A brief outline of the structural elements of 0s/360 ¢s given in prepara-
tton for the subsequent sections on control-program functions.

Emphasis is placed on the functional scope of the system, on the
motivating objectives and basic design concepts, and on the design
approach to modularity.

The functional structure of OS/360

Part I Introductory survey
by G. H. Mealy

The environment that may confront an operating system has
lately undergone great change. For example, in its several compat-
ible models, sysTEM/360 spans an entire spectrum of applications
and offers an unprecedented range of optional devices." It need
come as no surprise, therefore, that os/360—the Operating System
for sYSTEM /360—evinces more novelty in its scope than in its func-
tional objectives.

In a concrete sense, 0s/360 consists of a library of programs.
In an abstract sense, however, the term 0s/360 refers to one articu-
lated response to a composite set of needs. With integrated vo-
cabularies, conventions, and modular capabilities, 0s/360 is de-
signed to answer the needs of a sysTEM/360 configuration with a
standard instruction set and thirty-two thousand or more bytes
of main storage.”

The main purpose of this introductory survey is to establish
the scope of 0s/360 by viewing the subject in a number of different
perspectives: the historical background, the design objectives, and
the functional types of program packages that are provided.
An effort is made to mention problems and design compromises,
i.e., to comment on the forces that shaped the system as a whole.

Basic objectives
The notion of an operating system dates back at least to 1953 and

IBM SYSTEMS JOURNAL °* VOL. 5 * NO. 1 - 1966




throughput

response
time

MIT’s Summer Session Computer and Utility System.® Then,
as now, the operating system aimed at non-stop operation over a
span of many jobs and provided a computer-accessible library
of utility programs. A number of operating systems came into use
during the last half of the decade.” In that all were oriented toward
overlapped setup in a sequentially executed job batch, they may be
termed “first generation’ operating systems.

A significant characteristic of batched-job operation has been
that each job has, more or less, the entire machine to itself, save
for the part of the system permanently resident in main storage.
During the above-mentioned period of time, a number of large
systems—typified by sAGE, MERCURY, and saABRE—were developed
along other lines; these required total dedication of machine re-
sources to the requirements of one ‘“real-time” application. It is
interesting that one of the earliest operating systems, the Utility
Control Program developed by the Lincoln Laboratory, was
developed solely for the checkout of portions of the sAGE system.
By and large, however, these real-time systems bore little re-
semblance to the first generation of operating systems, either
from the point of view of intended application or system structure.

Because the basic structure of os/360 is equally applicable to
batched-job and real-time applications, it may be viewed as one
of the first instances of a “second-generation” operating system.
The new objective of such a system is to accommodate an environ-
ment of diverse applications and operating modes. Although not
to be discounted in importance, various other objectives are not
new—they have been recognized to some degree in prior systems.
Foremost among these secondary objectives are:

Increased throughput

Lowered response time

Increased programmer productivity
Adaptability (of programs to changing resources)
Expandability

0s/360 seeks to provide an effective level of machine throughput
in three ways. First, in handling a stream of jobs, it assists the
operator in accomplishing setup operations for a given job while
previously scheduled jobs are being processed. Second, it permits
tasks from a number of different jobs to concurrently use the re-
sources of the system in a multiprogramming mode, thus helping
to ensure that resources are kept busy. Also, recognizing that the
productivity of a shop is not solely a function of machine utiliza-
tion, heavy emphasis is placed on the variety and appropriateness
in source languages, on debugging facilities, and on input
convenience.

