As a tool for quantitative investigation, digital ssmulation is espectally
suited to the study of stochastic processes having many interdependent
variables. Not only can a simulation model be modified to reflect
structural changes tn a process, but it can be used to gain insights
during the design of the process. These properties recommend the
use of digital simulators in the design of complex teleprocessing
systems.

This paper comments on the main considerations involved in choosing
between general-purpose and spectal-purpose simulators.

On teleprocessing system design

Part VI The role of digital simulation
by P. H. Seaman

Common to all teleprocessing applications is the need to link
remote terminal points to a centrally located computer and files.
In a teleprocessing system, transactions may be entered into
the system at any time and processed as they occur, rather than
being batched for entry at some pre-scheduled time. In such a
system, a typical transaction is the entry of data at a terminal,
transmission and processing of the data against the files, and
completion of the action by transmission back to the terminal.

In implementing such a system, many engineering compromises
are necessary. Equipment reliability, speed, and capacity must
be weighed against cost, with the final balance often leading to
time-sharing of equipment. Typically, several terminal points
must share one communication line; hence, if one terminal is
transmitting, others may have to wait. In the systems center,
files may share single-access disk storage units; as a result, if one
access is in progress, other access requests must wait in queues.
Consequently, in designing these systems, unusual interest
is attached to estimates of the following:

e The quantitative delays that result from queuing of requests
for time-shared facilities
e The amount of storage needed to hold the queues

Delays are to be compared with customer requirements, whereas

storage requirements are to be matched with system capacity.
Probability analysis and its offspring, queuing theory, can

provide helpful answers to some questions. To a large extent,

IBM SYSTEMS JOURNAL * VOLUME 5 - NO. 3 - 1966

however, the theoretical approach requires a simplification of the
system being considered. In many cases, especially in the early
design stages, such an approach is good because it focuses atten-
tion on basic parameters and away from distracting details. But
as a design progresses, questions come up that cannot be answered
by queuing models. For instance, the logic of the system may
entail decisions that depend, in complex ways, upon the state
of the system at the time the decisions are made. Examples
might involve recovery from exhaustion of a main-storage area,
or the flow of data around a network of dependent queues (the
output of each queue feeding other queues).

Our objective 1s to discuss questions that arise in studies
involving digital simulators. How can simulation help me? Should
I write a new simulation program or use one already available?
What forms do simulators take? How are the results of a simulator
to be interpreted?

Considerations in choosing simulation

Although a simulation study should never be lightly undertaken,
such a study can provide information that cannot be obtained
by analytical methods. The advantage of simulation is that
intricate detail concerning the logic of system operation can be
incorporated, and the effects of changes in this detail can be
evaluated. As long as the requisite operating detail is not avail-
able, one should be satisfied with the results of an approximate
algorithmic technique that does not reflect all structural detail.

Very often, however, data not available at the beginning of
a study are expected to become available during the course of
investigation. In such cases, there are two arguments for beginning
simulation at an early stage. First, the basic structure of the early
model outlines broad areas of system operation (where fine details
have little impact) and provides a correlation with previous
mathematical ealculations. Second, the early model provides an
operating framework into which detail may be incorporated
when such becomes available. The design procedure is rarely
so clear-cut that one can serially (1) define the problem, (2)
collect statistics and write a model, and (3) obtain results to
solve the problem. Usually the procedure is iterative and quite
exploratory. Often several simple simulations may be helpful in
bringing the goals of further simulation into focus. In fact, building
pilot models with hypothetical data may yield insights into the
large-scale trends in the problem. Just as important, this early
exercise builds confidence in the mechanics of simulation itself,
and does so while the designer is still free of the multitude of
distracting detail that soon engulfs a system study. Too often,
the designer becomes so concerned with details at an early stage
that he does not acquire sufficient understanding of the potential
of his simulator program.

