
A s  a tool for quantitative  investigation,  digital  simulation  is  especially 
suited  to  the  study of stochastic  processes  having many  interdependent 
variables. Not   only   can a  simulation  model be modijied  to reflect 
structural  changes in a process,  but  it   can be used  to  gain  insights 
during  the  design of the  process.  These  properties  recomm,end  the 
use of digital  siwrulators in the  design of complex  teleprocessing 
systems. 

This  paper  comments  on  the main considerations  involved in choosing 
between  general-purpose  and  special-purpose  simulators. 

On teleprocessing  system  design 
Part VI The role of digital  simulation 

by P. H. Seaman 

Common to all teleprocessing applications is the need to link 
remote terminal  points to a  centrally located computer and files. 
In  a teleprocessing system,  transactions may be  entered  into 
the  system at any  time  and processed as  they occur, rather  than 
being batched for entry a t  some pre-scheduled time. In  such a 
system, a  typical  transaction is the  entry of data  at a terminal, 
transmission and processing of the  data against the files, and 
completion of the action by transmission back to  the terminal. 

In implementing such a system, many engineering compromises 
are necessary. Equipment reliability, speed, and  capacity  must 
be  weighed against cost, with the final balance often leading to 
time-sharing of equipment. Typically, several terminal  points 
must  share one communication line; hence, if one terminal is 
transmitting,  others may have to  wait. In  the systems  center, 
files may share single-access disk storage  units;  as  a result, if one 
access is in progress, other access requests must  wait  in queues. 
Consequently, in designing these systems, unusual interest 
is attached  to estimates of the following: 

The  quantitative delays that result from queuing of requests 

The amount of storage needed to hold the queues 

Delays are  to be compared with customer requirements, whereas 
storage requirements are  to be matched with system  capacity. 

Probability analysis and its offspring, queuing theory,  can 
provide helpful answers to some questions. To a large extent, 

for time-shared facilities 
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however, the theoretical  approach requires a simplification of the 
system being considered. In  many cases, especially in  the early 
design stages, such an approach is  good because it focuses atten- 
tion  on basic parameters  and  away from distracting  details. But 
as a design progresses, questions come up that cannot be answered 
by queuing models. For  instance, the logic of the  system may 
entail decisions that depend,  in complex ways, upon the  state 
of the  system at  the time  the decisions are made. Examples 
might involve recovery from exhaustion of a main-storage area, 
or  the flow of data  around a network of dependent queues (the 
output of each queue feeding other  queues). 

Our  objective is to discuss questions that arise in  studies 
involving digital  simulators. How can simulation help me? Should 
I write  a new simulation  program or use one already available? 
What forms do  simulators take? How are  the results of a  simulator 
to be interpreted? 

Considerations in choosing simulation 
Although  a  simulation study should never be  lightly  undertaken, 
such  a study can provide information that cannot be obtained 
by  analytical methods. The  advantage of simulation is that 
intricate  detail concerning the logic of system  operation can be 
incorporated, and  the effects of changes in this  detail can be 
evaluated. As long as  the requisite  operating  detail is not avail- 
able, one should be satisfied with  the results of an approximate 
algorithmic technique that does not reflect all structural detail. 

Very often, however, data  not available at  the beginning of 
a study  are expected to become available  during the course of 
investigation. In such cases, there  are  two  arguments  for beginning 
simulation at  an early  stage.  First, the basic structure of the early 
model outlines  broad  areas of system  operation (where fine details 
have  little  impact)  and provides a correIation with previous 
mathematical calculations. Second, the early model provides an 
operating framework into which detail  may  be  incorporated 
when such becomes available. The design procedure is rarely 
so clear-cut that one can serially (1) define the problem, (2) 
collect statistics  and  write  a model, and (3) obtain  results to 
soIve the problem. Usually the procedure is iterative  and  quite 
exploratory. Often several simple simulations  may  be helpful in 
bringing the goals of further  simulation  into focus. In  fact, building 
pilot models with  hypothetical data may yield insights into  the 
large-scale trends  in  the problem. Just  as  important,  this early 
exercise builds confidence in  the mechanics of simulation itself, 
and does so while the designer is still  free of the  multitude of 
distracting  detail that soon engulfs a system  study.  Too  often, 
the designer becomes so concerned with  details at  an early  stage 
that he does not  acquire sufficient understanding of the  potential 
of his simulator program. 