Response time is the lapse of time from a request to comple-
tion of the requested action. In a batch processing context, response
time (often called ““turn-around time’’) is relatively long: the user
gives a deck to the computing center and later obtains printed re-

G. H. MEALY




sults. In a mixed environment, however, we find a whole spectrum
of response times. Batch turn-around time is at the “red” end of the
spectrum, whereas real-time requirements fall at the “violet” end.
For example, some real-time applications need response times in
the order of milliseconds or lower. Intermediate in the spectrum
are the times for simple actions such as line entry from a keyboard
where a response time of the order of one or two seconds is de-
sirable. Faced with a mixed environment in terms of applications
and response times, os/360 is designed to lend itself to the whole
spectrum of response times by means of control-program options
and priority conventions. '

For the sake of programmer productivity and convenience,
0s/360 aims to provide a novel degree of versatility through a
relatively large set of source languages. It also provides macro-
instruction capabilities for its assembler language, as well as a
concise job-control language for assistance in job submission.

A second-generation operating system must be geared to change
and diversity. sysTEM/360 itself can exist in an almost unlimited
variety of machine configurations: different installations will
typically have different configurations as well as different applica-
tions. Moreover, the configuration at a given installation may
change frequently. If we look at application and configuration
as the environment of an operating system, we see that the operat-
ing system must cope with an unprecedented number of environ-
ments. All of this puts a premium on system modularity and
flexibility.

Adaptability is also served in 0s/360 by the high degree to which
programs can be device-independent. By writing programs that
are relatively insensitive to the actual complement of input/output
devices, an installation can reduce or circumvent the problems
historically associated with device substitutions.

As constructed, os/360 is “open-ended’’; it can support new
hardware, applications, and programs as they come along. It can
readily handle diverse currency conventions and character sets.
It can be tailored to communicate with operators and programmers
in languages other than English. Whenever so dictated by chang-
ing circumstances, the operating system itself can be expanded in
its functional capabilities.

Design concepts

In the notion of an “extended machine,” a computing system is
viewed as being composed of a number of layers, like an onion.®®
Few programmers deal with the innermost layer, which is that
provided by the hardware itself. A FORTRAN programmer, for
instance, deals with an outer layer defined by the rorrTrAN lan-
guage. To a large extent, he aets as though he were dealing with
hardware that accepted and executed FORTRAN statements directly.
The sysTEM/360 instruction set represents two inner layers, one
when operating in the supervisor state, another when operating in
the problem state.

INTRODUCTORY SURVEY

productivity

adaptability

expandability




The supervisor state is employed by o0s/360 for the supervisor
portion of the control program. Because all other programs operate
in the problem state and must rely upon unprivileged instructions,
they use system macroinstructions for invoking the supervisor.
These macroinstructions gain the attention of the supervisor by
means of SVC, the supervisor-call instruction.

All os /360 programs with the exception of the supervisor operate
in the problem state. In fact, one of the fundamental design tenets
is that these programs (compilers, sorts, or the like) are, to all in-
tents and purposes, problem programs and must be treated as such
by the supervisor. Precisely the same set of facilities is offered to
system and problem programs. At any point in time, the system
consists of its given supervisor plus all programs that are available
in on-line storage. Inasmuch as an installation may introduce new
compilers, payroll programs, etc., the extended machine may grow.

In designing a method of control for a second-generation
system, two opposing viewpoints must be reconciled. In the first-
generation operating systems, the point of view was that the
machine executed an incoming stream of programs; each program
and its associated input data corresponded to one application
or problem. In the first-generation real-time systems, on the other
hand, the point of view was that incoming pieces of data were
routed to one of a number of processing programs. These attitudes
led to quite different system structures; it was not recognized
that these points of view were matters of degree rather than
kind. The basic consideration, however, is one of emphasis:
programs are used to process data in both cases. Because it is
the combination of program and data that marks a unit of work
for control purposes, os/360 takes such a combination as the
distinguishing property of a task. As an example, consider a trans-
action processing program and two input transactions, A and B.
To process A and B, two tasks are introduced into the system,
one consisting of A plus the program, the second consisting of
B plus the program. Here, the two tasks use the same program
but different sets of input data. As a further illustration, consider
a master file and two programs, X and Y, that yield different
reports from the master file. Again, two tasks are introduced
into the system, the first consisting of the master file plus X,
and the second of the master file plus Y. Here the same input
data join with two different programs to form two different tasks.

