
This paper  discusses general considerations  that  arise in the statistical 
analysis of point stochastic processes (series of events) and a  com- 
puter  program called SASE designed to  implement  such a n  analysis. 

The program i s  written  as a sequence of independent  subroutines. 
The  computations performed in each subroutine are described and 
a n  example of an  analysis of a series of events i s  presented and 
discussed. 

A computer  program  for the  statistical analysis 
of series of events 

by P. A. W. Lewis 

The purpose of this paper is to familiarize the reader with a 
computer program for performing a  statistical analysis of a series 
of events  (point  stochastic process). First, we define what is 
meant by a series of events, give a general outline of the program, 
and discuss in general terms the  types of analysis that might 
be performed on a series of events. 

Series of events or point  stochastic processes arise in many 
series of technological and scientific contexts, Typical examples are: 
events The series of failures of a computer 

The series of arrivals at  a queue or service facility 
The series of times of vehicles passing a point on a road 
The occurrence of pulses at  a nerve junction 
The successive level crossings of a continuous time-parameter 

The series of emissions of particles from a  radioactive source 
stochastic process 

There  are basically two situations  in which an analysis of a 
series of events is required. In  the first, a physical system may 
be observable only in terms of its  output,  the  output being a 
series of events. It is then required to infer something about 
the  structure of the system from a  statistical analysis of the  output 
series of events. 

An example of this first type of situation is an analysis of three 
series of computer failures performed by Lewis,'  who found 
significant deviations from the predictions of a  standard reliability 
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(Throughout the paper parenthetical indices denote  quantities 
ordered by magnitude). 

Another equivalent characterization of the series of events is 
in terms of the counting process N , ,  the number of events occurring 
in the interval (0, t ] .  The counting process N ,  is a continuous 
time-parameter  stochastic process  whose sample functions are 
jump functions. We have N ,  < n if and only if 

T(n) = xi > 1 
i - 1  

n = 1 , 2 ,  * . -  

and 

prob ( N ,  < n) = prob (Ten) > t )  n = 1,  2, . - -  (2) 

Equations 1 and 2 specify the fundamental relationship be- 
tween the counting process representation of a series of events 
and  the  interval  representation.  The main implication of this 
relationship for a  statistical analysis of a series of events is that 
an analysis based on second-order correlational properties of the 
counting process, N , ,  is in general not equivalent to  an analysis 
based on the second-order correlational properties of the interval 
process, {Xi 1. Both of these types of analysis are discussed in 
this paper. 

The analysis of the interval process, {Xi ) ,  is basically the 
analysis of a  time series consisting of positive random variables, 
so that  the usual normal theory does not hold. However, the 
analysis of the counting process N ,  has no counterpart in ordinary 
time series analysis. 

We discuss now the various types of analyses implemented 
SASE by  a computer program called SASE,' written to assist in the 
program statistical analysis of series of events. The theory behind the 

analyses is given in  a recently published monograph.' This mono- 
graph is the first comprehensive account to  appear on a relatively 
unexplored area of statistical analysis. As far as is known, the 
SASE program is the only program available to implement this 
type of analysis. 

Two cases arise in practice in the  statistical analysis of series 
of events that are differentiated by the program and give rise 
to fairly  subtle differences in the formal analysis. 

Case 1. The series is observed for a fixed length of time, T,  and 
n events  are observed in this time period. Here n is the observed 
value of the random variable N , .  

Case 2. The series is observed up to  the occurrence of a fixed 
number, n, of events. The  total time of observation, t(,,), is the 
observed value of the random variable, 5!'(,,). This  situation is 
indicated to  the program by  setting T = 0. 

