
This  paper  discusses  a  queuing  model  for  a  non-priority  time-sharing 
environment in which  all active tasks  fit in a  homogeneous m a i n  
storage. Design  parameters  such  as  queue  length  and  response  time, 
as well as their  distributions,  can be estimated  with the aid of the 
model. The model  provides  a  basic  frame of reference for  the develop- 
ment of more  complicated  models. 

A queuing  model for a  simple  case of time  sharing 
by W. Chang 

Of late, considerable attention  has been given to time-sharing 
computer systems. To provide a close relationship between the 
computer and  its users, these systems typically handle a  variety 
of remote terminals, from typewriters to computer graphic display 
systems. Although many source terminals  may employ the com- 
puter concurrently, the objective is to provide a form of terminal 
service that makes it appear  to each terminal  operator as if he 
were the only one using the computer. 

The time the computer spends on scheduling, allocating, 
buffering, and controlling terminal  input  and output represents 
a slice of processing time that may be called “overhead.” For 
time-sharing to succeed, the improvement in problem-solving 
effectiveness and user  convenience must more than offset the 
overhead loss. One of the design objectives in time-sharing sys- 
tems is therefore to minimize overhead. Because many  tasks 
may be handled concurrently by the computer system, each task 
is served in turn by the computer for a time period that will be 
called a quantum. Depending upon system specifications and design 
considerations, the  quantum may be either a constant  interval, 
or a random  interval with a probability  distribution. In  this  paper, 
the  quantum will  be treated  as  a  random variable. The constant 
quantum may then be considered a special case of the general 
analysis. 

An important design problem is that of estimating  system 
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respor~se t ime  (often called “turn-aroud” time). For tt giveu task 
and  system, response time is  defined as  the interval between 
arrival of input  and  departure of results. In most contexts, response 
time is not a constant but a  random variable, and  the probability 
distribution of this variable is a critical design criterion. Since 
the number of jobs presented to  the system  typically influences 
the required amount of main storage, another problem is to de- 
termine the distribution of job-queue length. 

The purpose of this  paper is to present techniques for estimating 
response time and queue length in one postulated time-sharing 
mvirormnlent.  Since various time-sharing schemes have been pro- 
posed, several mathematical models  would  be required to analyze 
them all; to avoid excessive detail, we limit ourselves here to one 
basic time-sharing model for the central processing unit.’ The 
queuing behavior of a system is analyzed assuming that jobs have 
already  arrived at the computer. Delays between terminal and 
processing unit  are  not included in the model, although these 
delays must be given consideration in the  actual design of a 
time-sharing system.’ 

A simple model 

The appropriate elementary model for a time-sharing system 
involves a queue with  feedback.”‘ Let us first examine the follow- 
ing case as shown i n  Figure 1. Tasks  arrive at  the computer in 
message form and wait in turn for service. During each service, 
one quantum of processing time is allotted. Two conditions may 
occur: either the  task is  finished after the service of a  quantum 
(this occurs with  probability q)  or it is not completed (this occurs 
with  probability p ,  where p = 1 - a) .  If not completed, a task 
returns  to  the queue and  awaits  its turn for another  quantum. 
At  the end of a service quantum,  the random  variable  either p 
or p is again specified; its new value is independent of its previous 
value. This assumption simplifies the solution considerably. 

The flow of requests for service from each input source may be 
input considered a Poisson  process. Let X i  denote the  input  density 
process of the Poisson  process for source i ,  where i = 1, 2, . . , N .  Then 

the  total  input  to  the computer is a Poisson  process with density 
X, where X denotes the sum of all Xi. 

We assume the response time for a  task consists of two parts, 
service a waiting time and  a service time, the  latter being actual processing 
time time. Let H ( z )  denote the service time  distribution,  and define 

the Laplace transform6 of H ( x )  as 
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Figure 1 Simplified model 
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Referring to  the definition of the model, the relation between 
H(x)  and &(x) is 

m 

m4 = P c Pn-lQn(4 
*=l  

where &-(x) is the  nth folded convolution of &(x) with itself. 
The Laplace transform is 

m 

= P c P " " [ m l "  
n-1 

Equation 1 is a relationship between the Laplace transforms 
of the service time and  the  quantum size distributions  in the 
simplified time-sharing model (Figure 1). If one of the Laplace 
transforms is known, the  other can be determined by  Equation 1. 

