
The  macro  language  design  discussed in this  paper  provides a 
systematic  means  by  which the S Y S T E M / ~ ~ O  assembler-language 
programmer  can develop macroinstructions, thereby expanding the set 
of machine-oriented  instructions  that serve as the basis of the  assembler 
language. 

Also treated i s  the format of macro  dejinitions, the design of a 
macro generator, and the principal  considerations  that governed the 
design of the system as a  whole. 

by D. N. Freeman 

Of several programming languages for IBM SYSTEM/~~O,  the 
Assembler Language (AL) is  closest to  the machine language 
in form and c~n ten t . "~  Because AL enables the programmer to use 
all SYSTEM/360 facilities as directly as if he were  coding in machine 
language, AL can be used for all types of applications, and affords 
the programmer complete freedom in  adapting special program- 
ming techniques to his specific  needs. This  paper discusses a 
macro language that programmers can invoke to reduce AL 
programming effort and  shorten AL source programs. 

With  the aid of the macro l ang~age ,~  any sequence of AL 
design statements can be ('summarized'' into a single macro deJ in i t i~n .~  
principles Once prepared, this definition may be stored  and referred to at 

any  time. In  each case, only a single statement,  a macroins tr~c t ion ,~  
is written  by  the programmer. In  using macroinstructions, 
the programmer retains access to all machine facilities; each 
macroinstruction is expanded into  individual AL statements  in 
a predetermined way, and  the programmer can intermingle macro- 
instructions and AL statements. 

Systematic employment of macroinstructions simplifies the 
coding of programs, reduces the frequency of programming errors, 
and encourages the use of carefully standardized sequences of 
AL statements for routine functions such as subroutine linkage. 
Because the programmer has  to code  fewer lines, fewer source 
cards are used. Since the programmer often suppresses the listing 
of generated AL statements when writing in macro language, only 
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fragments of the  total program listing require review. Computer 
throughput on macro assemblies is thus improved by  the reduced 
volume of printing. 

Each macroinstruction is expanded by  the macro generator into 
a sequence of AL statements,  the exsct sequence being governed 
by the corresponding macro definition. The generated AL state- 
ments  are  then processed like any other AL statements:  the basic 
assembly program translates  them  into machine-language in- 
structions, assigns storage locations, and performs auxiliary func- 
tions necessary to produce an executable machine-language 
program. 

An additional facility, called conditional  assembly, allows the 
programmer to specify AL statements which may or may  not be 
generated, depending upon certain programmer-controlled condi- 
tions. These conditions are usually test's of values, which may be 
defined, set, changed, and  tested  during the course of the assembly 
itself. By design, conditional assembly may be  used independently 
of macroinstructions, as well as with macroinstructions. 

A  major objective in the design of the macro language was design 
the inclusion of the most successful features of prior macro objectives 
languages, as long as these features were not  contradictory. It was 
felt that most macroinstruction formats from prior languages 
should be acceptable to  the S Y S T E M / ~ ~ O  macro generator. To  retain 
further  continuity  with the  past, macroinstructions should be 
expandable, if possible, into one-for-one statements (one AL state- 
ment for one machine instruction) that  are functionally equivalent 
to one-for-one statements in prior assembly languages. 

Some additional design objectives were: 

Macro definitions should be simple in  syntax  and only require 
a small number of distinct facilities. 
The macro language should be a nucleus language that meets 
the linguistic needs of most users, but can be enlarged to ac- 
commodate specialized requirements. 
Marginally useful facilities whose implementation would  re- 
quire excessive amounts of main  storage should be excluded. 
Assembly speeds should be excellent for simple source pro- 
grams and acceptable for complex source programs. 

The macro language 
When writing a program in SYSTEM/360 macro language, two macro- 
categories of macroinstructions may be used: instruction 

System  macroinstructions. These instructions correspond to system 
macro definitions available in the systems library. Such macro 
definitions (also  called library macro definitions) for standard 
instruction sequences have been prepared  by IBM and can be 
supplemented by the user. These definitions are available for 
unlimited use in  any  number of source programs. Once a macro 
definition has been edited  into the macro library, it- can be used 
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and reused by  writing its corresponding  macroinstruct.ion  int,o 
source programs. 