In laying down conceptual groundwork, the 0s/360 designers
have employed the notion of multitask operation wherein, at
any time, a number of tasks may contend for and employ system
resources. The term muliiprogramming is ordinarily used for
the case in which one cpvu is shared by a number of tasks, the
term multiprocessing, for the case in which a separate task is
assigned to each of several cpu’s. Multitask operation, as a concept,
gives recognition to both terms. If its work is structured entirely
in the form of tasks, a job may lend itself without change to either
environment.

G. H. MEALY




In 0s/360, any named collection of data is termed a data set.
A data set may be an accounting file, a statistical array, a source
program, an object program, a set of job control statements, or
the like. The system provides for a cataloged library of data sets.
The library is very useful in program preparation as well as in
production activities; a programmer can store, modify, recompile,
link, and execute programs with minimal handling of card decks.

System elements

As seen by a user, 0s /360 will consist of a set of language translators,
a set of service programs, and a control program. Moreover, from
the viewpoint of system management, a sSYSTEM/360 installation
may look upon its own application programs as an integral part of
the operating system.

A variety of translators are being provided for FORTRAN,
coBoL, and RpPGL (a Report Program Generator Language). Also
to be provided is a translator for PL/1, a new generalized language.”
The programmer who chooses to employ the assembler language
can take advantage of macroinstructions; the assembler program
is supplemented by a macro generator that produces a suitable set
of assembly language statements for each macroinstruction in the
source program,

Groups of individually translated programs can be combined
into a single executable program by a linkage editor. The linkage
editor makes it possible to change a program without re-translating
more than the affected segment of the program. Where a program
is too large for the available main-storage area, the function of
handling program segments and overlays falls to the linkage
editor.

The sort/merge is a generalized program that can arrange the
fixed- or variable-length records of a data set into ascending or
descending order. The process can employ either magnetic-tape or
direct-access storage devices for input, output, and intermediate
storage. The program is adaptable in the sense that it takes ad-
vantage of all the input/output resources allocated to it by the
control program. The sort/merge can be used independently of
other programs or can be invoked by them directly; it can also
be used via cosoL and pL/I.

Included in the service programs are routines for editing,
arranging, and updating the contents of the library; revising the
index structure of the library catalog; printing an inventory list
of the catalog; and moving and editing data from one storage
medium to another.

Roughly speaking, the control program subdivides into master
scheduler, job scheduler, and supervisor. Central control lodges
in the supervisor, which has responsibility for the storage alloca-
tion, task sequencing, and input/output monitoring functions.
The master scheduler handles all communications to and from the
operator, whereas the job scheduler is primarily concerned with

INTRODUCTORY SURVEY

translators

service
programs

the contro!
program




supervisor

job
scheduler

master
scheduler

job-stream analysis, input/output device allocation and setup, and
job initiation and termination.

Among the activities performed by the supervisor are the
following:

Allocating main storage

Loading programs into main storage

Controlling the concurrent execution of tasks

Providing clocking services

Attempting recoveries from exceptional conditions

Logging errors

Providing summary information on facility usage

Issuing and monitoring input/output operations
The supervisor ordinarily gains control of the central processing
unit by way of an interruption. Such an interruption may stem
from an explicit request for services, or it may be implicit in
SYSTEM/360 conventions, such as in the case of an interruption
that occurs at the completion of an input/output operation.
Normally, a number of data-access routines required by the data
management function are coordinated with the supervisor. The
access routines available at any given time are determined by the
requirements of the user’s program, the structure of the given data
sets, and the types of input/output devices in use.

As the basic independent unit of work, a job consists of one or
more steps. Inasmuch as each job step results in the execution of a
major program, the system formalizes each job step as a task,
which may then be inserted into the task queue by the initiator-
terminator (a functional element of the job scheduler). In some
cases, the output of one step is passed on as the input to another.
For example, three successive job steps might involve file mainte-
nance, output sorting, and report tabulation.

