This paper discusses a queuing model for a non-priority time-sharing
environment in which all active tasks fit tn a homogeneous main
storage. Design parameters such as queue length and response time,
as well as their distributions, can be estimated with the aid of the
model. The model provides a basic frame of reference for the develop-
ment of more complicated models.

A queuing model for a simple case of time sharing
by W. Chang

Of late, considerable attention has been given to time-sharing
computer systems. To provide a close relationship between the
computer and its users, these systems typically handle a variety
of remote terminals, from typewriters to computer graphic display
systems. Although many source terminals may employ the com-
puter concurrently, the objective is to provide a form of terminal
service that makes it appear to each terminal operator as if he
were the only one using the computer.

The time the computer spends on scheduling, allocating,
buffering, and controlling terminal input and output represents
a slice of processing time that may be called “overhead.” For
time-sharing to succeed, the improvement in problem-solving
effectiveness and user convenience must more than offset the
overhead loss. One of the design objectives in time-sharing sys-
tems is therefore to minimize overhead. Because many tasks
may be handled concurrently by the computer system, each task
is served in turn by the computer for a time period that will be
called a quantum. Depending upon system specifications and design
considerations, the quantum may be either a constant interval,
or a random interval with a probability distribution. In this paper,
the quantum will be treated as a random variable. The constant
quantum may then be considered a special case of the general
analysis.

An important design problem is that of estimating system
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response ttme (often called “turn-around” time). For a given task
and system, response time is defined as the interval between
arrival of input and departure of results. In most contexts, response
time is not a constant but a random variable, and the probability
distribution of this variable is a critical design criterion. Since
the number of jobs presented to the system typically influences
the required amount of main storage, another problem is to de-
termine the distribution of job-queue length.

The purpose of this paper is to present techniques for estimating
response time and queue length in one postulated time-sharing
environment. Since various time-sharing schemes have been pro-
posed, several mathematical models would be required to analyze
them all; to avoid excessive detail, we limit ourselves here to one
basic time-sharing model for the central processing unit." The
queuing behavior of a system is analyzed assuming that jobs have
already arrived at the computer. Delays between terminal and
processing unit are not included in the model, although these
delays must be given consideration in the actual design of a
time-sharing system.’

A simple model

The appropriate elementary model for a time-sharing system
involves a queue with feedback.®* Let us first examine the follow-
ing case as shown in Figure 1. Tasks arrive at the computer in
message form and wait in turn for service. During each service,
one quantum of processing time is allotted. Two conditions may
occur: either the task is finished after the service of a quantum
(this occurs with probability ¢) or it is not completed (this occurs
with probability p, where p = 1 — ¢). If not completed, a task
returns to the queue and awaits its turn for another quantum.
At the end of a service quantum, the random variable either p
or ¢ is again specified ; its new value is independent of its previous
value. This assumption simplifies the solution considerably.

The flow of requests for service from each input source may be
considered a Poisson process. Let A; denote the input density
of the Poisson process for source 7, where ¢ = 1,2, --- | N. Then
the total input to the computer is a Poisson process with density
A, where A denotes the sum of all \,.

We assume the response time for a task consists of two parts,
a wazling ttme and a service time, the latter being actual processing
time. Let H(z) denote the service time distribution, and define
the Laplace transform® of H(z) as

U = f T dH )

and the rth moment as

a, = fm x" dH(x)

0
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Figure 1 Simplified model
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Let Q(x) be the quantum size distribution with Laplace
transform

o0 = [ T d@)

and rth moment

¢ = fo " dOG)

Referring to the definition of the model, the relation between
H(x) and Q(x) is

HE) = ¢ 5100

where Q,(x) is the nth folded convolution of Q(z) with itself.
The Laplace transform is

v = ¢ ST
_ 990
T T @ @

Equation 1 is a relationship between the Laplace transforms
of the service time and the quantum size distributions in the
simplified time-sharing model (Figure 1). If one of the Laplace
transforms is known, the other can be determined by Equation 1.

The value of ¢ can be determined as follows. From the definition
of probability expectation and the Laplace transform, the average
service time is given by

a, = —¢'(0)
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Figure 2 Examples of quantum
size and probability density
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and the average quantum size by

¢, = —¢'(0)
Taking the derivatives of both sides of Equation 1 and setting
s = 0, we have (since p + ¢ = 1)

96 4

=7 ¢ 2
Example 1 Suppose that service time is exponentially dis-
tributed (i.e., that H(z) = 1 — ¢™*°) and that the average quantum
size to be used is ¢;. The problem is to determine the quantum
size distribution.