Programmer  macroinstructions. These  instructions  and  their cor- 
responding  programmer  macro definitions are  created  by  the 
programmer for certain sequences in a single program  as  the 
need arises. Programmer  macro  definitions  must be placed at 
the beginning of the source  program SO that  they  can be  totally 
edited  onto one  sequential file. For  this  type of macroinstruction, 
the programmer may select his own mnemonic operation codes. 
If a programmer  macro  definition becomes useful for  several 
applications, it  may  be  entered  into  the macro library;  it  then 
becomes a library  macro  definition.  There are no format distinc- 
tions between  programmer and  library macro definitions. 

Most  macro  generators  can  retrieve  library  macro  definitions 
faster than programmer  macro definitions, because the former 
are  read at high speed from  systems residence, whereas the  latter 
are usually  read  from a card  reader.  Thus, use of library macro- 
instructions  (and definitions) results  in  faster  assembly  speeds 
and reduced  card  handling. 

I n  addition  to macroinstructions,  each  source  program may 
include single AL statements. Such statements, requiring  no ex- 
pansion, are forwarded by  the macro  generator  without  any 
substantive change to  the basic assembly process. 

Every macro definition consists of the following sequence of 
macro statements : 
definition 
format 1. Header  statement 

2 .  Prototype  statement 
3. Declarative  statements  (optional) 
4. One or more model statements 

COPY, MEXIT, and MNOTE statements 
Conditional  assembly  statements 

These statements  are  optional  (although model statements 
are used in  most  macro  definitions)  and  may  be  intermixed 
within a macro  definition. 

5 .  Trailer  statement 

The header statement (MACRO) identifies the following text of 
the program as a macro  definition. 

The prototype  statement specifies the  format of the corresponding 
macroinstruction  and  names the symbolic p ~ r a m e t e r s . ~  The  name- 
field parameter  can be referenced anywhere  in the  text of the 
macro  definition. The naacro operation code5 is the symbol  estab- 
lishing the correspondence of macro  definition to macroinstruction. 
The operand field comprises two  consecutive  strings of symbolic 
parameters,  each of indefinite (possibly null)  length. Positional 
parameters are  an ordered  sequence of variable symbols6 delimited 
by c0mrna.s. Positional  operands (in relevant  macroinstructions) 
correspond to  positional  parameters by  their left-to-right  order. 
Omitted  operands  are  designated by back-to-back  commas; a 
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Table 1 Keyword  parameters  for  file-definition macroinstructions 

Name  Operation  Operand 

I FILEA IITFCD DEVICE =2640, I 

txailing string of such comn~as may be omitted  from  a macro- 
instruction. Ke!gword parameters are  an unordered  sequence of 
variable  symbols,  such as &KEYPARt and &KEYPAR2 in the 
following prototype  statement: 

&MN  MOP &PSPARt,. * * , 
&PSPARN,&KEYPARt  =VALUEt,&KEYPAR2=VALUE2 

where 

&MN is the name-field parameter 

&PSPAKl is the first  positional  parameter 
&PSPARN is the  last positional  parameter 
&KEYPARt is one keyword  parameter 
&KEYPAR2 is another keyword parameter 

In  the corresponding  macroinstructions, keyword operands need 
be furnished  only if the standard  values (as  furnished in  the proto- 
type  statement of the macro  definition) are  to be  overridden. Thus, 
the  number of required keyword operands is usually far less than 
the  number of keyword parameters.  Furthermore, keyword 
operands  may be written  in  any order,  in  contrast to  the  strict 
order  dependency of positional  operands. 

Since positiond  operands  are briefer, they  are commonly used 
i n  imperative macroinstructions. For example, 

GET FILEA,WORKAREA 
FETCH PHASEt 

use positional  operands FILEA, WORKAREA, and PHASEt. For 
file-definition macroinstructions,  keyword  parameters are prefer- 
able.  An  example  for the 16K basic operating  system of S Y S T E M ~ B O  

is given  in Table 1 ; here,  some  or  all of the keyword  operands 
can be omitted if they assume standard values. 

