This paper discusses general considerations that arise in the statistical
analysts of point stochastic processes (series of events) and a com-
puter program called SASE designed to tmplement such an analysis.

The program 1is writlen as a sequence of independent subroutines.
The computations performed in each subroutine are described and
an example of an analysis of a series of events is presented and
discussed.

A computer program for the statistical analysis
of series of events

series of
events

by P. A. W. Lewis

The purpose of this paper is to familiarize the reader with a
computer program for performing a statistical analysis of a series
of events (point stochastic process). First, we define what is
meant by a series of events, give a general outline of the program,
and discuss in general terms the types of analysis that might
be performed on a series of events.

Series of events or point stochastic processes arise in many
technological and scientific contexts. Typical examples are:

The series of failures of a computer

The series of arrivals at a queue or service facility

The series of times of vehicles passing a point on a road

The occurrence of pulses at a nerve junction

The successive level crossings of a continuous time-parameter
stochastic process

The series of emissions of particles from a radioactive source

There are basically two situations in which an analysis of a
series of events is required. In the first, a physical system may
be observable only in terms of its output, the output being a
series of events. It is then required to infer something about
the structure of the system from a statistical analysis of the output
series of events.

An example of this first type of situation is an analysis of three
series of computer failures performed by Lewis," who found
significant deviations from the predictions of a standard reliability
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Figure 1 Typical series of events
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model. The deviations were found to be due to imperfect main-
tenance of the computers; the size of this maintenance effect was
determined in the statistical analysis of the series.

Again, there is much interest in the statistical analysis of
nerve pulse data,” because the series of pulses are observable,
while the mechanisms which generate them are not. Models of
the generating mechanism can be constructed and used to predict
the probabilistic structure of the series of events. Comparison
of this predicted structure with the structure of the observed
series then provides a means of verifying the model of the gen-
erating mechanism.

The second situation requiring an analysis of a series of events
is the design of systems whose structures are known and whose
inputs are series of events. Two examples of such analyses are
the following.

In designing queuing and service systems, the adequacy of the
proposed service system to handle the input traffic depends
critically upon the statistical structure of the input. The input
is a series of events, the events being the arrivals of customers
at the queuing system. The required analysis of the input can
be performed with the aid of the program described in this paper.

Again, errors occur in transmitting digital data over telephone
or other types of circuits—the errors being a series of events.
The performance of an error-detecting and -correcting code from
such data depends upon the statistical structure of the series
of errors. Analyses of such error data have been given by Berger
and Mandelbrot® and Lewis and Cox.*

We consider only univariate series of events; that is, series
in which the events are distinguishable only by where they occur
in time, as shown by Figure 1. In other words, quantitative or
qualitative information associated with each event, e.g., type of
failure, height of nerve pulse, or speed of a car passing a point
on a road, is unavailable or ignored for present purposes. Con-
sequently, the times-to-events {7'(;,} or times-between-events
{X.} completely characterize the process. Thus we have

0< Ty <Twe <Tw < -
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(Throughout the paper parenthetical indices denote quantities
ordered by magnitude).

Another equivalent characterization of the series of events is
in terms of the counting process N,, the number of events occurring
in the interval (0, ¢]. The counting process N, is a continuous
time-parameter stochastic process whose sample functions are
jump functions. We have N, < n if and only if

Tw = 2 X:> 1 n=12 - (1)
i=1

and
prob (N, < n) = prob (T, > 1) n=12 - ©)

Equations 1 and 2 specify the fundamental relationship be-
tween the counting process representation of a series of events
and the interval representation. The main implication of this
relationship for a statistical analysis of a series of events is that
an analysis based on second-order correlational properties of the
counting process, N,, is in general not equivalent to an analysis
based on the second-order correlational properties of the interval
process, {X,}. Both of these types of analysis are discussed in
this paper.

The analysis of the interval process, {X;}, is basically the
analysis of a time series consisting of positive random variables,
so that the usual normal theory does not hold. However, the
analysis of the counting process N, has no counterpart in ordinary
time series analysis.

We discuss now the various types of analyses implemented
by a computer program called sask,® written to assist in the
statistical analysis of series of events. The theory behind the
analyses is given in a recently published monograph.® This mono-
graph is the first comprehensive account to appear on a relatively
unexplored area of statistical analysis. As far as is known, the
SASE program is the only program available to implement this
type of analysis.

Two cases arise in practice in the statistical analysis of series
of events that are differentiated by the program and give rise
to fairly subtle differences in the formal analysis.

Case 1. The series is observed for a fixed length of time, T, and
n events are observed in this time period. Here n is the observed
value of the random variable N 5.

Case 2. The series is observed up to the occurrence of a fixed
number, n, of events. The total time of observation, £, is the
observed value of the random variable, T, . This situation is
indicated to the program by setting 7 = 0.

