Concepts underlying the data-management capabilities of 0s/360 are
introduced; distinctive features of the access methods, catalog, and
relevant system macroinstructions are discussed.

To tllusirate the way in which the conirol program adapts to actual
tnput/output requirements, a read operation is examined in con-
siderable detail.

The functional structure of OS/360

Part III Data management
by W. A. Clark

The typical computer installation is confronted today with an
imposing mass of data and programs. Moreover, with the ap-
plicable technologies developing at a rapid pace, the current trend
is toward increasing diversity and change in input/output and
auxiliary storage devices. Together, these factors dictate that the
so-called ““input/output’” process be viewed in new perspective.
Whereas the support provided by a conventional input/output
control system is usually limited to data transfer and label proces-
sing, the current need is for a data management system that en-
compasses identification, storage, survey, and retrieval needs—
for programs as well as data. Not only should the system employ
the capabilities of both direct-access and serial-access devices,
but ideally should be able to satisfy a storage or input/output
requirement with any storage device that meets the functional
specifications of the given requirement.

Our purpose here is to discuss the main structural aspects of
08/360 from the standpoint of data management. In identifying,
storing, and retrieving programs and data, via 0s/360, a programmer
normally reckons with device classes rather than specific devices.
Because actual devices are not assigned until job-step execution
time, a novel degree of device independence is achieved. Moreover,
as befits a system intended for a wide range of applications, 0s/360

IBM SYSTEMS JOURNAL * VOL. § * NO. 1 - 1966

provides for several data organizations and search schemes. Vari-
ous buffering and transmittal options are provided.

Background

Although the data management services provided by o0s/360 are
deliberately similar to those provided by predecessor systems, the
system breaks with the past in the manner in which it adapts
to specific needs.

For mobilizing the input/output routines needed in a given
job step, one well-known scheme places these routines into the
user’s program during the compilation process. No post-assembly
program fetching or editing is then required; a complete, execut~
able program results. This scheme has significant disadvantages.
It requires that a fairly complete description of device types and
intended modes of operation be stated in the source program.
Compilation is made more difficult by having to concern itself
with details of the input/output function, and compiled programs
can be made obsolete by environmental changes that affect the
input/output function.

These disadvantages led the designers of some prior operating
systems, for example, 1BsYs/IBJOB, to circumvent the inclusion of
input/output routines in assembled programs by providing a
set of input/output “packages” that could be mobilized at pro-
gram-loading time." Designed to operate interpretively, these
optional packages permitted a source program to be less specific
about devices and operating modes; moreover, they permitted
change in the input/output environment without program reas-
sembly. On the other hand, interpretive execution tends to reduce
the efficiency of packages and limit the feasible degree of system
complexity and expandability.

Faced with unprecedented diversity in storage devices and
potential applications in addition to the complexities of multitask
operation, the 0s/360 designers have carried the 1BsYs/1BJOB
philosophy further, but with a number of significant tactical
differences. Data-management control facilities are not obtained
at program-loading time; instead, they are tailored to current
needs during the very course of program execution (wherever the
programmer uses an OPEN macroinstruction). The data-access
routines are reenterable, and different tasks with similar needs
may share the same routines. Because routines do not act inter-
pretively, they can be highly specialized as well as economical of
space. A program chooses one of the available access methods and
requests input/output operations using appropriate macroinstruc-
tions. Device types, buffering techniques, channel affinities, and
data attributes are later specified via data-definition statements in
the job stream. In fact, the 0s/360 job stream permits final speci-
fication of nearly every data or processing attribute that does not
require re-resolution of main-storage addresses in an assembled
program. These attributes include blocking factors, buffering
techniques, error checks, number of buffers, and the like.

DATA MANAGEMENT

compiled
1/0 routines

interpretive
1/0 routines

generated
1/0 routines

volume

System definitions

An operating system deals with many different categories of infor-
mation. Examples from a number of categories are a source pro-
gram, an assembled program, a set of related subroutines, a mes-
sage queue, a statistical table, and an accounting file. Itach of
these examples consists of a collection of related data items. In the
0s/360 context, such a collection is known as a data set. In the
operational sense, a data set is defined by a data-set label that
contains a name, boundaries in physical storage, and other param-
eters descriptive of the data set. The data-set label is normally
stored with the data set itself.

A standard unit of auxiliary storage is called a volume. Each
direct-access volume (disk pack, data cell, drum, or disk area
served by one access mechanism) is identified by a volume label.
This label always contains a volume serial number; in the case of
direct-access devices, it also includes the location of a volume
table of contents (vroc) that contains the labels of each data set
stored in the corresponding volume. A label to describe the vroc
and an additional Iabel to account for unused space are created.
Before being used in the system, each direct-access volume is
initialized by a utility program that generates the volume label
and, for direct-access devices, constructs the table of contents.
This table is designed to hold labels for the data sets to be written
on the volume.

Given the volume serial number and data-set name, the control
program can obtain enough information from the label to access
the data set itself.

A job step can place a data set in direct-access storage via a
data definition (pp) statement that requests space, specifies the
kind of volume, and gives the data-set name. At job-step initiation,
the system allocates space and creates a label for each area re-
quested by a pp statement. Finally, during job-step execution, the
label is completed and updated via OPEN and CLOSE macro-
instructions.

Each reel of magnetic tape is considered a volume. In view of
the serial properties of tape, the method used for identifying
volumes and data sets departs somewhat from the method used
for direct-access devices. The standard procedure still employs
volume labels and data-set labels; but each data-set label exists in
two parts: a header label preceding its data set, and a trailer label
that follows it. The location of a data set in a tape volume is repre-
sented by a sequence number that facilitates tape searching.