Immediately following the  prototype  statement  are  the global 
(GBL) and local (LCL) statements that declare  all  counters (SETA 
variables),  switchcs (HETB variables), workboxes (SETC variables), 
and  their associated dimensions (if  any). These  declarative  state- 
ments serve  three  functions: (1) They identify  variable  symbols 
to  the macro  generator  (facilitating the detection of subsequent 

MOP is the macro  operation mnemonic 
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SET variables. Local variables are reset each time the macro 
definition is used: local SETA variables-often used as loop 
counters-are reset to 0; local SETB variables are reset to 0; and 
local SETC variables are reset to zero-length character  strings. 
Local SET variables have  transitory main-storage requirements 
during macro generation, i.e., they  appear when relevant,  and 
vanish when irrelevant. Global SET variables permit communica- 
tion among macroinstructions and between macroinstructions and 
the main-line program. They  are more versatile than symbolic 
parameters, which only communicate values from macroinstruc- 
tion to macro definition. (3) GBL and LCL statements  permit 
the programmer to dimension his SET variables for subsequent 
indexed references. Thus, the macro generator acquires the familiar 
advantages of any  syntax  with indexing: e.g., reduction of total 
program size, increased speed of reference. 

Model  statements6 may be  copied unchanged into the generated 
text; or any desired portion(s) of their name, operation, or operand 
fields may be replaced with  character strings. Portions to be 
replaced are represented by variable symbols-symbolic param- 
eters, SET variables, or system  variable symbols. Generated 
model statements  are  in  fact  the AL statements  appearing in the 
final assembled program. 

Macroinstructions themselves may be used as model state- 
ments, in which  case they  are called inner  macroinstructions.  Outer 
macroinstructions are those used in the main  program;  they  are also 
called level-1 macroinstructions. LeveLW macroinstructions are those 
used in level-1 definitions, etc. 

COPY statements  are used to copy AL statements  (and/or 
macro language statements) from a  system  library  into a macro 
definition or main program. MEXIT statements  terminate proc- 
essing of a macro definition. MNOTE statements generate error 
messages when the rules for writing a particular  macroinstruction 
are  violated;  they also may be used to generate  other in-line 
commentary to  the user. 

The three functions of the conditional-assembly  statements6 are: 
(1) to  facilitate elegant, concise representations of the model 
statements; (2) to generalize a single set of model statements 
to serve a wide range of operand formats  in different macro- 
instruction~;~  and (3) to permit the macro definition writer to 
validate macroinstruction operands. 

The trailer  statement (MEND) indicates the end of a macro 
definition. Like MEXIT, it also terminates processing of a macro 
definition. 

One of the significant facilities of the S Y S T E M ~ O  macro 
SET language is the SET statement,, which assigns a new value to a 
statements variable symbol. Three examples of SET statements  are: 

&SUMBOX SETA 3 (assign a count of 3 to a sumbox) 
&SWITCH SETB 1 (set a switch to TRUE) 
&STRING SETC ‘ABC’ (insert a character  string into a workbox) 
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a macro  definition. They  are a convenience rather  than a  necessity, 
i.e., the corresponding logical expressions could be  written out 
a t  each  point of reference. 

The operand field of a SETB statement  may be as simple as 
0 (false) or 1 (true),  or it may be a complex logical expression 
built  from  arithmetic  and  character relations. The relational  op- 
erators  are those of FORTRAN IV (although  they  require no de- 
limiting  dots) : 

E& NE LT LE GT  GE 

which mean =, f ,  <, 5,  > , 2,  respectively. The logical operators 

are : 

AND OR NOT 

Logical expressions testing  macroinstruction  operands  and 
global SET variables  can  be used to  determine which model state- 
ments  should or should not  be  generated. 

SETC variables  have  two  principal  functions: (1) to analyze 
piecemeal the operand fields of macroinstructions,  and ( 2 )  to 
build symbols in  generated  statements. 

The operand field of a SETC statement  may  contain: (1) a 
character  string, ( 2 )  a symbolic  parameter, (3) another SET 
variable, (4) a concatenation of character  strings  and  variable 
symbols,  or (5) a  substring of (1) through (4), i.e., a string 
of n characters from the  total  string, beginning  with the mth  
character. 

The single conditional  branch in  the macro  language is AIF, 
AIF, AGO, which tests a logical expression and skips at generation  time to 
and ANOP the  statement bearing a certain sequence symbol if the expression 
statements is true.  This  is shown  in Table 2. 

The AGO statement branches  unconditionally. 
Sequence  symbols may be written  in  the  name fields of most 

assembler statements  and  macro definition statements.  They  serve 
only  as reference points  for AIF and AGO statements;  they  are 
blanked out of the generated  statements, since they  are  irrelevant 
to  the basic assembly process. 