The average service time is

a4

a =f x dH(x) =i
0

and from Equation 2,
q = ¢/a, = uc
Similarly, p is given by p = 1 — ue,. Equation 1 can be rewritten as

20

YT ®

Since

o - [ e dll) = - ‘—

we have

__ B u/q
o0 = e a T s+ we

From this equation, we obtain the quantum size distribution

Q(z) by
Q(x) =1 — e—#/ll::

Thus the quantum size is also exponentially distributed, and
has a mean of ¢/p.

Given Q(x), we can approximate the service time distribution
H(x) by H*(x), where the expectation of H*(z) is equal to the
actual service time a;. ¥*(s), the Laplace transform of H*(x),
can be determined by Equation 1.

Example 2 We are given the values of three quantum sizes,
Z:, 22, and x5, with corresponding probability densities g,, g,, g5 as
shown in Figure 2. The average service time a, is also given.
Again let H*(x) denote an approximation to the service time
distribution, where the expectation of H*(x) is equal to a,. The
problem is to determine ¥*(s), the Laplace transform of H*(z).
The average quantum size is

€ = 1%, + g2z + gsTs

W. CHANG




The value of ¢ can be determined from Equation 2 and, as usual,
p = 1 — ¢. The Laplace transform of the quantum size distri-
bution is obtained from

60 = [ )

— gl e—xz; + g2 e—sz; + g3 e-—sxs

and ¢*(s) from

gé(s)
1 — pe(s)

qlgie™ + g. e 4+ gs e "] N
1= plgie™ + goe ™ + gse™]

In the case of constant quantum size, ¢, = ¢, then H*(x) is
a geometric distribution.*

If the overhead loss within each quantum cannot be neglected,
the above expressions must be modified. Let @,(x) be the overhead
loss within each quantum, and let ¢4(s) be its Laplace transform.
The useful portion of the processing time within a quantum can
be easily obtained. The Laplace transform of these useful portions
is ¢(s)/9o(s). Replacing o¢(s) in Equation 3 by ¢(s)/d.(s), we
obtain the relation between quantum size and the actual service
time.

Referring again to Figure 1, let £, be the queue size in the
system immediately after the completion of a nth quantum
{n = 1,2 3, ---}. Define the generating function U(z) as

UR) = E{zf}

) =

The function U(z) satisfies the relation

Ve = plU6) — UOBM ~ 2]
+ o TOZTO g )

+ (¢ + pUO)[M(1 — 2)]

This is true because the queue sizes at n and n + 1 form a Markov
chain. To find U(z) = E{z*""1, we take into consideration that
immediately after the nth quantum, three cases may prevail:

e Service was not completed; an additional quantum is desired
by the current task, and the queue size is not reduced
Service was completed; queue size is reduced by one
Service was not required; the queue was empty before the
beginning of the nth quantum

However, additional customers may have arrived during the nth
quantum. These additional customers are expressed in terms of
#[\(1 — z)] as discussed by Takacs.® Solving for U(z), we have
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The average queue size is equal {0 the number of new arrivals
during the average response interval.

The second moment 7, can be obtained if 6(s) is known.
8(s) can only be implicitly determined. For a detailed discussion
of 6(s), we refer to Takacs;’ the following is merely a summary
derivation of 8(s).

Define the compound generating function U(s, 2) as

L@) N(l — 2){s(s) — sA(1 — 2]}
g/ {2 — (g + pIsA(1 — D1}ls — A0 — 2)]

U(s,2) = <1 -

Further define
Ul(sy Z) = Pypls + )\(1 - 2)]
+ Uls + A1 ~ 2), (¢ + p2)ols + N1 — 2)]}

Uiils, 2) = ¢[s + M0 — DU.s, (¢ + p2)dls + M1 — )]}
k=12 -

From these expressions, the Laplace transform of the response
time distribution is

6 = ¢ 29" Uis, D
k=1
The first two moments may be obtained as follows

ACQ + 261(1 - )\Cl)
2(qg — Acy)

_ ¢ — 2
6(g — Ae)’lg" — 9@ + Ae) + Al

{2q[6Ae} — 6¢; — BAcic, + 3c: + Aey]
— [12xe} — 12¢] — BAcic. + 2V°cies — 3N°ch]}

T, =

The second moment is useful in determining the variation of the
response time.

