The macro language design discussed in this paper provides a
systematic means by which the SYSTEM/360 assembler-language
programmer can develop macroinstructions, thereby expanding the set
of machine-oriented instructions that serve as the basis of the assembler
language.

Also lreated 1s the format of macro definitions, the design of a
macro generator, and the principal considerations that governed the
destgn of the system as a whole.

Macro language design for sysTem/seo

design
principles

62

by D. N. Freeman

Of several programming languages for I1BM SYSTEM/360, the
Assembler Language (aL) is closest to the machine language
in form and content.'”® Because AL enables the programmer to use
all sysTEM/360 facilities as directly as if he were coding in machine
language, AL can be used for all types of applications, and affords
the programmer complete freedom in adapting special program-
ming techniques to his specific needs. This paper discusses a
macro language that programmers can invoke to reduce AL
programming effort and shorten A1 source programs.

With the aid of the macro language,* any sequence of AL
statements can be “summarized”’ into a single macro definition.®
Once prepared, this definition may be stored and referred to at
any time. In each case, only a single statement, a macroinstruction,®
is written by the programmer. In using macroinstructions,
the programmer retains access to all machine facilities; each
macroinstruction is expanded into individual An statements in
a predetermined way, and the programmer can intermingle macro-
instructions and AL statements.

Systematic employment of macroinstructions simplifies the
coding of programs, reduces the frequency of programming errors,
and encourages the use of carefully standardized sequences of
AL statements for routine functions such as subroutine linkage.
Because the programmer has to code fewer lines, fewer source
cards are used. Since the programmer often suppresses the listing
of generated AL statements when writing in macro language, only

IBM SYSTEMS JOURNAL * VOL. 5 * NO. 2 - 1966



fragments of the total program listing require review. Computer
throughput on macro assemblies is thus improved by the reduced
volume of printing.

Each macroinstruction is expanded by the macro generator into
a sequence of AL statements, the exact sequence being governed
by the corresponding macro definition. The generated AL state-
ments are then processed like any other AL statements: the basic
assembly program translates them into machine-language in-
structions, assigns storage locations, and performs auxiliary func-
tions necessary to produce an executable machine-language
program.

An additional facility, called conditional assembly, allows the
programmer to specify AL statements which may or may not be
generated, depending upon certain programmer-controlled condi-
tions. These conditions are usually tests of values, which may be
defined, set, changed, and tested during the course of the assembly
itself. By design, conditional assembly may be used independently
of macroinstructions, as well as with macroinstructions.

A major objective in the design of the macro language was
the inclusion of the most successful features of prior macro
languages, as long as these features were not contradictory. It was
felt that most macroinstruction formats from prior languages
should be acceptable to the sysTEM/360 macro generator. To retain
further continuity with the past, macroinstructions should be
expandable, if possible, into one-for-one statements (one AL state-
ment for one machine instruction) that are functionally equivalent
to one-for-one statements in prior assembly languages.

Some additional design objectives were:

s Magcro definitions should be simple in syntax and only require
a small number of distinet facilities. ;

o The macro language should be a nucleus language that meets
the linguistic needs of most users, but can be enlarged to ac-
commodate specialized requirements.

o Marginally useful facilities whose implementation would re-
quire excessive amounts of main storage should be excluded.

s Assembly speeds should be excellent for simple source pro-
grams and acceptable for complex source programs.

The macro language

When writing a program in SYSTEM/360 macro language, two
categories of macroinstructions may be used:

System macroinstructions. These instructions correspond to system
macro definitions available in the systems library. Such macro
definitions (also called library macro definitions) for standard
instruction sequences have been prepared by iBm and can be
supplemented by the user. These definitions are available for
unlimited use in any number of source programs. Once a macro
definition has been edited into the macro library, it can be used

MACRO LANGUAGE DESIGN FOR SYSTEM/360

design
objectives

macro-
instruction

63



macro

definition

format

64

and reused by writing its corresponding macroinstruction into
source programs.

Programmer macroinstructions. These instructions and their cor-
responding programmer macro definitions are created by the
programmer for certain sequences in a single program as the
need arises. Programmer macro definitions must be placed at
the beginning of the source program so that they can be totally
edited onto one sequential file. For this type of macroinstruction,
the programmer may select his own mnemonic operation codes.
If a programmer macro definition becomes useful for several
applications, it may be entered into the macro library; it then
becomes a library macro definition. There are no format distine-
tions between programmer and library macro definitions.