On the other hand, there is a tendency to overrate the value
of early output simply because it comes from a simulation. One

P. H. SEAMAN

must be careful to qualify extrapolations from a preliminary
model. As model building proceeds and more detail is incorporated
into the model, the results begin to more closely reflect the special
nuances of the particular system being designed. It then becomes
meaningful to ask questions about minor alternatives of design.
A model should grow; it should be viewed as the basis for making
design decisions as the need for them occurs. After a system is
completed, the model is still useful in evaluating the changes
that inevitably occur during the operational period of the system.

As a result of simulation’s ability to deal with many details,
it is a good tool for studying extensive and complicated computer
systems. With simulation, one may assess the interaction of
several subsystems, the performances of which are modified by
internal feedback loops among the subsystems. For instance, in a
teleprocessing system where programs are being read from drum
storage and held temporarily in main storage, the number of
messages in the processing unit depends upon the drum response
time, which depends upon the drum access rate, which, in turn,
depends upon the number of messages in main storage. In this
case, only a system-wide simulation that includes communication
lines, processing unit, and 1/0 subsystems will determine the
impact of varying program priorities on main-storage usage.
Studies of this nature can become very time consuming unless
parameter selections and variations are carefully limited. It is
no small problem to determine which are the major variations
that affect the system. In this aspect, simulation is not as con-
venient as algorithmic methods with which many variations can
be tabulated quickly and cheaply.

It is well to emphasize that simulation is not a tool for syn-
thesis; it does not choose its own variations during a run and
come up with an optimum solution. Minor adaptive properties
have been built into some simulation programs, but they consist
of simple addition of capacity or changes in load. In general,
simulation is restricted to determining how a particular con-
figuration will react in a particular environment. It is still very
much the designer’s function to analyze the results and decide
where and how a system may be improved. Thus, the human
designer is still the feedback element in the design loop.

Considerations in choosing a simulation system

The choice of a simulation system must be made early in a study.
It is quite possible that initial pilot runs with one programmed
simulator will disclose difficulties that may be averted in an
alternate program. The factors to consider in choosing a simulator
are as follows:

e Time available to make the study

e Programming experience of the user
e Data available

e Size of model to be simulated

ROLE OF DIGITAL SIMULATION

Figure 1 Structure of simulation
model

SPECIFIC
PARAMETERS

SPECIAL PURPOSE
GENERAL PURPOSE —>

GENERAL
LANGUAGE

PROGRAMMING SYSTEM

SELF-WRITTEN —>

Amount of detail required

Model characteristics most required

Usage of the simulator (single or multiple study)
Length of runs and model running times
Amount of change and experimentation required

Available simulation programs fall somewhere in the following
spectrum:

user-written——————>general purpose—————>special purpose

The three categories shown refer to the base of the simulator.
Once the base structure has been programmed (externally or
internally) to model a particular system, the simulator becomes
a special-purpose program. It is the amount of modeling the
designer must prepare that determines a simulator’s classification.
This can be seen in the pyramid of Figure 1, showing the parts
of a complete simulation model.

A user-written simulator starts from a basic programming
system, whereas a special-purpose simulator includes a particular
model so that a user need specify only a few parameters. General-
purpose simulators lie in between the two, including a simulation
system and a general language in their base. The simulation
system includes such routines as random-number generators,
timing routines, statistical sampling techniques, and report gen-
erators. The language may range from abstract generalities cover-
ing a wide class of systems to specific objectives aimed at a special
class of systems.

Anyone who chooses to write his own simulation program
must be presumed to have very compelling reasons for doing so.
Among these might be:

¢ Desired model characteristics are neither available nor feasible
in existing programs
Special input or output features are required. (Modifications
to existing programs should always be considered.)
The program will be used repeatedly, so that the gain in
speed through program efficiency can cancel out an investment
in initial programming.