In order to accommodate the large number of possibilities
that arise in analyzing series of events, the computer program
was broken up into subroutines, most of them being independent
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Table 1 The SASE program

Subroutine Computation

MAIN Control of data and subroutines
TREND* Tests for trends in series

EXPO Tests for a Poisson process
DURB*

INTER Marginal distribution of times-between-events {X;}

RHO* Second-order joint properties of {X;}
SPEC* and tests for renewal processes

VART* Second-order properties of the counting process N,

COov*
DENS* Second-order joint properties of N,
BART*

*Subroutine executed upon control card indication only

of the other subroutines and capable of being suppressed if not
needed. These subroutines and their general functions are shown
in Table 1. An asterisk indicates that the subroutine is performed
only when a suitable indication is given on a control card. Sub-
routines EXPO and INTER are always carried out.

The computations performed by these subroutines and their
interrelations are discussed in more detail later in this paper.
First, we discuss some general considerations in the statistical
analysis of series of events.

There are roughly two situations which arise in the analysis
of series of events:

o Exploratory analyses in which no particular model is being
put forward and the gross features of the data are being
examined
Analyses in which specific models are to be tested against
data and parameters are to be estimated

In the first situation, the exploratory analysis may be used
to suggest a pertinent model, or may be used to give direction
to a further search for the physical mechanisms which generate
the data. Graphical analysis is particularly important here, and
the output of the program has been designed to facilitate this.
In particular, it is always appropriate to examine the data for
trends. For example, a plot of the cumulative number of events
against time (the observed realization of N,) may sometimes show
these trends immediately. The existence of several specific types
of trend in the series can be checked formally by computations
performed in subroutine TREND.

If no trends are found in the data, the assumption is made
that the series of events is stationary, which implies that the
marginal distributions of the X.’s are identical. The next step
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in the exploratory analysis is generally to determine whether
serial correlation exists between the successive X,’s (subroutines
RHO and SPEC). If no positive indications are obtained, one can
assume that the X,’s are independent and identically distributed
with an unknown distribution F(z), i.e., the sequence {X.} is
a renewal process. This is the usual case of a random sample
considered in ordinary statistical analysis. The only remaining
problem is to find a suitable model for F(z). This modeling is
facilitated by the output of subroutine INTER. Given a suitable
model, standard methods such as maximum likelihood may be
used to estimate parameters in the model.

A central role is played in the analysis of series of events
by the Poisson process, which is a special case of a renewal process
where

F(x) = prob (X <2) =1 —¢" (3)

Then, as is well known and may be verified from the fundamental
relationship given by Equations 1 and 2

prob (N, =n) = %—t’)—e”“ 0,1,2, --- 4)

In addition to the property of independent intervals, the Poisson
process has the property of independent increments. This property
is that the numbers of events in any set of nonoverlapping intervals
are independent random variables with the Poisson distribution
given by Equation 4. Tests for a Poisson process are performed
in subroutines EXPO, DURB, and to some extent in DENS and
BART, which are concerned with estimating the second order
properties of the counting process, N,.

In the case of analyses involving specific models, the models
are generally put forward as a result of an exploratory analysis
or on the basis of prior knowledge. Renewal and Poisson models
were discussed earlier in this paper. For other models which
postulate serially correlated intervals, an initial analysis is the
confirmation that a renewal model is not an adequate representa-
tion of the data. Tests-of-fit of these models with serially cor-
related intervals use the second-order properties of the interval
process {X;} (subroutines RHO and SPEC) and the second-order
properties of the counting process N, (subroutines VART, COV,
DENS, and BART). The fundamental relationship given by Equa-
tions 1 and 2 shows that these processes are equivalent only in
terms of their complete distributions. Consequently, analyses
based on second-order properties of counts and intervals are not,
in general, equivalent. Estimation of parameters in these models
is done usually in an ad hoc manner. The role of prior knowledge
is very strong here, but is difficult to formalize because likelthood
functions usually cannot be written down.

The detailed analysis given by Lewis for a series consisting
of the successive times of failures of a computer is an example
of analysis involving a specific model.
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Computational aspects of the program

We discuss now in more detail the computations performed in
each subroutine and the analyses based on these computations.

Subroutine TREND. The first computation in this subroutine gives
a test for a trend in the rate of occurrence of events represented
by a smooth change in time. Instead of the rate parameter in a
Poisson process being assumed constant in time, it is assumed
to have the functional form

M) = e (5)
so that

n_—u

u'e
n!

prob (N, = n) =

where

u=f0t>\(v)dv

The test is for the hypothesis 8 = 0, a being essentially a nuisance
parameter since the test is for the null hypothesis of a Poisson
process per se. Note that locally, near 8 = 0, Equation 5 is equiv-
alent to a linear trend. From the likelihood function for observa-
tions of a series over a time 7, it can be shown that the best
test for 8 = 0 against 8 # 0 is based on the distribution of the
statistic

S =3 tw/n ®)

conditionally on the observed value n of N,. Given n, and for
B = 0, S has the distribution of the sum of » independent rec-
tangular random variables. Consequently, the distribution of the
standardized random variable

S — iT
= /120t @

goes very rapidly to the standardized normal form as n increases.
Essentially, the centroid of the observed times-to-events, ¢,
is compared to the midpoint of the period of observation. The
test based on Equation 7 is an optimum test against the trend
given by Equation 5.