Most macro generators can retrieve library macro definitions
faster than programmer macro definitions, because the former
are read at high speed from systems residence, whereas the latter
are usually read from a card reader. Thus, use of library macro-
instructions (and definitions) results in faster assembly speeds
and reduced card handling.

In addition to macroinstructions, each source program may
include single AL statements. Such statements, requiring no ex-
pansion, are forwarded by the macro generator without any
substantive change to the basic assembly process.

Every macro definition consists of the following sequence of
statements:

Header statement

Prototype statement

Declarative statements (optional)

One or more model statements

COPY, MEXIT, and MNOTE statements

Conditional assembly statements
These statements are optional (although model statements
are used in most macro definitions) and may be intermixed
within a macro definition.

5. Trailer statement

Ll e

The header statement (MACRO) identifies the following text of
the program as a macro definition.

The prototype statement specifies the format of the corresponding
macroinstruction and names the symbolic parameters.® The name-
field parameter can be referenced anywhere in the text of the
macro definition. The macro operation code® is the symbol estab-
lishing the correspondence of macro definition to macroinstruction.
The operand field comprises two consecutive strings of symbelic
parameters, each of indefinite (possibly null) length. Positional
parameters are an ordered sequence of variable symbols® delimited
by commas. Positional operands (in relevant macroinstructions)
correspond to positional parameters by their left-to-right order,
Omitted operands are designated by back-to-back commas; a

D. N. FREEMAN




Table 1 Keyword parameters for file-definition macroinstructions

Name Operation Operand

FILEA DTFCD DEVICE =2540,
RECFORM =FIXUNB
IOAREA1=BUFFER1

trailing string of such commas may be omitted from a macro-
instruction. Keyword parameters are an unordered sequence of
variable symbols, such as &KEYPAR1 and &KEYPAR?2 in the
following prototype statement:

&MN MOP &PSPARL,: - -,
&PSPARN,&KEYPARI=VALUEL&KEYPAR2=VALUE2

where
&MN is the name-field parameter
MOP is the macro operation mnemonic

&PSPARI1 is the first positional parameter
&PSPARN s the last positional parameter
&KEYPARL is one keyword parameter
&KEYPAR2 is another keyword parameter

In the corresponding macroinstructions, keyword operands need
be furnished only if the standard values (as furnished in the proto-
type statement of the macro definition) are to be overridden. Thus,
the number of required keyword operands is usually far less than
the number of keyword parameters. Furthermore, keyword
operands may be written in any order, in contrast to the strict
order dependency of positional operands.

Since positional operands are briefer, they are commonly used
in ¢mperative macroinstructions. For example,

GET FILEA,WORKAREA
FETCH PHASEL

use positional operands FILEA, WORKAREA, and PHASE1. For
file-definition macroinstructions, keyword parameters are prefer-
able. An example for the 16K basic operating system of sysTEM /360
is given in Table 1; here, some or all of the keyword operands
can be omitted if they assume standard values.

Immediately following the prototype statement are the global
(GBL) and local (LCL) statements that declare all counters (SETA
variables), switches (SETB variables), workboxes (SETC variables),
and their associated dimensions (if any). These declarative state-
ments serve three functions: (1) They identify variable symbols
to the macro generator (facilitating the detection of subsequent
misspellings). (2) They distinguish local SET variables from global

MACRO LANGUAGE DESIGN FOR SYSTF]M/360

65



SET
statements

66

SKET variables. Local SET variables are reset each time the macro
definition is used: local SETA variables—often used as loop
counters—are reset to 0; local SETB variables are reset to 0; and
local SETC variables are reset to zero-length character strings.
Local SET variables have transitory main-storage requirements
during macro generation, i.e., they appear when relevant, and
vanish when irrelevant. Global SET variables permit communica-
tion among macroinstructions and between macroinstructions and
the main-line program. They are more versatile than symbolic
parameters, which only communicate values from macroinstruc-
tion fo macro definition. (3) GBL and LCL statements permit
the programmer to dimension his SET variables for subsequent
indexed references. Thus, the macro generator acquires the familiar
advantages of any syntax with indexing: e.g., reduction of total
program size, increased speed of reference.

Model statements® may be copied unchanged into the generated
text; or any desired portion(s) of their name, operation, or operand
fields may be replaced with character strings. Portions to be
replaced are represented by variable symbols—symbolic param-
eters, SET variables, or system variable symbols. Generated
model statements are in fact the AL statements appearing in the
final assembled program.

