
Concepts underlying the data-nlaTLagenze.rL1 capabilities of os/sso are
introduced; distinctive features of the access methods, catalog, and
relevant system macroinstructions are discussed.

T o illustrate the way in which the control program adapts to actual
inputloutput requirements, a read operation i s examined in con-
siderable detail.

I The functional structure of Os/360
Part I11 Data management

by W. A. Clark
I

The typical computer installation is confronted today with an
imposing mass of data and programs. Moreover, with the ap-
plicable technologies developing at a rapid pace, the current trend
is toward increasing diversity and change in input/output and
auxiliary storage devices. Together, these factors dictate that the
so-called “input/output” process be viewed in new perspective.
Whereas the support provided by a conventional input/output
control system is usually limited to data transfer and label proces-
sing, the current need is for a data management system that en-
compasses identification, storage, survey, and retrieval needs-
for programs as well as data. Not only should the system employ
the capabilities of both direct-access and serial-access devices,
but ideally should be able to satisfy a storage or input/output
requirement with any storage device that meets the functional
specifications of the given requirement.

Our purpose here is to discuss the main structural aspects of
os/aso from the standpoint of data management. In identifying,
storing, and retrieving programs and data via os/360, a programmer
normally reckons with device classes rather than specific devices.
Because actual devices are not assigned until job-step execution
time, a novel degree of device independence is achieved. Moreover,
as befits a system intended for a wide range of applications, OW360

30 IBM SYSTEMS JOURNAL * VOL. 6 - NO. 1 * 1966

In discussing the internal structure and disposition of a data
set, it is necessary to distinguish between the record, an application-
defined entity, and the block, which has hardware-defined bound-
aries and is governed by operational considerations. Let b denote
block length (in bytes) and B a maximum block length. Although
os/360 requires that B be specified for each given data set, con-
ventions permit three block-format categories : unspecified,
variable, and fixed. The first category requires that b 5 B for all
blocks. The second is similar to the first, except that each b is stored
in a count field a t the beginning of its block. The third category
dictates that all blocks be of length B.

A fixed or variable block may contain multiple records. A fixed
block contains records of fixed size. In the variable block, records
may vary in size, and each record is preceded by a field that records
its size. For storage devices that employ interblock gaps, it is well
known that record blocking can increase effective data rates, con-
serve storage, and reduce the needed number of input/output
operations in processing a data set. For data sets of unspecified
block format, the system makes no distinction between block and
record; any applicable blocking and deblocking must be done by the
user’s program. The unspecified format is intended for use with
peripheral equipment, such as transmission devices, address label
printers, and the like.

A buffer is a main storage area allocated to the input/output
function. The portion of a buffer that holds one record is called a
buffer segment. A group of buffers in an area of storage formatted
by the system is called a buffer pool; a data set associated with
a buffer pool is assigned buffers from the pool. Unless a programmer
assigns a buffer pool to a data set, OS/360 does so; unless buffer
size is specified by the programmer, OS/360 sets the size to B.

In processing records from magnetic tape, it is customary to
read and process records from one or more data sets, and to create
one or more new data sets. A number of buffering considerations
come into play. It may suffice to process a record within a buffer;
it may be preferable to move the input record t o a work area and
the updated record from the work area into an output buffer;
other possibilities may suggest themselves. Moreover, in processing
records from direct-access storage, the same data set may be
accessed for input and output.

To allow flexibility in buffer usage, the os/s60 record-transfer
routines invoked by the GET and PUT macroinstructions permit
three transmittal modes. I n the (‘move’’ mode, each record is moved
from an input buffer to a work area and finally t o an output buffer.
In the “locate” mode, a record is never actually moved, but a
pointer to the record’s buffer segment is made available to the
application program. I n the “substitute” mode, which also uses
pointers, the application program provides a work area equal in
size to a record, and the buffer segment and work area effectively
change roles.

To supplement the transmittal modes in special cases, three

record
and block

buffer

transmittal
modes

methods of buffer allocution are defined. Simple buJerkny, the
most general method, allocates one or more buffers to each data set.
Exchange buffering, used with fixed-length records, utilizes data-
chaining facilities to effect record gather and record scatter opera-
tions. Buffer segments from an input data set are exchanged with
buffer segments of an output data set or work area. Kot only can
each buffer segment be treated, in turn, as an input area, work
area, and output area, but chaining allows noncontiguous segments
to simulate a block. Exchallge buffering is particularly useful in
updating sequential files, merging, and array manipulation.

Chained-segment buflering is designed for messages of variable
size. Segments are established dynamically, with chaining being
used to relate physically separate segments. This method is
designed to circumvent the need for a static allocation of space to a
remote terminal: of the many terminals that can be present in a
system, only a fraction are ordinarily in use a t a given time.