Although the system includes a generalized labeling procedure,
it permits a user to employ his own tape-label conventions and
label-checking routines if so desired. Unlabeled tapes may be
used, in which case the responsibility for mounting the right
volumes reverts to the operator.

To free the programmer of the need to maintain inventories
of his data sets, the system provides a data-set catalog. Held in

W. A. CLARK

direct-access storage, this catalog consists of a tree-organized set of
indexes. To best serve the needs of individual installations, the or-
ganization of the tree structure is left to the user. Each qualifier of
a data-set name corresponds to an additional level in the tree. For
example, the data set PAYROLL.MASTER.SEGMENT!1 is found by
searching a master index for payroLL, a second-level index for
MASTER, and a third-level index for segmENT1. Stored with the
latter argument are entries that identify the volume containing
the data set and the device type; in the case of serial-access devices,
a sequence number is also stored.

A volume containing all or part of the catalog is called a control
volume. Normally, the operating system resides in a control volume
known as the system residence volume. The use of a distinctive
control volume for a group of related data sets makes it convenient
to move the portion of the catalog that is relevant to the group.
This is particularly important in planning for the possibility that
groups of data sets may be moved from one computer to another.

A data-set search starts in a system residence volume and
continues, level by level, until a volume identification number is
obtained. If the required volume is not already mounted, a message
is issued to the operator. Then, if the data set is stored in a direct-
access device, the search for the data-set location resumes with
the volume label of the indicated volume, continues in the volume
table of contents, and proceeds from there to the data set’s starting
location. On the other hand, if the data set is held on a serial-
access device, the search continues using a sequence number as
an argument.

To simplify pp (data definition) statements for recurrent up-
dating jobs, data sets related by name and cataloging sequence
can be identified as a generation group. In applications that
regularly use the n most prior generations of a group to produce
a new generation, the new generation may be named (and later
referred to) relative to the most recent generation. Thus, the
pp statement need not be changed from run to run. When the
index for the generation group is established, the programmer
specifies n. As each new generation is cataloged, the oldest genera-
tion is deleted from the catalog. Provision is also made for the
special case in which n varies systematically, starting at 1 and
increasing by 1 until it reaches a user-specified number N, at
which time it starts over at 1.

To safeguard sensitive data, any data set may be flagged in its
label as “protected.” This protection flag is tested as a consequence
of the OPEN instruction; if the flag is on, a correct password must
be entered from the console. The data set name and appended
password serve as an argument for searching a control table. The
OPEN routine is not permitted to continue unless a matching entry
is found in the table.

Because the control table has its own security flag and master
password, it can be reached only by the control program and those
programmers privileged to know the master password.

DATA MANAGEMENT

catalog

control
volume

generation
group

password

record
and block

transmittal
modes

In discussing the internal structure and disposition of a data
set, it is necessary to distinguish between the record, an application-
defined entity, and the block, which has hardware-defined bound-
aries and is governed by operational considerations. Let b denote
block length (in bytes) and B a maximum block length. Although
08/360 requires that B be specified for each given data set, con-
ventions permit three block-format -categories: unspecified,
variable, and fixed. The first category requires that b < B for all
blocks. The second is similar to the first, except that each b is stored
in a count field at the beginning of its block. The third category
dictates that all blocks be of length B.

A fixed or variable block may contain multiple records. A fixed
block contains records of fixed size. In the variable block, records
may vary in size, and each record is preceded by a field that records
its size. For storage devices that employ interblock gaps, it is well
known that record blocking can increase effective data rates, con-
serve storage, and reduce the needed number of input/output
operations in processing a data set. For data sets of unspecified
block format, the system makes no distinction between block and
record; any applicable blocking and deblocking must be done by the
user’s program. The unspecified format is intended for use with
peripheral equipment, such as transmission devices, address label
printers, and the like.

A buffer is a main storage area allocated to the input/output
function. The portion of a buffer that holds one record is called a
buffer segment. A group of buffers in an area of storage formatted
by the system is called a buffer pool; a data set associated with
a buffer pool is assigned buffers from the pool. Unless a programmer
assigns a buffer pool to a data set, os/360 does so; unless buffer
size is specified by the programmer, 0s/260 sets the size to B.

In processing records from magnetic tape, it is customary to
read and process records from one or more data sets, and to create
one or more new data sets. A number of buffering considerations
come into play. It may suffice to process a record within a buffer;
it may be preferable to move the input record to a work area and
the updated record from the work area into an output buffer;
other possibilities may suggest themselves. Moreover, in processing
records from direct-access storage, the same data set may be
accessed for input and output.

To allow flexibility in buffer usage, the 0s/360 record-transfer
routines invoked by the GET and PUT macroinstructions permit
three transmittal modes. In the “move’” mode, each record is moved
from an input buffer to a work area and finally to an output buffer.
In the “locate” mode, a record is never actually moved, but a
pointer to the record’s buffer segment is made available to the
application program. In the “substitute’” mode, which also uses
pointers, the application program provides a work area equal in
size to a record, and the buffer segment and work area effectively
change roles.

To supplement the transmittal modes in special cases, three

‘W. A. CLARK

methods of buffer allocation are detined. Simple buffering, the
most general method, allocates one or more buffers to each data set.
Exchange buffering, used with fixed-length records, utilizes data-
chaining facilities to effect record gather and record scatter opera-
tions. Buffer segments from an input data set are exchanged with
buffer segments of an output data set or work area. Not only can
each buffer segment be treated, in turn, as an input area, work
area, and output area, but chaining allows noncontiguous segments
to simulate a block. Exchange buffering is particularly useful in
updating sequential files, merging, and array manipulation.
Chained-segment buffering is designed for messages of variable
size. Segments are established dynamically, with chaining being
used to relate physically separate segments. This method is
designed to circumvent the need for a static allocation of space to a
remote terminal: of the many terminals that can be present in a
system, only a fraction are ordinarily in use at a given time.

