
Previous  work,  which  analyzed  certain merge-sorting methods  with 
the aid of diference  equations, i s  exten,ded to include a wider  range 
of methods.  Matrices are introduced to represent the set or sets of 
difference  equations associated with a  merge-sort. Two or more 
matrices are  required to dejine a Class I I  method,  whereas a Class I 
method can be dejined with one matrix.   The merge-sorts of most 
interest  fall  into a special  subclass called Class l a .  

I t   i s  shown  that a n  asymptotic  solution to  the set of diflerence equa- 
tions  for a Class l a  merge-sort i s  readily obtainable.  Carter’s analysis 
of cascade and  polyphase merge-sorts i s  generalized and extended 
to include,  among other things, the compromise merges. Various 
properties  of the Class l a  merge-sorts, including relative performance 
measures  and  explicit merge patterns, are shown to be obtainable 
by  matrix  multiplication.  Although the analysis  emphasizes  Class l a  
merges,  suggestions are given for applying the matrix  technique to 
other merge-sorts of Classes I and I I .  

Merge-sort analysis by matrix techniques 
by C. E. Radke 

Simply stated,  the problem of sorting is that of arranging  a large 
number of data records into  a prescribed order. Sorting usually 
consists of two phases, internal presort to form sequences (strings) 
and sequence merge. This paper is  concerned with an analysis 
of the second phase, sequence merge. However, the analysis does 
not  treat  the internal handling of records, but  rather  the dynamics 
of their external ordering. The procedures discussed relate to  the 
ordering of records on tapes  and to  the ordering of the tapes 
by which records are  read  into the computer, and  after merging, 
the ordering of records and  tapes on which the resulting merged 
sequences are  written. Considering tape drives as external memory 
devices, tapes can then be regarded as memory locations of sets 
(possibly empty) of ordered sequences of records. 

In general, balanced merges using tape memory begin with 
a  set of N tapes  partitioned  into  two groups, K and N - K 
(where K and N - K are  not necessarily equal). The balanced 
merge procedure is as follows. A sequence of records from each 
of K tapes is read, and  the set of sequences is  merged, i.e., properly 
ordered. The resultant ordered sequence is written on one of the 
initially empty N - K tapes  and  other sequences on succeeding 
tapes. The procedure of reading sequences from the K tapes  and 
writing merged sequences on successive N - K tapes continues 
until  all K tapes  are  empty. The merge switches back and  forth 
between the two  fixed, disjointed sets of tapes  until all records 
reside on one tape in a single sequence. 
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In 1962, W. C. Carter' ardyzed several unbnlmced merge- 
sort methods using difference equations. Unbalanced merging 
permutes the choice of the set of initially nonempty tapes from 
which sequences of records are to be read. The choice of the  output 
tape is  also permuted among the  set of tapes.  Carter's analysis 
includes the unbalanced cascade and polyphase merge-sorts. 

The present analysis classifies and gives generalized treatment 
not only to  the unbalanced merge-sorts discussed by Carter,  but 
also the compromise merge-sorts described by Knuth.2  The anal- 
ysis  is  generalized by the use of difference equations. Among 
the several classes of merge-sorts, Class Ia is explicitly defined 
and includes certain of the cascade, compromise, and polyphase 
merge-sorts. Class I a  and  the larger defined Class I can both be 
described by  a single set of difference equations. Description by 
a single set of difference equations is interpreted as implying that 
a merge go to completion by the use of a single permutation 
procedure. By this  property, the merge is said to go to a proper 
completion. 

On the  other hand, Class I1 merge-sorts are defined as those 
described by more than one set of difference equations. In this 
case,  more than one permutation procedure is required to enable 
the merge to go to completion; the merge is then said to go to 
an improper  completion. 

Matrices  are used to  represent the set(s) of  difference equations 
associated with a particular merge-sort. It is  shown that prop- 
erties of various merge-sorts, especially those of Class Ia, can 
be obtained  by  matrix manipulation. These properties include 
relative performance measures and explicit patterns of ascending 
and descending sequences; particular  patterns  are required from 
the presort phase for read-backward tape operation. Tape read- 
backward operation is assumed throughout the present analysis. 