Access principles

To fall within the Os/360 data-management framework, a data
set must belong to one of five organizational categories. As will
be seen, the classification is based mainly on search considerations.

Data sets consisting of records held in serial-access storage
media (such as magnetic tapes, paper tapes, card decks, or printed
listings) are said t o possess sequential organization. If so desired, a
data set held in a direct-access device may also be organized
sequentially.

Three of the five categories apply solely t30 dircct-access
devices. The indexed sequential organization stores records in
sequence on a key (record-contained identifier). Because the
system maintains an index table that contains the locations of
selected records in the sequence, records can be accessed randomly
as well as sequentially. A direct organization is similar, but dis-
penses with the index table and leaves record addressing entirely
up to the programmer. A partitioned organization divides a se-
quentially organized data set into menabem; mcmber names and
locations are held in a directory for the data set. A member con-
sists simply of one or more blocks. Included primarily for data
sets consisting of programs or subroutines, this organization is
suitable for any data set of randomly retrieved sequences of
blocks.

A telecommunications organization is provided for queues of
messages received from or enroute to remote on-line terminals.
Provision is made for forming message queues and for retrieving
messages from queues. Queues may be held in direct-access stor-
age as well as in main storage.

A broad distinction is made between two classes of data-
management languages. Designed for programming simplicity,
the queued access languages apply only to organizations with
sequential properties. The programmer typically uses the macro-

DATA MANAGEMENT

buffer
allocation

data-set
categories

language
categories

35

I

Table 1

Organization I
Sequential
Indexed Sequential
Direct
Partitioned
Telecommunication

Language category
Queued Basic

""""_" __
QSAM BSAM

QISAM BISAM

BDAM

BPAM

QTAM BTAM

instructions GET and PUT to retrieve and store records, and buf-
fers are managed automatically by the system. On the other hand,
the basic access languages provide for automatic device control,
but not for automatic buffering and blocking. Typically, the READ
and WRITE macroinstructions are used to retrieve and store
blocks of data. Because the programmer retains control over
device-dependent operations (such as card reader or punch-stacker
selection, tape backspacing, and the like), he may use any de-
sired searching, buffering, or blocking methods.

Of the ten possible combinations of data-set and language
access categories, eight are recognized by the system as access methods.
methods These eight methods bear the mnemonic names given in Table 1:

QSAM denotes "queued sequential access method," and so on. For
each access method, a vocabulary of suitable macroinstructions is
provided.

To employ a given access method, a programmer resorts to
the vocabulary of macroinstructions provided for that method.
Vocabularies for six of the methods are summarized in Table 2.
Although six macroinstructions are common to all of these meth-
ods, the parameters to be specified in a macroinstruction may
vary from method to method. If so desired for specialized applica-
tions, a programmer can circumvent the system-supported access
methods and employ the execute channel program (EXCP) macro-
instruction in fashioning his own access method. In this case, he
must prepare his own channel program (sequence of channel com-
mand words).

A few words on each vocabulary element of Table 2 help
to clarify access principles. At assembly time, the DCB macro-
instruction reserves space for a data control block and fills in control
block fields that designate the desired access method, name a
relevant DD statement, and select some of the possible options.
The application programmer is expected to provide symbolic
addresses of any applicable supplementary routines, as for ex-
ample, special label-processing routines.

The programmer issues an OPEN macroinstruction for each
data control block. At execution time, OPEN supplies information
not declared in the DCR macroinstruction, selects access routines
and establishes linkages, issues volume mounting messages to the
operator, verifies labels, allocates buffer pools, and positions

Table 2 Access-method vocabularies

Q Q B B B B
Macro- S I S P I U Macroinstruction

instruction A s A A s A function in brief
M A M M A M

M

DCB
OPEN
CLOSE

GETPOOL
FREEPOOL

BUILD

GET
PUT
PUTX

RELSE
TRUNC
FEOV
CNTRL
PRTOV
SETL
ESETL
CHECK

NOTE
POINT
FIND
BLDL
STOW
RELEX
FREEDBUF
GETBUF
FREEBUF
WAIT
READ
WRITE

.

.

.

.

. .

. .

. . . .

. . . .
. . . .
.
.

Generate a data control block
Open a data control block
Close a data control block
Structure named area as a buffer pool
Allocate space to and format buffer pool
Liberate buffer-pool space

Obtain a record from an input data set
Include a record in an output data set
Include an input record in an output
data set
Force end of input block
Force end of output block
Force end of volume
Control reader or printer operation
Test for printer carriage overflow
Set lower limit for scan
Postpone fetching dllring scan
Wait for I/O complet,ion and verify
proper operation
Note where a block is read or written
Point to a designated block
Obtain the address of a named member
Build a special direct,ory in main stsore
Update the direct>ory
Release exclusive control of a block
Free dynamically obtained buffer
Assign a buffer from tdhe pool
Return a buffer to the pool
Wait for I /O complet,ion
Read a block
Write a block

volumes. The programmer may free a data control block and
return associated buffers to the pool by the CLOSli: macroinstruc-
tion; if he omits CLOSE, the system performs the corresponding
functions a t task termination.

