Previous work, which analyzed certain merge-sorting methods with
the aid of difference equations, is extended to include o wider range
of methods. Maltrices are introduced to represent the set or sets of
difference equations associated with a merge-sort. Two or more
matrices are required to define a Class 11 method, whereas a Class I
method can be defined with one matriz. The merge-sorts of most
interest fall into a special subclass called Class Ia.

It is shown that an asymplotic solution to the set of difference equa-
tions for a Class Ia merge-sort is readily obtainable. Carter’s analysis
of cascade and polyphase merge-sorts is generalized and extended
to include, among other things, the compromise merges. Various
properties of the Class Ia merge-sorts, including relative performance
measures and explicit merge patterns, are shown i{o be obtainable
by matriz multiplication. Although the analysis emphasizes Class Ia
merges, suggestions are given for applying the matrix technique to
other merge-sorts of Classes I and I1.

Merge-sort analysis by matrix techniques
by C. E. Radke

Simply stated, the problem of sorting is that of arranging a large
number of data records into a prescribed order. Sorting usually
consists of two phases, infernal presort to form sequences (strings)
and sequence merge. This paper is concerned with an analysis
of the second phase, sequence merge. However, the analysis does
not treat the internal handling of records, but rather the dynamics
of their external ordering. The procedures discussed relate to the
ordering of records on tapes and to the ordering of the tapes
by which records are read into the computer, and after merging,
the ordering of records and tapes on which the resulting merged
sequences are written. Considering tape drives as external memory
devices, tapes can then be regarded as memory locations of sets
(possibly empty) of ordered sequences of records.

In general, balanced merges using tape memory begin with
a set of N tapes partitioned into two groups, K and N — K
(where K and N — K are not necessarily equal). The balanced
merge procedure is as follows. A sequence of records from each
of K tapes is read, and the set of sequences is merged, i.e., properly
ordered. The resultant ordered sequence is written on one of the
initially empty N — K tapes and other sequences on succeeding
tapes. The procedure of reading sequences from the K tapes and
writing merged sequences on successive N — K tapes continues
until all K tapes are empty. The merge switches back and forth
between the two fixed, disjointed sets of tapes until all records
reside on one tape in a single sequence.
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In 1962, W. C. Carter' analyzed several unbalanced merge-
sort methods using difference equations. Unbalanced merging
permutes the choice of the set of initially nonempty tapes from
which sequences of records are to be read. The choice of the output
tape is also permuted among the set of tapes. Carter’s analysis
includes the unbalanced cascade and polyphase merge-sorts.

The present analysis classifies and gives generalized treatment
not only to the unbalanced merge-sorts discussed by Carter, but
also the compromise merge-sorts described by Knuth.> The anal-
ysis is generalized by the use of difference equations. Among
the several classes of merge-sorts, Class Ia is explicitly defined
and includes certain of the cascade, compromise, and polyphase
merge-sorts. Class Ia and the larger defined Class I can both be
described by a single set of difference equations. Description by
a single set of difference equations is interpreted as implying that
a merge go to completion by the use of a single permutation
procedure. By this property, the merge is said to go to a proper
completion.

On the other hand, Class IT merge-sorts are defined as those
described by more than one sct of difference equations. In this
case, more than one permutation procedure is required to enable
the merge to go to completion; the merge is then said to go to
an improper completion.

Matrices are used to represent the set(s) of difference equations
associated with a particular merge-sort. It is shown that prop-
erties of various merge-sorts, especially those of Class Ia, can
be obtained by matrix manipulation. These properties include
relative performance measures and explicit patterns of ascending
and descending sequences; particular patterns are required from
the presort phase for read-backward tape operation. Tape read-
backward operation is assumed throughout the present analysis.

Asymptotic solutions to difference equations can provide an
approximation to the number of records merged into sequences
on each tape during each pass. Carter determined asymptotic
solutions to the difference equations representing the cascade
merge for a limited number of examples. The results of the present
analysis show that one can obtain asymptotic solutions to all
sets of difference equations that describe either the cascade or
polyphase merge-sorts of Class Ia.