Asymptotic solutions to difference equations can provide an 
approximation to  the number of records merged into sequences 
on each tape  during each pass. Carter determined asymptotic 
solutions to  the difference equations representing the cascade 
merge for a limited number of examples. The results of the present 
analysis show that one can obtain  asymptotic solutions to all 
sets of difference equations that describe either the cascade or 
polyphase merge-sorts of Class Ia. 

Classes of merge-sorts 

Class Ia merge-sorts with K + 1 system tapes  are described class la 
as procedures in which one cycle of the merge consists of (K)-way, 
( K  - 1)-way, (K - 2)-way, . . , ( K  - i)-way consecutive 
merges. The i may be chosen to be 0, 1, 2, . , K - 2, or K - 1, 
and  the  tape with the lowest number of sequences is emptied first, 
the second lowest next, etc., down to  the (i + 1)st lowest such 
that a sequence of permutations of the K tapes is repeated over 
and over. In such a description of Class Ia merge-sorts, a given 
distribution of sequences on K tapes is assumed. 
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define the  set of difference equations that describes the merge 
by  the matrix  equation 

m,A = mi+l (1) 

A is a (0, 1)-matrix, mi is a row vector whose elements  indicate 
the number of sequences on  the K tapes at   the end of the (r - j)th 
cycle, j = 0, 1, 2, , r.  In  the above, r is the  total  number 
of cycles required for completion of the merge. Then, defining 

we have 

miA = Em, 

Em. , = where E is the difference operator,  as is customary, 

The elements in  the  vector m, for Class I a  merges are assumed 
to  be  in a  definite  order 

m,, 2 mni 2 . . .  2. mi, 2 . . .  2 mKi j = 0 ,  1 , 2 ,  , r  

However, a definite  order will not  be assumed  for the  other 
classes of merge-sorts. For j = 0, the vector at  the end of the  rth 
cycle is 

mo = (m,,, mz0, . .  , mKo) = (1, 0, , 0) 

The elements of the  matrix A for Class I a  are explicitly defined 
as follows for  any given i, where i = 0, 1, 2, , K - 1: 

a*, = i 1 t = 1 , 2 , * * * , K - s + l  

0 otherwise 
s = 1 , 2 ,  . . .  i + 1 

and 

Observe that we do not assign a fixed number  to  any  tape. 
Instead, we determine which set of tapes is to  be merged from 
only the Class I a  description and  the ordering of the elements 
of the vector mi for  each cycle of the merge. We define a step 
as  each (K - i)-way merge. (A step is sometimes  referred to 
as  a level.) Each cycle then  is  made  up of (i + 1)  steps,  where 
again i = 0, 1, 2, . . - , or K - 1. 

We define the elements of the row vector d, = (d , i ,  dz i ,  * - , d K i ) ,  
where j = 0, 1, 2, 3, - - .  , r, to be the lengths of the sequences 
at   the end of the  jth cycle. Observe that d,,, where k = 1,2, - , K ,  
is the length of the sequences at  the  output of the presort. As 
for mi, we assume an  order for the elements of di for Class I a  
merges, 

d l i  2 d,; 2 2 d,i 

Again a definite  order cannot  be assumed  for the general merge 
in Classes I and 11. Also, we assume3 that for j = 0 
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As for mi, we can define the  set of difference equations that class I 
~ describe the merge by  the matrix  equation 

~ diB = Ed, (2) 
where B is a (0, 1)-matrix.  Equations 1 and 2 may  not hold 
for all values of j; that is, different matrices  may be required 
to  satisfy  these  equations for the various values. We define 
Class I as that class of merge-sorts that can be described by 
(0, 1)-matrices A and B such that Equation 1 holds for all j 2 0 
for a  matrix A ,  and  Equation  2 holds for all j 2 0 for  a  matrix B. 

described by a finite set of (0, 1)-matrices A , ,  Azr  , A, ,  

~ 

Class I I ,  in turn, is that class of merge-sorts which can be class II 

B1, Bz, . * .  , B,, where n > 1 and m 2 1 .  
The A matrix is such that 

mj,- lA41 = mj,  jl E J ,  

m,,-,A, = m,, j ,  E J ,  

mj,-lA, = mi, j ,  E J ,  

where IJ,I + 1J21 + + IJ,I = r (T is thc  total numbcr of 
cycles required,  and (J,I indicates cardinality of the sct J i )  and 
A i  # A ,  f o r i  # j. 