On the  other  hand,  there is a  tendency to  overrate  the value 
of early output simply because it comes from a  simulation. One 

P. H. SEAMAN 



must be careful to qualify extrapolations from a preliminary 
model. As model building proceeds and more detail is incorporated 
into  the model, the results begin to more closely reflect the special 
nuances of the particular  system being designed. It then becomes 
meaningful to ask questions about minor alternatives of design. 
A model should grow; it should be  viewed as the basis for making 
design  decisions as the need for them occurs. After a  system is 
completed, the model  is still useful in evaluating the changes 
that inevitably occur during the operational period of the system. 

As a result of simulation’s ability  to deal with  many details, 
it is a good tool for studying extensive and complicated computer 
systems. With simulation, one may assess the interaction of 
several subsystems, the performances of which are modified by 
internal feedback loops among the subsystems. For instance, in a 
teleprocessing system where programs are being read from drum 
storage  and held temporarily in main storage, the number of 
messages in the processing unit depends upon the drum response 
time, which depends upon the  drum access rate, which, in turn, 
depends upon the number of messages in main storage. In this 
case, only a system-wide simulation that includes communication 
lines,  processing unit,  and I/O subsystems will determine the 
impact of varying program priorities on main-storage usage. 
Studies of this  nature can become very  time consuming unless 
parameter selections and  variations  are carefully limited. It is 
no small problem to determine which are the major  variations 
that affect the system. In  this  aspect, simulation is not as con- 
venient as algorithmic methods  with which many  variations can 
be tabulated quickly and cheaply. 

It is  well to emphasize that simulation is not a tool for syn- 
thesis; it does not choose its own variations  during a run  and 
come up  with an optimum solution. Minor  adaptive properties 
have been built  into some simulation programs, but they consist 
of simple addition of capacity or changes in load. In  general, 
simulation is restricted to determining how a particular con- 
figuration will react  in a particular  environment. It is still  very 
much the designer’s function  to analyze the results and decide 
where and how a system may be improved. Thus, the human 
designer is still the feedback element in the design  loop. 

Considerations in choosing a simulation  system 

The choice of a simulation system  must be made early in a study. 
It is quite possible that initial pilot runs  with one programmed 
simulator will  disclose  difficulties that may be  averted  in an 
alternate program. The factors  to consider in choosing a simulator 
are as follows: 

Time available to  make the  study 
Programming experience of the user 
Data available 
Size of model to be simulated 
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0 Amount of detail required 
Model characteristics most required 
Usage of the simulator (single or multiple  study) 
Length of runs  and model running times 

0 Amount of change and  experimentation  required 

Available simulation programs fall somewhere in  the following 
spectrum: 

user-written-general  purpose-special purpose 
Figure 1 Structure of simulation 

model 
SPECIFIC The  three categories shown refer to  the base of the simulator. 
PARAMETERS Once the base structure  has been programmed (externally or 

a special-purpose program. It is the  amount of modeling the 
designer must  prepare that determines a simulator’s classification. 

SPECIAL  PURPOSE - internally) to model a  particular  system,  the  simulator becomes 

SYSTEM This  can be seen in  the pyramid of Figure 1, showing the  parts 
of a complete simulation model. 

A user-written simulator starts from a basic programming 
system, whereas a special-purpose simulator includes a  particular 
model so that a user need specify only a few parameters. General- 
purpose  simulators lie in between the two, including a simulation 
system  and  a general language in their base. The simulation 
system includes such  routines  as  random-number  generators, 
timing routines, statistical sampling techniques, and  report gen- 
erators.  The language  may  range from abstract generalities cover- 
ing  a wide class of systems to specific objectives aimed a t  a special 
class of systems. 

Anyone who  chooses to write his own simulation  program 
must be presumed to have very compelling reasons for doing so. 
Among these  might be: 

Desired model characteristics  are  neither  available nor feasible 
in existing programs 

0 Special input or output features  are required. (Modifications 
to existing programs should always be considered.) 

0 The program will be used repeatedly, so that  the gain in 
speed through  program efficiency can cancel out  an investment 
in  initial programming. 