The program prints out the value of U observed and the
separate quantities in it. If U is greater than 1.96, corresponding
to significance at a 5 per cent level, the program stops and prints
out INDICATION OF TREND AT 59, LEVEL.

The remainder of this subroutine computes quantities that
are useful in tests for trend based on standard least squares
regression methods. These methods are flexible, allowing for
various types of trends to be tested, and work reasonably well
under fairly weak assumptions about the detailed structure of
the series in question.
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The basic idea is that if the time between events X has a
gamma, distribution with parameters A and a,

)\a a—1_-—Az

fx(@) = 'ir@%“‘

then log X has a log chi-square distribution with
EQog X) = —log N\ + ¥(a)

var (log X) = y/(a)

Here y(a) is the derivative of the logarithm of the gamma funec-~
tion T'(a), and is called the digamma function,

¥@) = L 1og 1)

Now, let X; have a gamma distribution with parameters a and
A = e” +Bui

Then if the times between events X; (or contiguous groups of
times-between-events) are independent, the series of values log X,
have the usual linear model with uncorrelated residuals and
variances independent of the mean values ¢(a) — a — By..
Thus it is possible to obtain least-squares estimates of a and g,
and to test approximately the null hypothesis 8 = 0 by standard
regression methods.

In the model, y; can be defined as the time at the center of
the interval if A is considered a function of time. Another
possibility is to define y; as the serial number 7 if X is considered
a function of serial number. Still another possibility is to define
y; as the average of an independent variable that controls the
rate of occurrence X\.

It is also possible to consider multiple regression models such
as one in which \; is a quadratic function of Z,. To assist in the
regression analysis, the subroutine computes and prints out the
following quantities for a constant K specified in the input to
the program:

ZI = b — bgiexy = Twi F Tgin T 000+ Xxiox
In Z1
MXI = §{txoy + tixi-x)] I=1=1,23, .-, [n/K]

where [n/K] is the greatest integer less than or equal to n/K,
and f, = 0. Computations are repeated using the values 2K and
3K. The subroutine also prints out the estimated mean and
coefficient of variation of successive sets of K, 2K, and 3K in-
tervals. These quantities are useful in determining a suitable
trend model for the data.

Subroutine EXPO. Tests of a Poisson hypothesis for an observed
series of events are computed by subroutine EXPO and subroutine
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DURB, described later in this paper. There are three broad cat-
egories of alternatives to the Poisson hypothesis:

& Non-stationarities or trends in the series

& Stationary series having independent intervals with a non-
exponential distribution, i.e., renewal processes
Stationary series with serially correlated intervals between
events

The first alternative is specifically taken into account in
subroutine TREND, but tests based on the statistics computed
in subroutine EXPO are also somewhat sensititive to this alterna-
tive. Tests against general alternatives are based on the following
idea.

In testing for a Poisson hypothesis for a series observed for
a fixed period 7, the parameter A in Equation 4 is a nuisance
parameter with a sufficient statistic n. (The quantity n is the
observed number of events in the interval of length 7T'.) The test
should therefore be based on the distribution of the observations,
conditionally upon the observed value of n. With this condition,
the quantities

Yo = ty/T t=12---,n

are, under the null hypothesis, the order statistics from a random
sample of size n from a population uniformly distributed over (0, 1):

0 y <0
prob(Y;Sy)=ly 0<y<1

1 y>1

Similarly, when the series is observed up to the nth event (7 = 0),
the quantities

Yi = t:/tm i=1,--,(n—1

are independent observations from a uniformly distributed
population.

A test for the Poisson hypothesis based on testing the uniform
distribution of the y,’s is called a uniform conditional test. This,
however, is the canonical form of all distribution-free tests of
goodness-of-fit, and four of the many possible distribution-free
statistics are computed by the EXPO subroutine.

The one-sided Kolmogorov-Smirnov statistics. Denote by F.(y)
the empirical distribution function of the observations y,:

number of y;, < y
n

F.(y) = where 0<y<1

Subroutine EXPO computes

KS+ = D; = ()" sup [F.(y) — y] = @)"* max B— - ym}

0<ws1 1<i<n
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and

KS8S— = D; = m)"* sup [y — F.(y)]

0<y<1

= (n)"” max |:y(,.) — M]

1<i<n n
The two-sided Kolmogorov-Smirnov statistic.

K8 = D, = )" sup |F,(y) — y| = max (D}, D7)
0<y<1

The Anderson-Darling statistic.