The B matrix is such that 

di,-,Bl = d,,  6 E I ,  
di,-,B, = di,  i, E I ,  ( 4  

dim-,B, = dim im E I ,  
where ]Ill + ( I , )  + . . - + 11,1 = T (T is the  total number of cycles 
required, and /Ii( indicates the cardinality of the  set I , )  and 
Bi # B,  for i # j. 

We say that merges in Class I go to proper completion (i.e., 
n = 1) and merges in Class I1 go to  improper completion (Le., 
n > 1). As the definition implies, Class I merges continue using 
the same merge pattern  until completion, i.e., until a single tape 
has a single sequence and all  other  tapes  are void. In Class 11, 
the merge pattern varies among n possible merge patterns  until 
completion. Class Ia  is a subclass of Class I. 

Class Ia merges 

As an example of a cascade merge4 (i = K - l), we have 

A,,, = b.,l 
where a,, = 1 if 1 5 K - s + 1 and a,, = 0 if t > K - s + 1 
for s, t = 1, 2, , K. Normally, the  set of difference equations 
would be described in the form 

properties 

rnk.i+] = x r n l i  k = 1, 2, , K j =  1 , 2 ,  e - .  , r  



(K - i) ( K  - i + 1) 

1 1   . . . . . 1 1 . . . .   . 1 1 1 -  
1 1  

1 1   . . . . . 1 1 . . . .   . 1 1 0  
. . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . .  
1 1   . . . . . 1 0 . . . . . 0 0 0  

O K " ( i + l ) . i + l  . 



The defining differcncc equations for 0 5 i 5 K - 1 arc 

IA,,,,,, - E11 d k j  = 0 

lAcom; - E11 mki = 0 k = 1, 2, . . .  , K  j 2 0  

Much  information  can be  obtained  from the powers of AComi 
and Boomi. For example, if one desires to know the sequence 
distribution  required  on the K tapes so that proper  completion 
will be  obtained in r cycles, one is required  only  to find AZomi. 
The first row of AOemi gives the required  original  distribution 
(m,) for a  merge of r cycles; the (i + 1)st row gives the distribu- 
tion (m,-,) at  the end of the first  cycle; the 2(i  + 1)st row gives 
the distribution (m,-,) at   the end of the second cycle, etc., until 
the K rows are exceeded. 

If we desire to know the distribution of the lengths of the 
sequences at   the end of the  rth cycle, and assume dl, = dz, = 
. . = d,, = 1, we need only to  sum  the columns  in 
In  general, we have 

do(Acorni ) = d, T r  

For r = 0, of course, do = do. 
Let  us now determine how many records are  handled per 

cycle for an  arbitrary cycle of Class I a  merge-sorts. Assume that 
we start  out  with  the  distribution as described by  the first row 
in AOomi'. The number of sequences  per tape  at  the end of the first 
cycle is given by  the distribution described in the first row of 
(Acomj)r-l. The lengths of the sequences at   the end of the first 
cycle are described by  the elements  in  do(AComi).  Therefore, the 
total  number of records  handled  in the first cycle becomes 

The  total  number of records  on the K tapes would simply  be 

8, = 4,mlo 

since mho = 0 for k > 1. 
In  general, the  total records  handled for the  jth cycle is 

If i = K - 1, then 

Si = (m,+)(d,)T j = 0, 1, 2, . . .  , r  

and upon  substituting for d,  and m,-i we obtain 

Si = mn(A,,,)'dOT 

The  total  number of records is constant for  all j and equals the 
total  number of records  available,  i.e.,  each cycle handles  all 
of the records. We call the handling of all records  a puss. For 
some of the Class I a  merges, a  pass is equal  to a cycle. Such 
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As for the cascade merge, we can obtain  asymptotic approxi- 
mations for the polyphase merge, i.e., 

dki = ck1Xi and mki = c:,Xf 

where again the ck, and c;, can be determined from the  initial 
conditions. 