Access principles

To fall within the 0s/360 data-management framework, a data
set must belong to one of five organizational categories. As will
be seen, the classification is based mainly on search considerations.

Data sets consisting of records held in scrial-access storage
media (such as magnetic tapes, paper tapes, card decks, or printed
listings) are said to possess sequential organization. If so desired, a
data set held in a direct-access device may also be organized
sequentially.

Three of the five categories apply solely to direct-access
devices. The indexed sequeniial organization stores records in
sequence on a key (record-contained identifier). Because the
system maintains an index table that contains the locations of
selected records in the sequence, records can be accessed randomly
as well as sequentially. A direct organization is similar, but dis-
penses with the index table and leaves record addressing entirely
up to the programmer. A partitioned organization divides a se-
quentially organized data set into members; member names and
locations are held in a directory for the data set. A member con-
sists simply of one or more blocks. Included primarily for data
sets consisting of programs or subroutines, this organization is
suitable for any data set of randomly retrieved sequences of
blocks.

A telecommunications organization is provided for queues of
messages received from or enroute to remote on-line terminals.
Provision is made for forming message queues and for retrieving
messages from queues. Queues may be held in direct-access stor-
age as well as in main storage.

A broad distinction is made between two classes of data-
management languages. Desighed for programming simplicity,
the queued access languages apply only to organizations with
sequential properties. The programmer typically uses the macro-

DATA MANAGEMENT

buffer
allocation

data-set
categories

language
categories

access
methods

Table 1

Language category
Organization Queued Basic

Sequential QSAM BSAM
Indexed Sequential QISAM BISAM
Direct BDAM
Partitioned BPAM
Telecommunication BTAM

instructions GET and PUT to retrieve and store records, and buf-
fers are managed automatically by the system. On the other hand,
the basic access languages provide for automatic device control,
but not for automatic buffering and blocking. Typically, the READ
and WRITE macroinstructions are used to retrieve and store
blocks of data. Because the programmer retains control over
device-dependent operations (such as card reader or punch-stacker
selection, tape backspacing, and the like), he may use any de-
sired searching, buffering, or blocking methods.

Of the ten possible combinations of data-set and language
categories, eight are recognized by the system as access methods.
These eight methods bear the mnemonic names given in Table 1:
q@saMm denotes “queued sequential access method,” and so on. For
each access method, a vocabulary of suitable macroinstructions is
provided.

To employ a given access method, a programmer resorts to
the vocabulary of macroinstructions provided for that method.
Vocabularies for six of the methods are summarized in Table 2.
Although six macroinstructions are common to all of these meth-
ods, the parameters to be specified in a macroinstruction may
vary from method to method. If so desired for specialized applica-
tions, a programmer can circumvent the system-supported access
methods and employ the execute channel program (EXCP) macro-
instruction in fashioning his own access method. In this case, he
must prepare his own channel program (sequence of channel com-
mand words).

A few words on each vocabulary element of Table 2 help
to clarify access principles. At assembly time, the DCB macro-
instruction reserves space for a data control block and fills in control
block fields that designate the desired access method, name a
relevant pp statement, and select some of the possible options.
The application programmer is expected to provide symbolic
addresses of any applicable supplementary routines, as for ex-
ample, special label-processing routines.

The programmer issues an OPEN macroinstruction for each
data control block. At execution time, OPEN supplies information
not declared in the DCB macroinstruction, selects access routines
and establishes linkages, issues volume mounting messages to the
operator, verifies labels, allocates buffer pools, and positions

W. A. CLARK

Table 2 Access-method vocabularies

Macro- Macroinstruction
nstruction function in brief

DCB D . Generate a data control block

OPEN . L Open a data control block

CLOSE L Close a data control block

BUILD e e e s . Structure named area as a buffer pool
GETPOOL « + = + = - | Allocate space to and format buffer pool
FREEPOOL | - - - . . Liberate buffer-pool space

GET . Obtain a record from an input data set
PUT L Include a record in an output data set
PUTX L Include an input record in an output
data set

RELSE . . Force end of input block

TRUNC . Force end of output block

FEOV . Force end of volume

CNTRL . . Control reader or printer operation
PRTOV . - Test for printer carriage overflow
SETL . Set, lower limit for scan

ESETL . Postpone fetching during scan
CHECK .. Wait for 1/0 completion and verify
proper operation

NOTE .. Note where a block is read or written
POINT . Point to a designated block

FIND . Obtain the address of a named member
BLDL . Build a special directory in main store
STOW . Update the directory

RELEX .. Release exclusive control of a block
FREEDBUF o e Free dynamically obtained buffer
GETBUF ¢ e e . Assign a buffer from the pool
FREEBUF . Return a buffer to the pool

WAIT s e e . Wait for 1/0 completion

READ U Read a block

WRITE oo . Write a block

volumes. The programmer may free a data control block and
return associated buffers to the pool by the CLOSE macroinstruc-
tion; if he omits CLOSE, the system performs the corresponding
functions at task termination.

The programmer can request the system to allocate and format
a buffer pool at execution time by issuing a GETPOOL macro-
instruction, which specifies the address of the data control block,
the buffer length, and the desired number of buffers. When a
pool area is no longer needed, it can be returned to the system
by FREEPOOL.

