAN and PL/1 compilers assume
that object programs have the properties of background programs.
With certain limitations,® the object programs produced by the
Assembler, coBow, and rRpG compilers may be executed as fore-
ground programs.

In a multiprogramming environment, telecommunication pro-
grams are normally run in the foreground-one area because of
its highest priority.

The Basic Telecommunication Access Method (BTAM) controls
transmission and reception of messages over telecommunication
lines in response to READ and WRITE macroinstructions issued
in the user’s problem program. To accomplish this function,
BTAM dynamically generates and executes channel programs and,
at the user’s option, provides buffer allocation.

The facilities of Bram are made available through the macro-
generation capabilities of the pos/360 assembler. From a macro-
instruction describing the types of terminals, lines, and other
facilities to be used, the user generates his Bram logic module.
It may be assembled with the user program or separately as-
sembled and combined with it at link-edit time. During assembly
of a problem program, macroinstructions coded by the user are
expanded into: (1) tabular information defining the lines, terminals,
and options to be used; and (2) linkage to the BTAM routines.
Other information is supplied by the user in the Job Control
statements at the time the program is loaded for execution.

When an OPEN macroinstruction is executed in the problem
program, telecommunication lines are prepared for data transmis-
sion, and initialization for buffer management is performed. When
a message is to be received or sent, a READ or WRITE macro-
instruction causes a branch to the BramMm READ/WRITE routine.
This routine builds a channel program to perform the requested
operation and passes the request to the 1/0 Supervisor, which
starts the channel program. Control passes back to the user at
this point.

An important distinction between BTAM and other access
methods of pos is in the way in which the channel program is
executed. For certain types of terminals and line configurations,
the Bram channel programs may be repeatedly restarted in
response to conditions on the line. This allows a single READ to
successively poll a number of terminals on a line. A single WRITE
can signal a number of terminals to prepare for receiving a message.

BENDER, FREEMAN AND SMITH

CITED REFERENCES AND FOOTNOTES

1. A. 8. Noble, Jr., “Design of an integrated programming and operating
system, Part I, System considerations and the monitor,” IBM Systems
Journal 2, 153-161 (June 1963).

. G. A. Blaauw and F. P. Brooks, Jr., “The structure of sysTEM/360,
Part I, Outline of the logical structure,” IBM Systems Journal 3, No. 2,
119-135 (1964).

. G. H. Mealy, B. I. Witt, and W. A. Clark, “The functional structure of
0s/360, IBM Systems Journal 5, No. 1, 2-51 (1966).

. D. N. Freeman, “Macro language design for sysTeEM/360,”" IBM Systems
Journal 5, No. 2, 62-77 (1966).

. This is true except for certain procedures available for the disk-resident
compilers, etc. A standard label set can survive over jobs if it identifies
a “scratch file,” i.e., a file containing no information needed for succeeding
job steps.

. Object programs produced by the Assembler and the rrG compiler may not
reference any system logical unit except SYSLOG. Object programs
produced by the coBoL compiler may not reference any system logical unit
except SYSLOG, and may not contain EXHIBIT and TRACE (the output
of the EXHIBIT and TRACE statements is on the system logical unit
SYSLST). The DISPLAY and ACCEPT statements may be used only
for the system logical unit SYSLOG, normally assigned to the 1052 printer
keyboard.

DOS/TOS FUNCTION AND DESIGN