Classes of merge-sorts

Class Ia merge-sorts with K 4 1 system tapes are described
as procedures in which one cycle of the merge consists of (K)-way,
(K — l)-way, (K — 2)-way, --- , (K — %)-way consecutive
merges. The ¢ may be chosentobe0,1,2, --+ | K — 2, or K — 1,
and the tape with the lowest number of sequences is emptied first,
the second lowest next, etc., down to the (¢ 4+ 1)st lowest such
that a sequence of permutations of the K tapes is repeated over
and over. In such a description of Class Ia merge-sorts, a given
distribution of sequences on K tapes is assumed.
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Using the difference equation approach of Carter, we can
define the set of difference equations that describes the merge
by the matrix equation

m,-A = m,‘+1 (1)

A is a (0, 1)-matrix, m; is a row vector whose elements indicate
the number of sequences on the K tapes at the end of the (r — j)th
cycle, j = 0, 1, 2, --- , r. In the above, r is the total number
of cycles required for completion of the merge. Then, defining
Em; = m,,,, where F is the difference operator, as is customary,
we have

m,'A = Em]-

The elements in the vector m; for Class Ia merges are assumed
to be in a definite order

Myy = Moy 2 ov0 2> Mgy 2 -0 2> Mgy i=0,1,2,---,r

However, a definite order will not be assumed for the other
classes of merge-sorts. For j = 0, the vector at the end of the rth
cycle is

m, = (mIOy m207 vt ymKO) = (1707 tet 10)

The elements of the matrix A for Class Ia are explicitly defined
as follows for any given ¢, where2 =0,1,2, --- , K — 1:

_{1 t=1,2,-- , K—s+1

ast

} s=1,2 -i+1

0 otherwise

and

an:{lt=s—(i—|—l)} s—id . K

0 otherwise

Observe that we do not assign a fixed number to any tape.
Instead, we determine which set of tapes is to be merged from
only the Class Ia description and the ordering of the elements
of the vector m; for each cycle of the merge. We define a step
as each (K — 7)-way merge. (A step is sometimes referred to
as a level.) Each eycle then is made up of (¢ 4+ 1) steps, where
againt =0,1,2, -+ ,or K — 1.

We define the elements of the row vector d,=(d,;, ds;, * * * , dx;),
where j = 0,1, 2,3, --- , r, to be the lengths of the sequences
at the end of the jth eycle. Observe that dio, wherek = 1,2, -+ | K,
is the length of the sequences at the output of the presort. As
for m;, we assume an order for the elements of d; for Class Ia
merges,

duZdz,-Z dei

Again a definite order cannot be assumed for the general merge
in Classes I and II. Also, we assume® that for j = 0




As for m;, we can define the set of difference equations that
describe the merge by the matrix equation
d,B = Ed, 2
where B is a (0, 1)-matrix. Equations 1 and 2 may not hold
for all values of j; that is, different matrices may be required
to satisfy these equations for the various values. We define
Class I as that class of merge-sorts that can be described by
(0, 1)-matrices A and B such that Equation 1 holds for all > 0
for a matrix A, and Equation 2 holds for all j > 0 for a matrix B.

Class II, in turn, is that class of merge-sorts which can be
described by a finite set of (0, 1)-matrices A,, 4., --- , A,
B,B, ---,B,, wheren > 1and m > 1.

The A matrix is such that

m; _;A4; = m,, i E Jy
m;,_, A4, m;, je & Js

min—lAﬂ = min jn E Jn
where |J,| + [J2] + -+ + |J.| = 7 (r is the total number of
cycles required, and |J,| indicates cardinality of the set J;) and
4; # A; fore &£ j.

The B matrix is such that

di,—lBl = di. il - Il
di,—]BQ = diz i‘z & Iz

dim—le = dim im E Im

where |I,| 4 |I,] + --- + |[I,| = r (v is the total number of cycles
required, and |7,| indicates the cardinality of the set I,) and
B, # B, for ¢ # j.

We say that merges in Class I go to proper completion (i.e.,
n = 1) and merges in Class II go to improper completion (i.e.,
n > 1). As the definition implies, Class I merges continue using
the same merge pattern until completion, i.e., until a single tape
has a single sequence and all other tapes are void. In Class II,
the merge pattern varies among n possible merge patterns until
completion. Class Ia is a subclass of Class I.