Macroinstructions themselves may be used as model state-
ments, in which case they are called inner macroinstructions. Quler
macronstructions are those used in the main program; they are also
called level-1 macroinstructions. Level-2 macroinsiructions are those
used in level-1 definitions, ete.

COPY statements are used to copy AL statements (and/or
macro language statements) from a system library into a macro
definition or main program. MEXIT statements terminate proc-
essing of a macro definition. MNOTE statements generate error
messages when the rules for writing a particular macroinstruction
are violated; they also may be used to generate other in-line
commentary to the user.

The three functions of the conditional-assembly statements® are:
(1) to facilitate elegant, concise representations of the model
statements; (2) to generalize a single set of model statements
to serve a wide range of operand formats in different macro-
instructions;” and (3) to permit the macro definition writer to
validate macroinstruction operands.

The trailer statement (MEND) indicates the end of a macro
definition. Like MEXIT, it also terminates processing of a macro
definition.

One of the significant facilities of the sysTEM/360 macro
language is the SET statement, which assigns a new value to a
variable symbol. Three examples of SET statements are:

&SUMBOX SETA 3 (assign a count of 3 to a sumbox)
&SWITCH SETB 1 (set a switch to TRUE)
&STRING SETC ‘ABC’ (insert a character string into a workbox)

D. N. FREEMAN



Table 2 ADDVEC usage

Name Operation Operand Notes
Macro definition MACRO 1
&MN ADDVEC &PAR1, &PAR2 2
LCLA &COUNT 3
&MN L 0, &PAR(1) 4
.LOOP A 0, &PAR1 (&COUNT+2) 5
&COUNT SETA &COUNT +1 6
AIF (&COUNT LT N'&PAR1—1).LOOP 7
8T 0, &PAR2 8
MEND 9
Macroinstruction ADDVEC (OPD1, OPD2, ---, OPDN), SUM
Generated L 0, OPD1
AL statements A 0, OPD2
A 0, OPDN
ST 0, SUM
Notes:
1. Macro-definition header
2. Prototype statement, defining two positional parameters (the first is subsequently used as a sublist parameter)
3. Declaration of a local SETA variable, initial value of 0
4, Model statement with generated name-field symbol; also references first sublist operand
5. Beginning of loop, which generates as many ADD instructions as there are sublist operands
6. Increase counter
7. Loop back if counter is less than remaining number of sublist operands
8. Model statement
9. Macro-definition trailer statement

The name field of each SET statement contains a (possibly sub-
scripted) SET variable, which may be local or global as declared
at the beginning of the macro definition.

The three principal uses of SETA variables are as follows:
(1) to build length fields and numeric suffixes in generated state-
ments, (2) to index over other variable symbols, and (3) as loop
counters during the repeated generation of statements. (See
Table 2 for sample uses of a SETA variable.) The operand field
of a SETA statement may be as simple as in the first example
above, or it may be a compound arithmetic expression (like those
of FORTRAN 1V) defined by the four arithmetic operators and the
following operands: (1) self-defining values, e.g., integers and
character constants; (2) symbolic parameters, plus the length,
sealing, number, and count attributes of the referenced macro-
instruction operands; and (3) other SET variables.

SETB variables are used principally as switches; ordinarily,
they are set, reset, and tested in several different statements of

MACRO LANGUAGE DESIGN FOR SYSTEM/360 67



AIF, AGO,
and ANOP
statements

sublists

68

a macro definition. They are a convenience rather than a necessity,
i.e., the corresponding logical expressions could be written out
at each point of reference.

The operand field of a SETB statement may be as simple as
0 (false) or 1 (true), or it may be a complex logical expression
built from arithmetic and character relations. The relational op-
erators are those of rorTRAN 1V (although they require no de-
limiting dots):

EQ NE LT LE GT GE

which mean =, #, <, <, >, >, respectively. The logical operators

—1
are:
AND OR NOT

Logical expressions testing macroinstruction operands and
global SET variables can be used to determine which model state-
ments should or should not be generated.

SETC variables have two principal functions: (1) to analyze
piecemeal the operand fields of macroinstructions, and (2) to
build symbols in generated statements.

The operand field of a SETC statement may contain: (1) a
character string, (2) a symbolic parameter, (3) another SET
variable, (4) a concatenation of character strings and variable
symbols, or (5) a substring of (1) through (4), i.e., a string
of n characters from the total string, beginning with the mth
character.

The single conditional branch in the macro language is AIF,
which tests a logical expression and skips at generation time to
the statement bearing a certain sequence symbol if the expression
is true. This is shown in Table 2.