The principal advantage of user-written  simulators is efficiency. 
By capitalizing on the peculiarities of the  particular application, 
a special-purpose simulator  may be designed to  run  many times 
faster than  its general-purpose cousin, and to use less computer 
storage. Since the user-written  program is written  with cognizance 
of the  system being modeled, its language may well be easier 
and more natural  to use than a general-purpose language. On 
the  other hand,  a price must be paid in the initial effort expended 
in developing the program, and if the program is inflexible in its 
use, developmental costs must be absorbed by a few applications. 
Of course, all these considerations may  be  negated  by the simple 
fact  that  there isn’t  any  other  satisfactory way to do the  study. 
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Special-purpose simulators, on the other  hand,  are the quickest 
and simplest to use, since the logic of the system being studied is 
already more or less completely modeled, leaving only system 
parameters for the user to specify. Special-purpose simulators  are 
of two types. Those of the first type  are  written from the beginning 
in machine language and  run  very efficiently. However, inasmuch 
as one must  grapple with machine code, changes are  often difficult 
to incorporate. The special-purpose simulators of the second type 
are  built up from a general-purpose base. These are  apt  to  run more 
slowly and make less-efficient  use of storage than  the first type.  The 
advantage of a  simulator of the second type is the ease with 
which it can be  modified, since under its special-purpose facade 
it still employs a general language. The  utility of a general-purpose 
program in a specialized study area is greatly extended if there 
are several special-purpose models of the second type available. 
The  latter can incorporate the most advanced techniques de- 
veloped by constant users of the general language and make them 
available to  the  transient user, either to  adopt  as they  stand, or 
to serve as prototypes in a special modification. 

For a  majority of system studies, the choice of a simulation 
vehicle  will be one of the available general-purpose programs. 
With  their ready-made simulation languages, these free  the user 
from the burden of computer details in the same way that FORTRAN 
provides the  analyst with an algebraic language. This reduces 
initial programming time  and relieves the need for experienced 
programmers. However, the non-trivial problem of expressing the 
model in the simulator language may still require several man- 
months in some  cases. 

Two well-known simulation languages suitable for teleprocess- 
ing system simulation are found in SIMSCRIPT and GPSS (General 
Purpose Simulation Sy~tem)."~ Of the two, SIMSCRIPT is the most 
abstract,  permitting  a wide diversity of application structures 
at  some  expense in speed of model building. GPSS affords more 
of a compromise between generality and ease of use. Because 
it assumes certain structural  features in its basic organization, 
the range of systems it handles efficiently  is smaller than is the 
case with SIMSCRIPT. 

A number of special-purpose simulators, some of which appear 
to be applicable to teleprocessing system design, have been 
mentioned in the  literature. For various reasons, simulators in 
this class tend to be  considered proprietary  by computer vendors 
and consulting firms, and documentation is therefore not publicly 
available. Those who  sense the need for a special-purpose simulator 
should seek out information from vendors  and  consultants. In  
any case, the choice of a special-purpose simulator should be 
made with the technical ca,pabilities, limitations,  and decision- 
making logic of the simulator clearly in mind. An investment in 
simulation results is an investment in confusion  unless the result- 
generating mechanism is clearly understood by the user. 

To make the discussion reasonably concrete, we  will  employ 
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Figure 2 Example of GPSS block 
diagram 

IF FREE, SEIZE 
FACILITY 1 

$D DEPART  QUEUE 

ADVANCE 
TIME) 15 UNITS 
PROCESS (ADVANCE 

TAKE  NORMAL  EXIT 
UNLESS  SWITCH 5 IS 
SET TO ALTERNATE 

r ‘ h  
NORMAL  ALTERNATE 

example 1 

the widely available GPSS as a reference point  in  remarking  upon 
some of the most necessary and desirable  properties that belong 
in  special-purpose  simulators  for modeling t,eleprocessing systems. 
A brief recapitulation of GPSS terminology may reduce the need 
for readers to consult  t,he GPSS references. 