Class Ia merges

As an example of a cascade merge* (¢ = K — 1), we have

Aoes = [a.]

wherea,, = 1ifft <K ~s+ landa,, =0ift > K ~s+ 1

fors,t = 1,2, ---, K. Normally, the set of difference equations
would be described in the form

K—-k+1

Mi,ie1 = Z My k = 1, 2, e

i=1
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Consider a cascade merge. For the d;, we have the same set
of difference equations, namely,

K—-k+1

dijir = 2 dy k=12 -+, K j=1,2 -+ ,r
t=1

Thus, all merge patterns are the same for a cascade merge,
that is, n = 1, m = 1. In general, we can define the vectors m;
and d; to be

d, = Fd, m, = I'm,

dﬂAias = Eido m,A f:as = Ejmo
d;, = dUAZ;as m; = m()Aias
When A = B as for the cascade merge, we say that d; and m;
are self-duals.
Define I,, as an identity matriz of order s, and 0,, as a zero

rectangular matrix of dimension s by ¢. Then we can define a
matrix for a polyphase merge (i = 0) as follows:

t11- .- - -1

0
IK—I,K—I 0

0.
Similarly, we have for a compromise merge (0 < 7 < K ~ 1)
the following matrix:
K- K-—-71+1
1l
11 - - - -111]
.11-----110

11---+--10-----000

,IK—(i+1),K—(i+1) 0K—(i+l),i+1

Clearly, A,om, = Apo1 a0d A omz_, = Acan
From the corresponding sets of difference equations, it can be
shown that

Bcom¢=AZomi OSiSK_l

Since A.omx_, 18 symmetric, we have the self-duality property
as already illustrated for A.... However, for 0 < ¢ < K — 1,
the resultant matrix is not symmetric; in this latter case we
say that d; and m; are duals. Further, we have that all merge
patterns are the same for 0 < 7 < K — 1; namely, only one matrix
is required to describe the merge process (ie, n = 1, m = 1).
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The defining difference equations for 0 < 7 < K — 1 are
[Aeom: — EI| dy; =0
|Acom: — EI| my, = 0 k=1,2,--- K i=0

Much information can be obtained from the powers of A om,
and Bgom;. For example, if one desires to know the sequence
distribution required on the K tapes so that proper completion
will be obtained in r cycles, one is required only to find A7,,,.
The first row of A ., gives the required original distribution
(m,) for a merge of r cycles; the ( + 1)st row gives the distribu-
tion (m,_,) at the end of the first cycle; the 2(¢z 4 1)st row gives
the distribution (m,_,) at the end of the second cycle, ete., until
the K rows are exceeded.

If we desire to know the distribution of the lengths of the
sequences at the end of the rth cycle, and assume d,, = dyy =

+ = dgo = 1, we need only to sum the columns in (4 ,om;”)".
In general, we have

d()(Acom.'T)r = dr

For r = 0, of course, d, = d,.

Let us now determine how many reccords are handled per
cycle for an arbitrary cycle of Class Ia merge-sorts. Assume that
we start out with the distribution as described by the first row
in A,om;". The number of sequences per tape at the end of the first
cycle is given by the distribution described in the first row of
(A,om:) "' The lengths of the sequences at the end of the first
cycle are described by the elements in dy(A.om;). Therefore, the
total number of records handled in the first cycle becomes

i+1

S, = delmk,r—l
k=1

The total number of records on the K tapes would simply be
S, = di,,my,

since my, = 0 for k > 1.
In general, the total records handled for the jth cycle is

i+1
S; = deimlc,r—i
If i = K — 1, then
S; = (m,_;)d)"
and upon substituting for d; and m,_; we obtain
Si = mO(Acss>rd0T

The total number of records is constant for all j and equals the
total number of records available, i.e., each cycle handles all
of the records. We call the handling of all records a pass. For
some of the Class Ia merges, a pass is equal to a cycle. Such
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examples

merges are ones wherez = K — lori = K — 2, e.g., all cascade
merges are of this kind.

The last cycle as exhibited in the Class Ia examples usually
is considered as a single step. However, ¢ additional steps may
be added to be mathematically consistent with the stated 7 + 1
steps per cycle.

A measure of efficiency of a merge-sort is p, the number of
passes required. In the cascade merge, a cycle and pass are equiv-
alent, hence p = r. In general, a pass is not equal to a cycle.
In this case, we define the number of required passes to be

28
— 4=l
p - Sr

To compare the merges, we can compare the plots of the
passes required versus the number of records of one type of
merge with similar plots of another type. Carter' gives several
of these plots.