1 2
WN2 = wi =g [ L0 =1L,
o Yy —y)

n

1 .
-n — = E {2t — 1) Iny,

n =
+ 20—+ 11In(d — yu)}

Percentage points of the Kolmogorov-Smirnov statistics are
given in most statistical tables; those for W32 are given by Cox
and Lewis.® The four tests given are not consistent against certain
stationary alternatives,” and are most sensitive to trend alterna-
tives. The modified tests given later in subroutine DURB, however,
give relatively powerful tests of the Poisson hypothesis.”

Tests of the Poisson hypothesis based on the property of
independent increments are sometimes used, the best known of
these being the test based on the index of dispersion. This test,
however, can be shown to be equivalent to the uniform conditional
test when the uniformity of the y,’s is tested with the chi-square
test of goodness-to-fit. The drawback of this test is the need to
choose a suitable grouping interval.

Specific tests of the Poisson hypothesis against renewal hypoth-
eses are known. Of these, the most useful is based on the Moran
statistic

MORAN = ""2 Z 11’1 [:[/(i) - y(i—l)] — 2n hl (n)
i=1

where
Yo = 0

The value of the statistic is computed and printed out by the
EXPO subroutine. The test for a Poisson hypothesis based on
this statistic is asymptotically the most powerful test against a
renewal alternative in which the intervals have a gamma density

fl) = N2* e ™/T(a) a>0

The test is for a = 1 against a £ 1, and the statistic has a chi-square
distribution with » — 1 degrees of freedom for large n.

Subroutine DURB. Denoting the intervals between events by
Xy, sy '+, X, and the interval between the last observed event
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and the end of the observation period by z,,, = T — {u), we
order the (n 4+ 1) /s by magnitude to obtain the observed
order statistics

0 < x?l) S fo) S Tt S xfn) S xzn+l)
The DURB subroutine then calculates the quantities

Ty 4 Tamn _ e
+IR e A T k2 - )

4
Ty

Wy = T

One interval, z(,.,,, is not used in the computation.

Under the null Poisson hypothesis, the w,s have the same
distributional properties as the y,’s computed in subroutine EXPO.
The null hypothesis is again tested by computing the statistics
KS+, KS—, K8, and WN2. The reason for using the transforma-
tion is that it is conjectured to give a large increase in power,
relative to the uniform conditional tests, for a broad class of
alternatives.

In the case where observation is up to the nth event (' = 0),
the n intervals are ordered to give the z/;,’s. The ,,’s, divided
by i, are used as in Equation 8 to give (n — 1) wy's.

Subroutine INTER. Computations performed in this subroutine marginal
are designed to facilitate the graphic and numerical examination distribution
of the marginal distribution of the sequence of intervals between of intervals
events { X,}. The first part of the subroutine orders the n observed

z.’s to obtain the observed order statistics

O<ay L2 < - L 2my

Note that the interval z(,.,, is not included as in subroutine
DURB where observation of the series is for a fixed period. These
order statistics are used in graphic displays of the empirical
distribution function F,(z) for the observed intervals

number of z.)s < z
n

[O z <z

F.(x) =

Ta-n ST < Ty

11 Ty S x

The subroutine prints out %, z(,), and ¢/n in successive columns.
The next column lists 72/(n + 1); conventionally, this quantity
is the point plotted on the ordinate against x(;, when n becomes
so large that it is inconvenient to show the steps of size 1/n.

The function F,(z) is a non-parametric estimate of the un-
known marginal distribution function F(z). It is often convenient
to work with the empirical survivor function

R.(r) =1 — F,(2)
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and the logarithm of that function. To facilitate this, the sub-
routine prints out columns containing the quantities (n — 7)/n,
(n—24+1)/(n+ 1),In[(n —1)/n],andIn[(n — i+ 1)/(n + 1)]
respectively. The logarithmic plot is useful because if F(z) is an
exponential distribution, then

InR(z) = —

In certain cases, systematic departures from linearity can be
given specific interpretations.

The last three columns of the printout contain the exponential
scores, the serially ordered intervals z;, and the successive times-
to-events ¢.;,. The exponential scores are the expected values
of the order statistics from an exponential population of size n
given by

ESi=ESI =Y — 1
’ Z‘f(n—i—l—l)

These exponential scores have various uses in formal statistical
procedures.’

The second part of the INTER subroutine computes and prints
out the first three sample moments of the intervals between events

MU

VAR — ;— )’
n — 1 i=1

MU3 = mz:(x—#)

and the related quantities
SIGMA = ¢ = ()}

C =3/p
SKEW =4, = #/(¢)°

The quantity C is an estimate of the coefficient of variation
having the value unity for an exponential population, while
SKEW is an estimate of the standard measure of skewness.