The AGO statement branches unconditionally.

Sequence symbols may be written in the name fields of most
assembler statements and macro definition statements. They serve
only as reference points for ATF and AGO statements; they are
blanked out of the generated statements, since they are irrelevant
to the basic assembly process.

The ANOP statement is analogous to the CONTINUE statement
of FORTRAN; its sole use is as a reference point for statements
whose name fields are pre-empted by symbols or variable symbols.

Although macroinstructions normally contain lists of scalar
operands, it is sometimes convenient to define a vector operand.
In the macro language, a vector operand is called a sublist. The
macro definition can access elements of a sublist by subsecripting
the corresponding symbolic parameter. The ADDVEC macro-
instruction, for example, can generate a variable number of
instructions using only a single subscripted parameter to reference
the sublist operands. Notice the use of a SETA variable both
as a loop counter and as a subscript in the ADDVEC macro defini-
tion of Table 2.

D. N. FREEMAN



There are three system variable symbols with highly specialized
functions. The values of the three—&SYSLIST, &SYSECT, and
&SYSNDX—are automatically set by the macro generator as each
macroinstruction is expanded. Symbol &SYSLIST(n) is an alias
for the nth parameter of the prototype statement; thus, indexing
is possible over the operand list of a macroinstruction. Symbol
&SYSECT saves the name of the current control section during
the expansion of each macroinstruction. Macro definitions often
switch control sections between model statements; such definitions
usually resume the original control section before returning to
the main-line program, using the following sequence:

&SYSECT CSECT
MEND

The symbol &SYSNDX tallies the total number of macroinstruc-
tions. Its principal use is to concatenate unique numeric suffixes
onto symbols generated by the same macro definition at different
points in a single program.

The macro generator

The term ‘“‘macro generator’” denotes the initial phases of each
SYSTEM/360 assembler having macro capabilities. It recognizes
macroinstructions, retrieves the corresponding macro definitions,
and generates suitable AL statements prior to the basic assembly
process.

Another principal function is the conditional assembly of state-
ments, i.e., varying the number and format of the generated
statements. This occurs both during the expansion of macro
definitions and also as an independent facility.

The sysTEM/360 macro generator is a character-manipulation
facility only slightly biased towards the instruction formats and
data types of the assembler language. It does not interact with
the assignment of location values to symbols. During assembly,
control does not alternate between macro generator and the basic
assembly process. Instead, the sysTEM/360 macro generator com-
pletely transforms a source program into AL statements before
location values are assigned.

One important reason for this syntactical restriction has been
to improve generation speeds. The groups implementing sYSTEM /360
macro generators have isolated the following system parameters
that significantly influence generator speed and design: main-
storage size, file-storage speed and access method, and the number
of utility files available to the macro generator. (The speed of
main storage and the central processing unit influence the speed
of macro generators, but generally not their design.) These pa-
rameters are now discussed in reference to the implementation
on 16K-64K systems.

The most significant parameter affecting macro generator and
assembler design has been the main-storage size. In a system
with limited main storage, each phase can perform only a few

MACRO LANGUAGE DESIGN FOR SYSTI’?M/Z%GO

system
variable
symbols

influence
of system
parameters

main-storage
considerations

69



file
considerations

generator
strategies

70

processing functions on the text of the source program. Useful
activity per statement (i.e., other than merely copying text) is
necessarily low. Even if additional main storage is made available,
most orthodox algorithms can only allocate the additional main
storage to symbol tables (reducing the number of iterations per
phase) or to 1/0 buffers, permitting an improved balance between
1/0 and computation. Phase re-combination would constitute a
truly distinct large-system algorithm.

For tape systems, the number of drives determines the number
of utility files; in general, there is no advantage in stacking
several logical files on one tape reel. Also, each logical file requires
a file-definition control block of non-trivial size. Therefore, small
macro assemblers cannot profitably use more than three or four
tape drives, lest their limited main storage be siphoned off into
1/0 buffers and file-definition blocks of marginal utility. On the
other hand, two tape drives are insufficient for macro generation:
in addition to the two drives from which the text is copied back
and forth, a non-trivial file of macro definitions must be available
on a third drive.