Ezample 1. A cascade merge (¢ = K — 1) with K = 4 tapes
and r = 5 cycles is described by a matrix

1111
1110
1100
1000

A =

the powers of A and the vectors d; and m; are

(4321 10974 30 26 19 10
3321| ,o_| 9863 ,. _|262317 9
2221 7642 19 17 13 7

11111 4321 10 9 7 4

A2

[85 75 56 30
75 66 49 26
56 49 36 19
130 26 19 10

= (1,0,0,0) d=(@1,1,1,1)
=(1,1,1,1) d = (4,3,2,1)
=4,3,21) d, = (10,9, 7, 4)
m, = (10, 9,7, 4) d, = (30, 26, 19, 10)
m, = (30, 26,19,10)  d, = (85, 75, 56, 30)
m; = (85,75, 56, 30)  d; = (246, 216, 160, 85)
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Table 1 Class la cascade merge for i = 3 and K = 4

Number of sequences

Tape Tape Tape Tape Tape Cycle or
1 2 3 4 5 Pass

85 75 56 0
55 26
29 0

19
19

0 0

Only one step required

The total records handled are

8 =304 +26-3 4192 +10-1
s, =10-10 + 9.9 4+ 7.7 + 44
s = 430 4+ 3-264+ 2-19+ 1-10
s, = 18 + 1-754 1-56 + 1-30
85 1-246 = 246

p=25 p/ss = 0.0203

Table 1 outlines, for a Class Ia cascade merge, the procedure
by cycle and step of reading sequences from four (K) tapes and
writing merged sequences on a fifth tape until the four tapes
are empty and all records reside on a fifth tape in a single sequence.

MERGE-SORT ANALYSIS




Table 2 Class la compromise merge fori = 1 and K = 4

Number of sequences

Tape Tape Tape Tape Tape
1 2 3 4 5

39 21

0
1 0

0 1 0
Only one step required

Ezample 2. A compromise merge ( = 1) with K = 4andr = 5
eycles is described by a matrix 4 in which the powers of 4 and
vectors d; and m; are as follows:

(1111 3321 876 3

1110 A2:3221 A3=76

1000 1111 33

10100 1110 32

(21 18 15 8 54 47 39 21

18 16 13 7 A5 = 44 41 34 18
8 7 63 21 18 15 8
L7 6 53 18 16 13 7

m, = (1, 0, 0, 0) dy=(1,1,1, 1)

m, = (1,1,1, 1) d =4,31,1

m, = (3,3,2,1) d, = (9,8, 4,3)

m, = (8,7,6,3) d, = (24,21, 9, 8)

m, = (21,18,15,8)  d, = (62, 54, 24, 21)
m; = (54, 47, 39,21)  d; = (161, 140, 62, 54)
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Table 3 Class la polyphase merge fori = 0 and K = 4

Number of sequences

Tape Tape Tape Tape Tape
1 2 3 4 &

56 52 44 29 0

27 23 15 0 29

The total records handled are

s1 =429 116

8, = 7-15 105

Sz 13-8 104

8y = 25-4 100

s = 49-2 = 98

S =941 =94

s; = 181-1 = 181

p = 798/181 = 4.41 p/s; = 0.0244

Table 3 shows, for a polyphase merge, the procedure for
reading sequences and writing merged sequences until all records
are on a single tape in a single sequence.

Asymptotic solutions to difference equations

The solution to the set of difference equations for a cascade
merge (1 = K — 1) for d;; and m;; may be written as

di; = Ck1)\{ + Ck2)\; + -+ CkKM{

where the A, A;, - - - | \g are the distinct real roots of [4,,, — M| =
gx(\) = 0. The author® has demonstrated that the characteristic
values for a (0, 1)-matrix having the form of the matrix used

C. E. RADKE




for the cascade merge in Class Ia are real and distinet and have
the property for K odd,

M>M> o >A >0 X > 0 >N
and for K even,
A1>k3> s >>\K—1>0>>\K> R >>\2
where
)\1 > l)\zl 2 l)\3l Z P\4l 2 l)\K! Z 0

Asymptotic solutions to the set of difference equations can
provide an approximation to the number of records m,; stored
on & particular tape k during each merge cycle j. Similarly, the
length of each sequence d,; can be approximated for each k and j.
Carter' determined that the solution to the set of difference
equations representing the cascade merge had distinct roots for
only a limited number of examples. Results presented in this

paper extend Carter’s work for all cascade r'nerges of Class Ia.
Hence, according to Carter, the asymptotic approximation is

i
di; = CuM
Similarly, for m,; we have
My = CM

Carter shows that the coefficients in these expressions can
be obtained from K initial conditions and the relationship

Cr = <KZ_i s 5-‘)/9}10‘0

i=0

where §; are the coefficients of

gKO\)/O\ - N) = ; 6i>‘i—l

and gz(\,) is the derivative of gx(A) evaluated at A = A,.
For polyphase merge sorts, one can show that

[A4, — M| = ge) =X =N =37 — ... =X =1=0

The characteristic equation for a polyphase merge of K tapes lemma 1
onto one tape is

(=D = AP =N — ... —A =1 =0.