Sequence  patterns in strings 

Another problem readily handled by the manipulation of matrices 
is that of determining the arrangement of the diytribut,ed sequences 
into  the required descending and ascending pattern  to permit 
the merge to go to completion. In  the A,,,i matrices, the presence 
of an IK-(i+l),K-(i+l) block identity  matrix was indicated.  Let 
this block of 0's and 1's remain unchanged. All other 1's in A 
are replaced by a. Call the resultant  matrix A , .  Let a designate 
an operator, which upon operating on a sequence ala2 . . ak 
. - a,-,a,,, results  in  a sequence U ~ ~ U ~ ? ~  . . . a,' . . + a,'a;'. 

The sequences being  merged are  actually  strings of ascending 
(a)  and descending (d) sequences. Thus, a" = d and d" = a. 
Assume that we  wish to end with an ascending sequence. To 
determine the desired pattern at  the beginning of the merge with 
r cycles, we use the following expressions: 

Observe that associativit,y is not present when raising A ,  
~ to a power, i.e., 
I 

( A , * A , ) A ,  # A,(A, .A,)  

Expression 5a shows right multiplication by A , ,  and 5b shows 
left multiplication by A , .  If we let R and L designate right  and 
left multiplication, we have 

Therefore, either method may be  used to  obtain  the correct 
results. 

Instead of the usual addition operation in  vector-matrix 
multiplication we  use juxtaposition. Observe that a operating 
on a is 1 and 01 operating on 1 is a. Thus, 

a ( l 1 a a l a )  = ( l a l l a a )  
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Looking at  the  pattern made  by  the sequences for a  cascade 
merge, we have as the elements of (A,,,,)R+ sequences of all 1's 
or all a's depending  upon  whether r is even or odd.  Therefore, 
if all  sequences  from the presort  are  distributed  on  the K tapes 
in an ascending  fashion, then  the merge will go to completion 
in a  correct  manner, and  the  resultant merged sequence will be 
descending or ascending  depending  upon  whether the  number 
of cycles is odd or even. 

For the polyphase case in  Class Ia,  the  patterns  made  by  the 
string of sequences in ( A p m ) ;  alternate between the 1's and  the a's. 

For a  polyphase  merge of K tapes, the first row in (Ap)' 
lemma 3 consists of all odd  integers when r = 1 + j (K + 1) for any j 2 0, 

and consists of K - 1 even  integers and one  odd  integer  otherwise. 
Furthermore, when r # 1 + j (K + l), the odd  integer  occurs 
for each  consecutive r in a  different  column. 

Proof: For any K for j = 0 there is a row of all 1's (all  odd  integers) ; 
for r = 2 there  are even  integers  in the first K - 1 columns and 
an odd  integer  in the last. That is, for r = 1, there is the following 
matrix : 

E 

1 1 1 * - * * . 1  

IK-1.K-1 01 0 
md for r = 2, the following matrix: 

2 2 2 * . . 2 1  

1 1 1 . . * 1 1  

0 0  

- 

I K - 2 J - 2  ; 1 
. .  

0 0- 

Since, for the polyphase merge, each i th  row is the first row for 
[A,]r"i+l, and  the first row in [A,]' is obtained  by  adding  up 
a11 integers  in  each  column  in [&Ir-', we have the result  for 
j = 0 and r = 1 to r = K + 1. For r = K + 1, the first row 
has  an  odd  integer  in  the first column, and  the  last row has  an 
odd  integer in  the  last  column; i.e., all  odd  elements are  on  the 
principal  diagonal.  Therefore,  since  each column has exactly  one 
odd  element, the first row in Ar, where r = K + 1 + 1, has 
all  odd  elements. By assuming the hypothesis for any j we can 
show, in  a  like  manner, that  it  is true for j + 1.  Hence, the lemma 
is proved  for j by  induction. 

If r # 1 + j ( K  + 1) for any j 2 0, then  the  set of sequences 
lemma 4 generated  by (Aa) :  is identical to one set of those that can  be 

generated  by  starting  with a set of K sequences B, B, * , B, B" 
(left  juxtapositioning the inverse to  each element of the  set). 
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lla  lla . . . . . lla l la 11 1 

lla  lla ' . . . . lla 11  11 1 

a cy . . . . .  a a acy 

0 0 0 0  
. . . .  