The 8K tape assembler uses tape systems residence and two
tape utility files, the 16K tape assembler three tape utility files.
Currently, tape systems residence is not available for any larger
assemblers. Larger systems with direct-access storage devices
(pasp) always use Dpasp residence to achieve flexibility and
to improve system performance. The intermediate and large macro
assemblers use three utility files; if systems residence is on disk
(or other pasp), the three utility files may be (1) all on disk
(either the systems-residence drive or other drives), (2) all on
tape, (3) two on tape and one on disk, or (4) vice versa. Thus,
at most four algorithms are needed to serve the different possible
tape/disk configurations.

The tactical difference of configuration 2 from the pure-tape
configuration is only minor. On disk systems, several logical files
can consist of tracks allocated to a single drive; the total number
of logical files is potentially unlimited. However, each logical file
requires a file-definition block, just as in the case of tape. Further-
more, processing time may be wasted if too many files are defined
on a single disk drive, since Seek commands must be issued to
reposition read/write heads on the proper cylinders. This explains
the limitation to three utility files on a disk system.

There are four macro assemblers for small-to-intermediate
SYSTEM /360 configurations, identified in the sequel by the main stor-
age size (i.e., 8K, 16K, 32K, or 64K) for which they are intended.

The resident tape for the 8K macro assembler contains not
only the program phases, but also the file of library macro de-
finitions in pre-edited form. Thus, the basic ‘“merge” operation
of macro generation—macro definitions against source text to
produce generated text—uses all three tapes in the system. (Three
tapes are needed for many other commercial applications.) Sys-
tems with less than three tapes (and no disk storage) have no

D. N. FREEMAN



macro language support. The 8K macro assembler does not allow
programmer macro definitions; all definitions must be edited into
the systems library prior to their use.

The 8K macro language is a subset, although a fairly large
one, of the full language: SET symbols are limited in number
and completely stylized in format. Parameter sublists are not
permitted, and attributes are not available for symbols used
during macro generation.

The remainder of the implementation discussion is restricted
to the techniques of the 16K, 32K, and 64K macro generators
for the respective operating systems of sysTtEm/360. These macro
assemblers use many common tactics and implement the full
SYSTEM/360 language, with a few minor exceptions in the 16K
assembler. In a tape-oriented environment, they require three
utility files; in many cases, system residence need be searched
only once for library macro definitions, which are then edited
onto the third utility tape. This reduces tape-searching on system
residence to a minimum. In a disk-oriented environment, this
same tactic is used; macro generation uses disk utility files serially
rather than randomly to reduce arm motion as much as possible.

During macro generation, the physical address of each edited
macro definition is held in main storage, i.e., a tape block count
or a disk track-and-record address. As source text is read during
the generation phase, macroinstructions are intermittently en-
countered; the address directory is consulted at each encounter,
and the file of edited definitions is positioned to the text of the
corresponding definition. The definition is then “merged” into
the generated text as a purely sequential operation with the
following exceptions: (1) AIF and AGO statements force forward
and/or backward skips within the macro definition, and (2) when-
ever an inner macroinstruction is encountered, the edited file
must be spaced to the corresponding text of the inner macro
definition; when text from the latter is completely generated,
processing of the outer macro definition resumes from the point
of interruption.

In these small-memory systems, the key tactic has been to
edit macro definition text—and conditional assembly statements
in the main program—into formats requiring minimum processing
during statement generation. (If any substantial interpretation
and scanning activities had been deferred until the generation
phases, the program logic for interpretation, scanning, and condi-
tional assembly would have far exceeded available main storage.)
Since conditional assembly and statement-generation logic just
fit into available memory, the edited format must be easy to
interpret and without redundancy—single-byte operators and
two-byte operand pointers, for example.

Thus, one or more phases of text editing are required before
generation on the 16 K-64K macro assemblers. The conversion
of symbols and variable symbols into operand pointers is a major
task—as in most language translators using such a tactic. During

MACRO LANGUAGE DESIGN FOR SYSTEM/ 360

71



dictionaries

72

this conversion, statement syntax is thoroughly checked and
attributes are collected for symbols that are used during program
generation.

Various dictionaries (i.e., generalized symbol tables) are ac-
cumulated and interrogated during this symbol conversion: each
macro dictionary accumulates the local variable symbols and
sequence symbols for a single macro definition. The main dictionary
accumulates this information plus attribute information for the
main program. The global dictionary records all global variable
symbols and macro operation codes. Thus, the global dictionary
is relevant to all macro definitions and the main program; other
dictionaries have restricted context. This division of the editing
process into independent activities substantially reduces the ag-
gregate time for editing all definitions and the main program.