In order to accommodate the large number of possibilities 
that arise in analyzing series of events, the computer program 
was broken up  into subroutines, most of them being independent 
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prob ( N ,  = n) = _ _ e  (At)” ” X t  

n! 

in the exploratory analysis is generally to determine whcther 
serial correlation exists between the successive Xi’s (subroutines 
RHO and SPEC). If no positive indications are  obtained, one can 
assume that  the Xi’s are  independent and identically distributed 
with an unknown distribution F ( x ) ,  i.e., the sequence { X , ]  is 
a renewal process. This is the usual case of a random sample 
considered in  ordinary  statistical analysis. The only remaining 
problem is to find a  suitable model for F(x ) .  This modeling is 
facilitated  by the  output of subroutine INTER. Given a suitable 
model, standard  methods such as maximum likelihood may be 
used to estimate  parameters  in the model. 

A central role is played in the analysis of series of events 
by the Poisson  process,  which  is a special case of a renewal process 
where 

F(x)  = prob ( X  5 x) = 1 - ex” (3) 

Then, as is  well  known and  may be  verified from the fundamental 
relationship given by  Equations 1 and 2 

n = 0, 1 , 2 ,  e . .  (4) 

In  addition to  the property of independent intervals, the Poisson 
process has the property of independent increments. This  property 
is that  the numbers of events in any  set of nonoverlapping intervals 
are  independent  random variables with the Poisson distribution 
given by  Equation 4. Tests for a Poisson process are performed 
in subroutines EXPO, DURB, and  to some extent  in DENS and 
BART, which are concerned with estimating the second order I 
properties of the counting process, N , .  ~ 

In  the case of analyses involving specific  models, the models ’ 
are generally put forward as  a result of an exploratory analysis 
or on the basis of prior knowledge. Renewal and Poisson  models 
were  discussed earlier in this paper. For other models  which 
postulate serially correlated intervals, an initial analysis is the 
confirmation that a renewal model is not  an  adequate representa- 
tion of the  data. Tests-of-fit of these models with serially cor- 
related  intervals use the second-order properties of the interval 
process {Xi )  (subroutines RHO and SPEC) and  the second-order 
properties of the counting process N ,  (subroutines VART, COV, 
DENS, and  BART). The fundamental relationship given by  Equa- 
tions l and 2 shows that these processes are  equivalent only in 
terms of their complete distributions. Consequently, analyses 
based  on second-order properties of counts  and  intervals  are  not, 
in general, equivalent. Estimation of parameters  in these models 
is done usually in an ad hoc manner. The role of prior knowledge 
is very  strong here, but is difficult to formalize because likelihood 
functions usually cannot be written down. 

The detailed analysis given by Lewis for a series consisting 
of the successive times of failures of a computer is an example 
of analysis involving a specific  model. 
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The basic idea is that if the time between events X has a 
gamma  distribution with parameters X and a, 

then log X has a log chi-square distribution with 

E(l0g X )  = -log X + +(a) 

var (log X )  = +'(a) 

Here +(a) is the derivative of the logarithm of the gamma func- 
tion r(a), and is called the digamma function, 

Now, let X i  have  a gamma dist,ribution with parameters a and 

X; = e a + B Y i  

Then if the times between events Xi (or contiguous groups of 
times-between-events) are  independent, the series of values log X i  
have the usual linear model with uncorrelated residuals and 
variances independent of the mean values +(a) - a! - byi. 
Thus i t  is possible to  obtain least-squares estimates of a! and p, 
and  to  test approximately the null hypothesis p = 0 by  standard 
regression methods. 

In  the model, yi can be defined as  the time at  the center of 
the interval if X is considered a function of time. Another 
possibility is to define yi as  the serial number i if X is  considered 
a  function of serial number. Still  another possibility is to define 
yi as  the average of an independent  variable that controls the 
rate of occurrence X. 