I,-,,,-, . . . .  
0 0 0 0 .  







Length of 
sequences 
on each 
tape at  the 
end of 
each cycle 

Tape no. 
1 2 3 4  

1 1 1 0  Length of 
1 1 0 3  sequences 
1 0 5 3  on each 
0 9 5 3  tape at  the 

1 7 9 5 0  end of 
0 9 5 3 1  each cycle 

4 5 @ ) 0  

Tape no. 
1 2 3 4  

1 1 1 0  
1 1 0 3  
1 0 5 3  
0 9 5 3  

1 7 9 5 0  
17 @ 0 31 
4 S @ @  0 

In  these examples we see that 

As another example of an '(unorthodox" merge-sort, select 
a  matrix A whose row sums agree with the general compromise 
description for i = 1. (The mii in this  illustration  are  not neces- 
sarily ordered as in Class Ia,  but  the di i  are ordered.) 

Table 4 Class I compromise  merge 

Step 
- 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

~ ~ 

I Number of sequences I 
T a p e  T a p e  T a p e  T a p e  T a p e  

1 I 3 4 6 

86 37 53 76 0 
" 

49 0 16 39 37 
33 16 0 23 37 

17 0 16 7 21 
10 7 16 0 14 

3 0 9 7 7 
0 3 6 7 4 

3 0 3 4 1 
3 1 2 3 0 

2 0 1 2 1 
1 1 0 1 1 

0 0 1 0 0 
Only  one  step  required 

Cycles 

0 

1 

2 

3 

6 





It is evident that  the Class Ia compromise merge is the more 
efficient. In terms of (0, 1)-matrix  notation, the matrices 

A ,  = 1; and A,  = 1: g 
0 1 0 0  

belong to  the same class,12 namely, %(S,  T), as determined by 
equivalent ordered sets of row sums S and unordered sets of 
column  sums T. The ordering of the row sums is, of course, de- 
termined  by the description of the merge. In  the above example, 
since the merge is a general compromise merge with i = 1, 
S = (4, 3, 1, 1) and T = (3, 3, 2, l),  the size of the  set %(S, T) 
is  less than or equal  to 4 factorial. 

Each member of Class Ia establishes a unique set % ( S ,  T). 
The preceding analysis supports the proposition that members 
of Class I a  are more efficient merge-sorts than  the other members 
of the sets %(S, T). It is further proposed that if  we let A ,  E 
Class Ia and A i  E %(S, T), then 

] A ,  - X I 1  = 0 

] A i  - X I 1  = 0 i f 1  

has  a  greater maximum positive root  than 

However, each member of %(S,  T) can be described by the same 
set of merge procedures (e.g., the general statement described 
above for the polyphase merge), and all members of this class 
go to proper completion. 

Summary 

A classification of merge-sorts has been jntroduced in which 
members of Class Ia for i = 0 and i = k - 1 agree with  Carter’s 
definition of polyphase and cascade merge-sorts. For 0 < i < k - 1, 
the defined merge-sorts are classified in the general category of 
compromise merge-sorts. Class Ia and  the defined larger Class I 
merge-sorts are shown to have  interesting properties, the most 
important being that members of these classes can be charac- 
terized by  a single matrix.  Interpreted,  this  property indicates 
that  the particular merge can go to completion using the same 
procedure throughout the merge. This  property defines a merge 
going to proper completion. The introduction of matrix descrip- 
tions of Classes I and I a  merge-sorts is useful since methods of 
matrix  manipulation  are well known. By defining  new operators 
for the matrices, it is shown how patterns of ascending and de- 
scending sequences required as a result of the presort phase can 
be determined. 

Class I1 merge-sorts require more than one matrix to describe 
and become more difficult to analyze as the number of describing 
matrices becomes larger. For  the Class I1 merge-sorts, the merge 
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- 

does not go to completion using the samc  merge  procedure. This 
property defines a merge going to improper  completion. 

For those classes analyzed in  this  paper,  it is asserted that 
the merge-sorts of most  interest  are in the specially defined 
Class Ia. 
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