Proof: It previously has been shown in this paper that the matrix
defining the polyphase merge of Class Ia is

111---111
0
0

0
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Tor K = 1, the characteristic equationis 1 — A = 0. If we assume
that the hypothesis is true for K = k, then we can show that
it is true for K = k + 1. Thus,

(1—x 1 1

1
A, =M =1 0

0

L 0

= (=g — (="
= (=D =N =N = =N (=D D?
= (=DM =N =N — == D)

The roots of the characteristic equation for a polyphase merge
lemma 2 in Class Ia are simple. Also, the equation has one root ), lying
between 1 and 2 on the real axis and approaching 2 as K increases.

All remaining roots lie within the unit circle.

Proof: Assume that the equation of interest is
G =N = AT — .. =N =1=0
First, multiply by (A — 1) to obtain

o) =N =24+ 1 =0

Since the column sums are 1 and 2, we know from the original
matrix that there exists a positive real root A, such that1 <\, < 2
and A, approaches 2 as K increases. Further, we know that A\, # 1
by the substitution of A, = 1 into the first equation. A theorem
attributed to Pellet® states that if, for fA) = ao + aX + -+ +
a,\* + --- + a,\" where a, # 0, then the equation

Fp(k) = laﬂl R Iav—1| AT — [az)] N’
+ @ N s e N =0

has two positive zeros r, and r,, where r;, < r,. Also, f(A\) has
exactly p zeros in or on the circle |\| < r,, and no zeros can be
in the annular ring r; < |A] < r,. This theorem directly applies
since there is aroot A\, = 1and 1 < A\, < 2. Hence, all \;, 7 # 1, 2,
lie within the unit circle.

Next, take the derivative of f,.,(\) to obtain

o) = &+ DN — 2k =0

We know that if f,;(A\) has multiple roots, then these roots
are also roots of f;,,(\). The roots of f;,,(\) consist of £ — 1
zero roots and one root of value 2k/k + 1, but 2k > k + 1 for
E > 1. We have said that neither A, = 1norl1 < \, £ 2 is a
multiple root. Thus, there are no multiple roots.
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As for the cascade merge, we can obtain asymptotic approxi-
mations for the polyphase merge, i.e.,

d]”' = C;c,)\i and My = C}’h)\i

where again the c;, and ¢/, can be determined from the initial
conditions.

Sequence patterns in strings

Another problem readily handled by the manipulation of matrices
is that of determining the arrangement of the distributed sequences
into the required descending and ascending pattern to permit
the merge to go to completion. In the 4., matrices, the presence
of an ITx_(i+1).k-i+1y block identity matrix was indicated. Let
this block of 0’s and 1’s remain unchanged. All other 1’s in A4
are replaced by «. Call the resultant matrix 4,. Let o designate
an operator, which upon operating on a sequence @,a, - -- a

* @,_.0,, Tesults in a sequence a;'a;l; --- @;t - @y At

The sequences being merged are actually strings of ascending
(a) and descending (d) sequences. Thus, ™' = d and d" = a.
Assume that we wish to end with an ascending sequence. To
determine the desired pattern at the beginning of the merge with
r cycles, we use the following expressions:

(”. (((G’OO e 0>Aa>sz> T Aa) (53:)
;__._X’__, y

or

(A7 --- (A(A5(@00 ';_Q)T)) DN (5b)

r K

Observe that associativity is not present when raising 4,
to a power, i.e.,

(A, ADA, = A (A.-AL)

Expression 5a shows right multiplication by 4,, and 5b shows
left multiplication by A .. If we let R and L designate right and
left multiplication, we have

T
a

an: % = @o - 04

0
Therefore, either method may be used to obtain the correct
results.
Instead of the usual addition operation in vector-matrix

multiplication we use juxtaposition. Observe that « operating
on « is 1 and « operating on 1 is «. Thus,

alllaala) = (lallaa)
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lemma 3

Looking at the pattern made by the sequences for a cascade
merge, we have as the elements of (A4...)5 sequences of all 1’s
or all ¢’s depending upon whether r is even or odd. Therefore,
if all sequences from the presort are distributed on the K tapes
in an ascending fashion, then the merge will go to completion
in a correct manner, and the resultant merged sequence will be
descending or ascending depending upon whether the number
of cycles is odd or even,

For the polyphase case in Class Ia, the patterns made by the
string of sequences in (4, )z alternate between the 1’s and the o’s.