The programmer can request the system to allocate and format
a buffer pool a t execution time by issuing a GETPOOL macro-
instruction, which specifies the address of the data control block,
the buffer length, and the desired number of buffers. When a
pool area is no longer needed, i t can be returned to the system
by FREEPOOL.

Where the programmer’s knowledge permits him to allocate
space more wisely than the control program, he may choose to
designate the area to be set aside for a buffer pool. The area may,

DATA MANAGEMENT 37

for example, supplant a subroutine t,hat is no longer needed. By
issuing a BUILD macroinstruction, he can request the system to
employ the reserved area as a buffer pool, the details being similar
to GETPOOL. With subsequent BUILD’S, moreover, he can re-
structure the area again and again.

QSAM corresponds closely to the schemes most favored in pre-
QSAM vious input/output systems. QSAM yields a great deal of service to

the programmer for a minimum investment in programming effort.
Retrieval is afforded by GET, which supplies one record to the
program; disposition of an output record is afforded by PUT or
PUTX. PUT transfers a record from a work area or buffer to a data
set; PUTX transfers a record from one d a h set to another. In con-
sequence, PUT involves one data control block, whereas PUTX
involves two.

To aid the programmer in creating short bIocks and in disposing
of a block before all records therein have been processed, two
rnacroillstructiolls permit intervention in buffer control. RELSE
requests the system to release the remaining buffer segments in an
input buffer, i.e., to view the buff’er as empty. Analogously, TRUNC
asks the system to view an output buffer as full, and to go OD to
another buffer.

FEOV requests the system t o force an end-of-volume status
for a designated data set, and thereupon to undertake the normal
volume-switching procedure. CNTIU. provides for specialized card-
reader, printer, or tape control functions.

The QJSAM scheme is closely akin to QSAM, but the macro-
Q~SAM instructions provide the additional functions required of indexed

sequential data sets and direct-access devices. Records are ar-
ranged in logical sequence on the key, a field that is part of each
record. Record keys arc related to physical addresses by indexes.
For a record with a given data key, a cylinder index yields cylinder
address, and a track index yields track-within-cylinder address.
To facilitate in-channcl searches, the key of the last record i n
each block is placed in a hardware-defined control field.

In the initial creation of a data set, PUT’S are used in the
“load” mode to store records and generate indexes. Successive
GET’S in the “scan” mode retrieve records sequentially; SETL (set
lower limit) may be issued to designate the first record obtained.
Unless a SETL is issued, retrieval stwts from the first record of
the data set. In scan mode, PUTX may follow a GET to return an
updated record to the data set. ESETL (end of scan) halts any
anticipatory buffering on the part of the system until issuance of a
subsequent GET.

BISAM applies to the same sequential data organization as
BISAM QISAM, hut selective reading and writing is permitted through

the REBD and WRITE macroinstructions. Using BISAM, new rec-
ords can be inserted without destroying sequence. If an insertion
does not fit into the intended track, the system moves one or more
records from the track to an overflow area and then reflects this
overflow status in t,he appropriate indexes. (The existence of over-

:% W . A . CLARK

input/output Operations, a WAIT macroinstruction supplements
READ and WRITE. (Because WL4IT serves a general function in
synchronizing tasks, it is discussed in Part 11.)

I n a multitask environment, it is possible that one task may
want to use or update a record while the record is being updated
by another task. To forestall confusion in the order that updating
operations are accomplished, READ can request exclusive control
of the record during updating. For a record being updated in place,
WRITE releases exclusive control. If the record is not updated in
place, the RELEX macroinstruction can be used to release control.

Because record insertions may lead to overflows, and overflows
tend to reduce input/output performance, the system is designed
to provide statistics that can help a programmer in determining
when data-set reorganization is desirable. Held in the datu control
block are the number of unused tracks in an independent overflow
area and, optionally, the number of full cylinder areas, as well as
the number of accesses to overflow records not appearing at the
head of overflow chains. Reorganization can be accomplished via
the QISAM load mode, using the existing data set as input.