It is also possible to consider multiple regression  models such 
as one in which X i  is a  quadratic  function of Zi. To assist in the 
regression analysis, the subroutine computes and  prints  out  the 
following quantities for a  constant K specified in the  input  to 
the program: 

21 = t(KKi) - t ( K i " K )  = + XKi f ,  + . *  + X K ( " K  

111 Z I  

M X I  = $ [ t ( R i )  + t ( R i - K ) ]  I = i = 1 , 2 , 3 ,  * .  , [n /K]  

where [n/K] is the greatest integer less than or equal  to n/K, 
and to = 0. Computations  are  repeated using the values 2K and 
3K.  The subroutine also prints  out  the  estimated mean and 
coefficient of variation of successive sets of K, 2K, and 3K in- 
tervals.  These  quantities  are useful in determining a suitable 
trend model for the  data. 

Subroutine EXPO. Tests of a Poisson hypothesis for an observed 
series of events  are computed by  subroutine EXPO and  subroutine 



DURB, deswibed  later  in  this  paper. There  are  three broad  cat- tests  for 
egories of alternatives to  the Poisson hypothesis: Poisson I 

Non-stationarities or trends  in the series 
Stationary series having  independent  intervals  with a non- 

Stationary series with serially correlated  intervals between 

process 

exponential  distribution, i.e., renewal processes 

events 

The first  alternative is specifically taken  into account in 
subroutine TREND, but  tests based on  the  statistics computed 
in subroutine EXPO are also somewhat  sensititive to this  alterna- 
tive.  Tests  against general alternatives  are based on the following 
idea. 

In  testing for a Poisson hypothesis for a series observed for 
a fixed period T,  the parameter X in Equation 4 is a nuisance 
parameter  with a sufficient statistic n. (The  quantity n is the 
observed number of events  in the interval of length T.) The  test 
should therefore be based on  the  distribution of the observations, 
conditionally upon the observed value of n. With  this condition, 
the  quantities 

~ ( i )  = t , i , /T i = 1 , 2 ,  v . 0  , n  

are,  under the null  hypothesis, the order  statistics  from  a  random 
sample of size n from a  population uniformly distributed over (0, 1) : 

i” 
11 Y > l  

YIO 
prob ( Y i  5 y) = y 0 < y I 1 

Similarly, when the serics is observed up to the  nth  event (T = 0), 
the quantities 

i = 1 ,  * . e  , (n - 1) 

are  independent  observations  from  a  uniformly  distributed 
population. 

A test for the Poisson hypothesis based on testing  the uniform 
distribution of the yi’s is called a uniform  conditional test. This, 
however, is the canonical form of all  distribution-free tests of 
goodness-of-fit, and  four of the  many possible distribution-free 
statistics  are computed by  the EXPO subroutine. 

The one-sided Kolmogorov-Xmirnov  statistics. Denote  by F,(y) 
the empirical distribution  function of the observations y i :  

where O l y i l  



and 

KX- = 0, = (n)’” sup [y - Fn(y)] 

The two-sided  Kolmogorov-Xnzirnov statistic. 

K S  = D, = (n)”z sup IF,(y) - yI = max (I):, D;) 

The  Anderson-Darling  statistic. 

05U5l 

W N 2  = W: = I’ I, d?, tFn(?I) - Y l 2  

Percentage points of the Kolmogorov-Smirnov statistics  are 
given in most statistical  tables; those for W: are given by Cox 
and Lewis.‘ The four tests given are  not consistent against  certain 
stationary  alternative^,^ and  are most sensitive to  trend  alterna- 
tives. The modified tests given later in subroutine DURB, however, 
give relatively powerful tests of the Poisson hyp~thesis.~ 

Tests of the Poisson hypothesis based on the property of 
independent increments are sometimes used, the best known of 
these being the  test based on the index of dispersion. This  test, 
however, can be shown to be equivalent to  the uniform conditional 
test when the uniformity of the yi’s is tested with the chi-square 
test of goodness-to-fit. The drawback of this  test is the need to  
choose a suitable grouping interval. 