The principal advantage of user-written simulators is efficiency.
By capitalizing on the peculiarities of the particular application,
a special-purpose simulator may be designed to run many times
faster than its general-purpose cousin, and to use less computer
storage. Since the user-written program is written with cognizance
of the system being modeled, its language may well be easier
and more natural to use than a general-purpose language. On
the other hand, a price must be paid in the initial effort expended
in developing the program, and if the program is inflexible in its
use, developmental costs must be absorbed by a few applications.
Of course, all these considerations may be negated by the simple
fact that there isn’t any other satisfactory way to do the study.

P. H. SEAMAN

Special-purpose simulators, on the other hand, are the quickest
and simplest to use, since the logic of the system being studied is
already more or less completely modeled, leaving only system
parameters for the user to specify. Special-purpose simulators are
of two types. Those of the first type are written from the beginning
in machine language and run very efficiently. However, inasmuch
as one must grapple with machine code, changes are often difficult
to incorporate. The special-purpose simulators of the second type
are built up from a general-purpose base. These are apt to run more
slowly and make less-efficient use of storage than the first type. The
advantage of a simulator of the second type is the ease with
which it can be modified, since under its special-purpose facade
it still employs a general language. The utility of a general-purpose
program in a specialized study area is greatly extended if there
are several special-purpose models of the second type available.
The latter can incorporate the most advanced techniques de-
veloped by constant users of the general language and make them
available to the transient user, either to adopt as they stand, or
to serve as prototypes in a special modification.

For a majority of system studies, the choice of a simulation
vehicle will be one of the available general-purpose programs.
With their ready-made simulation languages, these free the user
from the burden of computer details in the same way that FORTRAN
provides the analyst with an algebraic language. This reduces
initial programming time and relieves the need for experienced
programmers. However, the non-trivial problem of expressing the
model in the simulator language may still require several man-
months in some cases.

Two well-known simulation languages suitable for teleprocess-
ing system simulation are found in smMscrIPT and ¢pss (General
Purpose Simulation System).'™ Of the two, sIMscRIPT is the most,
abstract, permitting a wide diversity of application structures
at some expense in speed of model building. apss affords more
of a compromise between generality and ease of use. Because
it assumes certain structural features in its basic organization,
the range of systems it handles efficiently is smaller than is the
case with sIMSCRIPT.

A number of special-purpose simulators, some of which appear
to be applicable to teleprocessing system design, have been
mentioned in the literature. For various reasons, simulators in
this class tend to be considered proprietary by computer vendors
and consulting firms, and documentation is therefore not publicly
available. Those who sense the need for a special-purpose simulator
should seek out information from vendors and consultants. In
any case, the choice of a special-purpose simulator should be
made with the technical capabilities, limitations, and decision-
making logic of the simulator clearly in mind. An investment in
simulation results is an investment in confusion unless the result-
generating mechanism is clearly understood by the user.

To make the discussion reasonably concrete, we will employ

ROLE OF DIGITAL SIMULATION

the widely available apss as a reference point in remarking upon
some of the most necessary and desirable properties that belong
in special-purpose simulators for modeling teleprocessing systems.
A brief recapitulation of gpss terminology may reduce the need
for readers to consult the gpss references.

The basic building units employed by ¢pss, generally called
entities, are of four types: facilities, stores, switche, and transac-
tions. A facility can perform only one function at a time, and
may represent objects such as machines or service counters.
As a space-sharing facility, a store may hold many objects at
once, and represent structures such as a parking lot or inventory
in stock. A swifch is a two-state device that may either block

Figure 2 Example of GPSS block or divert a flow, as would a traffic light or a detour sign. A transac-
diagram tion 1s a discrete unit of traffic that interacts by utilizing facilities,
4 entering stores, and being gated by switches. It may represent

@ QUEUE FOR orders in process, automobiles, customers, or messages.