Subroutine RHO. Subroutines RHO and SPEC are concerned with
the computation of estimates of quantities which characterize the
second order, joint properties of the intervals between events.
These quantities are the serial correlation coefficients

E{[X, — EX)], [Xis; — EQXD]}
var (X)

_ cov (Xi, Xivy)
var (X)
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which are the Fourier coefficients of the second quantity of
interest, f,(w), the spectral density function:

folw) = |:1 + 2 Z p; COS (Jw)} 0o (10

The estimates of the serial correlation coefficients computed
in subroutine RHO are the standard ones

- = —11) (% ><Zx> an

SO S s e S o

(n_j) i=1 (n_]) (n—])zl ( —]) i=1

The 5;’s and the values (n — j)!5, are computed and printed
out for j = 1, 2, --- , up to the greatest integer less than n/2,
or 100, whichever is smaller.

When indicated by special input instructions, the subroutine
also computes estimates of the serial covariances normalized by
the value of the estimate of var(z) computed in subroutine
INTER, i.e., Equation 11 with the denominator replaced by VAR.
This quantity, RHOVJ, is computed for all § < n — 1 for use
in subroutine SPEC when the special input indicator is given to
the program.

The estimated correlation coefficients, 5;, provide a simple
but rough means of testing for the presence or absence of serial
correlation. Under the null hypothesis p; = 0, j = 1, 2, «.. ,
and provided the marginal distribution of the intervals is not
too highly skewed, the §; may be considered as observed values
of a standardized normal variate, ie., their distribution is
N[0, 1/(n)"*]. This approximation is reasonable for n > 100,
say, if the skewness is moderate.

Subroutine SPEC. In this subroutine we compute smoothed esti-
mates of the spectral density function, f,(w). Such estimates have
the general form

folw) = [1 + 2 E B cos (]w)]

where the A;’s are suitably chosen weights. The weight sequence
used in subroutine SPEC is due to Bartlett.®

m—j

A -

if i<m
=0 if j>m

Therefore, the computation gives

ot 1< B (o (3]

n
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The FWI’s are computed for

fo 1,2, -+ ,n/2 n even
10 1,2, "_1 n odd

and for three different values of m, (m,, m,, ms), specified in the
input to the subroutine. The coefficient of variation of the in-
dividual estimates is approximately [(2m)/(3n)]'/*. Decreasing the
coefficient of variation by decreasing m gives greater smoothing
in the estimated spectrum, but less ability to resolve distinctive
features in the underlying spectral density. Generally, it is possible
to see empirically what the limit of resolution is for a given sample
size n by using three different values of m.

The particular weight sequence used here is adequate for most
purposes; if necessary, estimates using more elaborate weight
schemes can be performed with standard programs for time-series
analysis.

It is sometimes required to compute the unsmoothed estimate
of the power spectral density, var(X)f,(»), for use in testing
the independence of the sequence of intervals {X,}. This estimate
is sometimes called the periodogram and is computed on special
input instructions to the subroutine. The computation is as follows:

PERIO = }r[ 1+ 2 Z ( >RHOVJ 008 (27’“)}

n

The quantity RHOVJ is computed in subroutine RHO (previously
discussed) and has as divisor the estimated variance of X. This
division is used to normalize the periodogram for convenience
of computation. In test procedures, ratios of the periodogram
values, PERIO, at different values of I are used and therefore
the normalization does not affect the results. The computed
values PERIO are printed out under this heading in a column
adjacent to the smoothed spectral estimates.

The sase program is limited to a sample size of n = 999.
This limitation, together with the form of correction for a non-
zero mean used in Equation 11, means that little computation
speed is gained by using the fast Fourier transform of Cooley
and Tukey® in the computation of the FWI’s and PERIO.

Tests for independence of the intervals {X,} are based on
the following result. If the sequence of observed intervals are
observations on independent, normally distributed random vari-
ables, then the values computed by PERIO (for I # 0 and [ # n/2
if n is even), multiplied by VAR, are observations on independent
exponentially distributed random variables with parameter

N = x/[var (X)]

This result is asymptotically true for independent but non-
normally distributed sequences {X;}. If the fourth cumulant «,
of the X.’s is small, the result is approximately true even for
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moderate sample size, say n > 100. Thus the test for independence
consists in testing whether the values computed by PERIO
for successive I are observations on a Poisson process.

The computational procedure is as follows:

Case 1. If n is even, then drop off PERIO for I = 0, n/2.

Case 2. If n is odd, then drop off PERIO for I = 0.

The remaining periodogram values, PERIO, ' = (n/2) — 1
of them in Case 1, and n’ = (n/2) — 1/2 of them in Case 2,
are put back into the whole program and processed by subroutines
TREND and EXPO with 7' = 0, n = n’ and

2z, = PERIO for I =1
2§ = PERIO for I =2

In TREND we take K = [n’/18].

The statistics computed in EXPO give direct tests of independ-
ence, and the output of TREND is used for tests based on the
homogeneity of the variance statistic. The tests based on the
periodogram are, in general, more exact and probably more
powerful than tests based on the estimated serial correlation
coefficients. However, owing to the approximation involved, tests
based on the periodogram always measure to some degree the
departure from normality of the marginal distribution of intervals.
This departure is always present, since we deal with positive
random variables. The large amount of computation involved in
these tests should be noted; they would never be used if there
were a strong indication of independence between intervals from
tests based on the estimated serial correlation coefficients.