The ANOP statement  is analogous to  the CONTINUE statement 
of FORTRAN; its sole use is as a reference point  for  statements 
whose name fields are pre-empted by symbols  or  variable  symbols. 

Although  macroinstructions  nornlally  cont>ain  lists of scalar 
sublists operands, it is sometimes  convenient to define a vector  operand. 

In the macro  language, a vector  operand is called a sublist. The 
macro definition can access elements of a sublist by  subscripting 
the corresponding symbolic parameter. The ADDVEC macro- 
instruction,  for example, can  generate  a  variable  number of 
instructions using only a single subscripted  parameter  to reference 
the sublist  operands.  Notice the use of a SETA variable  both 
as a loop counter  and as a subscript in the AIIDVEC macro defini- 
tion of Table 2. 
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There are three system variable synibols with highly specialized 
functions. The values of the three-&SYSLIST, &SYSECT, and 
&SYSNDX-are automatically set by the macro generator as each 
macroinstruction is expanded. Symbol &SYSLIST(n) is an alias 
for the nth parameter of the prototype statement; thus, indexing 
is possible over the operand list of a macroinstruction. Symbol 
&sYsECT saves the name of the current control section during 
the expansion of each macroinstruction. Macro definitions often 
switch control sections between model statements; such definitions 
usually resume the original control section before returning to 
the main-line program, using the following sequenve : 

$SYBECT CSECT 
MEND 

The symbol &SYSNDX tallics the total number of macroinstruc- 
tions. I ts  principal use is to concatenate unique numeric suffixes 
onto symbols generated by the same macro definition at  different 
points in a single program. 

The macro generator 
The term “macro generator’’ denotes the initial phases of each 
SYSTEM/BGO assembler having macro capabilities. It recognizes 
macroinstructions, retrieves the corresponding macro definitions, 
and generates suitable AL statements prior to the basic assembly 
process. 

Another principal furiction is the conditional assembly of state- 
ments, i.e., varying the number and format of the generated 
statements. This occurs both during the expansion of macro 
definitions and also as an independent facility. 

The SYSTEM/~BO macro generator is a character-manipulation 
facility only slightly biased towards the instruction formats and 
data types of the assembler language. It does not interact with 
the assignment of location values to symbols. During assembly, 
control does not alternate between macro generator and the basic 
assembly process. Instead, the SYSTEM/~GO macro generator com- 
pletely transforms a source program into AL statements before 
location values are assigned. 

One important reason for this syntactical restriction has been 
to improve generation speeds. The groups implementing SYSTEM/~BO 

macro generators have isolated the following system parameters 
that significantly influence generator speed and design: mnin- 
storage size, file-storage speed and access method, and the numhcr 
of utility files available to the macro generator. (The speed of 
main storage and the central processing unit influence the speed 
of macro generators, but generally not their design.) These pa- 
rameters are now discussed in reference to the implementation 
on 1GK-G4K systems. 

The most significant parameter affecting macro generator and 
assembler design has been the main-storage size. In  a system 
with limited main storage, each phase can perform only a few 



processing functions  on the  text of the source program. Useful 
activity per statement (i.e., other than merely copying t,ext) is 
necessarily low. Even if additional  main  storage is made available, 
most orthodox algorithms can only allocate the additional main 
storage  to symbol tables (reducing the number of iterations per 
phase) or to I/O buffers, permitting an improved balance between 
I/O and computation.  Phase re-combination would constitute a 
truly  distinct large-system algorithm. 

For tape systems, the number of drives determines the number 
file of utility files; in general, there is no advantage  in  stacking 
considerations several logical  files on one tape reel. Also, each logical  file requires 

a file-definition control block of non-trivial size. Therefore, small 
macro assemblers cannot profitably use more than  three or four 
tape drives, lest  their limited main  storage be siphoned off into 
I/O buffers and file-definition blocks of marginal utility. On the 
other  hand, two tape drives are insufficient for macro generation: 
in  addition to  the two drives from which the text is copied back 
and  forth, a non-trivial file of macro definitions must be available 
on a third drive. 