The busy period of the computer can be obtained from a
single-server queue formulation,’ since the order of service within
a busy period is immaterial in the analysis. Let D(x) be the busy
period distribution and let y(s) be its Laplace transform. v(s) can
be obtained as the root with the smallest absolute value of the
equation

z = Yls + M1 — 2)]
The average busy period, d, may be determined as

a2

dzl—)\a1
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In this analysis we assume that the entire queue is located
in main storage. To determine the requirement for queue storage,
let, f; be the probability that a task requires 7 units of storage.
Define the generating function F(z) as

Fi) = jo; f2' 6

Let v; be the probability that ¢ units of storage are used. Let V(z)
be the generating function

Vi) = D vz
i=0

Then V(z) can be obtained as follows:

Ve = T alFEF = UIFE)

This formulation is the so-called compound generating function
defined by Teller.”
The average storage required for accommodating the queues is

Vi) = UMWFQ)
The second moment of the core storage can be obtained by
V@) = UOIFM] + UMF(1)

Note that U(z) is used instead of U*(z) because the queue
size at the completion of a quantum determines the status of the
computer at operation. In the event that a constant storage
size k is needed for every task present in the system, Equation 6
can be simplified to

Fi) =2

A somewhat extended model

If the binary decision involving p and ¢ (see Figure 1) takes
place before a quantum is given to a task, we can obtain the more
interesting model suggested by Figure 3. In this case, if the out-
come is ¢, the service time follows distribution @,(x) and the
task is terminated. If the outcome is p, the service time follows
distribution Q.(x) and the task again joins the queue. Given this
“look-ahead” capability, the model can be used to analyze one
or more different quanta distributions, and to better accommodate
tasks (such as short debugging runs) that can be completed within
one service period. For example, if the task is completed before
the end of the last quantum allotted to the task, the remaining
time is usually made available to other tasks. The use of different
quantum sizes can also take such actions into consideration. Define

6@ = [ erae@, b= [ o dE

0

0 = [ eraew, o= [ o
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Figure 3 Extended model
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Then the Laplace transform of service time distribution for a
task is

1 6)
ve) = 1 — pea(s)

The following relation holds for the queue-size generating function
immediately at the completion of a quantum:

U — AU = U0 = 2]

2
+ plUR — UO)¢.A1 — 2)]
+ U0) {pzg=[N1 — 2)] + g¢: M1 — 2)]}
Since U(1) = 1, we have
U0) = g — Mgb: + pe))
Thus
U)

[g — Mgbs + pe)l{pz(z — DM — 2)] 4 9z — D N1 — 2)]}
z — qpi(AM1 — 2)] — peu[N(1 — 2)]
Using a similar approach, U*(z) can be determined as
*00 U0 — Do A1~ 2)]
V) = 20 = 9] — pegahl — 9]

Further extension of the model is shown in Figure 4. In this
model, there are M different quantum-size distributions Q,(x),

Q:(@) -+, Qu(x), where

M
Ze=!
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Figure 4 Further-extended model
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Except in the case of ¢,, all ¢’s are feedback loops. Let ¢.(s) be
the Laplace transform of Q,(z), for7 = 1,2, --- , M.
Then

M

(¢ — Di{gd: N1 — D1 + D 2q.0: N1 — 2]}

U = U() =

M

2z — Z:Z Q¢Z¢,~[>\(l - Z)] — 91¢1[>\(1 — Z)]

and

U0) = q — X ; q:[—¢i(0)]

Similarly, we determine the queue-size generating function for
the extended model immediately after the departure of a task as

U0 — D N1 — 2)]
e~ 3 02N = 2] = gl — 2]

U*e) =

Concluding remarks

This paper discusses a mathematical model of a time-shared
processing unit and an extended model using queues with feed-
back. The generating functions U (z) for the queue size immediately
after the completion of a quantum, as well as the generating
functions U*(z2) for the queue size immediately after the departure
of a task, are derived. U(z) is useful in determining main storage
requirements, U*(z) in analyzing the average response time. The
higher moments of response-time distribution can be obtained
only through a more complicated analysis.®> Under the limitation
of these models; namely, that they consider only the processor,
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the average response time is seen to be the same for all quantum
sizes if the overhead loss within a quantum is negligible. The
second moment of the response-time distribution decreases as
quantum size increases. These observations verify, at least in
view of processing-unit efficiency, that a quantum should be
specified as large as possible. The amount of overhead and the
variance of the response time are made smaller by taking larger
quanta. Actual choices of quantum sizes must account for addi-
tional factors such as input-output requirements and terminal
delays.

Although the models discussed are by no means sufficiently
general to cover all time-sharing environments, they apply rather
closely to some applications of medium-sized computers. Further-
more, unless we are to be entirely content with simulation ex-
ercises, time-sharing analysis merits continued efforts in the
postulation and elaboration of mathematical models.
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