Where the programmer’s knowledge permits him to allocate
space more wisely than the control program, he may choose to
designate the area to be set aside for a buffer pool. The area may,

DATA MANAGEMENT

for example, supplant a subroutine that is no longer needed. By
issuing a BUILD macroinstruction, he can request the system to
employ the reserved area as a buffer pool, the details being similar
to GETPOOL. With subsequent BUILD’s, moreover, he can re-
structure the area again and again.

QsAM corresponds closely to the schemes most favored in pre-
vious input/output systems. Qsam yields a great deal of service to
the programmer for a minimum investment in programming effort.
Retrieval is afforded by GET, which supplies one record to the
program; disposition of an output record is afforded by PUT or
PUTX. PUT transfers a record from a work area or buffer to a data
set; PUTX transfers a record from one data set to another. In con-
sequence, PUT involves one data control block, whereas PUTX
involves two.

To aid the programmer in creating short blocks and in disposing
of a block before all records therein have been processed, two
macroinstructions permit intervention in buffer control. RELSE
requests the system to release the remaining buffer segments in an
input buffer, i.e., to view the buffer as empty. Analogously, TRUNC
asks the system to view an output buffer as full, and to go on to
another buffer.

FEOV requests the system to force an end-of-volume status
for a designated data set, and thereupon to undertake the normal
volume-switching procedure. CNTRL provides for specialized card-
reader, printer, or tape control functions.

The qrsam scheme is closely akin to @sam, but the macro-
instructions provide the additional functions required of indexed
sequential data sets and direct-access devices. Records are ar-
ranged in logical sequence on the key, a field that is part of each
record. Record keys are related to physical addresses by indexes.
For a record with a given data key, a cylinder index yields cylinder
address, and a track index yields track-within-cylinder address.
To facilitate in-channel searches, the key of the last record in
each block is placed in a hardware-defined control field.

In the initial creation of a data set, PUT’s are used in the
“load” mode to store records and generate indexes. Successive
GET’s in the ‘“‘scan” mode retrieve records sequentially; SETL (set
lower limit) may be issued to designate the first record obtained.
Unless a SETL is issued, retrieval starts from the first record of
the data set. In scan mode, PUTX may follow a GET to return an
updated record to the data set. ESETL (end of scan) halts any
anticipatory buffering on the part of the system until issuance of a
subsequent GET.

BIsAM applies to the same sequential data organization as
qisaM, but selective reading and writing is permitted through
the READ and WRITE macroinstructions. Using BISAM, new rec-
ords can be inserted without destroying sequence. If an insertion
does not, fit into the intended track, the system moves one or more
records from the track to an overflow area and then reflects this
overflow status in the appropriate indexes. (The existence of over-

W. A. CLARK

flows does not alter the ability of qrsam to scan records in logical
sequence.)

To permit other operations to be synchronized with Bisam
input/output operations, a WAIT macroinstruction supplements
READ and WRITE. (Because WAIT serves a general function in
synchronizing tasks, it is discussed in Part II.)

In a multitask environment, it is possible that one task may
want to use or update a record while the record is being updated
by another task. To forestall confusion in the order that updating
operations are accomplished, READ can request exclusive control
of the record during updating. For a record being updated in place,
WRITE releases exclusive control. If the record is not updated in
place, the RELEX macroinstruction can be used to release control.

Because record insertions may lead to overflows, and overflows
tend to reduce input/output performance, the system ig designed
to provide statistics that can help a programmer in determining
when data-set reorganization is desirable. Held in the data control
block are the number of unused tracks in an independent overflow
area and, optionally, the number of full cylinder areas, as well as
the number of accesses to overflow records not appearing at the
head of overflow chains. Reorganization can be accomplished via
the Qrsam load mode, using the existing data set as input.

As implied by the above discussion, @isam and BisAM comple-
ment one another and may be used together where the user needs
to access a data set randomly as well as sequentially. IFor the sake
of convenience, a data control block for an indexed sequential
data set can be opened jointly for qisam and Brsawm.

BSAM assumes a sequentially organized data set and deals with
blocks rather than records. A block is called into a specified buffer
by READ. Unless program execution is deliberately suspended
during the retrieval period by a CHECK macroinstruction, the
program may continue during reading. Similarly, after an output
operation is initiated, CHECK ecan be used to postpone further
processing until the operation is completed.” Following a READ
or WRITE, the macroinstruction NOTE saves the applicable block
address in a standard register; subsequently, the preserved address
may be helpful in logically repositioning the volume by POINT.

Of the access methods for direct-access devices, Bpam offers
the greatest variety of access possibilities. Using WRITE and
READ, the programmer can store or retrieve a block from a data
set by specifying a track address and block number. Optionally,
he may specify a number relative to the data set itself, either (1)
a relative track number at which a search should start for a given
key or (2) a relative block number. The relative numbers, which
help to isolate application programs from device peculiarities, are
converted to actual track addresses and block numbers by the
system. GETBUF and FREEBUF are the means by which buffers
can be explicitly requested and released. A dynamic buffer option,
requested in the DCB macroinstruction, enables the programmer to
obtain automatic buffer management (BUILD and GETPOOL are

DATA MANAGEMENT

data
control
block

not used in conjunction with the option). The FREEDBUF macro-
instruction permits release of a buffer under the dynamic option.

BPaM is designed for storing and retrieving members of a
partitioned data set held on a direct-access device. Associated with
the data set is a directory that relates member name to track
address. To prepare for access, a FIND performs the directory
search. A located member can be retrieved using one or more
READ’s, as required by the number of blocks in the member.
New members can be placed by one or more WRITE’s, followed by a
STOW that enters the member’s name and location in the directory.
CHECK again serves to synchronize the program with data-
transmission operations,

A summary of the main characteristics of the eight access-
methods appear in Table 3.