The 8K tape assembler uses tape systems residence and  two 
tape  utility files, the 16K tape assembler three tape  utility files. 
Currently,  tape systems residence is not available for any larger 
assemblers. Larger systems  with direct-access storage devices 
(DASD) always use DASD residence to achieve flexibility and 
to improve system performance. The intermediate and large macro 
assemblers use three  utility files; if systems residence is on disk 
(or other DASD), the three  utility files may be (1) all on disk 
(either the systems-residence drive or other drives), (2) all on 
tape, (3) two on tape  and one on disk, or (4) vice versa.  Thus, 
at most four algorithms are needed to serve the different possible 
tape/disk configurations. 

The tactical difference of configuration 2 from the pure-tape 
configurat,ion is only minor. On disk systems, several logical  files 
can consist of tracks allocated to a single drive;  the  total number 
of logical  files is pot,entially unlimited. However, each logical  file 
requires a file-definition  block, just  as in the case of tape.  Further- 
more,  processing time  may be wasted if too  many files are defined 
on a single disk drive, since Seek commands must be  issued to 
reposition read/write  heads on the proper cylinders. This explains 
the limitation to three  utility files  on a disk system. 

There are four macro assemblers for small-to-intermediate 
generator SYSTEM/360 configurations, identified in the sequel by  the main stor- 
strategies age  size  (i.e., 8K, 16K, 32K, or 64K) for which they  are  intended. 

The resident tape for the 8K macro assembler contains not 
only the program phases, but also the file of library macro de- 
finitions in pre-edited form. Thus, the basic “merge” operation 
of macro generation-macro definitions against source text  to 
produce generated text-uses all  three  tapes in the system.  (Three 
tapes  are needed for many  other commercial applications.) Sys- 
tems with less than  three tapes  (and no disk storage) have no 
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this coIlversioll, stt~lemellt syntax is thoroughly checked ard 
attributes  are collected for symbols that are used during program 
generation. 

Various dictionaries (i.e., generalized symbol tables) are ac- 
dictionaries cumulated and  interrogated  during  this symbol conversion: each 

macro dictionary accumulates the local variable symbols and 
sequence symbols for a single macro definition. The main dictionary 
accumulates this  information plus attribute information for the 
main program. The global dictionary records all global variable 
symbols and macro operation codes. Thus,  the global dictionary 
is relevant  to all macro definitions and  the main program;  other 
dictionaries have restricted  context.  This division of the editing 
process into independent activities  substantially reduces the ag- 
gregate time for editing all definitions and  the main program. 

Each  dictionary for  the 16K and 32K systems contains 1611 
bytes of two-level storage for symbols and their  attributes, whereas 
the 64K generator builds a combined global/local dictionary. If 
less main storage is available for a  dictionary (which is the normal 
situation for small systems), its currently accumulating segments 
are carried in main storage and  the remainder im fixed-length 
segments on a utility file. However, program logic  using each 
dictionary is unaware of this segmentation, since the routine 
servicing the diet,ionary retrieves any out-of-main-storage seg- 
ments as needed. The segment number and  the within-segment 
position of an cntry  are linear functions of the segment length. 

To minimize the number of segment retrievals from the utility 
file, backward chaining of synonymous entries is  used in the 
macro generators. This procedure ensures that  the most recently 
entered synonyms are  in main storage (or in  “nearby” segments 
on the  utility file). Symbols are  entered  and retrieved from each 
dictionary by a key-transformation technique.’ 

As the main dictionary is built,  certain symbols are defined 
prior to references in macroinstruction operands;  other symbols 
are referenced before they  are defined; still  other symbols are 
irrelevant to macro generation. Therefore, the smaller macro 
generators accumulate a list of relevant synzbols on one text pass; 
the  attributes for relevant symbols are collected on a subsequent 
pass. 

After each dictionary is complete (e.%., after  editing a single 
macro definition), its  extraneous  material can be discarded and 
the  dictionary telescoped to a fraction of its original size. Much 
extraneous material is accumulated in a dictionary  during the 
editing phases: the character  representation for each symbol is 
itself  useless during generation, since all  attributes  are accessed 
by pointers; the chain links used for synonymous entries  in the 
dictionary are clearly useless; and certain  attributes required for 
editing  are  not needed during the generation phases. This data 
reduction activity conserves much main storage for the generation 
phases-a crucial consideration. 