Subroutine VART. This subroutine computes an estimate of the
variance-time curve V(¢) for the series of events, i.e., the variance
of the number of events in an interval of length ¢, considered as
a function of ¢,

V() = var {N.,}.

The computed estimate is for values of ¢t equal to A, 24, 4A,
8A, 124, - -- . These intervals increase in steps of four after the
initial steps until the interval becomes greater than 7'/4 (or i,,/4
if 7' =0).

Another type of estimate of the variance-time curve, described
later in this paper, is computed in subroutine COV. The estimate
computed by VART is essentially the standard variance estimate
combined with a moving average procedure to give greater
precision to the estimate. To obtain the greatest precision from
this procedure, a rough guide is to choose A so that no interval
of length A in the series contains more than two or three events.

The computational procedure is as follows. Let n; be the num-
ber of ¢;,’s, 2 = 1,2, -- -, n, falling in the interval (( — 1)4, jA],
i.e., add one to n; for each i, for which (j — 1)A < ¢, < jA.
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Table 2 Output of subroutine VART

2A 8A 12A

nit---+ns e
(% s o (1) (2% e o (3T
nyt-cctno et

Ne1+7s — —

Here j runs from 1 to s, where s is the largest interger such that
sA < T. Subroutine VART computes and lists the quantities
shown in Table 2.

For each column in Table 2, the following quantities are
computed and listed:

Number of entries in the column, 4

Sum of the quantities in the column, SIGM 1(K)

Mean for the column, AMEAN(K) = SIGM1(K)/A

Sum of the squares of the entries in the column, SIGM2(K)
Corrected sum of squares,

SIGCO(K) = SIGM2(K) — AMEAN(K) X SIGM1(K)
Multiplier, AK(K) = 3A/[34(4 — r) + r* — 1], where
r is the multiplier of A for the column

Estimate of the variance of the number of counts in an interval
of length rA; AVAR(K) = AK(K) X SIGCO(K)

Normalized variance estimate, AVAR(K)/AMEAN (K)

Sum of the products of successive non-overlapping entries in
the column, SIGM A(K)

In the case of the last computed quantity, we obtain for 4A
for example

SIGMA (K) = (i + <+ + n)(ns + -+ + ny)
+(n5+ +n8)(n9+ +nx2)+

The first six quantities computed for each column give the
successive steps in the standard calculation of a variance estimate,
except for the multiplier A K(K). This multiplier is used to com-
pensate for the overlapping of intervals and gives an unbiased
estimate for Poisson processes. For the first column the multiplier
is equal to 1/(4 — 1). The seventh column is an estimate of the
square of the coefficient of variation of the number of counts
in the interval. For a Poisson process, the coefficient of variation
has the theoretical value of one for all intervals. The ninth com-
putation may be used for studies of the correlational properties
of lag one of the counting process for various interval lengths.
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The columns in Table 2, e.g., n,, n,, ng, - - - , may be suppressed
and only the nine resultant quantities printed out. However,
the contents of the successive columns are useful in looking for
and testing cyclic trends in the series.

Subroutine COV. This subroutine computes estimates of serial
covariance and correlation coefficients of various lags for the
counts in intervals of length A, 24, 44, --. . Also a variance-time
curve estimate is constructed from these estimated correlation
coefficients.

Using the quantities in the first column of Table 2 from
subroutine VART, i.e., n;, fz, +++ , Ny, COV first computes the
following quantities for all integer j(J) greater than one and less
than A/2.

A—-7
CJ = Z n,'n,‘.q.i
=1

o 1 i ) (A—i >
pent = o - b (B (S

The quantity BCJ1 is the standard estimate of a serial covariance
of lag j(J). The 1 in BCJ1 signifies that the covariances are for
counts in intervals of length A. The corresponding estimate of
the serial correlation coeflicient of lag j(J) is formed by dividing
BCJ1 by the estimated variance for the interval A, ie., the
seventh quantity computed for the first column in Table 2 by
subroutine VART, and designated V1:

BRHOJ1 = BCJ1/V1
For testing purposes, subroutine COV also computes and lists
BRHOJ1 (A — §)'”*

An estimate of serial covariances of lag 1 for intervals of length
LA (IA) is formed, by analogy with standard probability relations,
as

1

BC1L = Y jBCJ1 + > (2l — HBCJ1

i=1 i=i+1

An alternative estimate of the variance-time curve is formed
for intervals of length LA(IA), for integer L greater than one and
less than A /2

BVl = V1

-1 LI
BVL = 1Vl +2 ¥, S BCJ1

am]l Jm=]
The last computations performed are of
BRHOIL = BC1L/BVL

and

DELBVL = BVL — BV(L — 1) BVO =0
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spectrum
of counts

The latter quantity is useful in determining the range of values
over which the estimated variance-time curve is increasing ap-
proximately linearly.