To structure entities and define a logical flow of transactions,
the gpss language contains basic operations such as “seize facility,”
“enter storage,” and ‘“‘set switch.” Each operation is called a

! block, and a network of operations is called a block diagram. The
DEPART DEPART QUEUE correspondence to ordinary block diagrams or flowcharts is de-
I liberate. Transactions are caused by the apss program to ‘“flow”
ADVANGE PROGESS (ADVANCE through the diagram from block to block, automatically following
'8 THVE) 13 UNITS the arrows and executing the operations as they are encountered.
(See Figure 2.)

@ﬂ Q@ﬁ%ﬁ@j&iﬁs The Gpss program provides various supporting service routines.
An input assembler translates the block cards and sets up an
NORMAL ALTERNATE internal model. Sampling and output routines can automatically
collect statistics and reduce the data to useful summary form.
Scheduling algorithms to control the flow of transactions in time
are built in. Time is represented by a simulated clock which is
automatically advanced to the time of the next event to be
executed by a transaction. Time is assumed to pass in discrete
steps; the smallest unit of time recognized by the simulator is

chosen by the user.

Typical computer system areas where gpss can be advantage-

example 1 ously used are illustrated by three studies that used the Gpss
language. First, consider a detailed study of equipment operation
at the miscrosecond level. The case in point was a study of the
interaction of several display terminals with a single display
control unit. This eontrol unit had to multiplex parallel character
streams arriving from the display keyboards, which caused some
delays in processing characters. These delays were occasionally
long enough to be noticeable by a terminal operator. The object
of the study was to find out how often this might be expected
to occur.

The logical flow of characters through various gates of the
equipment was modeled; circuit timings as small as ten micro-
seconds were included. The intricate multiplex scan formed the
heart of the model. The system logic was far too complex to be

IF FREE, SEIZE
FACILITY 1

P. H. SEAMAN

represented by a queuing-theory model. Of course, much of the
complexity may well have been irrelevant, but nobody could be
sure of this until the system action was established (either by
detailed simulation or direct experimentation with actual equip-
ment). Because the action to be studied was mostly contained
within a subsystem, it could be isolated from the larger computer
complex of which it was a part; all interaction with the larger
system was represented by simple delays. Because the extent of
the model was greatly restricted, it was feasible to model with a
very short unit of time.

Another study using apss considered the effectiveness of
various queue-ordering schemes in reducing response time and
main-gtorage requirements in a digk file configuration. Here, the
concern was less with detailed timing than with detailed logic.
The operation of the disk drives was easily modeled. A random
source of disk accesses was generated to represent the demands
of the rest of the system. In between, the queue-ordering logic
permitted such schemes as picking the command with an addressed
track number closest to the current one, or picking the shorter
of two queues if duplicate files were available. Queuing theory
presently does not give adequate models for such schemes. More-
over, there was no point in going into a full-scale system model.
The limited scope of the model and the number of different
schemes to be studied made gpss the logical candidate for the
study vehicle.

An example of a third kind of study, one leading to a rough
overall view, was a model of an airline reservation system. Mes-
sages arrive over high-speed telecommunication lines and are
received and queued by the interrupt-control circuitry of a central
computer. The computer also provides scheduling for the disk-
access request queue. Finally, message responses are sent back
via the high-speed lines. The purpose of the study was to estimate
total message transit time in the central computer and the amount
of required main storage.

Everything was highly simplified. For example, channel inter-
ference was neglected and the effects of line polling ignored.
The study gave a very rough indication of the operation of the
system, i.e., whether certain files would be overloaded, or peaking
conditions in main storage required attention, or the like. Equally
important, the study provided designers with a better under-
standing of the system dynamies.

One caution concerning rough simulations of this nature.
To avoid complexity, dependent events are assumed to be in-
dependent and branch points based on dynamic parameters are
replaced by statistical branches, ete. If too much of this sort
of thing is done, equivalent results can be obtained just as easily,
more quickly, and more cheaply with analytic techniques based
on queuing theory. On the other hand, if a great deal of complexity
is essential, a more appropriate simulator should be considered.