Accessing information in the telescoped dictionary requires 
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virtual  pointers. As each symbol is entered  during the editing virtual 
phases, the position of the corresponding  telescoped-dictionary pointers 
entry  can be  predicted  with  complete  accuracy. This position is 
thus  the  virtual  pointer for  this  symbol, which is inserted  into 
the edited  text a t  each  point of reference. 

Although the 16K, 3211, and 64K rn~cro  generators  have 
different  phase  structures, they perform the same six functions 
described below. The smaller  generators collect all program and 
macro  definition text before commencing to  edit  it;  the larger 
generator  completely  edits  source  program text  at first  encounter. 
The collection of attributes also differs somewhat  among the 
generators. 

macro generator: flow 

Step  1 - Initiate the m m w  assembby. Subsequent  steps  are in- 
itialized to reflect the assembly-time  environment. All available 
main  storage is requested  from the control  program,  dictionaries 
and  other  tables  are initialized, and  the Syst’em Input file is opened. 
If programmer  macro definitions are  present, control passes to 
Step 2, otherwise to Step  3. 

Step  9 - Edit the progranmer macro dejhitions. Each definition is 
edited as follows: 

(1) All variable  symbols  are replaced by ordered  pairs of flags 
and  virtual  pointers. All symbolic parameters  have one flag byte; 
all local unsubscripted SETA variables  have a different flag byte; 
all  system  variable  symbols  have  still  another flag byte,  and 
so forth.  Thus, each  two-byte  pointer references a table ident,ified 
by the preceding flag byte. 

( 2 )  All operation codes are looked up, and certain pseudo- 
operations,  such as C;O~IY, are  immediately performed. 

(3) Whenever a conditional-assembly statement is encoun- 
tered, its operand field  is completely  edited to  virtual  pointers 
and arithmetical/logiaal  operators. 

(4) All sequence  symbols arc msociated  with  five-byte file 
addresses  in the macro dictionary:  three  bytes  identify  the phys- 
ical  record  in which each  sequence  symbol is defined, and  two 
bytes  point  to  its  relative position  within t,hc record.  Each ref- 
erence to a  sequence  symbol is converted to :L virtual  pointer 
t o  its  dictionary  entry. 

The following discwssiorr approximates the flow of the 64K generator 

Global  pointers  in  the  macro definition text refer to  tables 
accumulated  without  interruption  during  Steps 2  through 4. 
Global  pointers  are necessary for  macro  operation codes and 
global SET symbols. 

After  each  macro  definition  is  fully  edited, its dictionary  is 
telescoped (as described in  the  above discussion of virtual pointers), 
then  written  onto a utility file just  after  the corresponding  edited 
text. 
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Step 3 - Edit  the ma in  program. Main-program statements  are 
edited exactly as  are macro definition statements. However, 
attributes  must be collected for all  ordinary symbols relevant 
to macro generation and conditional assembly. Each  such symbol, 
together  with its  attributes, is entered  into the main  dictionary. 
Each generation-time reference to a symbol is tagged with the 
corresponding virtual  pointer to  the main  dictionary. At  the end 
of Step 3, the main-program text file  is re-positioned to  its initial 
record, e.g., rewound if on tape.  This is, of course, the principal 
input  to  the generation phases. The associated main  dictionary 
is telescoped and  written  onto a different utility file. 

Step 4 - Edit  the system  macro  definitions. During  Steps  2  and 3, 
certain  operation codes are detected as “undefined.” In  an error- 
free source program, these  operation codes must correspond to 
system macro definitions. Rather  than immediately match each 
undefined operation code against the directory of system macro 
definitions, Steps  2 and 3 merely collect these names. Step 4 
retrieves all requested definitions from the system  library.  Each 
definition is edited  into the same format as that of Step 2. Since 
level-1 macro definitions may contain level-2 macroinstructions, 
the list of “undefined” operation codes lengthens and  contracts 
as level-1 system definitions are  edited. After all level-1 definitions 
have been edited, any remaining undefined operation codes are 
looked up  during a second scan through the macro-definition 
library.  This process continues until  either no undefined operation 
codes remain or none of the remainder are found during the 
preceding scan. Each remaining undefined code is treated  as an 
assembly error. As in  Step 2, each dictionary is telescoped and 
written  after the associated text. 