For a polyphase merge of K tapes, the first row in (4,)"
consists of all odd integers whenr = 1 4+ j(K + 1) for any j > 0,
and consists of K — 1 even integers and one odd integer otherwise.
Furthermore, when r # 1 4 j(K 4+ 1), the odd integer occurs
for each consecutive r in a different column.

Proof: For any K for j = 0 there is a row of all 1’s (all odd integers);
for r = 2 there are even integers in the first K — 1 columns and
an odd integer in the last. That is, for r = 1, there is the following
matrix:

(111--

| U
0

and for r = 2, the following matrix:

(222 ... 21]

111 - -11
00

IK-—?,K—2 ..
L 0 0]
Since, for the polyphase merge, each ¢th row is the first row for
[4,77"*" and the first row in [4,]" is obtained by adding up
all integers in each column in [4,]””!, we have the result for
j=0andr =1tor = K + 1. Forr = K + 1, the first row
has an odd integer in the first column, and the last row has an
odd integer in the last column; i.e., all odd elements are on the
principal diagonal. Therefore, since each column has exactly one
odd element, the first row in A", where » = K + 1 4+ 1, has
all odd elements. By assuming the hypothesis for any j we can
show, in a like manner, that it is true for j -~ 1. Hence, the lemma
is proved for § by induction.

Ifr %14 3 (K 4+ 1) for any j > 0, then the set of sequences
generated by (4,)s is identical to one set of those that can be
generated by starting with a set of K sequences B, B, --- , B, B™*
(left juxtapositioning the inverse to each element of the set).
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Repeat this step until a string of alternating ordered sequences
of length agreeing with that given by the first row in A" is built
up,” where B is either a or d. This step is repeated until the desired
r is reached. For example, start with a, @, --- , @, d. Juxtapose
the inverse for r = 2 to obtain da, da, --- , da, d (for the last
element, ¢ is not juxtaposed to d because the length is restricted
to length one). Juxtapose the inverse for r = 3 to obtain dada,
dada, - - , dada, ada, od.

Proof: If r = 2, then the first row of (4,); is la, la, --- , 1e, 1.
If r=3, then the first row of (4,)7 is lalq, lalq, - - -, lale, lal, la.
In general, the strings with an odd number of sequences must
start with a 1, whereas all others begin (on the right) with o.
When r = 1 + k 4 1, then the first row of (4,)5 is made up of
strings all with an odd number of sequences that begin with a 1.
However, this condition violates the method of generating the
strings. In general, each element of the first row of (4,); = [d,/]
is obtained by taking the corresponding column in (4,)5" = [e,.]
and forming the following right juxtaposition

die = ale) ale): - cales) .
Since at all times the leftmost elements in all strings are all 1’s,
if K — 1 strings are made up of an even number of sequences
and alternate in their order, these K — 1 strings must begin
with «. Thus, if the string has an odd number of sequences and
ends with a 1, then it must begin with a 1.

Therefore, from Lemma 3, if r is prevented from being equal
to [1 4 j(K + 1)], the original pattern of the sequences distributed
on the K tapes can be generated from the presort by starting
with B, alternating between B™' and B, and ending with a B™"
if the number of sequences on the tape is to be even. Start with
4 B7Y, alternate between B and B™', and end with a B™" if the
number is odd. In this manner, proper completion is guaranteed.

We now observe the patterns for a compromise merge. Assume
that ¢ = 1, then

Mla 1l - - - - - 1la 1la 11 1]
Ha 1la - - -« + « 1la 11 111

LS o4
a0
00

I R o o

I o o

00

0 0]

00

The first row of 42 would be

laclaalle, laclaalle, - | laclaalle, laalaall, laceall, accall, aal.