Fach dictionary for the 16K and 32K systems contains 16K
bytes of two-level storage for symbols and their attributes, whereas
the 64K generator builds a combined global/local dictionary. If
less main storage is available for a dictionary (which is the normal
situation for small systems), its currently accumulating segments
are carried in main storage and the remainder in fixed-length
segments on a utility file. However, program logic using each
dictionary is unaware of this segmentation, since the routine
servicing the dictionary retrieves any out-of-main-storage seg-
ments as needed. The segment number and the within-segment
position of an entry are linear functions of the segment length.

To minimize the number of segment retrievals from the utility
file, backward chaining of synonymous entries is used in the
macro generators. This procedure ensures that the most recently
entered synonyms are in main storage (or in ‘“nearby” segments
on the utility file). Symbols are entered and retrieved from each
dictionary by a key-transformation technique.®

As the main dictionary is built, certain symbols are defined
prior to references in macroinstruction operands; other symbols
are referenced before they are defined; still other symbols are
irrelevant to macro generation. Therefore, the smaller macro
generators accumulate a list of relevant symbols on one text pass;
the attributes for relevant symbols are collected on a subsequent
pass.

After each dictionary is complete (e.g., after editing a single
macro definition), its extraneous material can be discarded and
the dictionary telescoped to a fraction of its original size. Much
extraneous material is accumulated in s dictionary during the
editing phases: the character representation for each symbol is
itself useless during generation, since all attributes are accessed
by pointers; the chain links used for synonymous entries in the
dictionary are clearly useless; and certain attributes required for
editing are not needed during the generation phases. This data
reduction activity conserves much main storage for the generation
phases—a crucial consideration.

Accessing information in the telescoped dictionary requires

D. N. FREEMAN



virtual pointers. As each symbol is entered during the editing
phases, the position of the corresponding telescoped-dictionary
entry can be predicted with complete accuracy. This position is
thus the virtual pointer for this symbol, which is inserted into
the edited text at each point of reference.

Although the 16K, 32K, and 64K macro generators have
different phase structures, they perform the same six functions
described below. The smaller generators collect all program and
macro definition text before commencing to edit it; the larger
generator completely edits source program text at first encounter.
The collection of attributes also differs somewhat among the
generators.

The following discussion approximates the flow of the 64K
macro generator:

Step 1 — Initiate the macro assembly. Subsequent steps are in-
itialized to reflect the assembly-time environment. All available
main storage is requested from the control program, dictionaries
and other tables are initialized, and the System Input file is opened.
If programmer macro definitions are present, control passes to
Step 2, otherwise to Step 3.

Step 2 — Edit the programmer macro definitions. Fach definition is
edited as follows:

(1) All variable symbols are replaced by ordered pairs of flags
and virtual pointers. All symbolic parameters have one flag byte;
all local unsubscripted SETA variables have a different flag byte;
all system variable symbols have still another flag byte, and
so forth. Thus, each two-byte pointer references a table identified
by the preceding flag byte.

(2) All operation codes are looked up, and certain pseudo-
operations, such as COPY, are immediately performed.

(3) Whenever a conditional-assembly statement is encoun-
tered, its operand field is completely edited to virtual pointers
and arithmetical/logical operators.

(4) All sequence symbols are associated with five-byte file
addresses in the macro dictionary: three bytes identify the phys-
ical record in which each sequence symbol is defined, and two
bytes point to its relative position within the record. Tach ref-
erence to0 a sequence symbol is converted to a virtual pointer
to its dictionary entry.

Global pointers in the macro definition text refer to tables
accumulated without Interruption during Steps 2 through 4.
Global pointers are necessary for macro operation codes and
global SET symbols.

After each macro definition is fully edited, its dictionary is
telescoped (as described in the above discussion of virtual pointers),
then written onto a utility file just after the corresponding edited
text.

MACRO LANGUAGE DESIGN FOR SYS’I‘EM/360

virtual
pointers

generator
flow

73



74

Step 8 — Edit the main program. Main-program statements are
edited exactly as are macro definition statements. However,
attributes must be collected for all ordinary symbols relevant
to macro generation and conditional assembly. Each such symbol,
together with its attributes, is entered into the main dictionary.
Each generation-time reference to a symbol is tagged with the
corresponding virtual pointer to the main dictionary. At the end
of Step 3, the main-program text file is re-positioned to its initial
record, e.g., rewound if on tape. This is, of course, the principal
input to the generation phases. The associated main dictionary
is telescoped and written onto a different utility file.