Control elements and system operation

With general definitions and access methods in mind, we turn to
the internal structure of 0s/360 as it pertains to data management.

Associated with each data set of a problem program is a data
control block (pcB), which must be opened before any data transfer
takes place. However, some data sets, e.g., the catalog data set,
are opened automatically by the control program, and may be
indirectly referred to or used in a problem program without addi-
tional opening or closing. Data-access macroinstructions, such
as GET and PUT, logically refer to a data set, but actual reference
1s always via a data control block.

The data control block is generated and partially filled when
the DCB macroinstruction is encountered at compilation time.
The routine called at execution time by OPEN completes the
data control block with information gained principally from a
job-stream DD statement or cataloged procedure. For input data
sets, a final source of such information is the data-set label. In
the case of an output data set where the label has yet to be created,
the final source can be the label of another data set or another
DD statement.

In addition to completing the data control block, the OPEN
routine ensures that needed access routines are loaded and address
relations are completed. The routine prepares buffer areas and
generates channel command word lists; it initializes data sets by
reading or writing labels and performs a number of other house-
keeping operations.

The selection of access routines is governed by choices in data
organization, buffering technique, access language, input/output
unit characteristics, and other factors. The selection is relayed to
the supervisor, which allocates main storage space and performs
the loading.

In operation, some access routines are treated as part of the
user’s program and are entered directly rather than through a
supervisor-call interruption. These routines block and deblock

W. A. CLARK

Characteristic

QSAM

QTAM QISAM BSAM BTAM BPAM BISAM BDAM
Data set Sequential Telecom Indexed Sequential Telecom Partitioned Indexed Direct
organization or member of sequential Sequential
partitioned
Basic element Record Message or Record Record Message Member Record Record
of data set message segment
Basic concern Record Message Record Block Block Block Block Block
of access method
Primary input Scan SETL FIND
and GET GET Scan GET READ READ READ READ READ
output PUT PUT Load PUT WRITE WRITE WRITE WRITE WRITE
macroinstructions PUTX RETRIEVE Scan PUTX STOW
Buffer BUILD BUFFER BUILD BUILD BUILD BUILD BUILD BUILD
pool GETPOOL GETPOOL GETPOOL GETPOOL GETPOOL GETPOOL GETPOOL
acquisition Automatic Automatic Automatic Automatic Automatic Automatic Automatic
o -
E Buffer Automatic Automatic Automatic Dynamic Dynamic
= management (simple or (chained- (simple) FREEDBUF | FREEDBUF
; for a exchange) segment)
= data set GETBUF GETBUF GETBUF GETBUF GETBUF
éﬁ FREEBUF FREEBUF FREEBUF FREEBUF FREEBUF
5 _ . _
5 Transmittal Move Move Move
mode Locate Locate
Substitute
t - —
Synchronization Automatic Automatic Automatic CHECK WAIT CHECK WAIT WAIT
WAIT WAIT
Record /block ¥, v record T message F, v record F, v record U block F, v, U block ¥, v record F, V, U block
format*
Special Sequence num- Cylinder Directory Cylinder Can use
provisions for - ber; relative & track of & track relative record
data-set search addressing indexes members indexes or track number

* r, v, and U denote fixed, variable, and unspecified lengths.

I/0O supervisor

catalog
organization

records, control the buffers, and call the input/output supervisor
when a request for data input or output is needed. Other routines,
treated as part of the 1/0 supervisor and therefore executed in the
privileged mode, perform error checks, prepare user-oriented
completion codes, post interruptions, and bridge discontinuities in
the storage areas assigned to a data set.

The input/output supervisor performs all actual device control
(as it must if contending programs are not to conflict in device
usage); it accepts input/output requests, queues the requests if
necessary, and issues instructions when a path to the desired
input/output unit becomes available. The 1/0 supervisor also
ensures that input/output requests do not exceed the storage areas
allocated to a data set. The completion of each input/output
operation is posted and, where necessary, standard input/output
error-recovery procedures are performed. EXCP, the execute
channel program macroinstruction, is employed in all communica-
tion between access routines and the input/output supervisor.

To portray the mechanics of data management, let us consider
one job step and the data-management operations that support a
READ macroinstruction for a cataloged data set in the Bsam
context.

To begin with, we observe the state of the system just before
the job is introduced; of interest at this point are the devices,
control blocks, programs, and catalog elements that exist prior to
job entry. Next to be considered are the data-management act-
ivities involved in pp-statement processing, and in establishment
by the job scheduler of a task for the given job step. Third, we
consider the activities governed by the OPEN macroinstruction;
these activities tailor the system to the requirements of the job
step. Finally, operation of the READ macroinstruction is con-
sidered, with special attention to the use of the EXCP macro-
instruction. Essential to the four stages of the discussion are four
cumulative displays. Frequent reference to numbered points within
the figures is made by means of parenthetical superscripts in the
text. The description refers more often to the objects generated
and manipulated by the system than to the functional programs
that implement the system.

The basic aspects of catalog implementation become apparent
when we consider the manner in which the system finds a volume
containing a cataloged data set. Recall that each direct-access
volume contains a volume label that locates its vroc (volume
table of contents) and that the vroc contains a data-set label for
each volume-contained data set. Identified by data-set name, the
data-set label holds attributes (such as record length) and specifies
the location in the volume of the data set.