Step 5 - Initialize the main  storage for  generation. The telescoped 
main dictionary is read back into core.  Also, the global dictionary 
is read back, and core storage is allocated for its global SET 
variables, which are  set  to their  initial values (“0” for SETA and 
SETB variables, “empty” for SETC variables). 

Step 6 - Generate and  conditionally assemble the program. Steps 2 
through 4 require one to three passes of the source text, depending 
upon the particular  generator;  Step 6 performs the  last source-text 
pass of macro generation. At  the end of Step 6, the program has 
been completely converted into AL statements. 

The edited main program is read from Utility  File 1, and gen- 
erated  statements  are  written  onto  Utility  File 2, which is now 
empty  and re-positioned. Main-program conditional assembly is 
performed as encountered, i.e., for all SET, AIF, and AGO state- 
ments. As each macroinstruction is encountered, the dictionary 
for the corresponding macro definition is retrieved from Utility 
File 3. This  dictionary,  in turn, points to  the  text of the macro 
definition just preceding it on the same file. Expansion of the 
macro definition is then performed using: 
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1. The telescoped main dictionary-furnishing attributes for 
macroinstruction operands, etc. 

2. The telescoped macro dictionary-furnishing sequence-symbol 
addresses, etc. 

3. Macro definition text segments-containing virtual pointers 
to Items 2, 4, and 5 

4. Local-SET-variable values 
5. Global-SET-variable values 

After each definition has been expanded, Items 2 through 4 
may be overlaid. Thus, there are two permanent data areas during 
Step 6 (Items 1 and 5) and three transient data areas (Items 2 

- through 4). When an inner macroinstruction is encountered, its 
dictionary is retrieved from Utility File 3. When the inner macro- 
instruction has been expanded, its three transient areas are freed 
and generation resumes from the outer macro definition. Thus, 
macro dictionaries and local-SET-variable values are allocated 
last-in first-out storage; more storage is required as the depth 
of “nesting” increases. 

The reading, rereading, and repositioning of Utility File 3 
is performed with reasonable speed, since the volume of informa- 
tion is small in view of the edited macro definition text and the 
telescoped dictionaries; required are perhaps one or two cylinders 
on a disk drive or a few feet of magnetic tape. 

The key characteristic of Step 6 is retention of read-only 
data on secondary storage until required in the expansion of 
macroinstructions. Such data includes standard parameter values, 
symbol attributes, and various positional data. Large-system 
macro generators have traditionally kept this data resident in main 
storage; the 16K-64K macro generators cannot afford this luxury. 
However, random retrieval-even from magnetic tape-does not 
seriously degrade throughput. 

Summary comment 
The goal of S Y S T E M / ~ ~ O  machine architecture-to describe a single 
computer system with the widest possible applicability-has its 
counterpart in the design of a single assembler language. Small- 
machine users can assemble on larger systems whenever the latter 
must be used, e.g., when an overflow load is shifted to a service 
installation. There is a single language syntax for all but the 
smallest systems; large-machine users can multiprogram assembly 
jobs with other jobs, selecting the assembler that is appropriate 
to their main-storage and file-storage resources. All users benefit 
from a single language and a single set of diagnostics. 

The macro definition and conditional assembly functions that 
supplement the basic language are summarized in Table 3. These 
do not modify the character of the assembler language, but 
provide a systematic means whereby a user can expand the 
assembler language by creating macroinstructions. 

MACRO LANGUAGE DESIGN FOR SYSTEM/360 75 



Table 3 Macro definition and conditional assembly facilities 

I Operation 
Code Function 

ACTR 
AGO 
A I F  
ANOP 
COPY 
GBLA 
GBLB 
GBLC 
LCLA 
LCLB 
LCLC 
XACRO 
MEND 
MEXIT 
MNOTE 
SETA 
SETB 
SETC 

Limits the number of conditional and unconditional branches 
Uncotiditional branch 
Conditional branch 
No operation 
Copy source statements 
Declare a global couuter 
Declare a global switch 
Declare a global workbox 
1)eclare a local (winter 
Declare it local switch 
Declare a local workbox 
Begin a macro definition 
End a macro definition 
Terminate generation of code from a macro definition 
Notify the programmer of a macroinstruction usage error 
Set counter variable to new (positive or negative) value 
Set switch variable to 0 or 1 
Set workbox to new character value 
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