The primary activities of the job scheduler are as follows:

¢ Reading job definitions from source inputs

o Allocating input/output devices

¢ Initiating program execution for each job step
o Writing job outputs

In its most general form, the job scheduler allows more than one
job to be processed concurrently. On the basis of job priorities
and resource availabilities, the job scheduler can medify the order
in which jobs are processed. Jobs can be read from several input
devices and results can be recorded on several output devices—the
reading and recording being performed concurrently with internal
processing.

The master scheduler serves as a communication control
Iink between the operator and the system. By command, the
operator can alert the system to a change in the status of an
Input/output unit, alter the operation of the system, and request
status information. The master scheduler is also used by the
operator to alert the job scheduler of job sources and to initiate
the reading or processing of jobs.

G. H. MEALY




The control program as a whole performs three main functions:
job management, task management, and data management. Since
Part IT of this paper discusses job and task management, and
Part IT1 is devoted entirely to data management, we do not further
pursue these functions here.

System modularity

Two distinguishable, but by no means independent, design prob-
lems arise in creating a system such as 0s/360. The first one is to
prescribe the range of functional capabilities to be provided;
essentially, this amounts to defining two operating systems, one
of maximum capability and the other a nucleus of minimum
capability. The second problem is to ascertain a set of building
blocks that will answer reasonably well to the two predefined
operating systems as well as to the diverse needs bounded by the
two. In resolving the second problem, which brings us to the
subject of modularity, no single consideration is more compelling
than the need for efficient utilization of main storage.

As stated earlier, the tangible 0s/360 consists of a library of
program modules. These modules are the blocks from which actual
operating systems can be erected. The 0s/360 design exploits
three basic principles in designing blocks that provide the desired
degree of modularity. Here, these well-known principles are termed
parametric generality, functional redundancy, and functional
optionality.

The degree of generality required by varying numbers of
input/output devices, control units, and channels can be handled
to a large extent by writing programs that lend themselves to
variations in parameters. This has long been practiced in sorting
and merging programs, for example, as well as in other generalized
routines. In 0s/360, this principle also finds frequent application in
the process that generates a specific control program.

In the effort to optimize performance in the face of two or more
conflicting objectives, the most practical solution (at least at the
present state of the art) is often to write two or more programs
that exploit dissimilar programming techniques. This principle is
most relevant to the program translation function, which is es-
pecially sensitive to conflicting performance measures. The same
installation may desire to effect one compilation with minimum
use of main storage (even at some expense of other objectives)
and another compilation with maximum efficacy in terms of
object-program running time (again at the expense of other ob-
jectives). Where conflicting objectives could not be reconciled by
other means, the os/360 designers have provided more than one
program for the same general translation or service function.
For the coBor language, for example, there are two translation
programs.

For the nucleus of the control program that resides in main
storage, the demand for efficient storage utilization is especially

INTRODUCTORY SURVEY

parametric
generality

functional
redundancy




functional
optionality

system
generation

pressing. Hence, each functional capability that is likely to be
unused in some installations is treated as a separable option.
When a control program is generated, each omitted option yields a
net saving in the main-storage requirement of the control program.

The most significant control program options are those re-
quired to support various job scheduling and multitask modes
of operation. These modes carry with them needs for optional
functions of the following kinds:

Task synchronization

Job-input and job-output queues

Distinctive methods of main-storage allocation
Main-storage protection

Priority-governed selection among jobs

In the absence of any options, the control program is capable
of ordinary stacked-job operation. The activities of the central
processing unit and the input/output channels are overlapped.
Many error checking and recovery functions are provided, inter-
ruptions are handled automatically, and the standard data-
management and service functions are included. Job steps are
processed sequentially through single task operations.