Thus, we see that there are no simple means of generating a
string of sequences such that the resultant pattern is valid for
proper completion for most 7’s.
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However, for any Class Ia merge-sort, if we add K — ¢z + 1
l-way merge or copy steps™ to each cycle of ¢ -+ 1 steps, then
(as for the cascade merge) the pattern consists of all (a)’s or
all (d)’s, and proper completion is guaranteed. In such a case,
the A, matrix is obtained from the A matrix by substituting o’s
for all 1’s.

Extension of the analysis

The method that we have used for analyzing Class Ia merge-sorts
can be extended to other classes of merge-sorts that go to either
proper or improper completion. For example, a balanced merge
in which K tapes are merged onto K output tapes can be described
by the set of difference equations

d,A’ = d, i=0,1,2,---,r

mO(AT)i:mi j=0!172)”'yr

where all elements of A are 1’s. Here again, the first row in A4*
gives the distribution on the K tapes at the end of r — k cycles.
Each cycle can be interpreted as having K steps, and for the
cascade merge, no attention need be paid to the patterns of the
strings of sequences if all are put into the same ordering.

In the balanced method, if initially we have K, input tapes
and K, output tapes and then K, input tapes and K, output
tapes (with this scheme repeated in a like manner), then we can
represent the balanced merge-sort by a square matrix 4 of dimen-
sion K, and all its elements by K,. For such a merge, there are
ky X ks, steps. For each element K, in A, if we substitute a se-
quence of K,a's, then we obtain the desired 4,.

Let us consider merges belonging in either Class I or Class 11
and not restricted to Class Ia. A general polyphase merge is de-
scribed as a merge such that on each of K input tapes at any
level r — g there are distributed m,; (Z = 1, 2, - - -, K) sequences,
and the next level down, i.e., the (r — § + 1)st level, has the
following number of sequences distributed on K tapes: m,; — m,;,
Moy — Myg, ~*° , My_y,; — Myj, Myj, 0, -+, 0. Here, m,; is the
smallest positive number of sequences on the K tapes at the
r — jth level. General compromise and cascade merges may be
similarly defined.

For the entire merge of Class 11, sets of difference equations
as illustrated in Equations 3 and 4 can be established. If for some
j and for some 7, m;_,A, = m;, then d,_,A4%7 = d,_;,,. That is,
for any one merge cycle the set of difference equations for the
m; is the dual of the set for the d,_;,,. Therefore, in general,
Equations 3 and 4 become

m,-‘_lAl - m,', jl E Jl
mi2‘1A2 = m” jZ e J2 (6)

min—lAn = i jn & Jn
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dr—j,H = dr-f,AlT jl & Jl
dr—i,+1 = dr—i,AZT jZ E J2

dr—i,.+1 = dr—i'.A:, jn E J"

For the merges in Class Ia, we have no problem in determining
the patterns of descending and ascending strings of sequences
because the d.; are in a definite order, i.e., d; > dy; > -+ > dg;,
and the row sums of the associated matrix produce a K-length
vectorS = (K, K —-1,---,K — 4, 1,1, ---, 1). This condition
also agrees with the descriptions of the general compromise,
polyphase, and cascade merges. In general, one cannot expect the
ordering of the elements of the vectors m;, d;, and S to be as
desired. Therefore, for the general merge in Class I and Class II,
the ordering of the elements of m; and d; depends upon the
ordering of the elements of S, as determined from the description
of the merge.

Two examples are now given for an improper polyphase merge
of Class II.

111 S=0@3,1,1
A, =1100] and my; > my; > my; > 0
010 1d1,-2d2,»20
Example 1 Iixample 2

111 110
A, =1010}andS = (3,1,1) A, =/100{andS = (2,1,1)
001 010

Tape no. Tape no.
1 2 3 ¢ 1 2 3

s

—

OSH=IDWOoOO®
—t

OH~HINWSSOO

Number of
sequences
on each
tape at the
end of
each cycle

Number of
sequences
on each
tape at the
end of
each ecycle

SOOI~ O

my4d, = m, myA, d,A,
mAd, = m, mA, d, A4,
m,A, = m, : m,4, , d, A,
m;4, = m, = my4, d. 4,
m,4, = m; m,A, d, A,
m;A, = m, m;A4, = d;A, = d,
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Length of
sequences
on each
tape at the
end of
each cycle

Length of
sequences
on each
tape at the
end of
each cycle

@CHC:IOTUIOP—‘

In these examples we see that

a d a & & @ 0
A, =100 (4., =(010 (A;0): =100
010 001 010

As another example of an ‘“unorthodox” merge-sort, select

a matrix A whose row sums agree with the general compromise

description for ¢ = 1. (The m;; in this illustration are not neces-
sarily ordered as in Class Ia, but the d,; are ordered.)