Search for a data set begins (see Figure 1) in the vroc of the
system residence volume, where a data-set label identifying the
portion of the catalog in this volume"’ appears. This part of the
catalog is itself organized as a partitioned data set whose directory
is the highest level (most significant) index of the catalog. For

W. A. CLARK

Figure 1 Control elements: before job entry

VTOC
SYS RES VOL

CATALOG
DIRECTORY
S§YS RES VOL

%*

3

VTOC
CONTROL VOL

CATALOG ;:Eovﬁ:EE
DIRECTORY
CONTROL vOL DEPENDENT

#*
6

C}I\JSIEQG LOGICAL
SYS RES OR CHANNEL
CONTROL VOL QUEUE

i

g

CATALOG
INDEX
SYS_RES OR
CONTROL VOL
%
8

DATA DEVICE CONIROL CHANNEL
OBJ VOL

MAIN STORAGE ADDRESS —=——==> DATA DEFINITION STATEMENT NAME
RELATIVE MAIN STORAGE ADDRESS s OBJECT DATA FLOW
DASD TRACK OR BLOCK ADDRESS —— 5 CONTROL DATA FLOW

RELATIVE DASD TRACK OR BLOCK ADDRESS © INDICATES THAT ITEM POINTED TO IS ONE
OF A CHAIN OF SIMILAR TEMS
VOLUME IDENTIFICATION NUMBER
INDICATES THAT THE SOURCE OF A POINTER
INTERRUPTION IS A TABLE WHICH IDENTIFIES SIMILAR ITEMS

DATA SET NAME

DATA MANAGEMENT 43

unit
control
block

DD-statement
processing

data sets cataloged on the system residence volume, entries in this
directory contain the addresses of lower-level indexes;® for data
sets cataloged on other control volumes,® directory entries con-
tain the appropriate volume identification numbers.

Assume for the moment that the search is for a data set cata-
loged on control volume ¥ and that V is not the system residence
volume. In this case, the volume label of V contains the location of
V’s vroc.”” (Volume label and vroc are recorded separately to
allow for device peculiarities.) One of the data-set labels in this
vroc identifies the part of the catalog on V;*® just as in the case
of the residence volume, this part is organized as a partitioned
data set. Inasmuch as the directory of this partitioned data set is
the subset of the highest-level index governing that part of the
catalog recorded on V, directory entries contain the addresses of
the next-level indexes on V.® It should be added that all index
levels needed to catalog a data set appear on a single control
volume; the part of the catalog on any given control volume is
known to other control volumes, because the directory entries
of the given control volume appear in the directories of the others.

Each index level below the directory” is used to resolve one
qualification in the name of a data set. For example, were the
name of a data set A.B.c, a directory entry A would locate an index
containing an entry B, which in turn would locate an index con-
taining the entry c. This last entry identifies the volume® that
holds the data set named a.B.c.’

During the system generation process, one unit control block
(ucB) is created for each 1/0 device attached to the system (each
tape drive, disk drive, drum, card reader/punch, etc). Each ves
contains device-status information, the relevant device address or
addresses, the locations of the input/output supervisor sub-

routines " that treat device peculiarities (such as start-1/0, queue-
manipulation, and error routines), and the location of the logical

channel queue™® used with the device.*

The principal purpose of the pp statement (Figure 2) is to
supply the (variable) name of a data set to be located via the
catalog,® and to relate the data set to the (constant) name of the
pD statement. However, a great amount of additional information
may be supplied if the user desires, This information may include:
the device type together with a list of volume identification num-
bers which serve to locate the data set without recourse to the
catalog;*"*® label information used to create new labels; attributes
that determine the nature of the data set created or processed;
and processing options that modify the operation of the program.
After being encoded by the job scheduler, most of this information
is included in a job file control block (srcB)™® that is used in lieu of
the original pp statement.

As was suggested above, a data set can be located either by an
explicit list of volume identification numbers and an indication of
the device type (if this information is given on the pp statement),
or by data-set name alone. In the latter case, a list of volume

W. A. CLARK

Figure 2 Control elements: job scheduling—hexagonal blocks denote
elements of first concern at time job is scheduled

vTOC . DD
SYS RES VOL STATEMENT

CATALOG
DIRECTORY
SYS RES VOL

23

TioT
217\

i
18

CONTROL VOL

vIoe ‘ JFCB
CONTROL VOL SYS RES VOL

CATALOG CODE
DIRECTORY DEVICE
CONTROL VOL DEPENDENT

*
6 12

CATALOG
INDEX LOGICAL

SYS RES OR CHANNEL
CONTROL VOL QUEUE

2
-

CATALOG
INDEX

SYS RES OR
CONTROL VOL

*
8

DATA DEVICE CONTROL CHANNEL
0OBJ VOL UNIT

LEGEND
MAIN STORAGE ADDRESS DATA DEFINITION STATEMENT NAME
RELATIVE MAIN STORAGE ADDRESS OBJECT DATA FLOW
DASD TRACK OR BLOCK ADDRESS CONTROL DATA FLOW
RELATIVE DASD TRACK OR BLOCK ADDRESS INDICATES THAT ITEM POINTED TO IS ONE

OF A CHAIN OF SIMILAR ITEMS
VOLUME IDENTIFICATION NUMBER

INDICATES THAT THE SOURCE OF A POINTER
INTERRUPTION IS A TABLE WHICH IDENTIFIES SIMILAR ITEMS

DATA SET NAME

DATA MANAGEMENT 45

identification numbers is extracted from the catalog and placed
in the JrcB. "

Prior to establishing a task for the job step, the job scheduler
assigns devices to the step. To represent this assignment, the job
scheduler constructs a task input/output iable (TioT). An entry
is made in this table for each pp statement supplied by the user;
each entry relates a pp-statement name to the location of the
corresponding yrcB“'® and the unit or units assigned to the data
set."” The assignment of a specific device derives from the
specification of device type supplied through the pp statement
or the catalog,®" together with a table of available units main-
tained by the job scheduler.