Specific tests of the Poisson hypothesis against renewal hypoth- 
eses are known. Of these, the most useful is based on the  Moran 
statistic 

MORAN = - 2  In [y(%) - y( i - l , ]  - 2n  In (n) 

where 

Yo = 0 

The value of the  statistic is computed and  printed  out by the 
ExPo subroutine. The  test for a Poisson hypothesis based on 
this  statistic is asymptotically the most powerful test  against  a 
renewal alternative in which the intervals  have a gamma density 

i = l  

f(z) = Xoza”le”Xz / r ( 4  a > O  

The  test is for a = 1 against a # 1, and  the  statistic  has  a chi-square 
distribution  with n - 1 degrees of freedom for large n. 

Subroutine DURB. Denoting the intervals between events  by 
zI, z2, * , z, and  the interval between the  last observed event 









The FWI’s are computed for 

n even 

n odd 

and for three different values of m, (mil mz, ma), specified in the 
input  to  the subroutine. The coefficient of variation of the in- 
dividual  estimates is approximately [ ( 2 ~ ~ ) / ( 3 n ) ] ‘ ’ ~ .  Decreasing the 
coefficient of variation by decreasing m gives greater smoothing 
in the estimated  spectrum, but less ability to resolve distinctive 
features  in the underlying spectral density. Generally, it is  possible 
to see empirically what the limit of resolution is for a given sample 
size n by using three different values of m. 

The particular weight sequence used here is adequate for most 
purposes; if necessary, estimates using more elaborate weight 
schemes can be performed with  standard programs for time-series 
analysis. 

It is sometimes required to compute the unsmoothed estimate 
of the power spectral density, var(X)f+(w), for use in  testing 
the independence of the sequence of intervals {Xi} .  This  estimate 
is sometimes called the periodogram and is computed on special 
input  instructions  to the subroutine. The computation is as follows: 

PER10 = [ 1 + 2 in_+) RHO V J  COS r?)] 
7r 

The  quantity RHOVJ is computed in  subroutine RHO (previously 
discussed) and has as divisor the estimated  variance of X .  This 
division is  used to normalize the periodogram for convenience 
of computation. In test procedures, ratios of the periodogram 
values, PERIO, at different values of I are used and therefore 
the normalization does not affect the results. The computed 
values PERIO are  printed out under  this heading in a column 
adjacent to  the smoothed spectral  estimates. 

The SASE program is limited to a sample size of n = 999. 
This  limitation,  together  with the form of correction for a non- 
zero mean used in  Equation 11, means that little  computation 
speed is gained by using the  fast Fourier  transform of Cooley 
and Tukey’ in the computation of the FWI’s and PERIO. 

Tests for independence of the intervals (Xi} are based on 
the following result. If the sequence of observed intervals  are 
observations on independent, normally distributed  random vari- 
ables, then  the values computed by PERIO (for I # 0 and I # n/2 
if n is even), multiplied by VAR, are observations on independent 
exponentially distributed random variables with  parameter 

X = ?r/[var (X)] 

This result is asymptotically true for independent but non- 
normally distributed sequences (Xi  } . If the  fourth cumulant K~ 

of the Xi’s is small, the result is approximately true even for 
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moderate sample size, say n 2 100. Thus  the  test for independence 
consists in testing whether the values computed by PERIO 
for successive I are observations on a Poisson process. 

The computational procedure is as follows: 

Case 1. If n is even, then  drop off PERIO for I = 0, n/2. 

Case 2. If n is odd, then  drop off PERIO for I = 0. 

The remaining periodogram values, PERIO, n’ = (n/2) - 1 
of them  in Case 1, and n’ = (742) - 1/2 of them in Case 2, 
are  put back into  the whole program and processed by  subroutines 
TREND and EXPO with T = 0, n = n’ and 

x: = PERIO for I = 1 

x: = PERIO for I = 2 

In TREND we take K = [n’/18]. 
The  statistics computed in EXPO give direct tests of independ- 

ence, and  the  output of  TREND  is used for tests based on the 
homogeneity of the variance  statistic. The tests based on the 
periodogram are, in general, more exact and probably more 
powerful than tests based on the estimated serial correlation 
coefficients.  However,  owing to  the approximation involved, tests 
based on the periodogram always measure to some degree the 
departure from normality of the marginal distribution of intervals. 
This  departure is always present, since we deal with positive 
random variables. The large amount of computation involved in 
these tests should be noted;  they would never be used if there 
were a  strong indication of independence between intervals from 
tests based on the estimated serial correlation coefficients. 