The basic  building  units  employed by GPSS, generally called 
entities, are of four  types: facilities, stores,  switche, and  transac- 
tions. A facility  can  perform  only  one  function a t  a time,  and 
may  represent  objects  such  as machines or service  counters. 
As a space-sharing  facility,  a store may hold many  objects a t  
once, and  represent  structures such as a  parking lot or inventory 
in  stock. A switch is a  two-state  device that  may  either block 
or divert a flow, as would a traffic light or a  detour  sign. A transac- 
tion is a discrete unit of traffic that  interacts  by utilizing facilities, 
entering  stores,  and being gated  by  switches. It may  represent 
orders  in process, automobiles,  customers, or messages. 

To  structure  entities  and define a logical flow of transactions, 
the GPSS language  contains basic operations  such  as “seize facility,” 
“enter  storage,”  and “set  switch.”  Each  operation is called a 
block, and a  network of operations is called a block diagram. The 
correspondence to ordinary block diagrams or flowcharts is de- 
liberate.  Transactions  are  caused  by the GPSS program to “flow” 
through the diagram  from block to block, automatically following 
the arrows and executing the operations  as  they  are  encountered. 
(See Figure 2.) 

The GPSS program  provides  various  supporting  service  routines. 
An input assembler translates  the block cards  and  sets  up  an 
internal model. Sampling and  output  routines  can  automatically 
collect statistics  and reduce the  data  to useful summary  form. 
Scheduling  algorithms to control the flow of transactions  in  time 
are  built  in.  Time is represented  by a simulated clock which is 
automatically  advanced  to the time of the next  event  to  be 
executed by a  transaction.  Time is assumed t’o pass  in discretJe 
steps;  the smallest unit of time recognized by  the simulator  is 
chosen by  the user. 

Typical  computer  system  areas  where GPSS can  be  advantage- 
ously used are  illustrated  by  three  studies  that used the GPSS 

language. First, consider a  detailed study of equipment  operation 
at   the miscrosecond level. The case in  point was a study of the 
interaction of several  display  terminals  with a single display 
control  unit.  This control unit  had  to multiplex  parallel  character 
streams  arriving  from  the display  keyboards, which caused  some 
delays  in processing characters.  These  delays were occasionally 
long  enough to be noticeable by a  terminal  operator. The object 
of the  study was to find out how often  this  might  be  expected 
to occur. 

The logical flow  of characters  through  various  gates of the 
equipment was modeled;  circuit  timings as small  as ten micro- 
seconds were included. The  intricate multiplex  scan  formed the 
heart of the model. The  system Iogic was far too complex to be 
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represented by a queuing-theory model. Of course, much of the 
complexity may well have been irrelevant, but nobody could be 
sure of this  until  the system  action was established (either by 
detailed simulation or direct experimentation with actual equip- 
ment). Because the action to be studied was mostly contained 
within a subsystem, it could be isolated from the larger computer 
complex of which it was a part; all  interaction with the larger 
system was represented by simple delays. Because the extent of 
the model  was greatly restricted, it was feasible to model with a 
very  short  unit of time. 

Another study using GPSS considered the effectiveness of 
various queue-ordering schemes in reducing response time  and 
main-storage requirements in  a disk file configuration. Here, the 
concern was  less with detailed timing than with detailed logic. 
The operation of the disk drives was easily modeled. A random 
source of disk accesses  was generated to represent the demands 
of the rest of the system. In between, the queue-ordering logic 
permitted such schemes as picking the command with an addressed 
track  number closest to  the current one, or picking the  shorter 
of two queues if duplicate files  were available. Queuing theory 
presently does not give adequate models for such schemes. More- 
over, there was no point  in going into a full-scale system model. 
The limited scope of the model and  the number of different 
schemes to be studied made GPSS the logical candidate for the 
study vehicle. 

An example of a  third kind of study, one leading to a rough 
overall view,  was a model of an airline reservation system. Mes- 
sages arrive over high-speed telecommunication lines and are 
received and queued by the interrupt-control  circuitry of a  central 
computer. The computer also provides scheduling for the disk- 
access request queue. Finally, message responses are  sent back 
via the high-speed lines. The purpose of the  study was to  estimate 
total message transit  time  in  the  central computer and  the  amount 
of required main storage. 