The value of q can  be determined as follows. From  the definition 
of probability expectation and  the Laplace transform, the average 
service time is given by 



and  the average quantum size  by 

c, = -C#J’(O) 

Taking the derivatives of both sides of Equation 1 and  setting 
s = 0, we have (since p + p = 1) 

E x a m p l e  1 Suppose that service time is exponentially dis- 
tributed (i.e., that H ( x )  = 1 - e-’%) and that  the average quantum 
size to be used is c l .  The problem is to determine the  quantum 
size distribution. 

The average service time is 

a1 = Lrn x dN(x) = - 1 
P 

and from  Equation 2, 

q = Cl/Ul = PC1 

Similarly, p is given by p = 1 - PC,. Equation 1 can  be rewritten as 

Since 

we have 

From  this  equation, we obtain  the  quantum size distribution 
&(x) by 
&(x) = 1 - e-”/“” 

Thus  the  quantum size is also exponentially distributed,  and 
has a mean of q / p .  

Given &(x), we can approximate the service time  distribution 
Figure 2 Examples of quantum H ( x )  by H*(x),  where the expectation of H*(x)  is equal to the 
size and  probability density actual service time a,. +*(s), the Laplace transform of H*(x),  

can  be determined by  Equation 1. 

E x a m p l e  2 We are given the values of three  quantum sizes, 
x,, x2, and x3, with corresponding probability densities gl, g2, g3 as 
shown in  Figure 2. The average service time a, is also given. 
Again let H*(x) denote an approximation to  the service time 
distribution, where the expectation of H*(x) is equaI to a,. The 

QuAN;;; problem is to determine +*(s), the Laplace transform of H*(x) .  
The average quantum size is 

c1 = QlXl + g 2 x 2  + g3x3 
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The value of p can be determined from Equation 2 and,  as usual, 
p = 1 - q.  The Laplace transform of t,he quantum size distri- 
bution is obtained from 

- - q [ g l  e"z1 + g2 e-'=' + g3 e-""'] 
1 - p[gl e - r r1  + g 2  e - 8 2 z  + g3 e-szs]  

In  the case of constant  quantum size, c,  = c, then H*(z)  is 
a geometric di~tribution.~ 

If the overhead loss within each quantum  cannot be neglected, 
the above expressions must be modified. Let QO(x) be the overhead 
loss within each quantum,  and  let 40(s) be its Laplace transform. 
The useful portion of the processing time  within a quantum can 
be easily obtained. The Laplace transform of these useful portions 
is ~ ( S ) / + ~ ( S ) .  Replacing 4(s) in Equation 3 by $ ( S ) / ~ ~ ( S ) ,  we 
obtain the relation between quantum size and  the  actual service 
time. 

Referring again to Figure 1, let 6 be the queue size in the 
system immediately after  the completion of a nth quantum 
{ n = I, 2, 3, . . . ) . Define the generating function U(x) as 

V(2) = E (2'") 

The function U(x) satisfies the relation 

U(4 = P[U(X> - U(O)l4[W - 4 1  

+ (P + P 4 W ) 4 [ W  - 4 1  
This is true because the queue sizes at  n and  n + 1 form a Markov 
chain. To find U(x) = E {  zE"+' 1 ,  we t,ake  into consideration that 
immediately after  the nth  quantum, three cases may prevail: 

Service was not completed; an additiorlal quantum is desired 

Service was completed; queue size is reduced by one 
Service was not  required; the queue was empty before the 

by the current  task, and  the queue size is not reduced 

beginning of t'he nth quantum 

However, additional customers may  have arrived during the  nth 
quantum.  These  additional customers are expressed in terms of 
+[X(] - z)]  as discussed by Takacs." Solving for U(z) ,  we have 
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r ,  I he average  queue size is equal to the  number of new arrivals 
during the average response interval. 