Toable 4 Class | compromise merge

Number of sequences

Tape Tape Tape Tape Tape
1 2 3 4 5

86 37 53 76 0

49 0 16 39 37
33 16 0 23 37

17 16 21
16 14

0 1 0
Only one step required




Let A be

1111
1011
0001
1000

then we have the following information concerning this merge:

(3123 7346 16 7 10 14
2112 ,0_ (5234 ,_[115 710
1000 1111 31 2 3

(1111 3123 L 73 4 6

37 16 23 33 86 37 53
261116 23| ., _ |60 26 37
7 3 4 6 16 7 10
116 7 10 14 137 16 23 33

d=(1,1,1, 1) m, = (1, 0, 0, 0) s, = 4-37 + 3-16 = 196
d = 4,3,1,1) m, = (1,1,1,1) s = 916 + 6-7 = 186

d, = (9,6,1,4) m, = (3,1,2,3) §s = 20-7 + 14-3 = 182
d, = (20, 14, 4, 9) m, = (7, 3, 4, 6) s, = 47-3 + 33-1 = 174
d, = (47, 33, 9, 20) m, = (16,7, 10, 14) s = 109-1 + 76-1 = 185

d; = (109, 76, 20, 47) m, = (37, 16, 23, 33) 8o = 2521 = 252

d, = (252, 176, 47, 109) m, = (86, 37, 53, 76) p =466 p/s; = 0.0185

In this example, the A, matrix operator used to determine
the pattern of ascending and descending strings is

aaaa
alaa
0001
1000

4, =

Table 4 shows the pattern of reading sequences and writing
merged sequences for an example of a Class I compromise merge
sort. Observe the similarity between the last example and that
of the Class Ia compromise merge (Table 2) for7 = 1 and K = 4.
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It is evident that the Class Ia compromise merge is the more
efficient. In terms of (0, 1)-matrix notation, the matrices

1111 1111
PR R R N R FE B B
1000 0001

0100 1000

belong to the same class,”” namely, U(S, T), as determined by

equivalent ordered sets of row sums S and unordered sets of
column sums T. The ordering of the row sums is, of course, de-
termined by the description of the merge. In the above example,
since the merge is a general compromise merge with 7 = 1,
S=(4,311)and T = (3, 3, 2, 1), the size of the set U(S, T)
is less than or equal to 4 factorial.

Each member of Class Ia establishes a unique set U(S, T).
The preceding analysis supports the proposition that members
of Class Ia are more efficient merge-sorts than the other members
of the sets U(S, T). It is further proposed that if we let A, &
Class Ia and 4; € U(S, T), then

|4, = A =0
has a greater maximum positive root than
[A4; = N| =0 7%= 1

However, each member of U(S, T) can be described by the same
set of merge procedures (e.g., the general statement described
above for the polyphase merge), and all members of this class
go to proper completion.

Summary

A classification of merge-sorts has been introduced in which
members of Class Iafor¢ = 0 and 7 = & — 1 agree with Carter’s
definition of polyphase and cascade merge-sorts. For0 <7 <k — 1,
the defined merge-sorts are classified in the general category of
compromise merge-sorts. Class Ia and the defined larger Class I
merge-sorts are shown to have interesting properties, the most
important being that members of these classes can be charac-
terized by a single matrix. Interpreted, this property indicates
that the particular merge can go to completion using the same
procedure throughout the merge. This property defines a merge
going to proper completion. The introduction of matrix descrip-
tions of Classes I and Ia merge-sorts is useful since methods of
matrix manipulation are well known. By defining new operators
for the matrices, it is shown how patterns of ascending and de-
scending sequences required as a result of the presort phase can
be determined.

Class II merge-sorts require more than one matrix to describe
and become more difficult to analyze as the number of describing
matrices becomes larger. For the Class IT merge-sorts, the merge
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does not go to completion using the same merge procedure. This
property defines a merge going to improper completion.

For those classes analyzed in this paper, it is asserted that
the merge-sorts of most interest are in the specially defined
Class Ia.
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