As implied by the above discussion, QISAM and BEAM comple-
ment one another and may be used together where the user needs
to access a data set randomly as well as sequentially. For the sake
of convenience, a data control block for an indexed sequential
data set can be opened jointly for QISAM and RISAM.

blocks rather than records. A block is called into a specified buffer
by READ. Unless program execution is deliberately suspended
during the retrieval period by a CHECK macroinstruction, the
program may continue during reading. Similarly, after an output,
operation is initiat,ed, CHECK can be used to postpme further
processing until the operation is c-ompleted.2 Following a ItRAI)
or WRITE, the macroinstruction XO'l'E saves the applicable block
address in a standard register; subsequently, the preserved address
may be helpful in logically repositioning the volume by IwTN'r.

the greatest variety of access possibilities. XJsing WRTTE and
READ, the programmer can store or retrieve a block from a data
set by specifying a track address and block number. Optionally,
he may specify a number relative to the data set itself, &her (1)
a relative track number at which a search should start for a given
key or (2) a relative block number. The relative numbers, which
help to isolate application programs from device peculiarities, are
converted to actual track addresses and block numbers by the
system. GETBUF and FREERUF are the means by which buffers
can be explicitly requested and released. A dynamic buffer option,
requested in the n C B macroinstruction, enables the programmer to
obtain aut)omatic buffer management (BUILD and GETPOOL are

BSAM assumes a sequentially organized data set and deals with BSAM

Of the acc~ess methods for direct-access devices, LIDAM offers BDAM

DATA MANAGEMENT 39

not used in conjunction with the option). The FREEIIBUF macro-
instruction permits release of a buffer under the dynamic option.

BPAM is designed for storing and retrieving members of a
BPAM partitioned data set held on a direct-access device. Associated with

the data set is a directory that relates member name to track
address. To prepare for access, a FIND performs the directory
search. A located member can be retrieved using one or more
READ’S, as required by the number of blocks in the member.
New members can be placed by one or more WRITE’S, followed by a
wow that enters the member’s name and location in the directory.
CHECK again serves to synchronize the program with data-
transmission operations.

A summary of the main characteristics of the eight access-
methods appear in Table 3.

Control elements and system operation
data With general definitions and access methods in mind, we turn to
control the internal structure of OS/SSO as it pertains to data management.
block Associated with each data set of a problem program is a data

control block (DCR), which must be opened before any data transfer
takes place. However, some data sets, e.g., the catalog data set,
are opened automatically by the control program, and may be
indirectly referred to or used in a problem program without addi-
tional opening or closing. Data-access macroinstructions, such
as GET and PUT, logically refer to a data set, but actual reference
is always via a data control block.

The data control block is generated and partially filled when
the DCB macroinstruction is encountered a t compilation time.
The routine called at execution time by OPEN completes the
data control block with information gained principally from a
job-stream DD statement or cataloged procedure. For input data
sets, a final source of such information is the data-set label. In
the case of an output data set where the label has yet to be created,
the final source can be the label of another data set or another
DD statement.

In addition to completing the data control block, the OPEN
routine ensures that needed access routines are loaded and address
relations are completed. The routine prepares buffer areas and
generates channel command word lists; it initializes data sets by
reading or writing labels and performs a number of other house-
keeping operations.

The selection of access routines is governed by choices in data
organization, buffering technique, access language, input/output
unit characteristics, and other factors. The selection is relayed to
the supervisor, which allocates main storage space and performs
the loading.

I n operation, some access routines are treated as part of the
user’s program and are entered directly rather than through a
supervisor-call interruption. These routines block and deblock

40 W. A . CLARK

QTAM B P A M Characteristic

Data set
organization

Basic element
of data set

Basic concern
of access methc

Primary input
and
output
macroinstructio

Buffer

acquisition

Buffer
management
for a
data set

pool

""

Transmit,tal
mode

Synchronizatiol

____"
Record/biock
format*

Special
provisions for
data-set search

QSAM

Sequential
or member of
partitioned

B E A M

Indexed
Sequential

BDAM

Direct

QISAM

Indexed
sequential

BSAM BTAM

Telecom
~

Sequential
~

Telecom Partitioned

Record Message or
message segment

Record Record Message Member Record Record

Record Message Block Block Record Block Block Block

-I-

Scan SETL
Scan GET
Load PUT
Scan PUTX

FIND
READ
WRITE
STOW

GET
PUT
PUTX

GET
PUT
RETRIEVE

READ
WRITE

READ
WRITE

READ
WRITE

READ
WRITE

BUILD
GETPOOL
Automatic

BUFFER BUILD
GETPOOL
Automatic

BUILD
GETPOOL
Automatic

BUILD
GETPOOL
Automatic

BUILD
GETPOOL
Automatic

BUILD

Automatic
GETPOOL

BUILD
GETPOOL
Automatic

Automatic
(simple or
exchange)

Antonlatic
(chained-
segment)

Automatic
(simple)

Dynamic
FREEDBUF

Dynamic
FREEDBUF

GETBUF
FKEEBUF

GETBUF
FKEEBUF

GETBUF
FREEBUF

GETBUF
FREEBUF

GETBUF
FREEBUF

"