The facilities and basic operations in a special-purpose simulator

ROLE OF DIGITAL SIMULATION

example 2

example 3

special-
purpose
simulator

182

are likely to bear greater resemblance to the devices and operations
in computer systems than in the case of gpss. Thus, the language
may refer to drums, disks, and terminals, and may well provide
for an explicit program structure with commands such as READ,
WRITE, SEEK, and BRANCH. This effectively restricts the ap-
plication range to computer systems, but within this range, the
simulator should be more natural to use than gpss. In apss, the
simplicity of the implicit flow from block to block is lost when
a set of block routines is built to model specific computer opera-
tions. Some alternate flow mechanism has to be adapted to
provide a program of operations.

In the beginning of a study, a special-purpose simulator of
this nature may appear too complex, requiring more detail than
is accurately known. For instance, a model for Examples 2 and 3
might require dummy operations with no significance. Since there
was no need to carry on and amplify the models, the extra trouble
in putting together such a gross-level model from such a specialized
language might not be worth the effort. However, continuing
development of a complex computer system model can tax the
potentialities of gpss rather severely. The typical study requires
that a model be frequently updated to evaluate new schemes and
modes of operation as they are proposed and formulated. A special-
purpose language in which the principal entities represent devices,
programs, messages, and commands can ease the problem of
adding operational details to a model.

A carefully chosen modeling language not only permits one
to simulate equipment operation but also provides access to
simulator facilities such as queues, tables, variable statements,
and functions. To the degree that these entities and operations
are more specific and concise than their cognates in gpss, a model
can be more easily prepared and augmented. The price of this
gain is that the simulator is likely to be very awkward for modeling
other kinds of systems.

As in the epss case, the typical special-purpose simulator will
simulate uncertainty and variability by means of random-number
generators and will order anticipated actions on a “future events
chain.” Whenever the most imminent event is removed from
this chain, an internal “clock” is updated. The event is then
decoded and the specified action executed. The basic unit of
time may be fixed, say at a fraction of a millisecond, to realize
a compromise between the detailed microsecond level of internal
machine actions and the millisecond level of external 1/0 actions.
(Data on persistent phenomena, such as channel interference,
can still be automatically accumulated on a microsecond basis.)
Where microsecond time units, or on the other end of the scale,
minute or hour units, are important to the study of a piece of
equipment, arss should probably be considered.

Basic input in building any system evaluation model includes
a statement of the system configuration with timing characteristics
of the units in the system, a description of the job environment,

P. H, SEAMAN

and a description of the system programs in suitable language.
Statistical output from a special-purpose simulator can be of
two types, the first being provided automatically, the second
being user-requested. Where applicable, the former may include:

Input specifications and model programs

Device utilizations

Statistics on queues

Statistics on main storage requirements

Average data rates per channel

Time distributions for different types of messages to traverse
various parts of the system

The user may also want to define outputs that include time
averages for various processes, as well as counts of the occurrences
of interesting events. The simulator design may also permit the
user to intervene in the normal process and collect information
not ordinarily generated by the simulator.

As suggested in the schematic of Figure 3, a study might
typically model an on-line data collection system consisting of
a SYSTEM/360 MODEL 30 with four 2311 disk storage units and four
communication lines, each with several 1081 terminals. The
equipment and the connections among units in such a configuration
should be easy to describe in a well-planned modeling language.

In operation, a simulator can generate messages and simulate
message transfers between the terminals and the cpu. Programs
that the user has written in the modeling language can be used
in simulating message operations, file accesses, main storage
allocations, and cpu responses. Provision can and should be made
for simulation of multiprogramming and 1/0 overlapping.