Step 4 — Edit the system macro definitions. During Steps 2 and 3,
certain operation codes are detected as ‘“undefined.” In an error-
free source program, these operation codes must correspond to
system macro definitions. Rather than immediately match each
undefined operation code against the directory of system macro
definitions, Steps 2 and 3 merely collect these names. Step 4
retrieves all requested definitions from the system library. Each
definition is edited into the same format as that of Step 2. Since
level-1 macro definitions may contain level-2 macroinstructions,
the list of ‘“undefined’” operation codes lengthens and contracts
as level-1 system definitions are edited. After all level-1 definitions
have been edited, any remaining undefined operation codes are
looked up during a second scan through the macro-definition
library. This process continues until either no undefined operation
codes remain or none of the remainder are found during the
preceding scan. Each remaining undefined code is treated as an
assembly error. As in Step 2, each dictionary is telescoped and
written after the associated text.

Step &6 — Initialize the main storage for generation. The telescoped
main dictionary is read back into core. Also, the global dictionary
is read back, and core storage is alloecated for its global SET
variables, which are set to their initial values (“0” for SETA and
SETB variables, ‘“‘empty’’ for SETC variables).

Step 6 — Generate and conditionally assemble the program. Steps 2
through 4 require one to three passes of the source text, depending
upon the particular generator; Step 6 performs the last source-text
pass of macro generation. At the end of Step 6, the program has
been completely converted into AL statements.

The edited main program is read from Utility File 1, and gen-
erated statements are written onto Utility File 2, which is now
empty and re-positioned. Main-program conditional assembly is
performed as encountered, i.e., for all SET, AIF, and AGO state-
ments. As each macroinstruction is encountered, the dictionary
for the corresponding macro definition is retrieved from Utility
File 3. This dictionary, in turn, points to the text of the macro
definition just preceding it on the same file. Expansion of the
macro definition is then performed using:

D. N. FREEMAN



1. The telescoped main dictionary—furnishing attributes for
macroinstruction operands, ete.

2. The telescoped macro dictionary—furnishing sequence-symbol
addresses, ete.

3. Macro definition text segments—containing virtual pointers

to Items 2, 4, and 5

Local-SET-variable values

5. Global-SET-variable values

w~

After each definition has been expanded, Items 2 through 4
may be overlaid. Thus, there are two permanent data areas during
Step 6 (Items 1 and 5) and three transient data areas (Items 2

“through 4). When an inner macroinstruction is encountered, its
dictionary is retrieved from Utility File 3. When the inner macro-
instruction has been expanded, its three transient areas are freed
and generation resumes from the outer macro definition. Thus,
macro dictionaries and local-SET-variable values are allocated
last-in first-out storage; more storage is required as the depth
of “nesting” increases.

The reading, rereading, and repositioning of Utility File 3
is performed with reasonable speed, since the volume of informa-
tion is small in view of the edited macro definition text and the
telescoped dictionaries; required are perhaps one or two cylinders
on a disk drive or a few feet of magnetic tape.

The key characteristic of Step 6 is retention of read-only
data on secondary storage until required in the expansion of
macroinstructions. Such data includes standard parameter values,
symbol attributes, and various positional data. Large-system
macro generators have traditionally kept this data resident in main
storage; the 16.K—64K macro generators cannot afford this luxury.
However, random retrieval-—even from magnetic tape—does not
seriously degrade throughput.

Summary comment

The goal of sYsTEM/360 machine architecture—to describe a single
computer system with the widest possible applicability—has its
counterpart in the design of a single assembler language. Small-
machine users can assemble on larger systems whenever the latter
must be used, e.g., when an overflow load is shifted to a service
installation. There is a single language syntax for all but the
smallest systems; large-machine users can multiprogram assembly
jobs with other jobs, selecting the assembler that is appropriate
to their main-storage and file-storage resources. All users benefit
from a single language and a single set of diagnostics.

The macro definition and conditional assembly functions that
supplement the basic language are summarized in Table 3. These
do not modify the character of the assembler language, but
provide a systematic means whereby a user can expand the
assembler language by creating macroinstructions.