Subroutine VART. This  subroutine computes an estimate of the variance- 
variance-time curve V(t )  for the series of events, i.e., the variance time 
of the number of events in an interval of length t ,  considered as curve 
a  function of t, 

V(t) = var { Z V t ] .  

The computed estimate is for values of t equal to A, 24, 4A, 

initial  steps  until  the  interval becomes greater than T / 4  (or t(,,/4 
if T = 0). 

Another type of estimate of the variance-time curve, described 
later in this paper, is computed in subroutine COV. The estimate 
computed by VART is essentially the  standard  variance  estimate 
combined with a moving average procedure to give greater 
precision to  the estimate. To  obtain  the greatest precision from 
this procedure, a rough guide is to choose A so that no interval 
of length A in the series contains more than two or three  events. 

The computational procedure is as follows. Let ni be the num- 
ber of t ( i ) l s ,  i = 1, 2, - , n, falling in the interval ( ( j  - l ) A ,  jA], 
i.e., add one to ni for each t (< ,  for which ( j  - 1)A < t ( < )  i j A .  

8A, 12A, - . .  . These intervals increase in steps of four after the 







The  latter  quantity is useful in determining the range of values 
over which the estimated variance-time curve is increasing ap- 
proximately linearly. 

The above quantities  are listed by  subroutine COV in successive 
columns and  in  the order 
J or L ,  C J ,   B C J l ,   B R H O J l ,   B R H O J l ( A  - ~ j l ' ~ ,  

covariance Subroutine DENS. The second-order joint properties of the counting 
density process N ,  can also  be investigated by means of a covariance  density 

r+(t) that is related to  the variance-time curve by the equation 

In this  equation m = l / [ E ( X ) ] .  The function mJ(t) is known 
as  the intensity  function or as  the renewal  density in renewal theory. 
The intensity  function is the derivative of the expected number 
of events in a stationary series observed for an interval of length t 
starting from an arbitrarily selected event. An estimate of the 
quantity m,(t) is calculated in this  subroutine. It has the  constant 
value m for a Poisson  process. 

As with all estimates of density  and  intensity functions, 
smoothing is required. Let 6 be the smallest interval over which 
the smoothing is required. The interval 6 is  specified as an  input 
parameter  and should not be  much  less than E ( X ) .  Another 
input parameter needed is L, where L6 is the range of t over 
which it is desired to estimate m,(t). Subroutine DENS computes 

for p 5 q 5 n, lying in the interval [ (J  - 1)6,  J6]. 
The subroutine  prints out  the M F J  in a column, and in 

succeeding columns prints out  the sum of each successive pair 
of MFJ's,  the  sum of each successive set of three MFJ's and 
the sum of each successive set of four MFJ's. The combined 
quantities  are used in computing estimates of mJ(t) smoothed 
over intervals of lengths 6' = 26, 36, 46. 

When n (or 5") is large, a well-behaved, smoothed estimate 
of m,(t) is proportional to  the MFJ's.  Otherwise, a correction 
for bias is needed and  must be hand-computed. Such an estimate 
of m,(t), smoothed over an  interval 6, is as follows: 

T X M F J  
n(T - JT - 3T)6 fi,(J6 + 36) = - J = 1,  , L 

spectrum Subroutine BART. A  third  characterization of the second-order 
of counts joint properties of the counting process N ,  is the spectrum of 

the counting process g + ( w ) .  This is the Fourier transform of r+(t), 
and  may be written as 

g+(w) = + - (e"iwr + ei"')y+(7) dr  o 2 0 1 "  
n T o  
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