It is useful to distinguish among three kinds of instructions
in the modeling language. Some of these instructions need to
be related to system macroinstructions for reading, writing,
branching, allocating, etc. Others need to be included for statistical
sampling purposes only. Finally, some instructions are needed
for manipulation of the simulation model; these may well include

Figure 3 Configurator schematic of « data collection system

MULTIPLEXOR SELECTOR
CHANNEL CHANNEL

COMMUNICATION LINES 1401
WITH 1031 TERMINALS PRINTER

ROLE OF DIGITAL SIMULATION

183

Figure 4 Flowchart of a typical
operational program

INITIAL CPU
————»| PROCESSING

3 mSEC

a probabilistic branch, test instructions, arithmetic and queuing
instructions, etc.
In modeling system programs, moreover, three classes of pro-
grams clearly need to be defined: application, control, and inter-
3 rupt. The first of these represents application programs that
10G MESSAGE perform the tasks the user wants done. The last two classes
FILE A represent the operating system that controls the cpu and schedules
| the 1/0 requests.
GET DATA A hypothetical application program that processes a particular
FILE B type of message is flowcharted in Figure 4. This can be simulated
i by a sequence of the general form: process, write, read, process,
oroS % e wait, process, write, write, process, wait, and exit. Processing
§ mSEC times can be simulated by assigning estimated elapsed times to

! the process instructions. The instructions for reading and writing
WATT FOR require parametric specifications, such as arm number, track
COMPLETION number, and byte count of the information being transferred.

1 The user needs the flexibility of either stating a known arm, track,
and byte count, or of making a dynamic choice by testing the
state of the system or programs. In some cases (as in the initial

I phases of design), the user may also want the simulator to randomly
PRINT select parameters from within specified ranges.
oureuT A wait instruction is assumed to suspend processing on the
I message in question until its outstanding 1/0 is completed. During
UPDATE this time, processing can begin (or continue) on other messages
ALec to simulate the multiprogramming environment. One way of
] handling this is to require that certain instructions be used to
check lists or queues to ascertain whether other messages exist
in the system and, if they do, where to begin processing them.

1 In this way, provision can be made for entering and returning
WAIT FOR from other application programs at several levels and accounting
COMPLETION for the necessary 1/0 operations whenever programs must be
retrieved from auxiliary storage.

There are several such places where it is obvious that the
simulator logic does not know by itself what to do next. All
of these are analogous to the case in which actual monitor or
control programs are called to decide the task a computer is to
execute next. In a like manner, if the simulator automatically

CPU
PROCESSING
7.5 mSEC

CPU
PROCESSING
2 mSEC

control
programs

Figure 5 Schematic of a control loop

1

IDLE UNTIL

READY QUEUE EXTERNAL

EMPTY ? INTERRUPT
OCCURS

K]

INPUT QUEUE
EMPTY ?

_ TERMINAL
INTERRUPT

PROCESS SUSPENDED
ON CURRENT TASK
DUE TO /0.
RETURN TO
CONTROL LOOP

DETERMINE MESSAGE
E; BRANCH
TO ASSOCIATED
OPERATIONAL
PROGRAM

DETERMINE WHERE
PROCESS WAS
SUSPENDED AND
RESUME THERE

:

!

1

L

/0
INTERRUPT

Figure 6 Schematic of a line-control program

PRINTING COMPLETED

INTERRUPT
N
CHANNEL 1

MESSAGE IN

!

FREE ASSOCIATED
CORE STORAGE

DESTROY
ASSOCIATED
COMMAND

INTERRUPT
TYPE?

!

ALLOCATE
CORE
STORAGE

|

MOVE MESSAGE
TO INPUT
QUEUE

NOT EMPTY

TEST
PRINTER

l QUEUE

END
vrv,zllLE_ETF? INTERRUPT

branches to specific user-defined subroutines that determine what
to do, the subroutines may simulate virtually any operating
discipline. An example might be a task-scheduling loop, of the
type shown in Figure 5, that is called whenever a wait instruction
is encountered. A convenient modeling language for this loop
needs instructions for testing the status of a queue, determining
message type, and branching to relevant programs. The input
queue is first tested to see if it contains any new messages. If so,
the first message is removed and made the current message.
Assuming that a stored table contains a suitable list of program
addresses, the proper operational program for a message of the
current type is ascertained and entered by a branch. But if the
input queue is empty, a branch is made to test the ready queue
(a list of partially processed messages ready to go again after
having been suspended because of incompleted 1/0 operations).
If messages are found in the ready queue, one of them is made
the current message and its processing restarted. If both queues
are empty, the cpu enters an idle status.