The job scheduler then assures that all volumes initially re-
quired by the step are mounted. As each volume is mounted, its
volume label is read; the volume identification number and the
location of its vroc are placed in the corresponding ucs for future
reference. *® Tinally, the job scheduler “attaches” a task for
the step. In the process, the supervisor constructs a task control
block (tcs). The TcB is used by the supervisor as an area in which
to store the general registers and program status word of a task
at a point of interruption; it contains the address of the T10T.**

Execution of the OPEN macroinstruction (Figure 3) identifies
one or more data control blocks (DcB’s) to be initialized:** since
an svc interruption results, the TcB of the calling task® is also
identified. The name of the pp statement, contained in the pcs,
is used to locate the entry in the TI0T corresponding to the data
set to be processed.®**” The related yrcs is then retrieved.®

After assuring that the required volumes are mounted,” the
open subroutines read the data-set label(s) and place in the JrcB
all data-set attributes that were not specified (or overridden)

by the pp statement. “” At this point, the pcs and JFeB comprise a
complete specification of the attributes of the data set and the
access method to be used. Next, data-set attributes and processing
options not specified by the DCB macroinstruction are passed from

the sreB to the pes.®®

The system then constructs a dafa extent block (DEB), logically a
protected extension of the pce. This block contains a description
of the extent (devices and track boundaries) of the data set,****”
flags which indicate the set of channel commands that may be used
with the data set,®” and a priority indicator.®’’ The DEB is nor-
mally located via the pcs;®® but in order to purge a failing task
or close the nce upon task termination, it may be located via
the Tcs.®® If the data set is to be retrieved sequentially, the
address of the first block of the data set is moved to the pcs.®*

Next, the access-method routines are selected and loaded. The
addresses of these routines are placed in the ncB.®® If privileged
interrupt-handling or error routines are required, they are loaded
and their addresses recorded in the pEB.“® Finally, the channel
programs which will later be used to access the data set are gene-
rated. Ior each channel program, an énput/output block (10B) is

W. A. CLARK

Figure 3 Control elements: OPEN macroinstruction—oblate blocks denote
elements of first concern during execution of OPEN macroinstruction

vToC - DD
SYS RES VOL STATEMENT
—_—

25

CATALOG
DIRECTORY CcB
SYS RES VOL

#*
3

VOLUME L2 . CODE
LABEL Tl NON PRIV

CONTROL vOL 21 ACC METH

4

vToc ‘ JFCB CODE
CONTROL VOL SYS RES VOL ACe h:IETH

/

s 4
17 27

CATALOG CODE

DIRECTORY DEVICE
CONTROL VoL DEPENDENT

*
6

CATALOG LOGICAL

INDEX
SYS RES or CHANNEL
CONTROL VOL QUEUE

CATALOG
INDEX
SYS_RES OR
CONTROL VOL

CHANNEL
PROGRAM

DATA CONTROL
0BJ vOL UNIT CHANNEL

MAIN STORAGE ADDRESS =-——=>> DATA DEFINITION STATEMENT NAME
RELATIVE MAIN STORAGE ADDRESS Sy OBJECT DATA FLOW
DASD TRACK OR BLOCK ADDRESS — > CONTROL DATA FLOW

RELATIVE DASD TRACK OR BLOCK ADDRESS o INDICATES THAT ITEM POINTED TO IS ONE

OF A CHAIN OF SIMILAR ITEMS
VOLUME IDENTIFICATION NUMBER

INDICATES THAT THE SOURCE OF A POINTER
INTERRUPTION IS A TABLE WHICH IDENTIFIES SIMILAR ITEMS

DATA SET NAME

DATA MANAGEMENT 47

created.®® The 108 is the major interface between the problem
program (or the access-method routines) and the 1/0 supervisor.
It contains flags that govern the channel program, the location
of the ncs,®” the location of an event control block used with
the channel program, the location of the channel program itself,
the ‘“‘seek address,” and an area into which the 1/0 supervisor
can move the channel status word at the completion of the channel
program. 10B’s are linked in a chain originating at the ncs.®*

The READ macroinstruction (see Figure 4) identifies a param-
eter list, called the data event control block (pEcB),“” that is pre-
pared either by the user or the READ macroinstruction. This
block contains the address of a buffer,*" the length of the block
to be read (or the length of the buffer), the address of the pcs
associated with the data set,“® an event control block, and the
like. Buffer address and block or buffer length are obtained from
the Do if not supplied by the user.“* Using an address previously
placed in the pcs,®® the READ macroinstruction branches to an
access-method routine that assigns an 108 and a channel program
to the pEcB. Subsequently, the routine modifies the channel
program to reflect the block length and the location of the
buffer;** it then records the address of the pEcB in the 108."”
In addition, the routine computes the track and block addresses
of the next block and updates the 108 and channel program using
the results.“*'***"*® The access method routine then issues the
EXCP macroinstruction.