The above quantities are listed by subroutine COV in successive
columns and in the order

J or L,CJ,BCJ1, BRHOJ1, BRHOJ1(A — j)'*,
BC1L, BRHOIL, BVL, and DELBVL

Subroutine DENS. The second-order joint properties of the counting
process N, can also be investigated by means of a covariance density
v, (f) that is related to the variance-time curve by the equation

1ol = L8 = () — m)

In this equation m = 1/[F(X)]. The function m,() is known
as the infensity function or as the renewal density in renewal theory.
The intensity function is the derivative of the expected number
of events in a stationary series observed for an interval of length ¢
starting from an arbitrarily selected event. An estimate of the
quantity m,(¢) is calculated in this subroutine. It has the constant
value m for a Poisson process.

As with all estimates of density and intensity functions,
smoothing is required. Let & be the smallest interval over which
the smoothing is required. The interval § is specified as an input
parameter and should not be much less than E(X). Another
input parameter needed is L, where Lé is the range of ¢ over
which it is desired to estimate m,(f). Subroutine DENS computes
the estimates MFJ, forJ = 1, ---, L, where MFJ is the number
of sums
Z Zi
for p £ ¢ < n, lying in the interval [(J — 1)3, J8].

The subroutine prints out the MFJ in a column, and in
succeeding columns prints out the sum of each successive pair
of MFJ’s, the sum of each successive set of three MFJ’s and
the sum of each successive set of four MFJ’s. The combined
quantities are used in computing estimates of m,(t) smoothed
over intervals of lengths &' = 26, 35, 44.

When n (or T) is large, a well-behaved, smoothed estimate
of m,(¢) is proportional to the MFJ’s. Otherwise, a correction
for bias is needed and must be hand-computed. Such an estimate
of m(t), smoothed over an interval §, is as follows:

_ 1 T X MFJ
M TO+ 30) = DA = IT = 35
Subroutine BART. A third characterization of the second-order
joint properties of the counting process N, is the spectrum of
the counting process g, (w). This is the Fourier transform of . (f),
and may be written as
@) =2+ 1 [ e dr w20

[

w

J=1,---,L
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This function is not periodic, as is the spectral density f. (o)
of intervals. Thus, one problem in using ¢,(w) is to determine
the range of interest of w. The distributional theory of estimates
of g.(w) is much simpler than that for the estimates of the var-
iance-time curve and the intensity function. For this reason, it
is in many cases the preferable characterization of the second-
order joint properties of N, for use in a statistical analysis. For
a Poisson process with parameter A

m A
g+(w) = = w20

™

An estimate of ¢, (w) that has suitable distribution properties is

~ 1jn 28 &
§ilw) = _{T + T Z Z 08 {wt.y — tm]}}
™ s=1 j=1
For observations from a Poisson process, it can be shown that
as T — =, §,(w) has an exponential distribution with parameter
such that E[j, (w)] = v/7 if T/(27) = 1, 2, - - - . In other words,
§:+(w) is an unbiased but not consistent estimator of ¢, (w). For
finite 7, the exponential distribution is approximately correct.
The exact moments are
) T

E[g+(w)] = ; o0 = 17 2;

L. A\ 1
var [g+<w>J=;(1+ﬁ) e

To,
1 2T
corr [, (w), Jolws)] =
1+ 2\T Teo,
2r

W, F Wy

It is convenient for statistical analysis to estimate a normalized
spectrum, g, (w)/m, having the value one for all » for a Poisson
process. The normalized spectrum is the function whose estimate
is computed in subroutine BART. The estimate, {J), is computed
as follows:

— t(n) _ t(l)
n—1

The subroutine computes

A(J) i_: cos {]B M}

n
B(J) Z sin {]B [t(i) - t(l)]}
=2 n
and
2

1(J) = (LAWY + BT}
(n —1)
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forj=J =12, -, P. Here P and B are input parameters.
If B is taken to be 2r/(n — 1) as is normally the case, then j is
related to w by

T

T or

Also the integral values of  used in the subroutine give values
of w for which the estimate is well behaved. For observations
from a Poisson process and for j with integral and non-zero
values, it can be shown that

EIJ)] ~1

var [I(N] ~ 1 + %

corr [I(J)), I(7)] ~ 1 +11L Ji # J,

The input parameter P should be greater than n. Then, in most
cases, all the salient features of the spectrum will be shown by
computations of I(J) for J up to P = 2n.

The estimate I(J) has to be smoothed to obtain a consistent
estimate of ¢.(w). A uniform weight scheme is usually adequate.
For this reason, the program prints out in adjacent columns
J, I(J), the sum of successive sets of two I(J)’s, the sum of
successive sets of three I(J)’s, the sum of successive sets of four
I{J)’s, and the sum of successive sets of five I(J)’s.