Move
Locate
Substitute

Move hlove
Locate

Automatic Automatic Automatic CHECK
WAIT

F, v record
-______

WAIT CHECK
WAIT

WAIT WAIT

u block F, v record F, v record G message F, v record
~

F, v, u block F, v, u block

-I-
Sequence num-
ber; relative
addressing

Cylinder
& track
indexes

Directory
of
members

Cylinder
& track
indexes

Can use
relative record
or track number

* F, v, and u denote fixed, variable, and unspecified lengths.

records, control the buffers, u d call the input/output supervisor
when a request for data input or output is needed. Other routines,
treated as part of the I/O supervisor and therefore executed in the
privileged mode, perform error checks, prepare user-oriented
completion codes, post interruptions, and bridge discontinuities in
the storage areas assigned to a data set.

The input/output supervisor performs all actual device control
110 supervisor (as it must if contending programs are not to conflict in device

usage); it accepts input/output requests, queues the requests if
necessary, and issues instructions when a path to the desired
input/output unit becomes available. The I/O supervisor also
ensures that input/output requests do not exceed the storage areas
allocated to a data set. The completion of each input/output
operation is posted and, where necessary, standard input/output
error-recovery procedures are performed. EXCP, the execute
channel program macroinstruction, is employed in all communica-
tion between access routines and the input/output supervisor.

To portray the mechanics of data management, let us consider
one job step and the data-management operations that support a
READ macroinstruction for a cataloged data set in the BSAM

context.
To begin with, me observe the state of the system just before

the job is introduced; of interest a t this point are the devices,
control blocks, programs, and catalog elements that exist prior to
job entry. Next to be considered are the data-management act-
ivities involved in m-statement processing, and in establishment
by the job scheduler of a task for the given job step. Third, we
consider the activities governed by the UPEN macroinstruction;
these activities tailor the system to the requirements of the job
step. Finally, operation of the READ macroinstruction is con-
sidered, with special attention to the use of the EXCP macro-
instruction. Essential to the four stages of the discussion arc four
cumulative displays. Frequent reference to numbered points within
the figures is made by means of parenthetical superscripts in the
text. The description refers more often to the objects generated

catalog and manipulated by the system thm to the functional programs
organization that implement the system.

The basic aspects of catalog implementation become apparent
when we consider the manner in which the system finds a volume
containing a cataloged data set. Recall that each direct-access
volume contains a volume label that locates its VTOC (volume
table of contents) and that the VTOC contains a data-set label for
each volume-contained data set. Identified by data-set name, the
data-set label holds attributes (such as record length) and specifies
the location in the volume of the data set.

Search for a data set begins (see Figure 1) in the VTOC of the
system residence volume, where a data-set label identifying the
portion of the catalog in this volume‘” appears. This part of the
catalog is itself organized as a partitioned data set whose directory
is the highest level (most significant) index of the catalog. For

42 w . A. CLARK

Figure 1 Control elements: before iob entry

0 SYS RES VOL

CATALOG

SYS RES VOL
DIRECTORY

I 1;

VOLUME
LABEL

CONTROL VOL $, CONTROL VOL

CATALOG
DIRECTORY

INDEX

CONTROL VOL
SYS RES OR

INDEX

VOLUME

OB1 VOL
LABEL

O W VOL

DATA
OBJ VOL

LEGEND - MAIN STORAGE ADDRESS - RELATIVE MAIN STORAGE ADDRESS - DASDTRACK OR BLOCK ADDRESS - RELATIVE DASD TRACK OR BLOCK ADDRESS

"" + VOLUME IDENTIFICATION NUMBER

"" A INTERRUPTION

-" 3, DATA SET NAME

DEVICE
DEPENDENT

LOGICAL
CHANNEL

QUEUE

-"_ - DATA DEFINITION STATEMENT NAME

OBJECT DATA FLOW - CONTROL DATA FLOW

0
OF A CHAIN OF SIMILAR ITEMS
INDICATES THAT ITEM POINTED TO IS ONE

* INDICATES THAT THE SOURCE OF A POINTER
IS A TABLE WHICH IDENTIFIES SIMILAR ITEMS

DATA MANAGEMENT 43

data sets cataloged on the system residence volume, entries in this
directory contain the addresses of lower-level indexes;'2' for data
sets cataloged on other control volumes,'3' directory entries con-
tain the appropriate volume identification numbers.