Everything was highly simplified. For example, channel inter- 
ference was neglected and  the effects of line polling ignored. 
The  study gave a  very rough indication of the operation of the 
system, i.e., whether certain files  would  be overloaded, or peaking 
conditions in main storage required attention, or the like. Equally 
important,  the  study provided designers with a better under- 
standing of the system dynamics. 

One caution concerning rough simulations of this  nature. 
To avoid complexity, dependent events  are assumed to be  in- 
dependent  and branch points based on dynamic parameters  are 
replaced by  statistical branches, etc. If too much of this  sort 
of thing is done, equivalent results can be obtained just  as easily, 
more quickly, and more cheaply with analytic techniques based 
on queuing theory. On the other  hand, if a great deal of complexity 
is essential, a more appropriate  simulator should be considered. 

The facilities and basic operations in a special-purpose simulator 
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special- are likely lo bear greater resemblance to  the devices and operations 
purpose in computer systems than in the case of GPSS. Thus, the language 
simulator may refer to drums, disks, and terminals, and may well provide 

for  an explicit program structure with commands such as READ, 
WRITE,  SEEK, and BRANCH. This effectively restricts the ap- 
plication range to computer systems, but within this range, the 
simulator should be more natural  to use than GPSS. I n  GPSS, the 
simplicity of the implicit flow from block to block is lost when 
a set of block routines is built  to model  specific computer opera- 
tions. Some alternate flow mechanism has to  be  adapted  to 
provide a program of operations. 

In  the beginning of a study, a special-purpose simulator of 
this  nature  may  appear  too complex, requiring more detail than 
is accurateIy known. For instance, a model for Examples 2 and 3 
might require dummy operations with no significance. Since there 
was no need to carry on and amplify the models, the  extra trouble 
in  putting  together such a gross-level  model from such a specialized 
language might not be worth the effort. However, continuing 
development of a complex computer system model can tax  the 
potentialities of GPSS rather severely. The typical study requires 
that a model be frequently  updated to evaluate new schemes and 
modes of operation as  they  are proposed and  formulated. A special- 
purpose language in which the principal entities  represent devices, 
programs, messages, and commands can ease the problem of 
adding  operational  details to a model. 

A carefully chosen  modeling language not only permits one 
to simulate equipment operation but also provides access to 
simulator facilities such as queues, tables, variable statements, 
and functions. To  the degree that these  entities  and operations 
are more specific and concise than their cognates in GPSS, a model 
can be more easily prepared  and augmented. The price of this 
gain is that  the simulator is likely to be very awkward for modeling 
other kinds of systems. 

As in the GPSS case, the typical special-purpose simulator will 
simulate  uncertainty  and  variability by means of random-number 
generators and will order  anticipated  actions on a  “future  events 
chain.” Whenever the most  imminent  event is removed from 
this chain, an  internal “clock” is updated.  The  event is then 
decoded and  the specified action executed. The basic unit of 
time may be fixed, say at  a fraction of a millisecond, to realize 
a compromise between the detailed microsecond level of internal 
machine actions and  the millisecond level of external I/O actions. 
(Data on persistent phenomena, such as channel interference, 
can still be automatically accumulated on a microsecond basis.) 
Where microsecond time  units, or on  the other end of the scale, 
minute or hour units,  are  important to  the  study of a piece of 
equipment, GPSS should probably be considered. 

Basic input in building any  system  evaluation model includes 
a  statement of the system configuration with timing characteristics 
of the  units in the system,  a description of the job environment, 
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Figure 4 Flowchart of a typical 
operational  program 
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a probabilistic branch, test instructions, arithmetic  and queuing 
instructions, etc. 

In modeling system programs,  moreover, three classes of pro- 
grams clearly need to be  defined: application, control, and inter- 
rupt. The first of these represents appIication programs that 
perform the tasks the user wants done. The  last two  classes 
represent the operating system that controls the CPU and schedules 
the I/O requests. 