The second moment T ,  can  be  obtained if O(s) is known. 
e(s) can  only  be  implicitly  determined. For a detailed discussion 
of O(s), we refer to  Takacs;3  the following is merely a summary 
derivation of O(s). 

Define the compound  generating  function U(s,  x) as 

Further define 

Ul(S, 2) = P n b  + - 4 1  
+ V { s  + X(1 - 4 ,  ((I + pz)ds + - 4 1 1  

where 

Po = 1 - Xu, 

and 

uk+l(s, 2) $'[s + - z)luk(s, ( q  f Px)+[s + X(1 - 
k = 1 , 2 ,  * * .  

E'rom these expressions, the Laplace transfonn of the response 
time  distribution is 

m 

e(s) = p pk"Uk(s, 1) 
k - 1  

The first  two  moments may be  obtained  as follows 

T ,  = 
XC, + 2c1(l - kc,) 

2(p - XCl) 

2'" q2 - 2 y  
' - 6(q - Xc1)'[p2 - p(2 + XCJ + XC~] 

. { 2q[6Xc; - 6 ~ :  - ~ X C ~ C ,  + SC, + XC,] 

- [12Xc; - 12~: - ~ X C , C ,  + 2X2c1c3 - SX'C,"]} 

The second moment  is useful i n  determining the variation of the 
response time. 

single-server queue  formulation,6 since the order of service  within period 
a busy period is  immaterial  in the analysis. Let D(z )  be the busy 
period distribution and  let y(s) be  its Laplace  transform. y ( s )  can 
be obtained as the root  with the smallest  absolute  value of' the 
equation 

The busy period of the conlputer  can  be  obtained  from a busy 

z = +[s + X(1 - x)] 

The average  busy period, d, may be determilled as 
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Figure 3 Extended model 
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Figure 4 Further-extended model 
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Except in the case of ql ,  all q's are feedback loops. Let 4i(s) be 
the Laplace  transform of Qi(z) ,  for i = 1, 2, . . * , M .  
Then 

M 

(2 - l>{n141[~(1 - 4 1  + C z n * 4 i [ m  - 4 1 1  

2 - q,z4i[x(1 - 4 1  - q A 1 [ X ( 1  - 4 1  
U ( Z )  = U(0) i = 2  

M 

1 = 2  

and 
M 

U(0) = q1 - x c q<[-4:(0)1 
7 = I  

Similarly, we determine the queue-size generating  function for 
the extended model immediately  after  the  departure of a  task ads 

U*(z) = U(O)(z - 041 [ m  - 4 1  
2 - c qiz4*[X(I - 4 1  - q141[~,(1 - 4 1  

M 

i = 2  

Concluding remarks 
This  paper discusses a mathematical model of a time-shared 
processing unit  and  an  extended model using queues with feed- 
back. The generating  functions U ( z )  for the queue size immediately 
after  the completion of N quantum, as well as  the generating 
functions U*(z)  for the queue size immediately after  the  departure 
of a task,  are  derived. U ( z )  is useful in  determining  main  storage 
requirements, U*(z)  in  analyzing t8he average response time. The 
higher  moments of response-time  distribution  can be obtained 
only  through a more  complicated ana lys i~ .~  Under the 1imit:ition 
of these  models;  namely, that  they consider only the processor, 



the  average response time is seen to be the same  for all quantum 
sizes if the overhead loss within a quantum  is negligible. The 
second moment of the response-time  distribution decreases as 
quantum size increases. These  observations  verify, a t  least  in 
view of processing-unit efficiency, that a quantum should be 
specified as large as possible. The  amount of overhead and  the 
variance of the response time are made  smaller by  taking larger 
quanta.  Actual choices of quantum sizes must  account for addi- 
tional  factors  such as input-output  requirements  and  terminal 
delays. 

Although the models discussed are by  no  means sufficiently 
general to cover all time-sharing  environments,  they  apply  rather 
closely to some  applications of medium-sized computers. Further- 
more, unless we are  to be  entirely  content  with  simulation ex- 
ercises, time-sharing  analysis  merits  cont,inued  efforts in t h e  
postulation  and  elaboration of mathematical models. 
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