Assume for the moment that the search is for a data set cata-
loged on control volume V and that V is not the system residence
volume. In this case, the volume label of V contains the location of
V's VTOC.'~' (Volume label and VTOC are recorded separately to
allow for device peculiarities.) One of the data-set labels in this
VTOC identifies the part of the catalog on V;'5' just as in the case
of the residence volume, this part is organized as a partitioned
data set. Inasmuch as the directory of this partitioned data set is
the subset of the highest-level index governing that part of the
catalog recorded on V , directory entries contain the addresses of
the next-level indexes on V.'" It should be added that all index
levels needed to catalog a data set appear on a single control
volume; the part of the catalog on any given control volume is
known to other control volumes, because the directory entries
of the given control volume appear in the directories of the others.

Each index level below the directory"' is used to resolve one
qualification in the name of a data set. For example, were the
name of a data set A.B.C, a directory entry A would locate an index
containing an entry B, which in turn would locate an index con-
taining the entry c. This last entry identifies the volume'" that
holds the data set named A . B . c . ~

During the system generation process, one uni t control block
unit (UCB) is created for each I/O device attached to the system (each
control tape drive, disk drive, drum, card reader/punch, etc). Each UCB

block contains device-status information, the relevant device address or
addresses, the locations of the input/output supervisor sub-
routines'"' that treat device peculiarities (such as start-I/o, queue-
manipulat,ion, and error routines), and the location of the logical
channel queue'12' used with the de~ ice .~

The principal purpose of the DD statement (Figure 2) is to
DD-statement supply the (variable) name of a data set to be located via the
processing catalog,'13) and to relate the data set to the (constant) name of the

DD statement. However, a great amount of additional information
may be supplied if the user desires. This information may include:
the device type together with a list of volume identification num-
bers which serve to locate the data set without recourse to the
~ a t a l o g ; (~ ~ * ~ ~) label information used to create new labels; attributes
that determine the nature of the data set created or processed;
and processing options that modify the operation of the program.
After being encoded by the job scheduler, most of this information
is included in a job $le control block (JFCB) 'la that is used in lieu of
the original DD statement.

As was suggested above, a data set can be located either by an
explicit list of volume identification numbers and an indication of
the device type (if this information is given on the DD statement),
or by data-set name alone. In the latter case, a list of volume

44 W. A. CLARK

I SYS RES VOL I

CATALOG

SYS RES VOL
DIRECTORY

j;

VOLUME

CONTROL VOL
LABEL

fi CONTROL VOL

CATALOG

CONTROL VOL
DIRECTORY

CATALOG
INDEX

SYS RES OR
CONTROL VOL

* .

INDEX

14

L
1

I
I

-r
?-

I

I VOLUME
i
1

LABEL kz---

F] pq OEJ VOL

LEGEND - MAIN STORAGE ADDRESS

RELATIVE MAIN STORAGE ADDRESS - DASDTRACKOR BLOCKADDRESS - RELATIVE DASD TRACK OR BLOCK ADDRESS

"" + VOLUME IDENTIFICATION NUMBER

"" a INTERRUPTION "_ -Jb DATA SET NAME

"" - DATA DEFINITION STATEMENT NAME

OBJECT DATA FLOW - CONTROL DATA FLOW

0 INDICATES THAT ITEM POINTED TO IS ONE
OF A CHAIN OF SIMILAR ITEMS

INDICATES THAT THE SOURCE OF A POINTER
IS A TABLE WHICH IDENTIFIES SIMILAR ITEMS

DATA MANAGEMENT 45

assigns devices to the step. To represent this assignment, the job
scheduler constructs a task input/output table (TIOT). An entry
is made in this table for each DD statement supplied by the user;
each entry relates a m-statement name to the location of the
corresponding JFCB"~) and the unit or units assigned to the data
set.'") The assignment of a specific device derives from the
specification of device type supplied through the DD statement""
or the catalog, ''l) together with a table of available units main-
tained by the job scheduler.

The job scheduler then assures that all volumes initially re-
quired by the step are mounted. As each volume is mounted, its
volume label is read; the volume identification number and the
location of its VTOC are placed in the corresponding UCB for future
reference.'") Finally, the job scheduler "attaches" a task for
the step. In the process, the supervisor constructs a task control
block (TCB). The TCB is used by the supervisor as an area in which
to store the general registers and program status word of a task
a t a point of interruption; it contains the address of the TIOT."~)

Executiou of the OPEN macroinstruction (Figure 3) identifies
OPEN one or more data control blocks (DCB'S) to be initiali~ed:''~' since

an svc interruption results, the TCB of the calling task'") is also
identified. The name of the DD statement, contained in the DCB,

is used to locate the entry in the TIOT corresponding to the data
set to be p r ~ c e s s e d . ' ~ ~ ~ ~ ~) The related JFCB is then retrieved.'")