The third class of programs that needs to be distinguished
in modeling consists of interrupt programs. These can be entered,
interrupting any application program in process, whenever a
change in status occurs in either an 1/0 operation or an interval
timer. Thus, an interrupt may be simulated when a data transfer
has been completed, or a disk arm completes a seek operation,
or a time period has elapsed. For example, shown in Figure 6
is the logic of an interrupt program that processes communica-
tion-line interrupts when messages enter the simulated computer
system or data is printed out. A modeling language for easy

ROLE OF DIGITAL SIMULATION

interrupt
programs

186

simulation of this program needs instructions for branching on
interrupt type, allocating core, releasing core, message queuing,
testing queue status, and message transmission. Initially, a test
determines whether the interrupt is caused by a message entering
or data leaving the system. If a message is entering, main storage
is allocated and the message placed on an input queue. If data has
just been printed, main storage is freed, the 1/0 command con-
trolling the print operation is destroyed, and the printer queue
is then tested. Printing is initiated if a message is found. Finally,
the interrupt is terminated and processing reverts to normal mode.

In a special-purpose simulator, it is entirely possible for model
programs to exist as sequences of instructions similar to the
programs of any symbolic coding language. Instructions may be
executed interpretively and addressed by a pseudo-counter that
is automatically updated. If the instructions in the modeling
language are primitive operations for the simulator, they need
not be fashioned from other operations, as is required in gpss.
Devices may be defined at the start of the simulation run, and
various hardware parameters, such as seek characteristics and
rotation time, may or may not be built into the simulator.

The major requirement for a simulator user is to specify how
special activities, such as interrupt control in a channel program,
are to be carried out. In a simple case, it may appear that these
activities pose unnecessary complications and that the channel
control should be made automatic. However, a special-purpose
simulator becomes most useful in complex cases where such
routines are left to the user’s specification. When control routines
becomes standard, they are usually understood and there is little
point in simulating them; more often than not, it is the unusual
that is simulated. The flexibility made possible by divorcing
control operations from predetermined hardware responses can
permit a suitable special-purpose simulator to model situations
that would be very difficult to model in Gpss.

Considerations in validating simulation results

A pertinent but hard-to-answer question is, “How does one know
whether a simulated result is correct?” The question requires
consideration of two independent avenues of inquiry, one relating
to the accuracy of the model, and the other to the precision of
the statistical results.

A model is accurate to the extent that a valid abstraction
has been made from the proposed system. A high degree of
accuracy requires that the many simplified or omitted details
do not markedly affect the aspects of system performance under
study. One can never be completely sure of an experimental design,
but some of the more obvious assumptions can often be checked.
For instance, in one study it was suggested that mean message
length was significant, but that variation from the mean was not.
Tests comparing the results obtained with constant message
lengths against those obtained with variable lengths uniformly

P. H. SEAMAN

spread about the mean validated the assumption for the range
of interest.

In some cases, details with a decided effect on system per-
formance may not be firmly known at the time of a study. As a
consequence, the model cannot be highly accurate, and estimators
obtained from the model cannot be taken as predictors of absolute
performance. But much can be done with such a model in a
relative sense. By comparing runs with and without a change,
the relative effect of the change can be measured. In making
relative comparisons, however, one must try to consider the
relationships between known and unknown variables. For ex-
ample, for one model of a conversational mode system, it was
expedient to generate random inputs from terminals rather than
try to reconstruct actual conversations. This was satisfactory as
long as the results were limited to the processing unit and file
logic. However, since the message-generation process can influence
the effect of a particular polling discipline, a study of various
polling schemes would have been inappropriate with such a model.