The span of operating modes permitted by options in the
control program can be suggested by citing two limiting cases
of multitask operation. The first and least complicated permits
a scheduled job step to be processed concurrently with an initial-
input task, say A, and a result-output task, say B. Because A
and B are governed by the control program, they do not correspond
to job steps in the usual sense. The major purpose of this configura-
tion is to reduce delays between the processing of successive job
steps: tasks A and B are devoted entirely to input/output functions.

In the other limiting case, up to n jobs may be in execution
on a concurrent basis, the parameter n being fixed at the time
the control program is generated. Contending tasks may arise
from different jobs, and a given task can dynamically define
other tasks (see the description of the ATTACH macroinstruction
in Part II) and assign task priorities. Provision is made for
removal of an entire job step (from the job of lowest priority)
to auxiliary storage in the event that main storage is exhausted.
The affected job step is resumed as soon as the previously occupied
main-storage area becomes available again.

In selecting the options to be included in a control program,
the user is expected to avail himself of detailed descriptions and
accompanying estimates of storage requirements.

To obtain a desired operating system, the user documents his
machine configuration, requests a complement of translators and
service programs, and indicates desired control-program options—
all via a set of macroinstructions provided for the purpose. Once
this has been done, the fabrication of a specific operating system
from the os/360 systems library reduces to a process of two stages.

G. H. MEALY




First, the macroinstructions are analyzed by a special program and
formulated into a job stream. In the second stage, the assembler
program, the linkage editor, and the catalog service programs
join in the creation of a resident control program and a desired
set of translators and service programs.

Summary comment

Intended to serve a wide variety of computer applications and to
support a broad range of hardware configurations, o0s/360 is a
modular operating system. The system is not only open-ended
for the class of functions discussed in this paper, but is based
on a conceptual framework that is designed to lend itself to addi-
tional functions whenever warranted by cumulative experience.

The ultimate purpose of an operating system is to increase
the productivity of an entire computer installation; personnel
productivity must be considered as well as machine productivity.
Although many avenues to increased productivity are reflected
in 0s/360, each of these avenues typically involves a marginal
investment on the part of an installation. The investment may
take the form of additional personnel training, storage require-
ments, or processing time. It repays few installations to seek added
productivity through every possible avenue; for most, the econ-
omies of installation management dictate a well-chosen balance
between investment and return. Much of the modularity in 0s/360
represents a design attempt to permit each installation to strike
its own economic balance.

CITED REFERENCES AND FOOTNOTES

1. For an introduction to sysTEm/360, see G. A. Blaauw and F. P. Brooks,
Jr., “The structure of sysTEM /360, Part I, outline of the logical structure,”
IBM Systems Journal 3, No. 2, 119-135 (1964).

. The restrictions exclude MoDEL 44, as well as moDpEL 20. The specialized
operating systems that support these excluded models are not discussed
here.

. C. W. Adams and J. H. Laning, Jr.,, “The MIT systems of automatic
coding: Comprehensive, Summer Session, Algebraic,” Symposium on Auto-
matic Coding for Digital Computers, Office of Naval Research, Department
of the Navy (May 1954).

. In the case of the 1BM 709 and 704 computers, the earliest developments were
largely due to the individual and group efforts of sHARE installations. The
first operating systems developed jointly by 18BM and sHARE were the SHARE
Operating System (sos) and the FORTRAN Monitor System (Fms).

. G. F. Leonard and J. R. Goodroe, “An environment for an operating sys-
tem,”’ Proceedings of the 19th National ACM Conference (August 1964).

. A. W. Holt and W. J. Turanski, “Man to machine communication and
automatic code translation,” Proceedings Western Joint Computer Con-
Serence (1960).

. G. Radin and H. P. Rogoway, “NPL: highlights of a new programming
language,” Communications of the ACM 8, No. 1, 9-17 (January 1965).

INTRODUCTORY SURVEY