After assuring that the required volumes are mo~nted,"~ ' the
open subroutines read the data-set label(s) and place in the JFCB

all data-set attributes that were not specified (or overridden)
by the DD ~tatement."~' At this point, the DCB and JFCB comprise a
complete specification of the attributes of the data set and the
access method to be used. Next, data-set attributes and processing
options not specified by the DCB macroinstruction are passed from
the JFCB to the DCB."~'

The system then constructs a dafa extent block (DEB), logically a
protected extension of the DCB. This block contains a description
of the extent (devices and track boundaries) of the data et,'^^'^^)
flags which indicate the set of channel commands that may be used
with the data and a priority indicator.'"" The DEB is nor-
mally located via the DCB;'~') but in order to purge a failing task
or close the DCB upon task termination, it may be located via
the T C B . ' ~ ~ ' If the data set is to be retrieved sequentially, the
address of the first block of the data set is moved t o t h e D C B . ' ~ ~ '

Next, the access-method routines are selected and loaded. The
addresses of these routines are placed in the D C B . ' ~ ~) If privileged
interrupt-handling or error routines are required, they are loaded
and their addresses recorded in the DEB.'^^' Finally, the channel
programs which will later be used to access the data set are gene-
rated. For each channel program, an input /output block (I O B) is

46 W . A. CLARK

Figure 3 Control elements: OPEN macroinstruction-oblate blocks denote
elements of first concern during execution of OPEN macroinstruction

I

CATALOG

SYS RES VOL
DIRECTORY

ix

VOLUME

CONTROL VOL

CONTROL VOL

CATALOG
DIRECTORY

CATALOG
INDEX

SYS RES or
CONTROL VOL

LABEL

I

L

I A i

TCB

Y P I

JFCB
SYS RES VOL 37 CODE

ACC METH
PRlV

L
1

1 5

1
7

LEGEND - MAIN STORAGE ADDRESS

RELATIVE MAIN STORAGE ADDRESS - DASDTRACKORBLOCKADDRESS

RELATIVE DASO TRACK OR BLOCK ADDRESS

”” + VOLUME IDENTIFICATION NUMBER

”“ =. INTERRUPTION

”_ +S9 DATA SET NAME

I U
29

1; 19

22
UCB

LOGICAL
CHANNEL

QUEUE

DEPENDENT
DEVICE

1

CHANNEL
PROGRAM

E l CHANNEL

““U DATA DEFINITION STATEMENT NAME

OBJECT DATA FLOW - CONTROL DATA FLOW

0 INDICATES THAT ITEM POINTED TO IS ONE
OF A CHAIN OF SIMILAR ITEMS

* INDICATES THAT THE SOURCE OF A WINTER
IS A TABLE WHICH IDENTIFIES SlMl lAR ITEMS

DATA MANAGEMENT 47

It contains flags that govern the channel program, the location
of the DCB,'59) the location of an event control block used with
the channel program, the location of the channel program itself,
the "seek address," and an area into which the I/O supervisor
can move the channel status word at the completion of the channel
program. IOB'S are linked in a chain originating at the DCB.'~')

The READ macroinstruction (see Figure 4) identifies a param-
READ eter list, called the data event control block (DECB),'~') that is pre-

pared either by the user or the READ macroinstruction. This
block contains the address of a buffer,'41' the length of the block
to be read (or the length of the buffer), the address of the DCB

associated with the data set,(43) an event control block, and the
like. Buffer address and block or buffer length are obtained from
the DCB if not supplied by the user.(44) Using an address previously
placed in the D C B , ' ~ ~ ' the READ macroinstruction branches to an
access-method routine that assigns an IOB and a channel program
to the DECB. Subsequently, the routine modifies the channel
program to reflect the bIock length and the location of the
b~ffer; '~ ') i t then records the address of the DECB in t h e I O B . ' ~ ~)
In addition, the routine computes the track and block addresses
of the next block and updates the IOB and channel program using

The access method routine then issues the
EXCP macroinstruction.

The EXCP macroinstruction causes an svc interrupti~n'~' '
EXCP that calls the I/O supervisor and passes to it the addresses of the

IOB and, indirectly, the DCB.'~') Using the DCB, the address of
the DEB is obtained and ~erified.'~') Next, assuming that other
requests for the device are pending, the IOB is placed in a seek
queue to await the availability of the access mechanism. Queues
maintained by the 10s take the form of chains of request queue
elements (RQE'S) which identify the IOB'S in queue^.'^') An HQE

contains a priority byte obtained from the DEB,'^^) the address
of the DEB,'^^) and the address of the TCB of the requesting
(used to purge the system of the IOB'S upon task termination).
Seek queues originate from UCB'S, (5 ") and are (optionally) main-
tained in ascending sequence by cylinder address to reduce
average seek time.