An example of an analysis

As a demonstration of the preceding methods, consider now the
analysis of data given by Bartlett. The events are times at
which automobiles passed a point on a road in Sweden. Statistical
analysis of traffic data is of interest because of the current activity
in traffic queuing and interference problems. Analytical solutions
to these problems use models having specific assumptions con-
cerning the probability structure of the sequence of times at which
cars pass a point on a road. It is common, for instance, to assume
that this sequence constitutes a Poisson process, and the solutions
obtained depend on the validity of this assumption. One would
clearly prefer to make assumptions that are empirically valid
under given circumstances. The sasE program is designed to
help obtain such an empirical validation.

The data consist of n = 128 events recorded during an interval
T of length 2039.3 seconds. The following computations on this
sample were made using subroutine INTER:

Estimated mean § = 15.81 seconds
Estimated coefficient of variation C = ¢/§ = 1.50
Estimated coefficient of skewness ¥, = 2.54

A plot of the cumulative number of events against time shows
a tendency for the events to cluster. The clustering shows up
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Figure 2 Estimated and fitted spectra of intervals for traffic data

inconsistent with a renewal model. For instance, g, = -0.092,
and multiplying by (n — 1)'/* we obtain

pln — 1) = +1.04

This statistic is tested as a normal random variable with mean
zero and standard deviation one. The upper two-sided five percent
point of this distribution is 1.96, so that the value +1.04 is not
significantly large. Testing the values PERIO computed in sub-
routine SPEC as a Poisson process by putting them through
EXPO, we obtain the values

KS = 1.11 WN2 = 201

These values correspond to levels of seventeen and nine percent
respectively, so that again there is no rejection of the renewal
hypothesis.

Figure 2 shows, as dashed curves, two smoothed spectral
estimates obtained from subroutine SPEC with lag windows \;
in which the parameter m is 8 and 16. The curve with the high
peak is the estimate with m = 16. Since the theoretical spectrum
for a renewal process is constant with value 1/x, the tests of the
renewal hypothesis indicate that all of the deviation from 1/#
of the estimated spectra is due to sample fluctuations. In particular,
there is no evidence for a peak in the underlying spectrum in the
vicinity of w = 0.237.

Despite the acceptance of the renewal model, it is instructive
to try to fit the two-state semi-Markov model to the data. The
density of the time-between-events in this model is

fx(@) = mfi(@) + mfa(x)

wherem = (1 — @)/(2 — @; — a,) and 1, = 1 — ,. The previous
discussion of models suggests taking f;(x) to be exponential, and
f2(z) to be a gamma distribution with a > 1. Thus

g_)a xa—le—az/ﬂn
2 I'(a)

fx(@) = 1r1<l1‘—1>e—”“‘ + 1r2<
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The serial correlation coefficients for this model are given by

_ (Ill _ #2)27l'17rz _ i
corr (X,', XH.,') = 7'_10’? + 71_20_2 + le?(“l — #2)2 (al + 273 1)
= cBi

The corresponding spectral density is

1140 =298 — 2801 —¢) cosﬂ
f+(“’)"7r[ 1+ 8 — 28 cos w

A convenient way to obtain initial estimates of the parameters
4y, M2, @ o, and @, is by the method of moments. We equate
E(X), E(X?), E(X*) and cov(X,, X,,,) to their sample values.
Another equation could be used, but it is simpler to solve the four
equations for different values of a. It is found that with ¢ = 3
the estimates

o= 27.15 g = 291 a, = 0.652 a = 0.607

give a good fit to the estimated marginal distribution of intervals
for the data, as obtained from subroutine INTER. The logarithm
of the estimated survivor function of intervals between events
is shown as a series of crosses in Figure 3. The recorded number
of intervals with values between given limits are shown parallel
to the time axis. The theoretical log survivor function for a
semi-Markov model is shown as the solid line. The first type
of interval for the fitted log survivor function has an exponential
distribution function, whereas the second type of interval has
a gamma distribution function with index a = 3. There is evidently
a good fit of the data to the model survivor function.

Figure 3 Empirical and fitted log survivor functions for traffic data
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Figure 4 Estimate of normalized spectrum of counts for traffic data
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The solid line in Figure 3 is the spectrum of intervals, f,{w),
for the semi-Markov model, using the estimated parameter values.
Note that it is close to the constant spectrum for a renewal model.
In fact, while one would not use any but a renewal model on
the basis of this data, the semi-Markov model fits the data well.
The main import of this example might be that rather long series
are needed to differentiate among models.

The estimated spectrum of counts (using 16-point uniform
weighting) is shown in Figure 4. The bands are five and one
percent confidence levels for individual estimates under the as-
sumption that the series is a Poisson process. The fact that the
initial values of the estimated spectrum fall outside these lines
gives another indication of the departure from the Poisson process.
The solid line in Figure 4 is the fitted spectrum for the semi-
Markov model; the fitted spectrum for a renewal model is vir-
tually indistinguishable from it.
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