The EXCP macroinstruction causes an svc interruption’
that calls the 1/0 supervisor and passes to it the addresses of the
108 and, indirectly, the pcs.®®” Using the pcs, the address of
the DEB is obtained and verified.®® Next, assuming that other
requests for the device are pending, the 10B is placed in a seek

49)

queue to await the availability of the access mechanism. Queues
maintained by the 10s take the form of chains of request queue
elements (rRQE’s) which identify the 10B’s in queues.®”’ An rqE
contains a priority byte obtained from the pes,® the address

of the pEB, ®® and the address of the TcB of the requesting task ®*

(used to purge the system of the 10B’s upon task termination).
Seek queues originate from ucs’s,”” and are (optionally) main-
tained in ascending sequence by cylinder address to reduce
average seek time.

When, as a result of the completion of other requests, the
access mechanism becomes available to the current 10B, a seek
operation is initiated using the track address in the 10B. Just prior
to this, the track address is verified (using the contents of the pEB)
to ensure that the seek address lies within the extent of the data
set. Assuming that the seek operation was not immediately com-
pleted, seek commands to other devices are issued; the channel is
then used for other operations if possible. At the completion of the
relevant seek operation, ®® the rqE is removed from the top of the
seek queue and placed in the appropriate logical channel queue®®
in priority sequence. For the performance of all of these functions,

W. A. CLARK

Figure 4 Control elements: READ and EXCP macroinstructions—elliptical blocks denote
elements of first concern during execution of READ or EXCP magcroinstruction

VT0C DD READ
SYS RES VoL STATEMENT MACRO
=

CATALOG
DIRECTORY
SYS RES VOL

*
3

VOLUME CODE
LABEL NON PRIV
CONTROL VOL ACC METH

vroc CODE
PRIV
CONTROL VOL ﬂ ACC METH

CATALOG
DIRECTORY ggIﬂIEE
CONTROL VOL DEPENDENT

6

CATALOG
INDEX LOGICAL

SYS_RES OR CHANNEL
CONTROL VOL QUEUE

CATALOG
INDEX

SYS RES or
CONTROL VOL

51
46

e
108 |
/ _
38

CHANNEL 42

PROGRAM

39

DATA
0B VOL DEVICE

CHANNEL BUFFER

CONTROL
UNIT

MAIN STORAGE ADDRESS ~———-"> DATA DEFINITION STATEMENT NAME
RELATIVE MAIN STORAGE ADDRESS =l OBJECT DATA FLOW
DASD TRACK OR BLOCK ADDRESS ey CONTROL DATA FLOW

RELATIVE DASD TRACK OR BLOCK ADDRESS O INDICATES THAT ITEM POINTED TO IS ONE
OF A CHAIN OF SIMILAR ITEMS
VOLUME IDENTIFICATION NUMBER
INDICATES THAT THE SOURCE OF A POINTER
INTERRUPTION IS A TABLE WHICH IDENTIFIES SIMILAR ITEMS

OATA SET NAME

DATA MANAGEMENT 49

Y are executed

device-dependent routines addressed by the ucs
by the 1/0 supervisor.

When the 108 reaches the top of the logical channel queue and a
related channel is free, the channel program associated with the
108 is logically prefixed with a short supervisory channel program
and the result executed. The control unit is initialized by the
supervisory channel program to inhibit the channel program from
executing commands that might destroy information outside of
the extent of the data set, leave the channel and control unit unused
for significant periods, or attempt to write in a data set that is
to be used in a read-only manner.” When the channel program
finishes, ®® its completion is posted in the event control block
within the prcs. “”

At any time after issuing a READ macroinstruction, the pro-
gram may issue a WAIT or CHECK macroinstruction which refers
to the same pECB as the READ macroinstruction. Either of these
macroinstructions suspends the task®”'*® until the READ op-
eration has been completed, i.e., until the 1/0 supervisor posts
the completion of the operation in the pEcE.

Although the foregoing discussion applies specifically to the
READ macroinstruction in the BsaM context and to the use of a
direct-access device, the first three displays (Figures 1, 2, and 3)
are applicable to other operations as well. In fact, the discussion
introduces most of the control elements that bear on data-manage-
ment operations in any context.

Summary

The design of os/360 assures that data sets of all kinds can be
systematically identified, stored, retrieved, and surveyed. Versa-
tility is served by a variety of techniques for structuring data sets,

catalogs, buffers, and data transfers. In the interest of operational
adaptability, the system tailors itself to actual needs on a dynamic
basis. For programming efficiency, source programs may be device-
independent to a novel degree.

CITED REFERENCE AND FOOTNOTES

1. A. 8. Noble, Jr., “Design of an integrated programming and operating
system, Part I, system considerations and the monitor,”” IBM Systems
Journal 2, 153~161 (June 1963).

. Although the CHECK macroinstruction includes the effect of the WAIT
macroinstruction, the latter may also be used prior to CHECK.

. Ordinarily, the results of a catalog search include the device type, the
identification number of the desired volume, and label verification infor-
mation. If the data set is a generation of a generation group (a case not
considered in the main discussion), the results are the location of an index
of generations and an archetype data-set label.

. Generally, “logical channel”’ and physical channel are indistinguishable.
The logical channel is taken to be the set of physical channels by which
a device is accessible. All devices (independent of their type) that share
exactly the same set of physical channels are associated with the same logical
channel queue. For example, a set of tape drives attached to physical
channels 1 and 2 would share a logical channel distinet from that of a
printer attached only to physical channel 1.

W. A. CLARK

5. In general, the control unit is initialized to inhibit seek operations that
move the access mechanism. More stringent restrictions are placed on
channel programs that actually refer to cylinders shared by two or more
data sets. This is not to say that inter-cylinder seek operations are dis-
allowed; rather, the 1/0 supervisor verifies that these operations refer to
areas within the extent of the data set. During inter-cylinder seek oper-
ations, the channel and control unit are freed for other uses.

DATA MANAGEMENT 51