A hypothetical application program that processes a  particular 
type of message  is  flowcharted in Figure 4. This can be simulated 
by  a sequence of the general form: process, write, read, process, 
wait, process, write, write, process, wait, and exit. Processing 
times can be simulated by assigning estimated elapsed times to  
the process instructions. The instructions for reading and writing 
require parametric specifications, such as arm number, track 
number, and  byte count of the information being transferred. 
The user needs the flexibility of either stating  a known arm,  track, 
and byte count, or of making a dynamic choice by testing the 
state of the system or programs. In some  cases (as in the initial 
phases of design), the user may also want the simulator to randomly 
select parameters from within specified  ranges. 

A wait instruction is  assumed to suspend processing  on the 
message in question until its  outstanding I/O is  completed. During 
this time, processing can begin (or continue) on other messages 
to simulate the multiprogramming environment. One  way of 
handling this is to require that certain instructions be  used to 
check lists or queues to ascertain whether other messages  exist 
in the system and, if they do,  where to begin  processing them. 
In this way, provision can be made for entering and returning 
from other application programs at  several levels and accounting 
for the necessary I/O operations whenever programs must be 
retrieved from auxiliary storage. 

There  are several such places  where it is obvious that  the 
control simulator logic  does not know by itself what to do next. All 
programs of these are analogous to  the case in which actual monitor or 

control programs are calIed to decide the task  a computer is to 
execute next. In a like manner, if the simulator automatically 

Figure 5 Schematic of o control loop 
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simulation of this program needs instructions for branching on 
interrupt  type, allocating core, releasing core,  message queuing, 
testing queue status,  and message transmission. Initially, a test 
determines whether the  interrupt is caused by a message entering 
or data leaving the system. If a message is entering,  main  storage 
is allocated and  the message  placed  on an input queue. If data  has 
just been printed, main storage is freed, the I/O command con- 
trolling the  print operation is destroyed, and  the  printer queue 
is then  tested.  Printing is initiated if a message  is found. Finally, 
the  interrupt is terminated  and processing reverts to normal mode. 

In  a special-purpose simulator, it is entirely possible for model 
programs to exist as sequences of instructions similar to  the 
programs of any symbolic coding language. Instructions  may be 
executed interpretively  and addressed by a pseudo-counter that 
is automatically  updated. If the instructions in the modeling 
language are  primitive operations for the simulator, they need 
not be fashioned from other operations, as is required in GPSS. 

Devices may be defined at  the  start of the simulation run,  and 
various hardware parameters, such as seek characteristics and 
rotation time, may or may not be built  into the simulator. 

The major requirement for a  simulator user is to specify how 
special activities, such as  interrupt control in a channel program, 
are  to be carried out. In a simple case, it may appear that these 
activities pose unnecessary complications and  that  the channel 
control should be made automatic. However, a special-purpose 
simulator becomes most useful in complex  cases where such 
routines are  left to  the user’s specification. When control routines 
becomes standard,  they  are usually understood and  there is little 
point  in simulating them; more often than  not, it is the unusual 
that is simulated. The flexibility made possible by divorcing 
control operations from predetermined hardware responses can 
permit  a  suitable special-purpose simulator to model situations 
that would be very difficult to model in GPSS. 

Considerations in validating simulation results 
A pertinent but hard-to-answer question is, “How does one know 
whether a  simulated result is correct?” The question requires 
consideration of two independent avenues of inquiry, one relating 
to  the accuracy of the model, and  the  other  to  the precision of 
the  statistical results. 

A model  is accurate to  the extent that a valid abstraction 
has been made from the proposed system. A high degree of 
accuracy requires that  the many simplified or omitted  details 
do not markedly affect the aspects of system performance under 
study. One can never be completely sure of an experimental design, 
but some of the more obvious assumptions can often be checked. 
For instance, in one study  it was suggested that mean message 
length was significant, but  that variation from the mean was not. 
Tests comparing the results obtained  with  constant message 
lengths  against those obtained  with  variable lengths uniformly 
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spread  about the mean validated the assumption for the  range 
of interest. 