MACRO LANGUAGE DESIGN FOR SYSTEM/SGO

75



76

Table 3 Macro definition and conditional assembly facilities

Operation
Code Function

ACTR Limits the number of conditional and unconditional branches
AGO Unconditional branch
ATF Conditional branch
ANOP No operation
COPY Copy source statements
GBLA Declare a global counter
GBLB Declare a global switch
GBLC Declare a global workbox
LCLA Declare a local counter
LCLB Declare a local switch
LCLC Declare a local workbox
MACRO Begin a macro definition
MEND End a macro definition
MEXIT Terminate generation of code from a macro definition
MNOTE Notify the programmer of a macroinstruction usage error
SETA Set counter variable to new (positive or negative) value
SETB Set, switch variable to 0 or 1
SETC Set workbox to new character value
ACKNOWLEDGMENT

The author acknowledges with pleasure the contributions of
SYSTEM /360 assembler development groups in the Endicott, Pough-
keepsie, and San Jose SDD laboratories. The following persons
contributed especially to the language design: A. Lichtman,
T. Ragland, H. W. Schmid, Jr., and 8. . Zimmerman, Jr. Groups
under J. R. Walters, Jr., and 1. A. Tjomsland completed the
16 K-64K implementations, which were initiated by the author
and his colleagues. Many of the implementation techniques were
suggested in G. H. Mealy’s GAS monograph.’

CITED REFERENCES AND FOOTNOTES

1. G. H. Mealy, “The functional structure of 0s/360, Part I, Introductory
survey,”” IBM Systems Journal 5, No. 1, 3-11 (1966).

2. IBM Operating System /360, Assembler Language, C28-6514, 18M Data
Processing Division, White Plains, New York.

3. G. A. Blaauw and F. P. Brooks, Jr., ““The structure of sysrem/360, Part I,
Outline of the logical structure,” IBM Systems Journal 3, No. 2, 119-135
(1964).

4. The term “macro’ serves as an abbreviation for “macroinstruction” when
used in combined forms.

5. For the following expressions, the nomenclature for the sYSTEM /360 macro
language departs from previous terminology:

macroinstruction is macro header in 7080 Autocoder language;
macro definition is macroinstruction in 7080 Autocoder language;

symbolic parameter is operand reference in 7080 Autocoder language, sub-
stitutable argument in FAP/MAP;

D. N. FREEMAN



~1

10.

macro operalion code is macro name in 1401,1410 Autocoder language, maero
header operation code in 7080 Autocoder language, macro operation nume
in FAP/MAP;

model statement is Autocoder skeleton in 7080 Autocoder language, prototype
instruction In FAP/MAP;

conditional-assembly statement is pseudo-macroinstruction in 1401/1410 Auto-
coder language, pseudo command in 7080 Autocoder language, SET and
conditional-assembly pseudo-operation in PAP/MAP.

. A variable symbol takes one or more different values during macro genera-

tion, The three categories of variable symbols are symbolic parameters,
SET symbols, and system variable symbols (&SYSNDX, &SYSECT,
&SYSLIST).

. C. J. Shaw!® has pointed out two principal advantages in using macro-

instructions:

(1) The ability to generalize a set of operations using a single data type.
This is accomplished by simple parametric substitution, as shown in a
SYSTEM/360 example:

L 0,0PD11 L 0,0PD21
A O,0PD12 and A O,0PD22
ST 0,SUM1 ST 0,SUM2

may be reduced to

ADD OPD11, OPD12, SUM1 and ADD OPD21, OPD22, SUM2
respectively.

(2) The ability to generalize a single verb (i.e., macro operation) over a
variety of data types. This requires both parametric substitution, availa-
bility of data attributes, and the ability to test these attributes:

L 0O,0PD11 LH 0,0PD31
A 0,0PD12 and AH 0O,0PD32
ST O,SUM1 STH O,SUMS3

may be reduced to

ADD OPD11, OPD12, SUM1 and ADD OPD31, OPD32, SUM3
respectively. This second capability is a powerful extension of the first.
Any macro generator with this feature furnishes certain functions char-
acteristic of procedure-oriented languages, e.g., FORTRAN: a small repertoire
of verbs interrogates the data structures of the program to determine what
machine instructions should be generated. The 7080 Autocoder contains
such a macro generator, whose user acceptance has encouraged wider
use of macros on other systems. The sysTiM/360 macro language includes
many of these attribute-interrogation features.

. W. Buchholz, “File organization and addressing,” I BM Systems Journal 2,

86-111 (June 1963).

. G. H, Mealy, GAS: A Generalized Assembly System, Rand Corporation

Memorandum 3646, August 1963,

C. J. Shaw, unpublished critique of XPQOP, System Development Cor-
poration, March 13, 1964. See also M. Halpern, “XPOP: a metalanguage
without metaphysics,” Proceedings of the Fall Joint Computer Conference,
1964.

MACHO LANGUAGE DESIGN FOR SYSTEM//ZZG()

77