When, as a result of the completion of other requests, the
access mechanism becomes available to the current IOB, a seek
operation is initiated using the track address in the IOB. Just prior
to this, the track address is verified (using the contents of the DEB)
to ensure that the seek address lies within the extent of the data
set. Assuming that the seek operation was not immediately com-
pleted, seek commands to other devices are issued; the channel is
then used for other operations if possible. At the completion of the
relevant seek operation,(") the RQE is removed from the top of the
seek queue and placed in the appropriate logical channel queue(55)
in priority sequence. For the performance of all of these functions,

the r e S U ~ t S . (4 2 , 4 6 , 4 7 , 4 8)

48 W . A . CLARK

Figure 4 Control elements: READ and EXCP macroinstructions-elliptical blocks denote
elements of first concern during execution of READ or EXCP macroinstruction

w SYS RES VOL STATEMENT r"- MACRO MACRO

T i - " ~~ """"""_ + _"" 4 140 J
CATALOG

SYS RES VOL
DIRECTORY

VOLUME
LABEL

CONTROL VOL

4
45

23

I I I

+, CONTROL VOL

I

JFCB
SYS RES VOI 37

I

UCB DEVICE
CODE

DEPENDENT

CATALOG

CONTROL VOL
DIRECTORY

""
I

I
I
I LOGICAL

I
12

CHANNEL
QUEUE

!

INDEX

c* *

INDEX

I*

VOLUME
LABEL

i
I

I
! c OBJ VOL

10 I
I

48 * I

\ /

DATA
OB1 "OL - T UNIT CHANNEL

CONTROL

EGEND

"" - DATA DEFINITION STATEMENT NAME

OBJECT DATA FLOW

___) CONTROL DATA FLOW

0 INDICATES THAT ITEM POINTED TO IS ONE
OF A CHAIN OF SIMILAR ITEMS

4 INDICATES THAT THE SOURCE OF A POINTER
IS A TABLE WHICH IDENTIFIES SIMILAR ITEMS

W MAIN STORAGE ADDRESS

RELATIVE MAIN STORAGE ADDRESS - DASD TRACK OR BLOCK ADDRESS

RELATIVE OASO TRACK OR BLOCK ADDRESS

"" + VOLUME IDENTIFICATION NUMBER

""a INTERRUPTION

-" + DATA SET NAME

DATA MANAGEMENT 49

device-dependent routines addressed by the U C B ‘ ~ ~ ’ are executed
by the I/O supervisor.

When the IOB reaches the top of the logical channel queue and a
related channel is free, the channel program associated with the
IOB is logically prefixed with a short supervisory channel program
and the result executed. The control unit is initialized by the
supervisory channel program to inhibit the channel program from
executing commands that might destroy information outside of
the extent of the data set, leave the channel and control unit unused
for significant periods, or attempt to write in a data set that is
to be used in a read-only manner.5 When the channel program
finishes,‘56’ its completion is posted in the event control block
within the D E C B . ‘ ~ ~)

At any time after issuing a READ macroinstruction, the pro-
gram may issue a WAIT or CHECK macroinstruction which refers
to the same DECB as the READ macroinstruction. Either of these
macroinstructions suspends the until the REA]) op-
eration has been completed, i.e., until the I/O supervisor posts
the completion of the operation in the DECB.

Although the foregoing discussion applies specifically to the
READ macroinstruction in the BSAM context and to the use of a
direct-access device, the first three displays (Figures 1, 2, and 3)
are applicable to other operations as well. In fact, the discussion
introduces most of the control elements that bear on data-manage-
ment operations in any context.

Summary
The design of os/360 assures that data sets of all kinds can be
systematically identified, stored, retrieved, and surveyed. Versa-
tility is served by a variety of techniques for structuring data sets,
catalogs, buffers, and data transfers. In the int>erest of operational
adaptability, the system tailors itself to actual needs on a dynamic
basis. For programming efficiency, source programs may be device-
independent to a novel degree.

CITED REFERENCE AND FOOTNOTES

1. A. S. Noble, Jr., “Design of an integrated programming and operating
system, Part I, system considerations and the monitor,” IBM Systems
Journal 2, 153-161 (June 1963).

2. Although the CHECK macroinstruction includes the effect of the WAIT
macroinstruction, the latter may also be used prior to CHECK.

3. Ordinarily, the results of a catalog search include the device tjype, the
identification number of the desired volume, and label verification infor-
mation. If the data set is a generation of a generation group (a case not
considered in the main discussion), the results are the location of an index
of generations and an archetype data-set label.

4. Generally, “logical channel” and physical channel are indistinguishable.
The logical channel is taken to be the set of physical channels by which
a device is accessible. All devices (independent of their type) that share
exactly the same set of physical channels are associated with the same logical
channel queue. For example, a set of tape drives attached to physical
channels 1 and 2 would share a lonical channel distinct from that of a