In  some  cases, details with a decided  effect  on system per- 
formance may not be firmly known at  the time of a study. As a 
consequence, the model cannot be highly accurate,  and  estimators 
obtained from the model cannot be taken  as predictors of absolute 
performance. But much can be done with such a model in a 
relative sense. By comparing runs  with and without a change, 
the relative effect of the change can be measured. In making 
relative comparisons, however, one must try  to consider the 
relationships between known and unknown variables. For ex- 
ample, for one model of a conversational mode system, it was 
expedient to  generate  random  inputs from terminals rather  than 
try to reconstruct actual conversations. This was satisfactory  as 
long as  the results were limited to  the processing unit  and file 
logic. However, since the message-generation process can influence 
the effect of a particular polling  discipline, a study of various 
polling  schemes  would have been inappropriate with such a model. 

In  constructing  a model, it is well to build from the known 
to  the unknown. For instance, a model might be exercised with 
random input and the results checked against known performance 
curves. Then, if a queue-sorting technique is introduced, there 
is not only a basis for comparison but some assurance that any 
derivations from the base are  due to  the new technique and  not 
to  an  error in model  logic. This is important; in complex  models, 
there is ample opportunity for logical errors. In simple simulators, 
errors in logic usually reveal themselves in  absurd  statistics; in 
larger simulations, however, error  may  lurk in the most reasonable 
looking results. For this reason, tracing techniques should be 
abundantly employed. If several message types pass through the 
simulated system, each type should be entered  separately to 
verify that  it follows the specified path. If probabilistic branches 
are employed, checks should be made to ascertain that paths  are 
used as  anticipated.  At the end of a  run, all residual messages 
and  counts  left in the system should be explainable. Minor in- 
consistencies may be the only trace of a blunder other than a 
legacy of invalid, though apparently correct, statistics. 

Unexpected results should be thoroughly investigated;  these 
are  often  due  to improper sampling or logical error. If results 
are  to be  believed, they  must be  explicable as well as repeatable. 
A simulation study is incomplete unless the  output is supported 
by  a  thoughtful rationalization for all observed behavior. 

The second line of inquiry  into the correctness of simulation 
results relates to statistical  validation.  This problem arises from 
the  nature of the sample process inherent  in the technique of 
simulation rather  than from the accuracy of the model  chosen 
to represent the system. 

It is assumed that  any  statistic of interest in a model, say 
response time for messages of type A, has  a  particular  distribution 
with a true mean value. Simulation estimates these statistics by 
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may  appear overloaded. In such  a case, sample size should  be 
measured, not  by  the  number of ordinary messages processed, 
but  by  the  number of these  infrequent messages processed. A  more 
useful picture of system  operation describes two  system  states (one 
without the infrequent occurrence, one  during the occurrence) 
with a statement of the frequency of such occurrences and  the 
length of the transition  between the two  states. An  example of 
this  sort of problem  occurs  in the  study of “graceful degradation” 
of a system. The model may  be based  on system events,  such  as 
processing times, seeks, and responses, measured  in milliseconds. 
The failure  events  causing the  system  to  be degraded  from  one 
state  to  another  may  be measured  in tenths of hours. The only 
reasonable  thing to  do is to simulate  system  operation  separately 
in  various  degraded  states  and  then combine these  results  in  a 
sort of system profile. 

Finally, it is  well to emphasize that simulation  studies  are 
experiments run  on a  system model in lieu of the real  system. 
Thus,  the principles that apply to  other experiments  apply.  These 
principles need not  be discussed here;  they  are  treated  in  numerous 
texts  on the design of experiments.  These principles are  apt  to be 
neglected unless the simulation study is viewed as an  important 
investment  deserving of careful  planning. 

Summary 
~ 

This  paper  attempts  to  point  out  the role that simulation  plays 
in the design of computer  systems,  emphasizing that  this technique 
should  be used, not as a  sporadic  tool to  obtain  unrelated answers, 
but  as  an experimental  method and a  continuing  integral part 
of the design process. Although  simulation is especially pertinent 
to  the design of teleprocessing systems, i t  should  be  emphasized 
that simulation  methods  can also be useful in the design of the 
broad spectrum of computer  systems  including  time-sharing  and 
multiprocessing  systems. 
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