In constructing a model, it is well to build from the known
to the unknown. For instance, a model might be exercised with
random input and the results checked against known performance
curves. Then, if a queue-sorting technique is introduced, there
is not only a basis for comparison but some assurance that any
derivations from the base are due to the new technique and not
to an error in model logic. This is important; in complex models,
there is ample opportunity for logical errors. In simple simulators,
errors in logic usually reveal themselves in absurd statistics; in
larger simulations, however, error may lurk in the most reasonable
looking results. For this reason, tracing techniques should be
abundantly employed. If several message types pass through the
simulated system, each type should be entered separately to
verify that it follows the specified path. If probabilistic branches
are employed, checks should be made to ascertain that paths are
used as anticipated. At the end of a run, all residual messages
and counts left in the system should be explainable. Minor in-
consistencies may be the only trace of a blunder other than a
legacy of invalid, though apparently correct, statistics.

Unexpected results should be thoroughly investigated; these
are often due to improper sampling or logical error. If results
are to be believed, they must be explicable as well as repeatable.
A simulation study is incomplete unless the output is supported
by a thoughtful rationalization for all observed behavior.

The second line of inquiry into the correctness of simulation
results relates to statistical validation. This problem arises from
the nature of the sample process inherent in the technique of
simulation rather than from the accuracy of the model chosen
to represent the system.

It is assumed that any statistic of interest in a model, say
response time for messages of type A, has a particular distribution
with a true mean value. Simulation estimates these statistics by

ROLE OF DIGITAL SIMULATION

may appear overloaded. In such a case, sample size should be
measured, not by the number of ordinary messages processed,
but by the number of these infrequent messages processed. A more
useful picture of system operation describes two system states (one
without the infrequent occurrence, one during the occurrence)
with a statement of the frequency of such occurrences and the
length of the transition between the two states. An example of
this sort of problem occurs in the study of “graceful degradation”
of a system. The model may be based on system events, such as
processing times, seeks, and responses, measured in milliseconds.
The failure events causing the system to be degraded from one
state to another may be measured in tenths of hours. The only
reasonable thing to do is to simulate system operation separately
in various degraded states and then combine these results in a
sort of system profile.

Finally, it is well to emphasize that simulation studies are
experiments run on a system model in lieu of the real system.
Thus, the principles that apply to other experiments apply. These
principles need not be discussed here; they are treated in numerous
texts on the design of experiments. These principles are apt to be
neglected unless the simulation study is viewed as an important
investment deserving of careful planning.

Summary

This paper attempts to point out the role that simulation plays
in the design of computer systems, emphasizing that this technique
should be used, not as a sporadic tool to obtain unrelated answers,
but as an experimental method and a continuing integral part
of the design process. Although simulation is especially pertinent

to the design of teleprocessing systems, it should be emphasized
that simulation methods can also be useful in the design of the
broad spectrum of computer systems including time-sharing and
multiprocessing systems.

CITED REFERENCES AND FOOTNOTES

1. B. Dimsdale and H. M. Markowitz, “A description of the siMscripT lan-
guage,” IBM Systems Journal 3, No. 1, 57-67 (1964).

2. R. E. Efron and G. Gordon, “A general purpose digital simulator and
examples of its application,” IBM Systems Journal 3, No. 1, 22-34 (1964).

3. H. Herscovitch and T. H. Schneider, ‘“gpss 111—an expanded general pur-
pose simulator,” IBM Systems Journal 4, No. 3, 174-183 (1965).

. References to other simulation languages may be found in the bibliography
of a recent simulation article: D. Teichroew and J. F. Lubin, “Computer
simulation—discussion of the technique and comparison of languages,”
Communications of the ACM 9, No. 10, 723-741 (October 1966).

ROLE OF DIGITAL SIMULATION

189

